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Network Applications of
Bloom Filters: A Survey
Andrei Broder and Michael Mitzenmacher

Abstract. A Bloom filter is a simple space-efficient randomized data structure for

representing a set in order to support membership queries. Bloom filters allow false

positives but the space savings often outweigh this drawback when the probability of

an error is controlled. Bloom filters have been used in database applications since the

1970s, but only in recent years have they become popular in the networking literature.

The aim of this paper is to survey the ways in which Bloom filters have been used

and modified in a variety of network problems, with the aim of providing a unified

mathematical and practical framework for understanding them and stimulating their

use in future applications.

1. Introduction

A Bloom filter is a simple space-efficient randomized data structure for repre-

senting a set in order to support membership queries. Bloom filters allow false

positives but the space savings often outweigh this drawback when the probabil-

ity of an error is made sufficiently low. Burton Bloom introduced Bloom filters

in the 1970s [Bloom 70], and ever since they have been very popular in database

applications. Recently they started receiving more widespread attention in the

networking literature.

In this paper, we survey the ways in which Bloom filters have been used and

modified for a variety of network problems, with the aim of providing a unified

mathematical and practical framework for them and stimulating their use in

future applications. We first describe the mathematics behind Bloom filters,

© A K Peters, Ltd.
1542-7951/04 $0.50 per page 485



486 Internet Mathematics

their history, and some important variations. We then consider four types of

network-related applications of Bloom filters:

• Collaborating in overlay and peer-to-peer networks: Bloom filters can be

used for summarizing content to aid collaborations in overlay and peer-to-

peer networks.

• Resource routing: Bloom filters allow probabilistic algorithms for locating

resources.

• Packet routing: Bloom filters provide a means to speed up or simplify

packet routing protocols.

• Measurement: Bloom filters provide a useful tool for measurement in-

frastructures used to create data summaries in routers or other network

devices.

We emphasize that this simple categorization is very loose; some applications fit

into more than one of these categories, and these categories are not meant to be

exhaustive. Indeed, we suspect that new applications of Bloom filters and their

variants will continue to “bloom” in the network literature. Also, we emphasize

that we are providing only brief summaries of the work of many others.

The theme unifying these diverse applications is that a Bloom filter offers a

succinct way to represent a set or a list of items. There are many places in a

network where one might like to keep or send a list, but a complete list requires

too much space. A Bloom filter offers a representation that can dramatically

reduce space, at the cost of introducing false positives. If false positives do not

cause significant problems, the Bloom filter may provide improved performance.

We call this the Bloom filter principle, and we repeat it for emphasis below.

The Bloom filter principle: Wherever a list or set is used, and space is at

a premium, consider using a Bloom filter if the effect of false positives can be

mitigated.

2. Bloom Filters: Mathematical Preliminaries

2.1. Standard Bloom Filters

We begin by presenting the mathematics behind Bloom filters. A Bloom filter

for representing a set S = {x1, x2, . . . , xn} of n elements is described by an array
of m bits, initially all set to 0. A Bloom filter uses k independent hash functions

h1, . . . , hk with range {1, . . . ,m}. For mathematical convenience, we make the
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Figure 1. An example of a Bloom filter. The filter begins as an array of all 0s.

Each item in the set xi is hashed k times, with each hash yielding a bit location;
these bits are set to 1. To check if an element y is in the set, hash it k times
and check the corresponding bits. The element y1 cannot be in the set, since a
0 is found at one of the bits. The element y2 is either in the set or the filter has
yielded a false positive.

natural assumption that these hash functions map each item in the universe to

a random number uniform over the range {1, . . . ,m}. For each element x ∈ S,
the bits hi(x) are set to 1 for 1 ≤ i ≤ k. A location can be set to 1 multiple

times, but only the first change has an effect. To check if an item y is in S, we

check whether all hi(y) are set to 1. If not, then clearly y is not a member of

S. If all hi(y) are set to 1, we assume that y is in S, although we are wrong

with some probability. Hence, a Bloom filter may yield a false positive, where

it suggests that an element x is in S even though it is not. Figure 1 provides

an example. For many applications, false positives may be acceptable as long as

their probability is sufficiently small. To avoid trivialities we will silently assume

from now on that kn < m.

The probability of a false positive for an element not in the set, or the false

positive rate, can be estimated in a straightforward fashion, given our assumption

that hash functions are perfectly random.1 After all the elements of S are hashed

into the Bloom filter, the probability that a specific bit is still 0 is

pI = 1− 1

m

kn

≈ e−kn/m.

We let p = e−kn/m, and note that p is a convenient and very close (within
O(1/m)) approximation for pI.
Now, let ρ be the proportion of 0 bits after all the n elements are inserted in

the table. The expected value for ρ is of course E(ρ) = pI. Conditioned on ρ,

1Early work considering the performance of Bloom filters with practical hash functions was

done by Ramakrishna [Ramakrishna 89]. The question of what hash function to use in practice

remains an interesting open question; currently MD5 is a popular choice [Fan et al. 00].
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the probability of a false positive is

(1− ρ)k ≈ (1− pI)k ≈ (1− p)k.

We already discussed the second approximation; the first one is justified by the

fact that with high probability ρ is very close to its mean. We will return to this

fact at the end of this section.

We let

f I = 1− 1− 1

m

kn k

= (1− pI)k

and

f = 1− e−kn/m
k

= (1− p)k.
In general, it is often easier to use the asymptotic approximations p and f in

analysis, rather than pI and f I.
It is worth noting that sometimes Bloom filters are described slightly differ-

ently: instead of having one array of size m shared among all the hash functions,

each hash function has a range of m/k consecutive bit locations disjoint from all

the others. The total number of bits is still m, but the bits are divided equally

among the k hash functions. Repeating the analysis above, we find that in this

case the probability that a specific bit is 0 is

1− k

m

n

≈ e−kn/m.

Asymptotically, then, the performance is the same as the original scheme. How-

ever, since for k ≥ 1
1− k

m

n

≤ 1− 1

m

kn

(with equality only when k = 1), the probability of a false positive is actually

always at least as large with this division. Since the difference is small, this

approach may still be useful for implementation reasons; for example, dividing

the bits among the hash functions may make parallelization of array accesses

easier.

Suppose that we are given m and n and we wish to optimize for the number of

hash functions. There are two competing forces: using more hash functions gives

us more chances to find a 0 bit for an element that is not a member of S, but using

fewer hash functions increases the fraction of 0 bits in the array. The optimal

number of hash functions that minimizes f as a function of k is easily found by

taking the derivative. More conveniently, note that f = exp(k ln(1 − e−kn/m)).
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Let g = k ln(1 − e−kn/m). Minimizing the false positive rate f is equivalent to
minimizing g with respect to k. We find that

∂g

∂k
= ln 1− e− kn

m +
kn

m

e−
kn
m

1− e− kn
m

.

It is easy to check that the derivative is 0 when k = ln 2 · (m/n); further efforts
reveal that this is a global minimum. Alternatively, using p = e−kn/m, we find
that

g = −m
n
ln(p) ln(1− p),

from which symmetry reveals that the minimum value for g occurs when p = 1/2,

or equivalently k = ln 2 · (m/n). In this case the false positive rate f is (1/2)k ≈
(0.6185)m/n. In practice, of course, k must be an integer, and a smaller, sub-

optimal k might be preferred since this reduces the number of hash functions

that have to be computed.

The pleasant result that p equals 1/2 when the probability of a false positive

is minimized does not depend on the asymptotic approximation. Repeating the

argument above, for f I = exp(k ln(1− (1− 1/m)kn)), gI = k ln(1− (1− 1/m)kn),
and pI = (1− 1/m)kn, we have

gI =
1

n ln(1− 1/m) ln(p
I) ln(1− pI),

and again by symmetry gI and hence f I are minimized when pI = 1/2. (One

could similarly derive this fact via calculus.)

Finally, the astute reader may be concerned that the fraction of 0 bits in the

Bloom filter array may not equal pI (or p) on any given instantiation; the number
of 0s and 1s in the Bloom filter depends on the results of the hashing. Indeed, pI

simply represents the expected fraction of 0 bits in the array. If the number of 0

bits in the array is substantially less than expected, then the probability of a false

positive will be higher than the quantity f that we computed. Mitzenmacher

shows that, in fact, the fraction of 0 bits is extremely concentrated around its

expectation, using a simple martingale argument [Mitzenmacher 02]. Specifically,

if X is a random variable corresponding to the number of 0 bits in a Bloom filter,

then one can show, using the Azuma-Hoeffding inequality, that for any 6 > 0,

P(|X − pIm| ≥ 6m) ≤ 2e−2 2m2/nk.

Similar bounds can be had by making use of negative dependence [Dubhasi and

Ranjan 98], which corresponds to the intuitive idea that when one bit is set to

1, it (slightly) lowers the probability that every other bit is set to 1. Negative
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dependence allows Chernoff bounds to be applied to bound the fraction of 0 bits,

giving a similar exponential tail bound. Hence, while on any specific Bloom filter

the fraction of 0 bits may not be exactly pI, with high probability it will be very
close to pI for large arrays, which justifies the use of pI (and p) in our analyses
above.

2.2. A Lower Bound

One means of determining how efficient Bloom filters are is to consider how

many bits m are necessary to represent all sets of n elements from a universe in

a manner that allows false positives for at most a fraction 6 of the universe but

allows no false negatives. We derive a simple lower bound on m for this case.

Suppose that our universe has size u. Our representation must associate an

m-bit string with each of the u
n
possible sets. For each set X, let F (X) be

the string to which the set is mapped in our representation. We say that an

m-bit string s accepts an element x of the universe if s = F (X) for some X

containing x; that is, there is some set in the universe containing x for which s

is the representative string. Otherwise, s rejects x. Intuitively, if s accepts x,

then given s we should conclude that the set that generated s contains x, and if

s rejects x, we can be sure that the set that generated x does not contain s.

Consider a specific set X of n elements. Any string s that is used to represent

X must accept every element x of X (remember, no false negatives!), but it may

also accept 6(u − n) other elements of the universe while maintaining a false
positive rate of at most 6. Each string s therefore accepts at most n+ 6(u− n)
elements. A fixed string s can be used to represent any of the n+ (u−n)

n
subsets

of size n of these elements, but it cannot be used to represent any other sets. If

we use m bits, then we have 2m distinct strings that must represent all the u
n

sets. Hence, we must have

2m
n+ 6(u− n)

n
≥ u

n
,

or

m ≥ log2
u
n

n+ (u−n)
n

≈ log2
u
n
u
n

≥ log2 6−n = n log2(1/6).

The approximation above is suitable when n is small compared to 6u, which is

the practical case of interest. We, therefore, find that m needs to be essentially

n log2(1/6) for any representation scheme with a false positive rate bounded by 6.

Recall that the (expected) false positive rate f for a Bloom filter is

f = (1/2)k ≥ (1/2)m ln 2/n,
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since the optimal value for k is m ln 2/n. After some algebraic manipulation, we

find that f ≤ 6 requires

m ≥ n log2(1/6)
ln 2

= n log2 e · log2(1/6).

Thus, space-wise Bloom filters are within a factor of log2 e ≈ 1.44 of the (as-

ymptotic) lower bound. Alternatively, keeping the space constant, if we use n · j
bits for the table, optimal Bloom filters will yield a false positive rate of about

(0.6185)j , while the lower bound error rate is only (0.5)j.

There are methods to represent sets that use fewer bits than Bloom filters

while maintaining the same rate of false positives, including the compressed

Bloom filters discussed in Section 2.6 and techniques based on perfect hashing.

Such schemes, however, appear more complicated, require more computation,

and offer less flexibility than Bloom filters.

For example, if the set X of n elements is fixed, one can find a perfect hash

function for X, say hX : [1..u] → [1..n], plus a fully uniform random hash

function φ : [1..u]→ [0..2j − 1]. Then for each x ∈ X, we store φ(x) at location
hX(x) in a table with n entries of j bits each. Clearly, this scheme matches the

lower bound since m = n · j, and the probability of a false positive is exactly
1/2j . On the other hand, any change in the set X would require an expensive

recomputation of a perfect hash function.

2.3. Hashing vs. Bloom Filters

Hashing is among the most common ways to represent sets. Each item of the

set is hashed into Θ(log n) bits, and a (sorted) list of hash values then represents

the set. This approach yields very small error probabilities. For example, using

2 log2 n bits per set element, the probability that two distinct elements yield the

same hash value is 1/n2. Hence, the probability that any element not in the set

matches some hash value in the set is at most n/n2 = 1/n by the standard union

bound.

Bloom filters can be interpreted as a natural generalization of hashing that

allows more interesting tradeoffs between the number of bits used per set element

and the probability of false positives. (Indeed, a Bloom filter with just one hash

function is equivalent to ordinary hashing.) Bloom filters yield a constant false

positive probability even for a constant number of bits per set element. For

example, when m = 8n, the false positive probability is just over 0.02. For

most theoretical analyses, this tradeoff is not useful: typically, one needs an

asymptotically vanishing probability of error, which is achievable only when we

use Θ(logn) bits per element. Hence, Bloom filters have received little attention

in the theory community. In contrast, for practical applications, a constant false
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positive probability may well be worthwhile in order to keep the number of bits

per element constant.

2.4. Standard Bloom Filter Tricks

The simple structure of Bloom filters makes certain operations very easy to

implement. For example, suppose that one has two Bloom filters representing

sets S1 and S2 with the same number of bits and using the same hash functions.

Then, a Bloom filter that represents the union of two sets can be obtained by

taking the OR of the two bit vectors of the original Bloom filters.

Another nice feature is that Bloom filters can easily be halved in size, allowing

an application to dynamically shrink a Bloom filter. Suppose that the size of

the filter is a power of 2. To halve the size of the filter, just OR the first and

second halves together. When hashing to do a lookup, the highest order bit can

be masked.

Bloom filters can also be used to approximate the intersection between two

sets. Again, suppose that one has two Bloom filters representing sets S1 and S2
with the same number of bits and using the same hash functions. Intuitively,

the inner product of the two bit vectors is a measure of their similarity. More

formally, the jth bit will be set in both filters if it is set by some element in

S1 ∩ S2, or if it is set simultaneously by some element in S1 − (S1 ∩ S2) and by
another element in S2− (S1∩S2). The probability that the jth bit is set in both
filters is therefore

1− 1− 1

m

k|S1∩S2|

+ 1− 1

m

k|S1∩S2|
1− 1− 1

m

k|S1−(S1∩S2)|
1− 1− 1

m

k|S2−(S1∩S2)|
.

After some algebraic simplification, we find that the expected magnitude of the

inner product of the two Bloom filters is therefore

m 1− 1− 1

m

k|S1|
− 1− 1

m

k|S2|
+ 1− 1

m

k(|S1|+|S2|−|S1∩S2|)
.

Hence, given |S1|, |S2|, k, m, and the magnitude of the inner product, one can
calculate an estimate of the intersection |S1 ∩ S2| using the equation above.
Note that if |S1| and |S2| are not given, they can also be estimated by counting
the number of 0 bits in the Bloom filters for S1 and S2, since as explained in

Section 2.1, the number of 0 bits for a set S is strongly concentrated around its

expectation m(1− 1/m)k|S|.
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Letting Z1 (respectively Z2) be the number of 0s in the filter for S1 (respec-

tively S2) and Z12 be the number of 0s in the inner product, we obtain that

1

m
1− 1

m

−k|S1∩S2|
≈ Z1 + Z2 − Z12

Z1Z2
.

2.5. Counting Bloom Filters

Suppose that we have a set that is changing over time, with elements being

inserted and deleted. Inserting elements into a Bloom filter is easy; hash the

element k times and set the bits to 1. Unfortunately, one cannot perform a

deletion by reversing the process. If we hash the element to be deleted and set

the corresponding bits to 0, we may be setting a location to 0 that is hashed

to by some other element in the set. In this case, the Bloom filter no longer

correctly reflects all elements in the set.

To avoid this problem, Fan et al. [Fan et al. 00] introduced the idea of a count-

ing Bloom filter.2 In a counting Bloom filter, each entry in the Bloom filter is

not a single bit but rather a small counter. When an item is inserted, the corre-

sponding counters are incremented; when an item is deleted, the corresponding

counters are decremented. To avoid counter overflow, we choose sufficiently large

counters.

The analysis from [Fan et al. 00] reveals that 4 bits per counter should suffice

for most applications. To determine a good counter size, consider a counting

Bloom filter for a set with n elements, k hash functions, and m counters. Let

c(i) be the count associated with the ith counter. The probability that the ith

counter is incremented j times is a binomial random variable:

P(c(i) = j) =
nk

j

1

m

j

1− 1

m

nk−j
.

The probability that any counter is at least j is bounded above by mP(c(i) ≥ j),
which can be calculated using the above formula.

A loose but useful bound can also be derived as follows:

P(c(i) ≥ j) ≤ nk

j

1

mj
≤ enk

jm

j

.

Suppose that we restrict ourselves to k ≤ (ln 2)m/n, since we have argued that
we can optimize the false positive rate with k = (ln 2)m/n. Then,

P(max
i
c(i) ≥ j) ≤ m e ln 2

j

j

.

2The name “counting Bloom filter” for this data structure was introduced in [Mitzenmacher

02].
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If we allow 4 bits per counter, the counter will overflow if and only if some

counter reaches the value 16. From the above we have

P(max
i
c(i) ≥ 16) ≤ 1.37× 10−15 ×m.

This bound holds for every set of at most n items, so a union bound says that a

counting Bloom filter that represents t different sets of at most n items during

its history overflows with probability at most 1.37×10−15×mt. This will suffice
for most applications.

Another way of interpreting this result is to observe that when there are m ln 2

total counter increments spread over m counters, then with high probability

the maximum counter value is O(logm) and hence only O(log logm) bits are

necessary for each counter.

In practice, when a counter does overflow, one approach is to leave it at its

maximum value. This can cause a later false negative only if eventually the

counter goes down to 0 when it should have remained nonzero. If the deletions

are random, the expected time to this event is relatively large.

2.6. Compressed Bloom Filters

In [Mitzenmacher 02], Mitzenmacher addresses the following question: suppose

that a server is sending a Bloom filter to several other servers over a network.

Can we gain anything by compressing the resulting Bloom filter? If we choose

the optimal value for k to minimize the false probability as calculated previously,

then p = 1/2. Under our assumption of good random hash functions, the bit

array is essentially a random string of m 0s and 1s, with each entry being 0 or

1 with probability 1/2. It would therefore seem that compression cannot offer

any gain.

Mitzenmacher demonstrates the flaw in this reasoning. The problem is that

we have optimized the false positive rate of the Bloom filter under the constraint

that there arem bits in and n elements represented by the filter. Suppose instead

that we optimize the false positive rate of the Bloom filter under the constraint

that the number of bits to be sent after compression is z, but the size m of the

array in its uncompressed form can be larger. It turns out that using a larger, but

sparser, Bloom filter can yield the same false positive rate with a smaller number

of transmitted bits. Alternatively, one can use the same number of transmitted

bits but improve the false positive rate, or find a more suitable tradeoff between

the two.

An example is given in Table 1, where the goal is to obtain small false positive

rates while using less than 16 transmitted bits per element. Without compres-

sion, the optimal number of hash functions is 11, and the false positive probability
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Array bits per element m/n 16 28 48

Transmission bits per element z/n 16 15.846 15.829

Hash functions k 11 4 3

False positive probability f 0.000459 0.000314 0.000222

Table 1. Using at most sixteen bits per element after compression, a bigger but
sparser Bloom filter can reduce the false positive probability.

is 0.000459. By making a sparse Bloom filter using 48 bits per element but only

3 hash functions, one can compress the result down to less than 16 bits per item

(with high probability) and decrease the false positive probability by roughly a

factor of 2.

3. Historical Applications

3.1. Dictionaries

Bloom introduced Bloom filters in conjunction with an application to hyphen-

ation programs [Bloom 70]. Most words can be hyphenated appropriately by

applying a few simple rules. Some words, say around ten percent, require a ta-

ble lookup. To avoid storing all the words that can be handled via the simple

rules, Bloom suggests using a Bloom filter to keep a dictionary of words that

require a lookup. False positives here cause words that could be handled via the

simple rules to require a lookup.

Bloom filters were also used in early UNIX spell-checkers [McIlroy 82, Mullin

and Margoliash 90]. Rather than store and search a dictionary, a Bloom filter

representation of the dictionary was stored. A false positive could allow a mis-

spelled word to be ignored. In early systems, where memory was a scarce and

valuable resource, the space savings of a Bloom filter offered significant perfor-

mance advantages.

Bloom filters were proposed as a means of succinctly storing a dictionary of

unsuitable passwords for security purposes by Spafford [Spafford 92]. Manber

and Wu describe a simple way to extend the technique so that passwords that are

within edit distance 1 of the dictionary word are also not allowed [Manber and

Wu 94]. In this setting, a false positive could force a user to avoid a password

even if does not lie in the set of unsuitable passwords.

3.2. Databases

Bloom filters also found very early uses in databases. One use is to speed up

semi-join operations [Bratbergsengen 84, Valdurez and Gardarin 84, Mackett and
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Lohman 86, Mullin 90]. For example, suppose that one wanted to determine the

employees of a business that live in cities where the cost of living is greater than

50,000 dollars. In a distributed database, one host might hold the information

regarding the cost of living, while another might hold the information regarding

where employees live. Rather than have the first database send a list of cities

to the second, the first could send a Bloom filter of this list. The second host

can then send a list of potential employee/city pairs back to the first database,

where false positives can be removed. This has the potential to reduce overall

communication between the two hosts. In a related vein, Bloom filters can be

used to estimate the size of semi-join operations, using the fact that Bloom filters

can be used to estimate intersections as described in Section 2.4 [Mullin 93].

Bloom filters can also be used for differential files [Gremilion 82, Mullin 83].

Suppose that all the changes to a database that occur during the day are

processed as a batch job. A differential file then keeps track of changes that

occur during the day. If one wants to read a record, one has to know if the

record has been changed by some transaction in the differential file (in which

case the differential file must be read) or if it can be read directly from the data-

base. Instead of keeping a list of all records that have changed, one can keep a

Bloom filter of records that have been changed. Here, a false positive forces one

to read the differential file and the database even when a record has not been

changed.

4. A Sample Network Application: Distributed Caching

To begin our survey of network applications, we present an early and especially

instructive example of Bloom filters in a distributed protocol. Fan, Cao, Almeida,

and Broder describe Summary Cache, which uses Bloom filters for Web cache

sharing [Fan et al. 00]. In their setup, proxies cooperate in the following way:

on a cache miss, a proxy attempts to determine if another proxy cache holds the

desired Web page; if so, a request is made to that proxy rather than trying to

obtain that page from the Web.

For such a scheme to be effective, proxies must know the contents of other

proxy caches. In Summary Cache, to reduce message traffic, proxies do not

transfer URL lists corresponding to the exact contents of their caches, but instead

periodically broadcast Bloom filters that represent the contents of their cache.

If a proxy wishes to determine if another proxy has a page in its cache, it checks

the appropriate Bloom filter. In the case of a false positive, a proxy may request

a page from another proxy, only to find that that proxy does not actually have

that page cached. In that case, some additional delay has been incurred. In
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this setting, false positives and false negatives may occur even without a Bloom

filter, since the cache contents may change between periodic updates. The small

additional chance of a false positive introduced by sending a Bloom filter is

greatly outweighed by the significant reduction in network traffic achieved by

using the succinct Bloom filter instead of sending the full list of cache contents.

This technique is used in the open source Web proxy cache Squid, where the

Bloom filters are referred to as Cache Digests [Rousskov and Wessels 98].

Since cache contents are changing frequently, [Fan et al. 00] suggests that

caches use a counting Bloom filter to track their own cache contents, and broad-

cast the corresponding standard 0-1 Bloom filter to the other proxies. The

alternative would be to construct a new Bloom filter from scratch whenever an

update is sent; using the counting Bloom filter both reduces and amortizes this

cost. Using delta compression and compressed Bloom filters, as described in

[Mitzenmacher 02], can yield a further reduction in the number of bits transmit-

ted.

5. Applications: P2P/Overlay Networks

An early peer-to-peer application of Bloom filters is due to Marais and Bharat

[Marais and Bharat 97] in the context of a desktop web browsing assistant called

Vistabar. Cooperative users of Vistabar store annotations and comments about

the web pages that they visited in a central repository. Conversely, they see

these comments whenever they load an annotated page. Rather than make a

request for each URL encountered, Vistabar downloads periodically a Bloom

filter corresponding to all annotated URLs.

5.1. Moderate-Sized P2P Networks

Many constructions for peer-to-peer networks use distributed hash tables in order

to locate objects [Druschel and Rowstron 01, Ratnasamy et al. 01, Stoica et al.

01]. Distributed hash tables are particularly useful for large-scale scalability and

for coping with peer-to-peer networks where individual nodes may frequently

enter or leave the system.

For moderate-sized and more robust peer-to-peer systems of hundreds of nodes,

Bloom filters may provide an attractive alternative for locating objects over

distributed hash tables. While keeping a list of objects stored at every other

node in a peer-to-peer system may be prohibitive, keeping a Bloom filter for every

other node may be tractable. For example, instead of using a 64-bit identifier for

each object, a Bloom filter could use 8 or 16 bits per object. False positives in this

situation yield extraneous requests for objects to nodes that do not have them. A

prototype P2P system dubbed PlanetP based on this idea is described in [Cuena-
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Acuna et al. 02]; the filters actually store keywords associated with documents

instead of object IDs. Implementation challenges include how frequently filters

need to be updated.

In [Ledlie et al. 02], a similar approach that makes additional use of grouping

and hierarchy is described. There, the idea is to introduce some hierarchy so

that groups of nodes are governed by a leader. The leaders are meant to be

more stable, long-lasting nodes that form a peer-to-peer network using Bloom

filters in a manner similar to that described above, except that the Bloom filters

cover objects held by the group. The group leader controls routing within a

group and other group-specific issues.

5.2. Approximate Set Reconciliation for Content Delivery

Byers, Considine, Mitzenmacher, and Rost [Byers et al. 02a] demonstrate an-

other area where Bloom filters can be useful in peer-to-peer applications. They

suggest that peers may want to solve the following type of approximate set recon-

ciliation problems. Suppose peer A has a set of items SA, and peer B has a set of

items SB . Peer B would like to send peer A a succinct data structure so that A

can start sending B items that B does not have, that is, items in SA− SB . One
approach is to have B send A a Bloom filter; A then runs through its elements,

checking each one against the Bloom filter, and sending any element that does

not lie in SB according to the filter. Because of false positives, not all elements

in SA − SB will be sent, but most will. The authors also consider an alternative
data structure that uses Bloom filters, but allows for faster determination of

elements in SA − SB when the difference is small [Byers et al. 02b]. This work
demonstrates that Bloom filters can also be useful as subroutines inside of more

complex data structures.

The application [Byers et al. 02a] addresses the distribution of large files to

many peers in overlay networks. The authors argue for encoded content. In this

setting, peers may wish to collaborate during downloads, by receiving encoded

packets from other peers as well as from the source, thus effectively increasing

the download rate. If the encoded content is over a large alphabet, the problem

of determining which encoded packets peer B needs that peer A has is simply

the problem of determining SA−SB . Since the content is redundantly encoded,
obtaining a large fraction of SA − SB rather than the entire set is sufficient in

this situation.

5.3. Set Intersection for Keyword Searches

Reynolds and Vahdat use Bloom filters in a similar fashion as [Byers et al. 02a],

except that their goal is to find the set intersection instead of the set difference
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[Reynolds and Vahdat 03]. Their approach is essentially the same as for database

joins. Peer B can send a Bloom filter representing SB to A; peer A then sends the

elements of SA that appear to be in SB according to the filter. False positives

yield elements of SA that are in fact not in SB , but, if desired, B can then

determine these elements to find SA ∩ SB exactly. The Bloom filter approach

allows SA∩SB to be determined with fewer bits transmitted than A sending the
entire set SA. Reynolds and Vahdat describe how using this approach for set

intersection allows for efficient distributed inverted keyword indices for keyword

search in an overlay network over a peer-to-peer architecture. When a document

is published, the author also selects a set of keywords for the document. Each

node in the network is responsible for a set of keywords in the inverted index;

hashes of the keyword determine the responsible nodes. To handle conjunctive

queries involving multiple nodes, the set intersection methods above are used

to reduce the amount of information that needs to be sent to determine the

appropriate documents.

6. Applications: Resource Routing

6.1. A Basic Routing Protocol

Before describing specific resource routing protocols in the literature, we provide

a general framework that highlights the main idea of resource routing proto-

cols. This general framework was described by Czerwinski et al. as part of their

architecture for a resource discovery service [Czerwinski et al. 99].

Suppose that we have a network in the form of a rooted tree, with nodes

holding resources. Resource requests starting inside the tree head toward the

root. Each node keeps a unified list of resources that it holds or that are reachable

through any of its children, as well as individual lists of resources for it and each

child. When a node receives a request for a resource, it checks its unified list to

make sure it has a way of routing that request to the resource. If it does, it then

checks the individual lists to find whether it holds the resource or how to route

the request toward the proper node via an appropriate child node; otherwise, it

passes the request further up the tree toward the root.

This rather straightforward routing protocol becomes more interesting if the

resource lists are represented by Bloom filters. The property that a union of

Bloom filters can be obtained by ORing the corresponding individual Bloom

filters allows easy creation of unified resource lists. False positives in this sit-

uation may cause a routing request to go down an incorrect path. In such a

case backtracking up the tree may be necessary, or a slower but safer routing
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mechanism may be used as a back-up. Several recent papers utilize a resource

routing mechanism of this form.

6.2. Resource Routing on P2P Networks

Rhea and Kubiatowicz [Rhea and Kubiatowicz 02] utilize the ideas in the basic

protocol in Section 6.1 to design a probabilistic routing algorithm for peer-to-peer

location mechanisms, in conjunction with the OceanStore project [Kubiatowicz

et al. 00]. The goal is to ensure that when a requested file has a file replica nearby

in the system, it is found and the request is routed efficiently along a shortest

path. Such an algorithm can be used in conjunction with a more expensive

routing algorithm such as those suggested for specific P2P networks [Druschel

and Rowstron 01, Ratnasamy et al. 01, Stoica et al. 01].

Rhea and Kubiatowicz have each node in the network keep an array of Bloom

filters for every adjacent edge in the overlay topology. In the array for each edge,

there is a Bloom filter for each distance d, up to some maximum value, so that

the dth Bloom filter in the array keeps track of files reachable via d hops through

the overlay network along that edge. Rhea and Kubiatowicz call this array of

Bloom filters an attenuated Bloom filter. The attenuated Bloom filter only finds

files within d hops, but it is likely to find the shortest path to a file replica if

many such paths exist. A more expensive algorithm can be applied if the file

cannot be found according to the attenuated Bloom filter or if more than d hops

are taken, which suggests that a false positive has occurred. Major challenges

in this approach involve keeping the Bloom filters up-to-date without generating

too much network traffic.

6.3. Geographic Routing

Hsiao suggests using this type of routing for a geographic routing system for

mobile computers [Hsiao 01]. For convenience, suppose that the geographic

space is a square region that is recursively subdivided into smaller squares, each

one-fourth the area of the previous level. That is, each parent square is broken

into four children squares, giving a natural implicit tree hierarchy. If the smallest

square subregions have side length 1 and the side length of the original square

is k, there will be log2 k + 1 levels in this recursive structure.

For the geographic routing scheme, each node contains a Bloom filter rep-

resenting the list of mobile hosts reachable through itself or through its three

siblings at each level. Using these filters, a source finds the level corresponding

to the smallest geographic region that currently contains it and its desired des-

tination, and then forwards a message to the center of the sibling at that level
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that contains the destination node. Intermediate nodes forward the message

appropriately, recursing down the implicit tree until the destination is reached.

Distributed hashing has also been proposed as a means of accomplishing ge-

ographic routing [Li et al. 00]. So for both P2P network and geographic rout-

ing, Bloom filters have been suggested as a possible alternative to distributed

hashing that may prove better for systems of intermediate size. Exploring and

understanding the tradeoffs between these two techniques would certainly be an

interesting area for future work.

7. Applications: Packet Routing

In the area of packet routing, several diverse uses of Bloom filters have been

proposed. We examine how Bloom filters can be used to aid early detection of

forwarding loops, to find heavy flows for the Stochastic Fair Blue queue manage-

ment scheme, and to potentially speed up the forwarding of multicast packets.

7.1. Detecting Loops in Icarus

Whitaker and Wetherall suggest using a small Bloom filter in order to avoid

forwarding loops in unicast and multicast protocols [Whitaker and Wetherall

02]. Normally packets trapped in a forwarding loop are detected and removed

from a network using the IP Time-To-Live field, whereby a counter keeps track

of the number of hops that the packet has taken and removes it if the number of

hops grows too large. If loops are small, the Time-To-Live field may not prevent

substantial unnecessary looping. While such loops are rare in the long-standing

protocols guiding most Internet traffic today, the authors suggest that it could be

a significant problem for experimental protocols, such as those being suggested

for peer-to-peer networks. To avoid this problem, the authors suggest that each

packet carry a small Bloom filter in each header, where the Bloom filter is used

to keep track of the set of nodes visited. Each node has a corresponding mask

that can be ORed into the Bloom filter as it passes; if the filter does not change,

there may be a loop.

7.2. Queue Management: Stochastic Fair Blue

Stochastic Fair Blue provides a queue management algorithm that uses a count-

ing Bloom filter to detect overly aggressive or non-responsive flows [Feng et al.

01]. (The idea of using Bloom filters to detect flow behavior arises again in our

discussion of applications of Bloom filters to measurement tools in Section 8.1.)

Each packet arrival increments k counters of a counting Bloom filter based on,

for example, hashes of the source-destination pair, so all packets in a flow hash
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to the same counters. When a packet is processed, the corresponding counters

are decremented. Each Bloom filter entry has an associated value pi, used to

represent a marking probability associated with that counter. The marking prob-

ability associated with a counter goes up by some δ if, when a packet arrives, the

number of packets queued in the system corresponding to that counter lies above

some threshold; similarly, if, when a packet arrives, there are no packets queued

in the system corresponding to that counter, then the marking probability is de-

creased by δ. The probability that a packet is marked, which denotes congestion

to the end hosts, is the minimum of the marking probabilities associated with

the k Bloom filter counters after arrival. Flows that are filling a buffer will there-

fore have higher probabilities of being marked. Flows that are non-responsive to

marking will eventually drive the marking probability high; when it is above a

certain threshold, the router can limit the flow to a fixed amount of bandwidth

or adopt some other rate-limiting policy.

A false positive can occur in this situation if a well-behaved flow happens to

hash into k counters that are also hashed into by non-responsive flows. In this

case a flow might be punished even though it responds in a proper fashion. One

way to mitigate this effect, suggested in [Feng et al. 01], is to change the hash

functions periodically, so that if a responsive flow is being punished unfairly the

resetting of the hash functions makes it extremely unlikely that it continues to

be punished.

7.3. Multicast

When packets are being sent through a multicast tree, the router associates

multicast addresses with interface lists. One way to think of this is that each

multicast address corresponds to an associated list of interfaces, or connections; if

a packet associated with a multicast address comes in on one interface of the list

associated with an address, it should be forwarded through all other interfaces

on the list.

Grönvall suggests an alternative using Bloom filters [Grönvall 00]. Instead

of keeping a list of interfaces for each address, there can be a Bloom filter of

addresses associated with each interface. When a packet with a multicast address

arrives on one interface, the Bloom filters for all the other interfaces are checked

to see if packets with that address should be forwarded along that interface.

This avoids the need entirely to store addresses at the router. Parallelization

can be used to speed the check of each packet against all interfaces. Handling

the removal of an address from an interface is not discussed, but one could

imagine using a counting Bloom filter to handle deletions from the Bloom filter

accordingly.
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8. Applications: Measurement Infrastructure

A growing problem for networks is how to provide a reasonable measurement

infrastructure. How many packets from a given flow pass through a router? Has

a packet from this source passed through this router recently? The challenge

in coping with such questions lies in the tremendous amounts of data being

processed, making complete measurement extremely expensive. Because of their

succinctness, Bloom filters may be useful for many such problems, as the exam-

ples in this section illustrate.

8.1. Recording Heavy Flows

Estan and Varghese present an excellent application of Bloom filters to traffic

measurement problems inside of a router, reminiscent of the techniques used in

the Stochastic Fair Blue algorithm [Estan and Varghese 02]. (While the authors

do not label their data structure a Bloom filter variation, it will be clear that it

is from the discussion below.)

The goal is to easily determine heavy flows in a router. Each packet entering is

hashed k times into a Bloom filter. Associated with each location in the Bloom

filter is a counter that records the number of packet bytes that have passed

through the router associated with that location. The counter is incremented by

the number of bytes in the packet. If the minimum counter associated with a

packet is above a certain threshold, the corresponding flow is placed on a list of

heavy flows. Heavy flows can thereby be detected with a small amount of space

and a small number of operations per packet.

A false positive in this situation corresponds to a light flow that happens to

hash into k locations that are also hashed into by heavy flows, or to a light flow

that happens to hash into locations hit by several other light flows. Estan and

Varghese introduce the idea of a conservative update, an interesting variation

that reduces the false positive rate significantly for real data. When updating a

counter upon a packet arrival, it is clear that the number of previous bytes asso-

ciated with the flow of that packet is at most the minimum over its k counters.

Call this Mk. If the new packet has B bytes, the number of bytes associated

with this flow is at mostMk+B. So the updated value for each of the k counters

should be the maximum of its current value and Mk + B. Instead of adding B

to each counter, conservative update only changes the values of the counters to

reflect the most possible bytes associated with the flow, as shown in the example

in Figure 2. This reduces the probability that several light flows hashing to the

same location can raise the counter value at this location over the threshold.
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Figure 2. An example of conservative update. This flow can only have been

responsible for 2 previous bytes, so when it introduces 4 new bytes, counters

should increase only to 6.

8.2. IP Traceback

If one wanted to trace the route that a packet took in a network, one way of

doing it would be to have each router in the network record every packet that it

forwards. Then each router could be queried to determine whether it forwarded

the given packet, allowing the route of the packet to be traced backward from

its destination. Such a scheme would allow malicious packets to be traced back

along uncorrupted routers in order to find their source.

Snoeren et al. suggest this approach, with the addition of using Bloom filters

in order to reduce the amount of information that needs to be stored in order to

summarize the set of packets seen, as part of their Source Path Isolation Engine

(SPIE) [Snoeren et al. 01]. A false positive in this setting means that a router

mistakenly identifies a packet as having been seen. When attempting to trace

back the reverse path of a packet, a false positive would lead to a branch, giving

multiple possible paths. A low false positive rate would keep the branching small

and hence the number of possible paths small as well. Of course, to make such a

scheme practical, the authors give careful consideration to how much information

to store and when to discard stale information.

9. Recent Work

Since the initial version of this survey [Broder and Mitzenmacher 02], there has

been significant additional work on Bloom filters. We briefly highlight some

relevant theoretical work that we expect will be useful in future network appli-

cations.

Cohen and Matias introduce spectral Bloom filters [Cohen and Matias 03],

which, like the work of Estan and Varghese of Section 8.1, extend the basic Bloom

filter construction so that it can handle multi-sets. One of the innovations in their

work is to use a second filter to handle elements that have a unique minimum

counter in the filter to improve the accuracy of the resulting estimates. Cormode
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and Muthukrishnan devise the count-min sketch, a variation on the Bloom filter

designed to handle several problems on data streams, again similar to the work of

Estan and Varghese [Cormode and Muthukrishnan 04]. They are able to provide

theoretical guarantees while using only pairwise independent hash functions; this

is a significant advance, since pairwise independent hash functions are generally

easy to implement and quite efficient in practice. Another paper that tackles

similar problems introduces the space-code Bloom filter, which utilizes multiple

Bloom filters and maximum likelihood estimation in order to approximate multi-

sets [Kumar et al. 03]. The goal motivating this variation is to obtain accurate

estimates of packet counts for all flows on a network router, not only the large

flows. Chazelle, Kilian, Rubinfeld, and Tal [Chazelle et al. 04] introduce what

they call a Bloomier filter, which extends the Bloom filter to handle situations

where each element of a set S is associated with a function value (from a discrete

and finite set of values); the function value of all other elements of the universe are

assumed to be undefined. The Bloomier filter provides the appropriate function

value for any element in S and returns a value corresponding to undefined for

any element not in S, except that for elements not in S, there is some probability

of a false positive, whereby the Bloomier filter may return an incorrect function

value. This work amply demonstrates that there remain many ways of extending

Bloom filters and interesting corresponding theoretical problems.

10. Conclusion

A Bloom filter is a simple space-efficient representation of a set or a list that

handles membership queries. As we have seen in this survey, there are numerous

networking problems where such a data structure is required. Especially when

space is an issue, a Bloom filter may be an excellent alternative to keeping

an explicit list. The drawback of using a Bloom filter is that it allows false

positives. Their effect must be carefully considered for each specific application

to determine whether the impact of false positives is acceptable. This leads us

back to:

The Bloom filter principle: Wherever a list or set is used, and space is at

a premium, consider using a Bloom filter if the effect of false positives can be

mitigated.

There seems to be plenty of room to develop variants or extensions of Bloom

filters for specific applications. For example, we have seen that the counting

Bloom filter allows for approximate representations of multi-sets or dynamic

sets that change over time through both insertions and deletions. Bloom filters
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are now starting to receive significant attention from the algorithmic community,

and while there have been a number of recent results, there may well be further

improvements to be found.

We expect that the recent burst of applications is really just the beginning.

Because of their simplicity and power, we believe that Bloom filters will continue

to be used in modern network systems in new and interesting ways.
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