L Alternative approaches
L i

=1 DA
sUnconditional security

= Defend a system against any threat agents

= Conditional security (risk management)
= Protect what from whom?

= What resources, information we want to protect
= Protect from which adversaries??

= These adversaries (agents) what attacks can do?
Adversary emulation

= How we stop these attacks?

RISk analysis

1.
2.

3.

A modern approach to security:

Asset analysis (resources to be
protected)

Vulnerability analysis

Attack analysis

Threat analysis (threat intelligence)
Impact analysis (damages)

Risk management =
Classify risk

Define acceptable risk
Select and implement countermeasures

Asset Analysis
1

|
Which logical and physical resources of the ICT
system we want to protect

Who is entitled to access these resources and

which operation they are entitled to invoke
— Who is entitled to read an information

— Who is entitled to update an information
— Who is entitled to run a given application

The analysis defines the goal of our strategy:
which resources are we going to defend

L Risk analysis and management
- I\|'ot all the attacks are worth preventing
= Economy driven solution = Which attacks

= can be prevented

- is worth preventing = defence cost less than impact

= Very few complete and quantitative
methodologies are currently available and
several under development

= Quantitative approaches are fundamental
= Several partial solutions to be integrated

L Attack and intrusion
-

=
« Some preliminary definition

« Some classification and terminology

« Main differences between cybersec and
security in distinct fields

o Intrusion = the whole sequence of actions
of the attacker (adversary) to reach a goal

« Attack = a single action

L Local vs remote attack
= o

1
|
= An attack is

= Local if it can be executed only when
and if the attacker (threat agent) can

access a local account

= Remote if it can be executed from
another node and so the attacker does
not need a local account

= A remote attack is obviously more
dangerous and it is the basis for worms etc.

. L Automated attack

No human action is required, to execute the
attack, just code, the exploit, is executed

This is the most dangerous kind of attacks

Automated attacks characterize ICT security

with respect to security in other fields

= [he time to execute an automated attack is
neglectable

= An attacker with no know how or abilities can
execute an exploit

= An attack platform is a software tool to implement
an intrusion without involving a human

Automated Attack and Malware

A malware is a software designed to attack
a system and install some other software

Sometimes this installation requires the user
cooperation (phishing) to install the malware on
the target system (attack vector is a human)

A computer worm has an attack vector that
IS a software that remotely attack other nodes to
replicate itself onto these nodes

Payload of a worm = A software module installed
on a node by the attack vector at at the end of
the attack

The steps of an intrusion

L. (Kill chain)

i
1. Collection of information about a system

2. Discovery of system vulnerabilities (can be
automated)

3. Search or build of a program (=exploit) to implement
the attack (even partially)

4. Implementation of the attack Execution of the
exploits + Execution of human actions

5. Install tools to control the system (persistence)
6. Remove any attack trace on the system

/. Access, update, control a subset of the system
information

THE LOCKHEED MARTIN CYBER KILL CHAIN®

The Cyber Kill Chain® framework is part of the Intelligence Driven
Defense® model for the identification and prevention of cyber
intrusions activity. The model identifies what the adversaries
must complete in order to achieve their objective.

Stopping adversaries at any stage breaks the chain of attack! Adversaries
must completely progress through all phases for success; this puts

the odds in our favor as we only need to block them at any given one
for success. Every intrusion is a chance to understand more about

our adversaries and use their persistence to our advantage.

The kill chain model is designed in seven steps:
Defender’s goal: understand the aggressor’s actions
Understanding is Intelligence

Intruder succeeds if, and only if, they can proceed through steps
1-6 and reach the final stage of the Cyber Kill Chain®.

L Description of the seven steps
L E

_
Step 1: Reconnaissance. The attacker gathers information on the target

Step 2: Weaponization. The attacker creates a malicious exploit .

Step 3: Delivery. The attacker sends the malicious exploit to the victim by
email or other means.

Step 4: Exploitation. The actual execution of the exploit

Step 5: Installation. Installing malware on the infected computer is relevant
only if the attacker used malware. The installation is a point that
takes months to operate.

Step 6: Command and control. The attacker creates a command and control
channel in order to operate his internal assets remotely.

Step 7: Action on objectives. The attacker performs the steps to achieve his
actual goals inside the victim’s network.

The steps of an intrusion
L. (Kill chain)

N
« The actions it describes are needed but they are not

so well separated

 As far as concern Reconnaissance we can distinguish
at least two moments where it is executed

« Before the initial attack against the target system
to discover how to implement the initial
penetration

 After the initial penetration to collect information
on the various nodes and develop or acquire tools
to attack the nodes

* This shows that the model can be used to understand
the various phases of an intrusion but not to emulate
the attacker behavior in full details

What the adversary does
How to defend

RECONNAISSANCE /centify the Targets

Harvest email addresses Collect website visitor logs for
alerting and historical searching.

Identify employees on
social media networks Collaborate with web administrators to

utilize their existing browser analytics.
Collect press releases, contract

awards, conference attendee lists Build detections for browsing

. , . behaviors unigue to reconnaissance.
Discover internet-facing servers

Prioritize defenses around
particular technologies or people
based on recon activity.

WEAPONIZATION Prepare the Operation

ADVERSARY

The G‘C"L-’E.”SG‘.”.'E‘S are in the preparation
and staging phase of their operation.
Malware generation is likely not done
by hand — they use automated tools.
A “weaponizer” couples malware and

c)(,_alf-‘l-. into a deliverable .DG‘,',-".'DD'D'.

Obtain a weaponizer, either
in-house or obtain through
public or private channels

ar

For file-based exploits, select “decoy
document to present to the victim.

Select backdoor implant and
appropriate command and control
infrastructure for operation

Designate a specific “mission id”
and embed in the malware

Compile the backdoor and
weaponize the payload

DEFENDER

This is an essential phase for defenders
to understand. Though they cannot
detect weaponization as it happens,
they can infer by analyzing malware
artifacts. Detections against
weaponizer artifacts are often the
most durab ."f & resilient defenses.

Conduct full malware analysis —
not just what payload it drops,
but how it was made.

Build detections for weaponizers
— find new campaigns and new
payloads only because they re-
used a weaponizer toolkit.

Analyze timeline of when malware

was created relative to when it was
used. Old malware is “malware off

the shelf” but new malware might

mean active, tailored operations.

Collect files and metadata
for future analysis.

Determine which weaponizer artifacts
are common to which APT campaigns.
Are they widely shared or closely held?

DELIVERY raunch the Operation

ADVERSARY DEFENDER
The adversaries convey the This is the first and most impartant
malware to the target. They have opportunity for defenders to block
launched their operation. the operation. A key measure
of effectiveness is the fraction
Adversary controlled delivery: of intrusion attempts that are
Direct against web servers blocked at delivery stage.

Adversary released delivery: Analyze delivery medium — understand

Malicious email upstream infrastructure.
Malware on USB stick Understand targeted servers and

) o) people, their roles and responsibilities,
Social media interactions what information is available.
“Watering hole” Infer intent of adversary
compromised websites based on targeting.

Leverage weaponizer artifacts to
detect new malicious payloads
at the point of Delivery.

Analyze time of day of when
operation began.

Collect email and web logs for
forensic reconstruction. Even if an
intrusion is detected late, defenders
must be able to determine when
and how delivery began.

EXPLOITATION Gain Access to Victim

ADVERSARY

The adversaries must exploit a
vulnerability to gain access. The
phrase “zero day” refers to the

exploit code used in just this step.
Software, hardware, or
human vulnerability
Acquire or develop zero day exploit

Adversary triggered exploits for
server-based vulnerabilities

Victim triggered exploits

Opening attachment of
malicious email

Clicking malicious link

Not clear where and how the required information

is collected

DEFENDER

Here traditional hardening
measures add resiliency, but custom
capabilities are necessary to stop

zero-day exploits at this stage.
User awareness training and
email testing for employees.

Secure coding training for
web developers.

Regular vulnerability scanning
and penetration testing.

Endpoint hardening measures:
Restrict admin privileges
Use Microsoft EMET

Custom endpoint rules to
block shellcode execution

Endpoint process auditing to forensically

determine origin of exploit.

| L |

INSTALLATION Establish Beachhead at the Victim

ADVERSARY DEFENDER

Typically, the adversaries install a Endpoint instrumentation to
Some adversaries “time stomp” the file

persistent backdoor or implant in the detect and log installation activity.
victim environment to maintain access Analyze installation phase during
for an extended period of time. malware analysis to create
new endpoint mitigations.
Install webshell on web server
Install backdoor/implant on client victim _HIPS n ?Ien or block on common
installation paths, e.g. RECYCLER.
Create point of persistence by adding p if mal g
services, AutoRun keys, etc. Understand if malware requires
to make malware appear it is part of

Endpoint process auditing to

administrator privileges or only user.
the standard operating system install. discover abnormal file creations.

Extract certificates of any
signed executables.

Understand compile time of malware
to determine if it is old or new.

ADVERSARY

Walware opens a command

L I
~ .
cnannet

to enable the adversary to

remotely manipulate the victim.
Open two way communications
channel to C2 infrastructure

Most commaon C2 channels are over
web, DNS, and email protocols

C2 infrastructure may be adversary
owned or another victim network itself

DEFENDER

The defender’s last best chance to
block the operation: by blocking
the C2 channel. If adversaries
can’t issue commands, defenders

can prevent impact.
Discover C2 infrastructure
thorough malware analysis.
Harden network:

Consolidate number of
internet points of presence

Require proxies for all types
of traffic (HTTF, DNS)

Customize blocks of C2
pratocols on web proxies.

Proxy category blocks, including
“none” or “uncategorized” domains.

DNS sink holing and name
server poisoning.

Conduct open source research
to discover new adversary
C2 infrastructure.

COMMAND & CONTROL (C2) Remotely Control the Implants

ADVERSARY DEFENDER

Malware opens a command The defender’s last best chance to
channel to enable the adversary to block the operation: by blocking
remotely manipulate the victim. the C2 channel. If adversaries

can’t issue commands, defenders
Open two way communications can prevent impact.
channel to C2 infrastructure

Most common C2 channels are over Discover C2 infrastructure
web, DNS, and email protocols thorough malware analysis.
C2 infrastructure may be adversary Harden network:

owned or another victim network itself .
Consolidate number of

internet points of presence

Require proxies for all types
of traffic (HTTF, DNS)

Customize blocks of C2
pratocols on web proxies.

Proxy category blocks, including
“none” or “uncategorized” domains.

DNS sink holing and name
server poisoning.

Conduct open source research
to discover new adversary
C2 infrastructure.

ACTIONS ON OBJECTIVES Achieve the Mission’s Goal

ADVERSARY

With hands-on keyboard access,
intruders accomplish the mission’s
goal. What happens next depends
on who is on the keyboard.

Collect user credentials

Privilege escalation

Internal reconnaissance

Lateral movement through environment
Collect and exfiltrate data

Destroy systems

Overwrite or corrupt data

Surreptitiously modify data

DEFENDER

The longer an adversary has CKC7
access, the greater the impact.
Defenders must detect this stage as
quickly as possible by using forensic
evidence — including network packet
captures, for damage assessment.

Establish incident response playbook,
including executive engagement
and communications plan.

Detect data exfiltration, lateral
movement, unauthorized
credential usage.

Immediate analyst response
to all CKC7 alerts.

Forensic agents pre-deployed to
endpoints for rapid triage.

Metwork package capture
to recreate activity.

Conduct damage assessment
with subject matter experts.

L ;Jerminology and relations ...

prevent

Countermeasures

may

remove
enable

results in

take
advantage of

implement
related to

the probability of

are interested
in

Threat, threat agents

L Partial points view on sec- 1

1

-- Security = Confidentialy < Cryptography

= A set of algorithms to hide information so that only
those who know another Information (the key) can

access It

= A fundamental but partial property because it cannot
guarantee availability

= Crypto is a powerful to simplify not to solve
problems

= |f you think cryptography by itself solve your problem
either you do not understand cryptography or you do not
understand your problem

e

. L Partial points of view — II

=E
« Several security problems are related to the triple

<user, resources, rights=operations on the res>
that determines who /how a resource is manipulated

« Several security mechanisms are related to the
solution of these problems
- Identifying the user

- Identifying the resource
 Discover the user rights on the resources

 Sophisticated identification system (biometrics etc.)
can solve 1 but neither of the other ones

* You cannot change your fingerprint ...

L Partial point of view - III

1
3 _ _ .
Safety = Security as it considers random threat agents

In a system with 10" -1 safe states and 1 unsafe state were the
threat agents work randomly,
 the probability of an unsafe behavior =1/10"

« system safety increase with n
If a system has one not secure state out 10", an intelligent
threat agent try to force the system to enter that state

Security depends upon the agent success probability rather
than on the overall number of states

Security adversaries are intelligent, adaptive and not random

L Safety vs Security

S
« 3/5 modular redundancy is a standard strategy to
Increase safety that introduces 3/5 instances of each

module

« Any Input Is broadcasted to each module
« The modules work in parallel

« \ote on the ouput and selection of the output with
the largest number of votes

« |famodule is affected by a vulnerability then the
attacker has 2/4 more opportunities to be successful

L Safety vs Security
1

Eam 1
To make thing worst in the IOT you cannot have safety
without security or a lack of security results in a lack of
safety
« If terrorist controls a smart semaphore, the traffic can
become rather unsafe and result in several security
problem
« Avrobot that is not secure can kill workers and so on

Partial point of view - IV

Red team exercises aka penetration test

You pay someone for attacking your system
 |f the attack fails, you assume your system is ok

 |f the attack is successful you improve it

Inconsistent approach because you cannot be sure that
* Your improvement is effective (Braess paradox)

« The red team has find all the possible attack
« Ared team failure has a large number of reasons ..

" L ESome examples

1
= Vulnerability

s Attack
s Some countermeasures

We describe a stack overflow, a popular
attack that is an instance of buffer
overrun

-

L Buffer overflow

The most common problem due to language controlled memory management

It does not arise in high level languages where the programmer is not involved
in memory management or with strong data types

The most important security issue in the last 10 years (currently replaced by
web vulnerabilities and phishing + malware)

A . If the type
system does not detect this inconsistency, some data is replaced in memory.

It inserts some program (code injection) into a system that can, among other
execute some shell command. If the program is executed at root level, then the
attacker fully control any system function.

A buffer overflow can exploit any of the following areas stack, heap e bss
(block started by symbol) static variables that are allocated by the compiler.

- " - thdamental to understand buffer overflow, is the structure of a process
memory that is partitioned into three segments: text, data and stack.

L A process memory
.

. The text segment is fixed, stores the program code and it is read only. Any
write attempts results in a segmentation error (segmentation fault — core dump)

. The data segment stores the process static and dynamic variables

. The stack segment stores the data to manage function calls and returns

0x00000000 Low memory addresses
| Text |

| Data |

High memory addresses

Stack |

OXFFFFFFFF |

A process memory

_
- -

0
code | Text
costants | Dati
Static and global variables | BSS
Dynamic variables | Heap

Local variables |

Stack

Return addresses etc

Low addresses

Block Starting Symbol
Staticall allocated vars

High addresses

L Stack
L E2

=
« ALifo (Last In First Out) dynamic data structure

« Itisused to manage function calls and returns (call assembly
Instruction).

« The stack memory area is logically partioned into records (stack
or activation frame) one for each call

X=pop 4—' ﬁ ush(x
Stack Pushix)

1) x=a, 2) x=b, 3) x=c

1) x=c, 2) x=b, 3) x=a

L Stack and system registers

The memory address of the instruction to be executed Is
stored in the EIP (Extended Instruction Pointer) register

EBP (Extended Base Pointer) points to the beginning of a
stack frame while ESP (Extended Stack Pointer) points to the
end of the stack frame

. When a function is called, the system pushes onto the stack
e the return address = EIP+4,

. the base address of the current frame = EBP

then it copies ESP into EBP to initialize the new stack frame.

Stack and system registers

]
T

activation
record

Grow In this

direction

High memory addresses

x’r /:j
. ppp €xtended base pointer
- ~— ESP extended stack pointer
«—— Low memory addresses

Figura 4: Stack pointer e frame pointer

=H . High memory addresses

L Stack and system registers

Old activation frame

Calling procedure || //
Old New . SFP ~— EBP
. . . \
New activation frame
Called procedure
— «—— ESP

«~——— Low memory addresses

L C: an example

|
_mill W
This 1s a simple example to see how all the stuff works
void test_function (int a, int b) | buffer
{
char flag; flag
char buffer[10]; SEP’ < EBP'
} }
o EIP ~ Return addr (ret)
int main() /
{ ” a
test_function (1,2); b
exit(0); — ‘
}

Return address)= EIP + 4 byte

SFP = saved frame pointer = it 1s used to restore the original
value of EBP on a return

L The stack frame

1
« Local variable of test_function ar
addressed by subtracting a Low add
displacement from EBP while function
parameters by a positive displacement buffer
« This is independent of the value of
the stack pointer that may change flag
« When a function is called EIP points SFP <— EBP
to the function code.
« The stack stores both local variables Return address (ret)
and parameters of a function. When
the function ends, the whole stack a
frame is removed before returning 5
(ret).
High
addr

Segmentation fault

The previous code results in a segmentation fault

1)The first call to overflow function

2) When overflow_function ends, the return
correctly initializes the stack frame

address has been overwritten by the character
A (segmentation fault!)

low
ow addresses

A

buffer A 20 byte
A
SFP A

Return address (ret) | —— | A ! Sﬁe
*str (parameters) A
high A

L Buffer (stack) overflow
1 —
What happens if the return address (ret) stores a valid
memory address?

* No exception is signalled and the process continues
by executing the instruction pointed by ret.

« A stack based buffer overflow exploits this by
replacing ret with a pointer to some code injected by
the attacker maybe into the stack itself

 How can we manipulate the return address and
Inject some code Iinto the system?

L A Buffer Overrun

It occurs when some variable is larger than expected and it
overwrite other variables

It may be implemented if the language lacks a typing
system

Very popular among computer worms
Four kinds:
« Stack based buffer overrun
« Heap based buffer overrun
« V-table and function pointer overrun
« Exception handler overrun

L lStack Overflow

By copying a string into the stack we destroy (update ??)
m The return address

= Other values on the stack

The values that are copied codify a program

The new return address points to the program we
have copied onto the stack

Overall result: an administrative shell
This is possible only if the target procedure runs as root

A local fully automated attack, remote if present in a network
service

. L Stack overflow

1
Vulnerability = alternative perspectives

1. Lack of control on the size of program
variables

>. Bad type system
3. Incorrect memory operation
+. Growth direction of the stack

5 L Overflow: countermeasures
_

= Strong typing
= Controls on string lengths

= Insert a “canary” into the stack
= Not executable memory

= Data Execution Prevention (DEP)
= Ad hoc checks in the compiler

= ASLR: address space layout
randomization

4

Canary

i
A value that differs at each invocation

Inserted into the stack before any
parameter so that any overflow that
overwrites the return address also
overwrites the canary

Before returning we check that the
canary has not been updated

Randomly chosen at each invocation so
that the attacker cannot know its value

L JNot executable stack

e

1
= Controls when fetching an instructions,
they can be supported by the MMU

s No data structure can store instructions

= NX bit (the last one) introduced in AMD
DFOCessors

= It does not work with Linux that stores
some drivers in the stack to manage i/o
devices

" L Data Execution Prevention (DEP)

=

= A system-level memory protection feature into
the operating system starting with Windows
XP and Windows Server 2003.

= DEP enables the system to mark one or more
pages of memory as non-executable.

= This means that code cannot be run from that
region of memory, which makes it harder for
the exploitation of buffer overruns.

Address Space Layout
L Randomization ASLR
—_

The starting point of the various segment
is selected randomly

= [he attacker cannot know in advance the
starting address of data structures of
Interest

= The first step of the attack has to
compute the starting address

= Attack more complex and slower

L

IASLR — entropy

Type Description Protection Granularity
of Rebasing
Free Free space Inaccessible | Not rebased
Code Executable or DLL code Read-only 15 bits
Static data | Within executable or DLL Read-Write | 15 bits
Stack Process and thread stacks Read-Write | 29 bits
Heap Main and other heaps Read-Write | 20 bits
TEB Thread Environment Block Read-Write | 19 bits
PEB Process Environment Block Read-Write | 19 bits
Parameters | Command-line and Environment variables Read-Write | 19 bits
VAD Returned by virtual memory allocation routines | Read-Write | 15 bits
VAD Shared Info for kernel and user mode Unwritable | Not rebased

" L Cost of the countermeasures
1

= Each countermeasure has a distinct cost

= Strong typing = 10-30% run time overhead

= Checks on string length = large cost but
lower than the previous one

= Canary = specialized control, low cost
= ASLR supported by MMU translation low cost

= Not executable stack = lowest cost because it
exploits an hardware/firmware support

L Stack vs heap
o E

Figure C.1
Type of Memory Corruption, Counts by Year (n = 101)

10

B stack overflow
8 B Heap overflow ||

Number of corruptions

2002 2003 2004 2005 2006 2007 2008 2008 2090 2011 2012 2013 2014 2015

Year when exploit was developed

RAND RRT?EP-C1

L ;Jerminology and relations ...

prevent

Countermeasures

may

remove
enable

results in

take
advantage of

implement
related to

the probability of

are interested
in

Threat, threat agents

. L otructural vulnerability TCP/IP

|
When the TCP/IP stack has been defined, the
main goals was resilience against physical
attack against the network (attack = bombing)
Main goal = availability

« Some mechanism defined to discover
which nodes are alive and reachable

« No mechanism is available to guarantee \
(authenticate) the source of a message

5 L !Structural vuln: an Example

1. A node can send an ECHO message to check
whether another node is alive and reachable,

The receiver replies by returning the same
message.

2. The sender can specify a partial IP address to
broadcast a message

3. There is no control on the fields of an IP
packet a node sends

. L All toghether now ..

=
1. Ris a network with 1000 node, X is a partial IP

address matching the addresses of all nodes of R

2. A sends a ECHO message to the address X but it
specifies the address of B as the packet sender
address

3. Any node in R replies to B

4. B cannot interact with other nodes because its
communication lines are overflown by the ECHO
messages

Distributed Denial of Service

. L All toghether now +I0T

=
OVH France-based hosting provider, was the victim of a wide-scale DDoS

attack carried via network of over 152,000 0T devices.

According to OVH the DDoS attack reached nearly 1 Thps at its peak. Of
those 10T devices participating in the DDoS attack, they were primarily
comprised of CCTV cameras and DVRs.

Many of these types devices' network settings are improperly configured,
which leaves them ripe for the picking for hackers that would love to use
them to carry our destructive attacks.

OVH originally stated that 145,607 devices made up the botnet, but
recently confirmed that another 6,857 cameras joined in on the attack. The
DDoS peaked at 990 Gbps on September 20th thanks to two concurrent
attacks, and according to OVH, the original botnet was capable of a 1.5
Thps DDoS attack if each IP topped out at 30 Mbps.

L Security as an holistic property

« The security of a system is not implied by
(cannot be deduced from) the one of each
of its modules

« The overall system may be unsecure even
when each module is secure

« In a virtual machine hierarchy the security
of a machine may be destroyed by a
vulnerability in an underlying machine

L Impact and countermeasures
.

1
= The DDOS impact

= depends upon the numbers of nodes, zombies, whose
address matches that in the message

= may be amplified by further messages

= Very few effective countermeasures because B is aware of
the attack only when it starts receiving messages (discover
the reconnaissance phase is impossible for B)

= Global hygene of the Internet environment

= Thisis a structural vulnerability, it depends not upon
the building blocks but upon the block composition

1
1
When designing and building a system we

may adopt one of two approaches

a) pretend there are no vulnerabilities in
the components (penetrate and patch)

b) be aware that there are vulnerabilities
and try to anticipate them even if we still
do not know which vulnerabilities
(proactive or predictive approach)

L Design approaches vs vulns

L Penetrate and patch
L i
=

Vulnerabilities have not been anticipated

= Since we have assumed there are no
vulnerabilities, we should remove (patch)
a vulnerability (more in general deploy a
countermeasure) as soon as a vulnerability is
discovered.

= [hereis a competition between
— discovering and exploiting vulnerabilities

— patching the system to remove them

1
b
« A security patch is a change applied to an asset (OS, application,

...) to correct the weakness described by a vulnerability.

L Security Patch (wikipedia)

 This corrective action will prevent successful exploitation and
remove or mitigate a threat’s capability to exploit the vulnerability
to attack an asset.

« Security patches are the primary method of fixing software
vulnerabilities. Currently Microsoft releases its security patches
once a month, and other operating systems and software projects
have security teams dedicated to release reliable software patches
as soon after a vulnerability announcement as possible.

« Security patches are closely tied to responsible disclosure

L Patches: problem
B 1
=1 .
= Any patching updates a software
component and changes its behaviour
= The change may influence the users

= A patch can be applied only after checking
that the changes can be accepted

= Some system cannot be patched because
they are certified and a patch invalidates
the certification (power production, gas and
power distribution)

894 1020 187
[

4935
2451
72199 1557

Number of vulnerabilities
L discovered
L b

6610 6520

5632 5736

4652 4455

5297 5191

7946

64584 6447

14714

16556

I 12174

1999 894
= 2000 1020
M 2001 1677
M 2002 2156
2003 1527
2004 2451
2005 4935
M 2006 6610
M 2007 6520
" 2008 5632
2009 5736
1 2010 4652
M 2011 4155
M 2012 5297
2013 5191
2014 7946
2015 6484
M 2016 6447
M 2017 14714
" 2018 16556
2019 12174

Number of vulnerabilities

L discovered
L E

20k

15k

Count of CVEs

10k

5k

2000-2005 2010-2015 2020

Disclosed/Reserved . Published

Number of vulnerabilities

discovered

1 —

Vulnerahilities By Type

30685

22744

17344
13762
10206
Se14
3642

7482

4228 B058
. 2105 lEH-EI 183

B Cenial of Service 22744
B =ecute Code 20805
" Overflow 17244
B s 1272
" Directory Traversal 2842
Bypass Something 5814
Gain Information 10208
W Gain Privilege 4250
Sql Injection 7462
File Inclusion 2185
W Memary Corruption 5058
CSRF 2130

Hitp Response Splitting 163

Number of vulnerabilities

L discovered
]

v 7 % =
of CVEs ' 13 .

VA affected <10 ' of CVEs
A assets each | affected >100k
5% \ assets each

4%

3%

Percent of CVEs

2%

1%

0%

10 100 1k 10k 100k im

Assets Affected by a Single CVE

How dangerous (not risk)

=k

18,000

Distribution

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

How dangerous (not risk)

Observed Not Observed

d
>)

- 1] W W [5
| (i = [=
2 4 BERE
& EEEEE

W) O
EEEEEEEN

I = 15 6 I = 1
EEEEEEER

VL [(0))

ENEEEEEEEEED B .
IIIIIIIIINZT« {
HEEEEEEHNEHEBEN i \
EEEEEEEEEENEE
EEEEEEEEEEEER
EEEEEEEEEEEN
EEEEEEEEEEERN
EEEEEEEEEEEN
EEEEEEEEEEEN
EEEEEEEEEEEN
EEEEEEEEEEEE

Not Exploited

b

1. Internet Information Services

2. Microsoft SQL Server

3. Windows Authentication

4. Internet Explorer

5. Windows Remote Access Services
6. Data Access Components(MDAC
7. Windows Scripting Host

s. Outlook and Outlook Express
o.Peer to Peer File Sharing

10. Simple Network Management

gTop 10 Vulnerabilities - Windows Systems
|

b

gTop 10 Vulnerabilities - Unix Systems
|

e
1. BIND Domain Name System

2. Remote Procedure Calls (RPC)

3. Apache Web Server

4. Accounts with No Passwords or Weak Passwords
5. Clear Text Services

6. Sendmail

7. Simple Network Management Protocol

s. Secure Shell (SSH)

9. Misconfiguration of NIS/NFS

10. Open Secure Sockets Layer (SSL)

Other lists

_
_:

I

«Top Vulnerabilities in Windows Systems

= W1. Windows Services
= W2, Internet Explorer
= W3. Windows Libraries

= W4. Microsoft Office and Outlook
Express

= W5. Windows Configuration
Weaknesses

Top Vulnerabilities in Cross-Platform Applications

Co.

Cl1.
C2.
C3.
C4.
C5.
C6.
C7.
C8.

Backup Software

Anti-virus Software

PHP-based Applications
Database Software

File Sharing Applications

DNS Software

Media Players

Instant Messaging Applications
Mozilla and Firefox Browsers

C10. Other Cross-platform Applications

" L Other lists - II

= Top Vulnerabilities in UNIX Systems
= U1. UNIX Configuration Weaknesses

= U2. Mac OS X

=Top Vulnerabilities in Networking Products
= N1. Cisco IOS and non-IOS Products

= N2. Juniper, CheckPoint and Symantec Products
= N3. Cisco Devices Configuration Weaknesses

5 ..L. IHippa vulnerabilities

Firewall and System Probing
Network File Systems (NFS) Application
Electronic Mail Attacks
- Vendor Default Password Attacks
- Spoofing, Sniffing, Fragmentation and Splicing
- Social Engineering Attacks
Easy-To-Guess Password
Destructive Computer Viruses
Prefix Scanning (Illegal Modem)
- Trojan Horses

Life cycle of a vulnerability in a
q : penetrate and patch world
.

L State of a vulnerability - 1

'- The vulnerability is born
2. The vulnerability is discovered

3. Both the vulnerability and an exploit that
takes advantage of the vulnerability are
discovered

4. Both the vulnerability and a patch that
removes the vulnerability are discovered (a
race with 3)

5. The vulnerability, the exploit and the patch
have been discovered

b

fFotential impact of a vulnerability
1

Organizational vulnerability
4 the patch is not applied because
of management problems

Probability Window of exposure of the
of being organization
exploited

born discovered public patch available patch applied

Survival of a vulnerability
L a3

Kaplan-Meier Survival Probability Estimates (n = 127)
A vulnerability is not public after its discovery

Time from birth (initial detection by exploit developer) to detection by outside party

1.00
95% confidence interval
Survivar function
.75
D,
-
o
£
g .50
3
&
7
25 |
o | | | | |] | | I |
0 1 2 3 4 5 [7 B 9 10

Years since birth

ITime for an exploit

Fr;!q uency Count of Time to Develop an Exploit (n = 159)

Mumber of exploits

60

50

40

30

20

10

0-10

10-20 20-30 30-40 40-50 50-60 &0-70 70-BO BO-90 90-
100

Time to develop an exploit (days)

12
1] 1]
100- 110~ =120
110 120

L =Time to develop a patch

Average Hme in days

30

5

1%

14

23

Apple Salari
. Internet Explarer

. Mazills Firelas

. Opera

Jul-Dac 2005 Jan-Jun 2006

Pariod

Figure 4. Web browsers window of exposure
Sawe : Symantec Carpovatian

. L Z€ero day exploit

1
= An exploit for a vulnerability that has been
discovered but not disclosed to all the users

= Sometimes those who discover a vulnerability
sell it to those interested in attacking the system
(black market of vulnerabilities)

= The only way to defeat the market is to design a
system that resists attacks even when a
vulnerability is discovered?

. L State of a vulnerability - 2

=
= Sometimes a system is attacked even if
vulnerability is in the last status ie a

patch is available

= It is well known that some system owners do not
apply a patch even if it is available (60% of attacks
exploit a vulnerability that can be patched)

= Asymmetry between the owner and the software
supplier (applying the patch is a responsibility of
the owner rather than of the supplier)

L Potential impact
e !
= In the best case, a patch is available

before an attack is known

= If the owner does not apply the patch,
then any benefit of discovering the
patch before the attack is lost

= It is the application of the patch not its
definition that reduces the danger

Patch ability

10m

im o
S 100k S i
§ - 3 - '’
B o oo V. One order of magnitude
z i difference
LK g
] s e
> . -

100 '

10

1k 10k 100k im 10m 100m

Avg. Monthly Observed Vulns

ZERODIUM Payout Ranges wo N

Apple 105

LPE: Local Privilege Escalation
MTB: Mitigation Bypass

RCE: Remote Code Execution 1002
RJB: Remote lailbreak
SBX: Sandbox Escape Android
WME: Virtual Machine Escape

240m 1003

Flash Playe Windows
with SBX Phone

ACE+SBY
00 b | EOLE | ELGE 2004

Adobe PDF Chrome |IE + Eage Safari
Reader with SBX with SBX with SBX

RCE+SHEX RCE+5SBRX C 4 RCE+SHX
003 | ELLE b |

Windows Flash Player
Reader App w/a SBX

Upenasl
3002 |

Office
Word/Excel

RCE
2.006

Safari

Chrome IE + Edge
w/o SBX wio SBX wio SBX

Tor Browser Firefiox

IP-Suite

* All payout amounts are chosen at the discretion of ZERODIUM and are subject to change or cancellation without notice, 2016/08 @ zerodium.com

L Other buyer ...
L

_

ADOBE READER $5,000-$30,000
MAC OSX $20,000-$50,000
ANDROID $30,000-$60,000
FLASH OR JAVA BROWSER PLUG-INS $40,000-$100,000
MICROSOFT WORD $50,000-$100,000
WINDOWS $60,000-$120,000
FIREFOX OR SAFARI $60,000-$150,000
CHROME OR INTERNET EXPLORER $80,000-$200,000

10S $100,000-$250,000

A book about zero day ...

Ny

The Cyb IR

H
I {D oz D) Just published, 9 February

WO‘/\] TMEY In a few words :
TL Il ME a market for zero day

IS really a bad idea

THE WORLE
ADS ===

5 L fNumber of vulnerability vs quality
|

b
s The number of vulnerabilities discovered (= known) in a
module is always lower than existing ones

= This number depends upon
« the availability of the source code

= the number of applications and of people using the
module

= the expected benefit of an attack against the module

= If a module is scarcely used, very few vulnerabilities are
known but this does not imply they do not exist
= The number of disclosed vulnerability cannot be
used to evaluate the quality of the module code

L Genetic difference
; i

A system is more robust if it composes modules
from distinct suppliers

The joint existence of wvulnerabilities and a
monopoly in the module supply results in several
problems because

= all the instances of a module are affected by
the same vulnerabilities

sthe same vendor tends to repeat a
vulnerability

How much configuration influences vulnerabilities
(??11)

IDefence in depth

= Any system component can be affected by a
vulnerability

= A security expert
= Does not need to know any vulnerability

= Can design a system so that the discovery of a
vulnerability in @ component does not make the
whole system useless

= Layered defence or defence in depth = redundancies
and diversities in the controls

= proactive approach vs penetrate and patch

. L Adopted Approach - I

1
= A solution that tries to anticipate any vulnerability

in any component has an huge cost
= Hence some vulnerabilities cannot be anticipated

= According to their potential impact we want to

understand which vulnerabilities
— should be accepted

—should be anticipated
— should be patched asap

= Problem: how to classify each vulnerability

. L Adopted Approach - II

A vulnerability classification (handling)
depends upon the corresponding risk

Risk

1) Average impact if the vulnerability is

successfully exploited

2) Risk of a vulnerability = F(P,yg . IMp)
P_«uce = Probability of a successful attack

= Pro
= Pro

Imp =im

pability an intrusion exploits a vulnerability
pability the attack is successful

nact due to a successful attack

. L Adopted Approach - III

=
P.wsuce 1S @ function of several parameters

= Do exist threat agents that
. are interested in implementing the attack

. have the know how and the resources to
implement the attack

= Complexity of the implementation (automated ?)

= Are there other vulnerabilities that an intrusion can
exploit to reach the same goal?

= Are these attacks more or less complex?
= Less than 10% of vulns are actually exploited

L Probability and impact

""Approx are requires because detailed
evaluations of the probability an attack (is
attempted) and (is successful) both are
extremely complex

— No historical information available

— Quick hardware/software evolution
— Human factor

= Similar problems arise for the impact
because of loss of new clients, damage to
the reputation

L Probability and impact

""An interesting approach that is currently
emerging is the one of adversary
emulation

= Mimic in an automated way the action of
an attacker against the system

= The ability of repeating the attack a large
number of times can support a detailed
evaluation of the system robustness and
resilience

. ..L. IProbablllty - 11
= Sometimes both the success probability

and the impact are approximated
{low, medium, high} or
{low, medium-low, medium ...}

= We also need a risk matrix to compute the
risk given the approximated input values

Risk Matrix
4

Risk Matrix and Coherence

o

A risk matrix with more than one “colour”
(level of risk priority) for its cells satisfies
weak consistency with a quantitative risk
interpretation if points in its top risk
category (red) represent higher
quantitative risks than points in its bottom
category (green)

)

Probability

Cox'’s First Lemma: If a risk matrix satisfies weak consistency, then no red cell
(highest risk category) can share an edge with a green cell (lowest risk category).

Cox’s Second Lemma: if a risk matrix satisfies weak consistency and has at least
two colours (green in lower left and red in upper right, if axes are oriented to

depict increasing probability and impact), then no red cell can occur in the bottom
row or left column of the matrix.

— Risk Matrix

midpoint

Cox'’s First Lemma: If a risk matrix satisfies

o " weak consistency, then no red cell (highest risk
category) can share an edge with a green cell
(lowest risk category).

Cox’s Second Lemma: if a risk matrix satisfies

weak consistency and has at least two colours
mapom (green in lower left and red in upper right, if axes

are oriented to depict increasing probability

and impact), then no red cell can occur in the

bottom row or left column of the matrix.

Lower risk
than
midpoint

Betweeness A risk matrix satisfies this axiom of between-ness if every positively sloped
line segment that lies in a green cell at its lower end and a red cell at its upper end
must pass through at least one intermediate cell (i.e. one that is neither red nor green).

Risk Matrix

r
hm—

In a risk matrix satisfying weak consistency,
between-ness and consistent colouring:
a) All cells in the leftmost column and in
the bottom row are green.
b) All cells in the second column from
the left and the second row from the
bottom are non-red.

)

Probability

A tricoloured 3x3 or 4x4 matrix that satisfies weak consistency, between-
ness and consistent colouring can have only the following (single!) colour

scheme:
a) Leftmost column and bottom row coloured green.
b) Top right cell (for 3x3) or four top right cells (for 4x4) coloured red.

L A critical problem
-
1

In most cases probability is computed using
some information about the past behavior of a
system and of attackers

m Fromt
future

= A brea

nis information we can estrapolate the
behavior under a continuity assumption

Kthrough in the technology for the

attacker or the owner can invalidate the

continuity

assumption and results in distinct

probabilities (eg moving from meter to smart
meter changes the vulnerabilities)

. L Return on investement ROL

e !I'he security analyst should be able to justify the

cost of the countermeasures that are selected to
be implemented (deployed)

= A countermeasure should be adopted only for
those vulnerabilities that enable attacks that

have both/at least one of
— A large success probability

— Alarge impact
= they have a large risk
= An interesting debate about both/at least one
s Black swan = big impact, low probability

Return of investment
|

i
It is the difference between

« The overall risk before the countermeasures

« The overall risk after the adoption of
countermeasures

The difference arises because of a lower success
probability and/or a lower impact of an attack

The case where a vulnerability is removed or

patched (0 = success probability) is a particular
one

Return of investment=Earning

The difference between the potential
impact and the cost of countermeasures

The difference should be at most zero

An alternative definition consider the ratio
between the ROI and the cost of
countermeasure

The ratio should be larger than 1

L Summing Up

]
N
« Arisk attitude is defined by two parameters

. Penetrate and patch/Proactive (choose one)
. Conditional/Unconditional (choose one)

. In penetrate and patch

. each vulnerability may be critical, in proactive is
critical if it has not been anticipated
. the number of critical vulnerabilities (there is a risk)

is much higher than in proactive
. If a vulnerability is critical
. conditional sec = assess the risk and remove only if

. there is a non zero risk=f(Probsucc, Impact)
. if it is cost effective (risk>cost to remove)

L Evaluating risk with no data
L En

|
e« Current research is focused on risk
evaluation even if no data is available

« Solutions exist to produce accurate and
realistic data to replace historical one
that, in general, is not available or is not
pubblic

« Adversary simulation to understand how a
system can be attacked and attack
success probability

. ..L. IRisk Based Approach

The approach we have described:

Asset analysis

Vulnerability Analysis Risk

Attack Analysis Assessment
Threat Analysis

Impact Analysis

Risk Evaluation

Risk Management =
which countermeasures are to be adopted

NOoO Uk W=

. L Risk Assess & Management

=
= The most modern approach to ICT security

= It consider the overall risk for an organization
and it frames cyber risk with other risks

= A larger context has to be considered because

ICT security should not be seen as a technological
problem only

INext steps

Asset analysis

Security policy
Vulnerability Analysis
Possible countermeasures
Attack Analysis

Risk Management = selection of the
countermeasures to deploy

"L Next Steps - II

= 1In principle, the security policy Is a
countermeasure
= |In practice, it is defined independently of,
and before, risk assessment because It

defines the goals of an organization and
the rules for 1ts ICT resources

= |ts satisfaction Is an assessment goal

= Without a policy you do not know If you are
secure

