
Capture the flag exercise

My challenge to you to discover vulnerabilities

in a protocol using capability

Outline

1) Each subject manages a list with its own capabilities

2) The operation field of a capability is encrypted with a key
private to the security kernel SK

3) To request operation Op on object O, a subject S sends to SK a
message with S, O, Op and the encrypted capability

4) SK decrypts the capability and, if it enables Op on O, it asks O
to create a channel with S to execute OP

5) O destroys the channel when Op ends

Capture the flag exercise

S

O

Security

kernel

<O1, ops1, opsfield1> … <Ok, opsk, opsfieldk><Oj, opsj, opsfieldj> …

DEC(K, opsfieldk) op

1. Req

2. Check

3. Create

4. Exec

Exec(op)

opsfieldm = ENC(K, ops in ACM[S,Om])

Capture the flag exercise

Challenge to you

Discover vulnerabilities in the proposed protocol

or in the overall system under the assumption

that there are no vulnerabilities in the encryption

algorithm ie K cannnot be discovered because of

mathematical vulnerabilities

Complete Mediation - 2

 Access control list = a column based
organization of the acm

 One list for each object

 Each list element stores the rights of all
the subjects on a distinct object

 Now the control can be implemented by
the Security Kernel or be delegated to
the object

 A centralized structure for each object

ACM: ACL

Security

Kernel

Security Policy

subject1

subject2

subject3

subjectn

…

object1

object2

object3

objectk

…

the security kernel checks through

the object ACL that the security policy

is satisfied

The checks may also be implemented

by the object

Acl1

Acl2

Acl3

Aclk

Access control list

A more flexible solution may be achieved through
 Partition of the subjects

 The sequential scanning of the list (no direct access is
possible because the subject does not know its position)

If subject  Set1 then {op1, op2}

else If subject Set2 then {op3, op4} this is an ACL!

else {op5}

- the subjects are partitioned into three sets

- this can grant rights even to subjects not known in
advance. This is not possible for capabilities and it may
be adopted to define acls for web services

HW/FW support for ACL

 Associative memory where the key may be

 Subject  set of rights

 Subject, operation  boolean

 FPGA that implements a function that is a
chain of if statements about

 Sets of users

 Priority among sets

ACL vs Unix files

• Each file is paired with a bit array that

defines

• Owner rights

• Group owner rights

• Other users rights

• this is an implementation of the file ACL

• It adopts classes of users due to missing
information on all the system users

ACL and file descriptor

struct stat {

mode_t st_mode; // File type & mode access control list + set uid bit

ino_t st_ino; // i-node number

dev_t st_dev; // device number (file system)

dev_t st_rdev; // device n. for special files

nlink_t st_nlink; // number of links

uit_t st_uid; // user ID of owner

gid_t st_gid; // group ID of owner

off_t st_size; // size in bytes, for reg. files

time_t st_atime; // time of last access

time_t st_mtime; // time of last modif.

time_t st_ctime; // time of last status change

long st_blksize; // best I/O block size

long st_blocks; // number of 512-byte blocks

}

Unix/Linux -I

 ACL are defined in terms of process

identifier

 Real user ID owner

 Effective user ID

 Saved user ID

in Linux we also have

 File system ID

ACL for message routing in

routers

Input lines Output lines

Routing rules to

to map packets

with output lines

ACL for both

input and ouput

lines

ACL for message routing
 Router ACLs are built by composing two cases

IP Range1  route

packets from these nodes are routed

IP Range2  drop

packets from these nodes are dropped

 A list is built for each input/output connection to
specifies the IP addressed in the packets that can
cross the connection

 List = order is important

 Ranges because some addresses may be unknown

 This protects the network where messages are routed

ACL & Router

 ACL of input 1
 131.114.*.*  route
 131.4.5.6  route
 131.4.*.*  drop

Traffic from 131.114.*.* is routed and all the traffic
from 131.4.*.* is dropped but that from 131.4.5.6

 ACL of output 1
 131.114.*.*  drop
 131.4.*.*  drop

No address in 131.4.*.* and in 131.4.*.* can send
traffic to the network connected to output 1

swapping two rules

changes everything

Routing in Linux: iptables

 Input chain: rules for the packets addressed

to the node

 Output chain: rules for the packets produced
by the node

 Forward chain: rules for the packets that cross
the node

 Default allow  transform into a default deny
by creating the list of packets to be routed
and add “drop all” at the end

Routing in Linux

 Drop

 Route

 Return – return to the invoking chain

 Queue – transmit to user space

 Log

 Reject

 Dnat/Snat/Masquerade

Nat table

• Prerouting chain= any input packet

• Postrouting chain = any output packet

• NAT may change the addresses in a
packet

• Applied before INPUT and after
OUTPUT/FORWARD

The overall architecture

Exception

Quality of service

Examples

 iptables –A INPUT –p UDP drop

A new rule is inserted in the input chain to
drop any UDP packet

 iptables –A INPUT –p TCP –dport 156 drop

Drop any TCP packet addressed to port 156

 iptables – N newcontrol

Create a new chain where new controls can
be later inserted

An important point

• Anyone is aware and agrees on the

importance of controlling the network traffic
that enters a network

• These controls are critical and they are
mostly implemented in the border router
that connects a network to a pubblic one

• Are there any reasons to check the traffic
leaving a network?

Controlling the output traffic

• The control of output traffic is an important

mechanism to discover successful attacks
against the network (egress filtering)

• If someone is controlling a node X and
stealing information in X we can discover
the illegal connections of X to some outside
network

• These controls can discover Zombies to
implement a DDOS

Egress filtering

• It controls the traffic that is attempting to leave

the network.

• Before an outbound connection is allowed, it has

to pass the filter’s rules

• Advantages

– Discover malware

– Stop contributing to attacks

– Block unwanted services

ACMatrix, subjects and objects

• As the number of subjects and objects

increases, the complexity of

– defining the ac matrix

– checking its correctness

– achieving full mediation

strongly increases

• Some solutions have been proposed to

simplify the definition of this matrix

Role vs subject

 The notion of role is useful when (subject = a final user)

 Role =

 A professional profile and the corresponding rights

 Strongly depends upon the applicative environment

 Any role is paired with

 A set of users that can be assigned that role

 A set of rights

 Role Based Access Control

 Rights are not assigned to users but to roles

 A user U acquires the rights when a role is assigned to U

 When U leaves the role, it loses the role rights

