
Alternative approaches

◼Unconditional security
◼ Defend a system against any threat agents

◼ Conditional security (risk management)
◼ Protect what from whom?

◼ What resources, information we want to protect

◼ Protect from which adversaries??

◼ These adversaries (agents) what attacks can do?

Adversary emulation

◼ How we stop these attacks?

Risk analysis
A modern approach to security:

1. Asset analysis (resources to be
protected)

2. Vulnerability analysis

3. Attack analysis

4. Threat analysis (threat intelligence)

5. Impact analysis (damages)

6. Risk management =
1. Classify risk

2. Define acceptable risk

3. Select and implement countermeasures

Asset Analysis

• Which logical and physical resources of the ICT

system we want to protect

• Who is entitled to access these resources and

which operation they are entitled to invoke
– Who is entitled to read an information

– Who is entitled to update an information

– Who is entitled to run a given application

–

• The analysis defines the goal of our strategy:

which resources are we going to defend

Risk analysis and management
◼ Not all the attacks are worth preventing

◼ Economy driven solution = Which attacks
- can be prevented

- is worth preventing = defence cost less than impact

◼ Very few complete and quantitative
methodologies are currently available and
several under development

◼ Quantitative approaches are fundamental

◼ Several partial solutions to be integrated

Attack and intrusion

⚫ Some preliminary definition

⚫ Some classification and terminology

⚫ Main differences between cybersec and

security in distinct fields

⚫ Intrusion = the whole sequence of actions

of the attacker (adversary) to reach a goal

⚫ Attack = a single action

Local vs remote attack

◼ An attack is
◼ Local if it can be executed only when

and if the attacker (threat agent) can
access a local account

◼ Remote if it can be executed from
another node and so the attacker does
not need a local account

◼ A remote attack is obviously more
dangerous and it is the basis for worms etc.

Automated attack

◼ No human action is required, to execute the
attack, just code, the exploit, is executed

◼ This is the most dangerous kind of attacks

◼ Automated attacks characterize ICT security
with respect to security in other fields
◼ The time to execute an automated attack is

neglectable

◼ An attacker with no know how or abilities can
execute an exploit

◼ An attack platform is a software tool to implement
an intrusion without involving a human

Automated Attack and Malware

◼ A malware is a software designed to attack
a system and install some other software

◼ Sometimes this installation requires the user
cooperation (phishing) to install the malware on
the target system (attack vector is a human)

◼ A computer worm has an attack vector that
is a software that remotely attack other nodes to
replicate itself onto these nodes

◼ Payload of a worm = A software module installed
on a node by the attack vector at at the end of
the attack

The steps of an intrusion
(kill chain)

1. Collection of information about a system

2. Discovery of system vulnerabilities (can be
automated)

3. Search or build of a program (=exploit) to implement
the attack (even partially)

4. Implementation of the attack Execution of the
exploits + Execution of human actions

5. Install tools to control the system (persistence)

6. Remove any attack trace on the system

7. Access, update, control a subset of the system
information

Description of the seven steps

Step 1: Reconnaissance. The attacker gathers information on the target

Step 2: Weaponization. The attacker creates a malicious exploit .

Step 3: Delivery. The attacker sends the malicious exploit to the victim by
email or other means.

Step 4: Exploitation. The actual execution of the exploit

Step 5: Installation. Installing malware on the infected computer is relevant
only if the attacker used malware. The installation is a point that
takes months to operate.

Step 6: Command and control. The attacker creates a command and control
channel in order to operate his internal assets remotely.

Step 7: Action on objectives. The attacker performs the steps to achieve his
actual goals inside the victim’s network.

The steps of an intrusion
(kill chain)

• The actions it describes are needed but they are not
so well separated

• As far as concern Reconnaissance we can distinguish
at least two moments where it is executed

• Before the initial attack against the target system
to discover how to implement the initial
penetration

• After the initial penetration to collect information
on the various nodes and develop or acquire tools
to attack the nodes

• This shows that the model can be used to understand
the various phases of an intrusion but not to emulate
the attacker behavior in full details

What the adversary does
How to defend

Not clear where and how the required information
is collected

Riga 1 Riga 2 Riga 3 Riga 4

0

2

4

6

8

10

12

Colonna 1

Colonna 2

Colonna 3

Terminology and relations ...

Partial points view on sec– I
◼ Security = Confidentialy Cryptography

◼ A set of algorithms to hide information so that only
those who know another information (the key) can
access it

◼ A fundamental but partial property because it cannot
guarantee availability

◼ Crypto is a powerful to simplify not to solve
problems

◼ If you think cryptography by itself solve your problem
either you do not understand cryptography or you do not
understand your problem

Partial points of view – II

• Several security problems are related to the triple
<user, resources, rights=operations on the res>

that determines who /how a resource is manipulated

• Several security mechanisms are related to the
solution of these problems
• Identifying the user

• Identifying the resource

• Discover the user rights on the resources

• Sophisticated identification system (biometrics etc.)
can solve 1 but neither of the other ones

• You cannot change your fingerprint …

Partial point of view - III

• Safety  Security as it considers random threat agents

• In a system with 10n -1 safe states and 1 unsafe state were the

threat agents work randomly,

• the probability of an unsafe behavior = 1/10n

• system safety increase with n

• If a system has one not secure state out 10n, an intelligent

threat agent try to force the system to enter that state

• Security depends upon the agent success probability rather

than on the overall number of states

• Security adversaries are intelligent, adaptive and not random

Safety vs Security

• 3/5 modular redundancy is a standard strategy to

increase safety that introduces 3/5 instances of each

module

• Any input is broadcasted to each module

• The modules work in parallel

• Vote on the ouput and selection of the output with

the largest number of votes

• If a module is affected by a vulnerability then the

attacker has 2/4 more opportunities to be successful

Safety vs Security

• To make thing worst in the IOT you cannot have safety

without security or a lack of security results in a lack of

safety

• If terrorist controls a smart semaphore, the traffic can

become rather unsafe and result in several security

problem

• A robot that is not secure can kill workers and so on

Partial point of view - IV

• Red team exercises aka penetration test

• You pay someone for attacking your system

• If the attack fails, you assume your system is ok

• If the attack is successful you improve it

• Inconsistent approach because you cannot be sure that

• Your improvement is effective (Braess paradox)

• The red team has find all the possible attack

• A red team failure has a large number of reasons ..

Some examples

◼ Vulnerability

◼ Attack

◼ Some countermeasures

We describe a stack overflow, a popular
attack that is an instance of buffer
overrun

Buffer overflow

⚫ The most common problem due to language controlled memory management

⚫ It does not arise in high level languages where the programmer is not involved
in memory management or with strong data types

⚫ The most important security issue in the last 10 years (currently replaced by
web vulnerabilities and phishing + malware)

⚫ A forced write of some data with a size larger than expected. If the type
system does not detect this inconsistency, some data is replaced in memory.

⚫ It inserts some program (code injection) into a system that can, among other
execute some shell command. If the program is executed at root level, then the
attacker fully control any system function.

⚫ A buffer overflow can exploit any of the following areas stack, heap e bss
(block started by symbol) static variables that are allocated by the compiler.

A process memory

• Fundamental to understand buffer overflow, is the structure of a process
memory that is partitioned into three segments: text, data and stack.

• The text segment is fixed, stores the program code and it is read only. Any
write attempts results in a segmentation error (segmentation fault – core dump)

• The data segment stores the process static and dynamic variables

• The stack segment stores the data to manage function calls and returns

A process memory

Stack

• A Lifo (Last In First Out) dynamic data structure

• It is used to manage function calls and returns (call assembly
instruction).

• The stack memory area is logically partioned into records (stack
or activation frame) one for each call

Stack and system registers

• The memory address of the instruction to be executed is

stored in the EIP (Extended Instruction Pointer) register

• EBP (Extended Base Pointer) points to the beginning of a

stack frame while ESP (Extended Stack Pointer) points to the

end of the stack frame

• When a function is called, the system pushes onto the stack

• the return address = EIP+4,

• the base address of the current frame = EBP

then it copies ESP into EBP to initialize the new stack frame.

Stack and system registers

New frame

activation

record

extended base pointer

extended stack pointer

Grow in this
direction

Stack and system registers

Old New

Old activation frame
Calling procedure

New activation frame
Called procedure

C: an example

The stack frame

• Local variable of test_function ar
addressed by subtracting a
displacement from EBP while function
parameters by a positive displacement

• This is independent of the value of
the stack pointer that may change

• When a function is called EIP points
to the function code.

• The stack stores both local variables
and parameters of a function. When
the function ends, the whole stack
frame is removed before returning
(ret).

Segmentation fault

Buffer (stack) overflow

What happens if the return address (ret) stores a valid
memory address?

• No exception is signalled and the process continues
by executing the instruction pointed by ret.

• A stack based buffer overflow exploits this by
replacing ret with a pointer to some code injected by
the attacker maybe into the stack itself

• How can we manipulate the return address and
inject some code into the system?

A Buffer Overrun

• It occurs when some variable is larger than expected and it
overwrite other variables

• It may be implemented if the language lacks a typing
system

• Very popular among computer worms

• Four kinds:

• Stack based buffer overrun

• Heap based buffer overrun

• V-table and function pointer overrun

• Exception handler overrun

Stack Overflow
◼ By copying a string into the stack we destroy (update ??)

◼ The return address

◼ Other values on the stack

◼ The values that are copied codify a program

◼ The new return address points to the program we
have copied onto the stack

◼ Overall result: an administrative shell

◼ This is possible only if the target procedure runs as root

A local fully automated attack, remote if present in a network
service

Stack overflow

Vulnerability = alternative perspectives

1. Lack of control on the size of program
variables

2. Bad type system

3. Incorrect memory operation

4. Growth direction of the stack

5.…

Overflow: countermeasures

◼ Strong typing

◼ Controls on string lengths

◼ Insert a “canary” into the stack

◼ Not executable memory

◼ Data Execution Prevention (DEP)

◼ Ad hoc checks in the compiler

◼ ASLR: address space layout
randomization

Canary

◼ A value that differs at each invocation

◼ Inserted into the stack before any
parameter so that any overflow that
overwrites the return address also
overwrites the canary

◼ Before returning we check that the
canary has not been updated

◼ Randomly chosen at each invocation so
that the attacker cannot know its value

Not executable stack

◼ Controls when fetching an instructions,
they can be supported by the MMU

◼ No data structure can store instructions

◼ NX bit (the last one) introduced in AMD
processors

◼ It does not work with Linux that stores
some drivers in the stack to manage i/o
devices

Data Execution Prevention (DEP)

◼ A system-level memory protection feature into
the operating system starting with Windows
XP and Windows Server 2003.

◼ DEP enables the system to mark one or more
pages of memory as non-executable.

◼ This means that code cannot be run from that
region of memory, which makes it harder for
the exploitation of buffer overruns.

Address Space Layout
Randomization ASLR

◼ The starting point of the various segment
is selected randomly

◼ The attacker cannot know in advance the
starting address of data structures of
interest

◼ The first step of the attack has to
compute the starting address

◼ Attack more complex and slower

ASLR – entropy

Cost of the countermeasures

◼ Each countermeasure has a distinct cost
◼ Strong typing = 10-30% run time overhead

◼ Checks on string length = large cost but
lower than the previous one

◼ Canary = specialized control, low cost

◼ ASLR supported by MMU translation low cost

◼ Not executable stack = lowest cost because it
exploits an hardware/firmware support

Stack vs heap

Terminology and relations ...

Structural vulnerability TCP/IP

• When the TCP/IP stack has been defined, the

main goals was resilience against physical

attack against the network (attack = bombing)

• Main goal = availability

• Some mechanism defined to discover
which nodes are alive and reachable

• No mechanism is available to guarantee \
(authenticate) the source of a message

Structural vuln: an Example

1. A node can send an ECHO message to check
whether another node is alive and reachable,
The receiver replies by returning the same
message.

2. The sender can specify a partial IP address to
broadcast a message to check a set of nodes

3. There is no control on the fields of an IP
packet a node sends

All toghether now ..

1. R is a network with 1000 node, X is a partial IP
address matching the addresses of all nodes of R

2. A sends a ECHO message to the address X but it
specifies the address of B as the packet sender
address

3. Any node in R replies to B

4. B cannot interact with other nodes because its
communication lines are overflown by the ECHO
messages

Distributed Denial of Service

All toghether now +IOT

OVH France-based hosting provider, was the victim of a wide-scale DDoS

attack carried via network of over 152,000 IoT devices.

According to OVH the DDoS attack reached nearly 1 Tbps at its peak. Of

those IoT devices participating in the DDoS attack, they were primarily

comprised of CCTV cameras and DVRs.

Many of these types devices' network settings are improperly configured,

which leaves them ripe for the picking for hackers that would love to use

them to carry our destructive attacks.

OVH originally stated that 145,607 devices made up the botnet, but

recently confirmed that another 6,857 cameras joined in on the attack. The

DDoS peaked at 990 Gbps on September 20th thanks to two concurrent

attacks, and according to OVH, the original botnet was capable of a 1.5

Tbps DDoS attack if each IP topped out at 30 Mbps.

Security as an holistic property

• The security of a system is not implied by
(cannot be deduced from) the one of each
of its modules

• The overall system may be unsecure even
when each module is secure

• In a virtual machine hierarchy the security
of a machine may be destroyed by a
vulnerability in an underlying machine

Impact and countermeasures

◼ The DDOS impact

◼ depends upon the numbers of nodes, zombies, whose
address matches that in the message

◼ may be amplified by further messages

◼ Very few effective countermeasures because B is aware of
the attack only when it starts receiving messages (discover

the reconnaissance phase is impossible for B)

◼ Global hygene of the Internet environment

◼ This is a structural vulnerability, it depends not upon
the building blocks but upon the block composition

Design approaches vs vulns

When designing and building a system we
may adopt one of two approaches

a) pretend there are no vulnerabilities in
the components (penetrate and patch)

b) be aware that there are vulnerabilities
and try to anticipate them even if we still
do not know which vulnerabilities
(proactive or predictive approach)

Penetrate and patch

◼ Vulnerabilities have not been anticipated

◼ Since we have assumed there are no
vulnerabilities, we should remove (patch)

a vulnerability (more in general deploy a
countermeasure) as soon as a vulnerability is
discovered.

◼ There is a competition between
– discovering and exploiting vulnerabilities

– patching the system to remove them

Security Patch (wikipedia)

• A security patch is a change applied to an asset (OS, application,

...) to correct the weakness described by a vulnerability.

• This corrective action will prevent successful exploitation and

remove or mitigate a threat’s capability to exploit the vulnerability

to attack an asset.

• Security patches are the primary method of fixing software

vulnerabilities. Currently Microsoft releases its security patches

once a month, and other operating systems and software projects

have security teams dedicated to release reliable software patches

as soon after a vulnerability announcement as possible.

• Security patches are closely tied to responsible disclosure

Patches: problem

▪ Any patching updates a software
component and changes its behaviour

▪ The change may influence the users

▪ A patch can be applied only after checking
that the changes can be accepted

▪ Some system cannot be patched because
they are certified and a patch invalidates
the certification (power production, gas and
power distribution)

Number of vulnerabilities
discovered

Number of vulnerabilities
discovered

Number of vulnerabilities
discovered

Number of vulnerabilities
discovered

How dangerous (not risk)

How dangerous (not risk)

Top 10 Vulnerabilities - Windows Systems

1. Internet Information Services

2. Microsoft SQL Server

3. Windows Authentication

4. Internet Explorer

5. Windows Remote Access Services

6. Data Access Components(MDAC

7. Windows Scripting Host

8. Outlook and Outlook Express

9.Peer to Peer File Sharing

10. Simple Network Management

Top 10 Vulnerabilities - Unix Systems

1. BIND Domain Name System

2. Remote Procedure Calls (RPC)

3. Apache Web Server

4. Accounts with No Passwords or Weak Passwords

5. Clear Text Services

6. Sendmail

7. Simple Network Management Protocol

8. Secure Shell (SSH)

9. Misconfiguration of NIS/NFS

10. Open Secure Sockets Layer (SSL)

Other lists - I

◼Top Vulnerabilities in Windows Systems
◼ W1. Windows Services

◼ W2. Internet Explorer

◼ W3. Windows Libraries

◼ W4. Microsoft Office and Outlook
Express

◼ W5. Windows Configuration

Weaknesses

Top Vulnerabilities in Cross-Platform Applications
⚫ C1. Backup Software
⚫ C2. Anti-virus Software
⚫ C3. PHP-based Applications
⚫ C4. Database Software
⚫ C5. File Sharing Applications
⚫ C6. DNS Software
⚫ C7. Media Players
⚫ C8. Instant Messaging Applications
⚫ C9. Mozilla and Firefox Browsers
⚫ C10. Other Cross-platform Applications

Other lists - II

◼Top Vulnerabilities in UNIX Systems
◼ U1. UNIX Configuration Weaknesses

◼ U2. Mac OS X

◼Top Vulnerabilities in Networking Products
◼ N1. Cisco IOS and non-IOS Products

◼ N2. Juniper, CheckPoint and Symantec Products

◼ N3. Cisco Devices Configuration Weaknesses

Hippa vulnerabilities

▪ Firewall and System Probing

▪ Network File Systems (NFS) Application

▪ Electronic Mail Attacks

▪ Vendor Default Password Attacks

▪ Spoofing, Sniffing, Fragmentation and Splicing

▪ Social Engineering Attacks

▪ Easy-To-Guess Password

▪ Destructive Computer Viruses

▪ Prefix Scanning (Illegal Modem)

▪ Trojan Horses

Life cycle of a vulnerability in a
penetrate and patch world

State of a vulnerability - 1
1. The vulnerability is born

2. The vulnerability is discovered

3. Both the vulnerability and an exploit that
takes advantage of the vulnerability are
discovered

4. Both the vulnerability and a patch that
removes the vulnerability are discovered (a
race with 3)

5. The vulnerability, the exploit and the patch
have been discovered

Potential impact of a vulnerability

born discovered public patch available patch applied

Probability

of being

exploited

Organizational vulnerability

the patch is not applied because

of management problems

Window of exposure of the

organization

Survival of a vulnerability

A vulnerability is not public after its discovery

Time for an exploit

Time to develop a patch

Zero day exploit

◼ An exploit for a vulnerability that has been
discovered but not disclosed to all the users

◼ Sometimes those who discover a vulnerability
sell it to those interested in attacking the system
(black market of vulnerabilities)

◼ The only way to defeat the market is to design a
system that resists attacks even when a
vulnerability is discovered?

State of a vulnerability - 2

◼ Sometimes a system is attacked even if
vulnerability is in the last status ie a
patch is available

◼ It is well known that some system owners do not
apply a patch even if it is available (60% of attacks
exploit a vulnerability that can be patched)

◼ Asymmetry between the owner and the software
supplier (applying the patch is a responsibility of
the owner rather than of the supplier)

Potential impact

◼ In the best case, a patch is available
before an attack is known

◼ If the owner does not apply the patch,
then any benefit of discovering the
patch before the attack is lost

◼ It is the application of the patch not its
definition that reduces the danger

Patch ability

One order of magnitude

difference

Other buyer …

A book about zero day …

Just published, 9 February

In a few words :

a market for zero day

is really a bad idea

Number of vulnerability vs quality

◼ The number of vulnerabilities discovered (= known) in a
module is always lower than existing ones

◼ This number depends upon
◼ the availability of the source code

◼ the number of applications and of people using the
module

◼ the expected benefit of an attack against the module

◼ If a module is scarcely used, very few vulnerabilities are
known but this does not imply they do not exist
 The number of disclosed vulnerability cannot be

used to evaluate the quality of the module code

Genetic difference

◼ A system is more robust if it composes modules
from distinct suppliers

◼ The joint existence of vulnerabilities and a
monopoly in the module supply results in several
problems because

◼ all the instances of a module are affected by
the same vulnerabilities

◼ the same vendor tends to repeat a
vulnerability

◼ How much configuration influences vulnerabilities
(??!!)

Defence in depth

◼ Any system component can be affected by a
vulnerability

◼ A security expert
◼ Does not need to know any vulnerability

◼ Can design a system so that the discovery of a
vulnerability in a component does not make the
whole system useless

◼ Layered defence or defence in depth = redundancies
and diversities in the controls

◼ proactive approach vs penetrate and patch

Adopted Approach - I

◼ A solution that tries to anticipate any vulnerability
in any component has an huge cost

◼ Hence some vulnerabilities cannot be anticipated

◼ According to their potential impact we want to
understand which vulnerabilities

– should be accepted

– should be anticipated

– should be patched asap

◼ Problem: how to classify each vulnerability

Adopted Approach - II

◼ A vulnerability classification (handling)
depends upon the corresponding risk

◼ Risk
1) Average impact if the vulnerability is

successfully exploited

2) Risk of a vulnerability = F(Pattsucc, Imp)

◼ Pattsucc = probability of a successful attack
◼ Probability an intrusion exploits a vulnerability

◼ Probability the attack is successful

◼ Imp = impact due to a successful attack

Adopted Approach - III

Pattsucc is a function of several parameters

◼ Do exist threat agents that

• are interested in implementing the attack

• have the know how and the resources to
implement the attack

◼ Complexity of the implementation (automated ?)

◼ Are there other vulnerabilities that an intrusion can
exploit to reach the same goal?

◼ Are these attacks more or less complex?

◼ Less than 10% of vulns are actually exploited

Probability and impact
◼ Approx are requires because detailed

evaluations of the probability an attack (is
attempted) and (is successful) both are
extremely complex

– No historical information available

– Quick hardware/software evolution

– Human factor

◼ Similar problems arise for the impact
because of loss of new clients, damage to
the reputation

Probability and impact
◼ An interesting approach that is currently

emerging is the one of adversary
emulation

◼ Mimic in an automated way the action of
an attacker against the system

◼ The ability of repeating the attack a large
number of times can support a detailed
evaluation of the system robustness and
resilience

Probability - II

◼ Sometimes both the success probability
and the impact are approximated

{low, medium, high} or

{low, medium-low, medium …}

◼ We also need a risk matrix to compute the
risk given the approximated input values

Risk Matrix

Prob

Impact VL L M H VH

VH H H H VH VH

H M H H H H

M L L M M M

L L L L M M

VL VL L M H VH

Risk Matrix and Coherence

A risk matrix with more than one “colour”

(level of risk priority) for its cells satisfies

weak consistency with a quantitative risk

interpretation if points in its top risk

category (red) represent higher

quantitative risks than points in its bottom

category (green)

Cox’s First Lemma: If a risk matrix satisfies weak consistency, then no red cell

(highest risk category) can share an edge with a green cell (lowest risk category).

Cox’s Second Lemma: if a risk matrix satisfies weak consistency and has at least

two colours (green in lower left and red in upper right, if axes are oriented to

depict increasing probability and impact), then no red cell can occur in the bottom

row or left column of the matrix.

Risk Matrix

Cox’s First Lemma: If a risk matrix satisfies

weak consistency, then no red cell (highest risk

category) can share an edge with a green cell

(lowest risk category).

Cox’s Second Lemma: if a risk matrix satisfies

weak consistency and has at least two colours

(green in lower left and red in upper right, if axes

are oriented to depict increasing probability

and impact), then no red cell can occur in the

bottom row or left column of the matrix.

Betweeness A risk matrix satisfies this axiom of between-ness if every positively sloped

line segment that lies in a green cell at its lower end and a red cell at its upper end

must pass through at least one intermediate cell (i.e. one that is neither red nor green).

Risk Matrix

In a risk matrix satisfying weak consistency,

between-ness and consistent colouring:

a) All cells in the leftmost column and in

the bottom row are green.

b) All cells in the second column from

the left and the second row from the

bottom are non-red.

A tricoloured 3×3 or 4×4 matrix that satisfies weak consistency, between-

ness and consistent colouring can have only the following (single!) colour

scheme:

a) Leftmost column and bottom row coloured green.

b) Top right cell (for 3×3) or four top right cells (for 4×4) coloured red.

A critical problem

◼ In most cases probability is computed using
some information about the past behavior of a
system and of attackers

◼ From this information we can estrapolate the
future behavior under a continuity assumption

◼ A breakthrough in the technology for the
attacker or the owner can invalidate the
continuity assumption and results in distinct
probabilities (eg moving from meter to smart
meter changes the vulnerabilities)

Return on investement ROI
◼ The security analyst should be able to justify the

cost of the countermeasures that are selected to
be implemented (deployed)

◼ A countermeasure should be adopted only for
those vulnerabilities that enable attacks that
have both/at least one of

– A large success probability

– A large impact

= they have a large risk

◼ An interesting debate about both/at least one

◼ Black swan = big impact, low probability

Return of investment

• It is the difference between

• The overall risk before the countermeasures

• The overall risk after the adoption of
countermeasures

• The difference arises because of a lower success
probability and/or a lower impact of an attack

• The case where a vulnerability is removed or
patched (0 = success probability) is a particular
one

Return of investment=Earning

• The difference between the potential
impact and the cost of countermeasures

• The difference should be at most zero

• An alternative definition consider the ratio
between the ROI and the cost of
countermeasure

• The ratio should be larger than 1

Summing Up

• A risk attitude is defined by two parameters
• Penetrate and patch/Proactive (choose one)

• Conditional/Unconditional (choose one)

• In penetrate and patch
• each vulnerability may be critical, in proactive is

critical if it has not been anticipated

• the number of critical vulnerabilities (there is a risk)
is much higher than in proactive

• If a vulnerability is critical
• conditional sec = assess the risk and remove only if

• there is a non zero risk=f(Probsucc, Impact)
• if it is cost effective (risk>cost to remove)

• unconditional security: remove

Evaluating risk with no data

• Current research is focused on risk
evaluation even if no data is available

• Solutions exist to produce accurate and
realistic data to replace historical one
that, in general, is not available or is not
pubblic

• Adversary simulation to understand how a
system can be attacked and attack
success probability

Risk Based Approach

The approach we have described:

1. Asset analysis

2. Vulnerability Analysis

3. Attack Analysis

4. Threat Analysis

5. Impact Analysis

6. Risk Evaluation

7. Risk Management =

which countermeasures are to be adopted

Risk

Assessment

Risk Assess & Management

◼ The most modern approach to ICT security

◼ It consider the overall risk for an organization
and it frames cyber risk with other risks

◼ A larger context has to be considered because
ICT security should not be seen as a technological
problem only

Next steps

◼ Asset analysis

◼ Security policy

◼ Vulnerability Analysis

◼ Possible countermeasures

◼ Attack Analysis

◼ Risk Management = selection of the
countermeasures to deploy

Next Steps - II
◼ In principle, the security policy is a

countermeasure

◼ In practice, it is defined independently of,

and before, risk assessment because it

defines the goals of an organization and

the rules for its ICT resources

◼ Its satisfaction is an assessment goal

◼ Without a policy you do not know if you are

secure

