
Received: 4 September 2018 Revised: 25 October 2018 Accepted: 13 November 2018
RE S EARCH ART I C L E

DOI: 10.1002/nem.2060
A survey on blockchain cybersecurity vulnerabilities and
possible countermeasures
Huru Hasanova | Ui‐jun Baek | Mu‐gon Shin | Kyunghee Cho | Myung‐Sup Kim
Department of Computer and Information
Science, Korea University, Sejong,
Republic of Korea

Correspondence
Myung‐Sup Kim, Department of
Computer and Information Science, Korea
University, Sejong, Republic of Korea.
Email: tmskim@korea.ac.kr

Funding information
Institute for Information & Communica-
tions Technology Promotion (IITP),
Grant/Award Number: 2018‐0‐00539‐001
Int J Network Mgmt. 2019;e2060.
https://doi.org/10.1002/nem.2060
Summary

Blockchain technology has attracted considerable attention owing to its wide

range of potential applications. It first appeared as a cryptocurrency, called

Bitcoin, but has since been used in many other business and nonbusiness

applications. Unlike most existing systems that are based on centralized frame-

works, this new technology utilizes peer‐to‐peer networks and distributed sys-

tems which includes blockchain registers to store transactions. Its structure is

designed as a digital log file and stored as a series of linked groups, called

blocks. Each individual block is locked cryptographically with the previous

block. Once a block has been added, it cannot be altered. Many security experts

speculate that the inherent cryptographic nature of the blockchain system is

sufficient to withstand constant hacking and security threats. However, previ-

ous studies on the security and privacy of blockchain technology have shown

that many applications have fallen victim to successful cyberattacks. Owing

to the increasing demand for cryptocurrency and its current security chal-

lenges, previous studies have not focused on blockchain technology cybersecu-

rity vulnerabilities extensively. Here, our study extends upon the previous

studies on vulnerabilities and investigates the types of potential attacks. Our

study then provides further direction to highlight possible countermeasures

against blockchain technology vulnerability to cybersecurity.
1 | INTRODUCTION

Blockchain technology (BT) is a decentralized transaction and data management technology that provide security, ano-
nymity, and data integrity without involving any third‐party organization in control of the transactions.1 BT has equity
management capabilities by using electronic invoice ledgers for transactions performed over the internet.2 BT is also
being applied in the fields of finance, gaming, gambling, supply chain, manufacturing, trade, and e‐commerce.3 BT sys-
tem is an immutable database of all historical transactions stored as a digital ledger. Furthermore, all nodes (users) on
the distributed blockchain network can manage the shared ledger.4 Blocks are arranged in chains, where the bottom
block is the foundation of the stack. Each block is linked to the preceding block in the chain.5 Using cryptographic hash
algorithms, each block is identified by a generated hash.6 A block in the chain can have one parent block, but multiple
child blocks.7 A block contains a header, made up of a unique hash of its parent blocks that connects it with its parent
blocks, forming a chain. The first block is known as a genesis block (the first Bitcoin block was created in 2009).8 Thus,
BT system is a digital record of ownership that works as a decentralized database system, to which a continuously grow-
ing list of transaction records is maintained, which differs from traditional centralized database systems.
© 2019 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/nem 1 of 36

https://orcid.org/0000-0003-4316-2395
https://orcid.org/0000-0002-3809-2057
mailto:tmskim@korea.ac.kr
https://doi.org/10.1002/nem.2060
https://doi.org/10.1002/nem.2060
http://wileyonlinelibrary.com/journal/nem

2 of 36 HASANOVA ET AL.
The use of the BT in Bitcoin, which was launched in November 2008,9 is largely responsible for the growing interest
in BT. Bitcoin, a decentralized peer‐to‐peer digital currency, tracks all digital events in a public ledger. It records all
transactions that are shared between participating parties and are verified by a consensus of participants in the shared
system. Once information has been recorded during a digital event, it cannot be altered. Thus, Bitcoin contains a con-
tinuous and verifiable record of every event. In terms of security, Bitcoin is highly controversial in the digital currency
market. However, BT has found a wide range of applications in both financial and nonfinancial sectors. A blockchain
creates a distributed consensus in the digital world, providing entities with a secure platform that maintains past records
of digital events by creating an irrefutable record in a public ledger.10

Activities associated with BT are classified into three categories in the viewpoint of organization and accessibility: (a)
the first‐generation public blockchain (blockchain 1.0), (b) the second‐generation public blockchain (blockchain 2.0),
and (c) the third‐generation private blockchain (blockchain 3.0).11 Blockchain 1.0 deploys cryptocurrencies in applica-
tions related to cash, such as currency transfers, currency settlements, and digital payments. Blockchain 2.0 includes
smart contracts for economic markets and financial applications. This category handles more than simple cash transac-
tions. It includes stocks, bonds, loans, mortgages, titles, smart properties, and smart contracts. The third category applies
to applications beyond currencies, finance, and markets. It includes areas, such as government, health, science, literacy,
culture, and art. Therefore, blockchains within this category are considered private.12 Blockchain is a promising tech-
nology that may alleviate the risk of cyberattack directed to a single point, which could bring down the entire net-
work.13 However, a coded intrusion or system vulnerability could allow more negative consequences to the security
of the system. For example, if successful, an attacker would gain access not only to the information stored at the point
of attack but also to all information recorded in the ledger. Thus, security issues related to blockchain are critical in
terms of cybersecurity. In this sense, security experts need to fully understand the scope and impact of the security
and privacy challenges related to blockchain before predicting the potential damage from an attack, and verify whether
the current technology can withstand persistent hacking attempts.

Previous studies have explored the technical architecture of BT in relation to cryptocurrency.14 Although some stud-
ies have focused on the security aspects of BT, owing to the increasing demand for cryptocurrency with its current secu-
rity challenges, these studies have focused little on BT cybersecurity vulnerabilities. Among these studies, Conti et al15

focused on the fundamental background of Bitcoin cryptocurrency, overviews of its use and functionalities, and its pri-
vacy aspects. Atzei et al16 analyzed Ethereum smart contracts and offered taxonomy of general programming pitfalls
and bugs related to BT vulnerabilities. With the emergence of dynamic development attack methods by the hackers,
the existing approaches to security are becoming outdated and less effective. Based on such grounds, our study presents
a comprehensive review of BT security vulnerabilities by exploring attack vectors that focus on user security and its vul-
nerabilities. The three main contributions of our study are as follows: First, our study examines the security challenges
and problems of existing cryptocurrencies, including the possibility of attacks, focusing primarily on issues of user pri-
vacy and transaction anonymity. Note that our study does not attempt to solve these challenges and threats, but instead
presents an overview of blockchain security, including examining its vulnerabilities and discussing possible counter-
measures. We investigate, at various levels, the types of attacks that pose both practical and theoretical risks to BT. Sec-
ond, according to our study, we discuss the limitations of the state‐of‐the‐art solutions that address security threats and
enable strong privacy. Third, based on our thorough review, we then provide possible directions for further research on
countermeasures for BT security vulnerabilities.

This paper is organized as follows. Section 2 presents a comprehensive overview of security risks and explores real
attack cases of proof of work (PoW) and proof of stake (PoS) based BT. Section 3 discusses a number of security threats
associated with the development, implementation, and use of Smart contract–based BT. Section 4 demonstrates the
security issues and possible security threats of private BT. Section 5 discusses the proposed state‐of‐the‐art solutions that
counter various security threats and enhance existing security issues related to private and public BT. Section 6 con-
cludes with suggestions and future directions for possible countermeasures against BT cybersecurity vulnerabilities.
Section 7 concludes our study.
2 | VULNERABILITIES OF BT

BT systems are based on an append‐only data structure that stores every transaction executed over a network. Each
block in the network includes a link (hash) to its predecessor, creating a string of blocks that maintains a link to the
genesis block. Owing to the parent‐child relation between the blocks, all subsequent blocks are mined when a new

HASANOVA ET AL. 3 of 36
block is added to the network chain. It is methodologically complex to reverse a block retrospectively once it has been
on the chain for some time. Nodes in a PoW‐consensus architecture are decentralized and communicate over a network,
working in concert to construct a blockchain. Interestingly, this offers a state similar to an anonymous network, because
it does not require permission from a trusted third party to process a transaction. The distributed maintenance of the
blockchain creates a system with complete transparency. In this case, all processed transactions remain transparent
within the system and are validated before they are added to the blockchain. This can significantly reduce users' ability
to “double spend” on their respective digital assets. However, it is still possible for an attacker with high hashing power
to insert invalid transactions into a block. In this case, the attacker would gain full access to the network, allowing
him/her to deny service to specific participants. Network security experts call this a 51% attack, which can leave a
blockchain extremely vulnerable. Therefore, a PoW consensus architecture is vulnerable to 51% attacks when a mining
pool can control 51% of the hash rate.

With the emergence of Bitcoin, PoW became the most common architecture used for authenticating a
cryptocurrency structure (peer‐to‐peer system). However, it has limitations, particularly concerning the difficulty and
complexity of mining and high level of energy consumption. As an alternative to PoW, proof‐of‐stake (PoS) architecture
has been proposed, which relies on a certifier's economic investment in the network.17 PoS replace the mining operation
with an alternative approach based on a user's stake or ownership of a virtual currency in the BT system. In a PoW
architecture, a user invests in mining equipment and earns a mining reward for validating transactions. In contrast,
the PoS architecture allows users to buy cryptocurrency as a stake in the blockchain system proportional to their invest-
ment, allowing them to participate in block formation as a certifier. The PoS architecture selects certifiers in a random
manner when creating blocks. Thus, no certifier can predict its turn in advance.18 However, PoS have one major draw-
back, called nothing‐at‐stake.19 In the event of a fork, whether it was unplanned or as a result of a malicious attempt to
rewrite the history of the chain and reverse a transaction, the optimal strategy for any miner is to mine on every chain,
thus ensuring that he/she receives a reward, regardless of which fork wins. In case a large number of economically
interested miners are assumed, an attacker may be able to send a transaction in exchange for some digital good and
receive the good. The fork will initiate of the blockchain transaction from one block behind and send the money instead.
Even with 1% of the total stake, the attacker's fork would win because every node is mining on both. With PoS method,
Ethereum tried to overcome PoW security limitation, a reduced risk of centralization, and energy efficiency.20 So that,
PoS allows a consensus to be established on the network, whereas the PoW architecture has many potential security
issues.21 As a more comprehensive view, we present these potential security issues, along with their impacts on PoW
and PoS blockchain architectures in Table 1 in Appendix A section.

The following sections explain the current vulnerabilities that threaten the widespread use of cryptocurrencies and
BT, focusing particularly on those found in the consensus architectures of PoW, PoS, DPoS, and Smart contracts. We
systemized vulnerabilities by blockchain type, consensus type, and attack types (see Figure 1).
2.1 | General risks of blockchain 1.0 and 2.0

2.1.1 | Double spending

Double spending happens when a user makes multiple payments using one particular funding form, possibly in a P2P
network. This occurs because transactions are validated by solving a mathematical problem. Hence, a time lapse is
required before transactions are confirmed. When unprocessed payments are announced over the network, or when
the network's nodes are updated with transactions that are yet to be confirmed, broadcasting disruptions are possible
at different time slots. In Bitcoin, it typically takes approximately 10 minutes to solve a problem successfully. This is
dictated by the difficulty of the calculation, which involves adjustments to the processing power of the miners.22 Karame
et al23 explain this as follows. Suppose an attacker A needs to trick a retailer R into accepting a transaction TrR that R
will not be able reverse. In this case, A creates another transaction TrA with the same inputs as TrR, but replaces the
recipient address under the control of A. If both transactions are initiated at the same time to peers on the chain, then
the chain will not accept multiple transactions that share common inputs. They will only accept the version of the trans-
action that reaches them first for inclusion in the generated blocks, ignoring all other versions. This means a double‐
spending attack can be performed successfully if R receives TrR, but the majority of the peers in the network receive
TrA, which then has a significant possibility of being included in a generated block. In order to perform a successful
double‐spending attack, a few basic conditions and requirements are necessary. First, the time tRR < tAR otherwise R will

FIGURE 1 Vulnerabilities in BT

4 of 36 HASANOVA ET AL.
first add TrA in a memory pool and will reject other inputted transactions with TrA. In all cases, TrA will be confirmed as
the first block to be added to the chain and other attacks will fail.23 The above explanation and the principle of a double‐
spending attack are shown in Figure 2.
2.1.2 | The 51% attack or Goldfinger

Blockchain consensus architectures are particularly vulnerable to double spending and 51% attacks. These attacks can-
not be avoided in such systems and, theoretically, can happen all the time. The 51% attack (or Goldfinger) was first used
to attack Bitcoin, but can also be used on other BT systems. When good nodes control at least 51% of the network

FIGURE 2 Working principles of double‐spending attack

HASANOVA ET AL. 5 of 36
mining power, a BT system can then be considered protected. In this case, the cost of controlling a major stake might be
greater than the cost of obtaining significant mining power, thus increasing the cost of attacks. In addition, the
attacker's coin time can be paid during the attack, which may make it more difficult for the attacker to prevent trans-
actions from being added to the leading chain.24 An attacker might also be able to obstruct the confirmation of new
transactions on the network, thus preventing some or all nodes from receiving funds. In addition, an attacker can
reverse transactions, but only if they have dominant power over the network, resulting in double spending. In the event
of a 51% attack, it would be extremely difficult for an attacker to take over the blockchain, because transactions are
locked prior to the start of an attack if an attempt is made to change historical blocks.

In July 2014, the mining pool ghash.io briefly exceeded 50% of the Bitcoin network's processing power, which led to
the pool reducing its share of the network.25 In August 2016, two BT‐based systems Ethereum Krypton and Shift suf-
fered 51% attacks. An attempt was made to overwhelm the network with at least 51% of the hashing power in order
to roll back the transactions and spend the same coins again. BT‐based Ethereum has faced 51% attacks, but mainly
in low hashing power attacks. A severe case occurs when the attacker has more than 67% of the stake by which the
attacker can freely block any transactions and wish to block and reject to form any blocks of the transactions.19
2.1.3 | Wallet security (private key security)

Generally, cryptocurrencies store their value in a file store called a wallet, whereby each client owns a set of private‐
public keys to access the wallet. The major weakness with the wallet is that it can be influenced, pinched, and relocated
just like other stores. Users often fail to recall their protective PIN or password, or lose the hard drive where the private
key is located. This means that a user may not always be able to access their store. In light of this, ransomware can
cause the same issue. Wallet theft uses classic mechanisms such as phishing, which include system hacking, the instal-
lation of buggy software, and the incorrect use of wallets.26

A blockchain system can easily be exploited through any vulnerability that might contribute to a cryptographic solu-
tion, because it is obvious that any programming bug or lack of secure private key can be the foundation of a major
security breach. Hypothetically, a cryptoattacker should not be able to understand the original plain text, which is
encrypted. However, it is not difficult to understand the format of the blocks, and even a good cryptograph makes a
plain text, such as random gibberish, but certain characters or numbers are often found in the same place in each block
in the blockchain. This allows an attacker the opportunity to attempt a partial representation of the plain text in every
cryptoprotected block, where each block is a function of the preceding block.27

In the cryptocurrency domain, Bitcoin has the largest market share, where a Bitcoin wallet employs a public key,
private key, and an individual address. According to VanDam and Shparlinski, public keys can be generated safely from
private keys using an algorithm called elliptic curve digital signature (ECDSA).28 However, Vedral and Morikoshi argue
that quantum computers can crack ECDSA.29 In addition, a machine can exploit quantum weirdness because its under-
lying reality is still unknown. This could allow the presence of quantum bits (qubit), as well as algorithms that quantum
computers can perform that classical computers cannot.29 For example, a quantum computer can run Shor's algorithm

6 of 36 HASANOVA ET AL.
and quickly crack any public key encryption by finding the factors of large numbers.30 Ironically, the Bitcoin protocol
address is derived using the SHA‐256 function for public keys, using the RIPEMD‐160 hash function and adding a
checksum for error correction. While the mathematical weaknesses of SHA‐256 are surprising,31 no SHA‐256 cracking
incidents have occurred, and thus, it has a strong and predictable future.
2.2 | Specific flaw in PoS

When a stake moves, the existing majority of stakeholders remain honest in that past account keys that have no current
stake can be negotiated. This is a major weakness in PoS‐based blockchains because a set of malicious shareholders can
create a different blockchain using old accounts, creating a blockchain is relatively straightforward.32 In general, a
nothing‐at‐stake attack against a PoS‐based blockchain is simplified by shareholders maintaining several blockchains
concurrently, manipulating the fact that very little computational power is required to create a PoS‐based blockchain.
Stakeholders have an incentive to act properly in a stake on the longest chain in order to preserve the value of their
investment. However, this ignores several problems. A stakeholder has only a 1% probability of being a critical part
of an attack, which will otherwise fail. In light of this, a bribe is required to induce individual stakeholders to join an
attack that would be only 1% of the size of their deposit. Hence, the required shared bribe can only be 0.5% to 1% of
the total deposit. This assumption implies that a zero‐chance‐of‐failure situation cannot be a constant equilibrium,
because if the probability of failure is zero, then everyone has a 0% probability of being critical. The PoS architecture
is also vulnerable to a long‐range attack, in which an attacker with 1% of all coins initiates a fork without the most
recent blocks on the main chain. The attacker endeavors to start a fork after the genesis block, easily creating new
blocks and simply making the longest chain. In such cases, a new user cannot identify the longest blockchain, because
many blocks are illegal. One possible solution to this is to have every block contain a timestamp, where a user can reject
chains with timestamps that are too far ahead of its own timestamp. This constitutes a short‐range attack because it
occurs rarely and would later disappear. In such cases, the attacker can hide the generated blocks until they can be con-
sidered a local maximum, and then reveal the best chain and execute it more frequently. Thus, the attack rises locally
and is then repeated. Even with a 30% stake, the attacker can create 28 to 30 portions of blocks in a 500‐step run. How-
ever, within a 1000‐step interval, the chance of an attack is wiped out. Subsequently, the local attack with the best
blockchain ends up with an order of blocks created by the attacker can easily be detected. As presented above, a
long‐range attack is questionable owing to the retargeting procedure and chain measurement. However, the possibility
of a short‐range attack from a multibranch account still exists, although it is impossible across the whole multibranch
environment.19
2.3 | Private forks and pool attacks

The PoW‐based blockchain is widely used in the digital currency system, where it has taken over a large part of the total
market capitalization. The security of a PoW architecture is absolutely dependent on the state of the security of the
blockchain system, in which attacker side, if any, should have 50% or less of the computational control. Adding to this,
Eyal and Sirer offered a selfish mining, or blocked discarding attack, that proved that conventional wisdom is incongru-
ous, and that certain attacks enable a selfish miner equipped with 25% to up to 33% (hard theoretical boundary) of the
extracting power that can allow an attacker to earn 50% of mining power.33,34 Moreover, if the attacker is supervised at a
high level, it will not perform as a normal miner. Rather, they will immediately be able to publish blocks on the network
or assess the system to publish the blocks in a selective manner. Meanwhile, the attacker may choose to forgo his/her
own revenue. However, if too many blocks are published at once, this may lead to a rejection of blocks that will culmi-
nate in a reduction of revenue. In this case, the reduction in revenue is temporary and short‐lived for the attacker, while
it negatively affects the revenue of others. Subsequently, incentives are created for impartial nodes to consolidate their
efforts with that of the attacker, forming an alliance that will increase their revenue. This alliance would increase the
population of the attacker's alliance by 50%, offering the attacker a higher level of control over the network. As such,
the attacker's strategy would be to create a private chain that could be uniquely distinguished from a public string.
At first, this private and public chain are initiated together, while the attacker consistently seeks opportunities to mine
on the private chain and secure retention rights on the private blocks available. This tactic helps the attacker to decide
on the perfect time to publish a block. This can be explained further using the scenario presented below.

HASANOVA ET AL. 7 of 36
Let us assume that X is an attacker's portion of the network hash power. Two existing public chains compete for
control of a portion of the network that affects the revenue of the attacker chain (Z). Then, we have the following
situation:

• State 0: Represents a situation where the attacker's private chain is related to the public chain; hence, the mining
should be performed on the private chain. When the private chain block 1 is ahead, there is a probability of X that
the attacker will encounter a block and move to state 1, while there is a probability of 1 − X that the public network
will have to find a block and the attacker will have to reorganize his or her private network as a public chain.

• State 1: On the other hand, this represents a case where the attacker's private chain is ahead of the public chain by 1.
Here, the mine should be carried out on a private chain. When the private chain block 2 is ahead, there is a prob-
ability of X that the attacker will move to state 2, while there is a probability of 1 − X that the public network will
find a block and set it to a state of 0′.

• State 0′: In this situation, the blocks of the attacker must be published, which may result in two competing chains,
each of which are one block longer. Given a probability of X, the attacker is required to find another block that can
force the network to become a private network. There is a possibility that the attacker will obtain a revenue of 2 and
that the system will be forced to reset to state 0. In this situation, both the attacker's network and the public network
have a chance of generating a revenue of 1 when the system is reset to state 0. There is a probability of
(1 − X) (1 − Z) that the network will find another network with blocks other than its own to gain a revenue of 2.
If this happens, the system is reset to a state of 0.

• State 2: The attacker may progress to a state of 3 and may earn a revenue of 1 with a probability of X. Even though
the revenue gains will be derived later, accountability is easier in this case. There is a probability of 1 − X that it is
possible for the network to find a block while the attacker will have to publish 2 blocks in his or her private chain,
which may be longer than the public chain by 1. Finally, to obtain a revenue of 2, the network can choose to switch
to the attacker's chain.

• State i (i > 2): The attacker may move to a position of i + 1 and gain a revenue of 1 at a probability of X, while there
is a probability of 1 − X that the attacker will return to a state of i − 1.

Next, we examine a confirmatory test for the scenarios listed above. Suppose Z is a number close to one, in which case
the chance of an attacker discarding a block is slim. This is only possible in the time frame of state 0′ and if Z ≈ 1 across
the entire network. This is because at Z < 1, other nodes in addition to the attacker can mine on the attacker's block.
Hence, discarding a block is unreasonable, and so, the attacker has to mine optimally. However, blocks that have been
cast off can be found by the public network in states 0′ and 2 if the public network is mined with partial efficiency. As a
result, nonaligned (profit‐maximizing) nodes are enticed to form a coalition with the attacker's team to increase their
gains. While Z decreases, this benefits the attacker by Z = 0.5. Eyal and Sirer have shown successfully that the attacker
is more competent than the public network at X > 1/4 and X > 1/3. Furthermore, the public network is less effective than
the attacker at any Z. Next, we consider how to calculate Z. Presently, the Bitcoin network has been enhanced by tracking
the activities of nodes that merely mine and propagate the first block they encounter. This has the potential to prevent
attacks because the approach of the attacker is reactive, and Z decreases to zero as individual blocks are discarded from
a public network. Nevertheless, a “Sybil attack” can be carried out by well‐financed attackers (or attackers controlling
botnets) by creating millions of nodes and inserting them into the network in many places. When an attack takes place,
these nodes (Sybil) concentrate on propagating the attacker's blocks alone, which, as Eyal and Sirer show, make Z tend
toward one. In reality, however, this is not true, because Z ≤ 0.8 is ensured when a minimum individual mining pool can
catch their own blocks first. There are mixed views on whether Sybil attacks can be carried out in this state. To guarantee
the security of Bitcoin against Sybil attacks, Eyal and Sirer argue that strategic switching be used by honest miners, which
involves the propagation of all blocks when multiple competing chains of the same length are received. However, if this is
implemented by all miners, then Z = 0.5, and a reasonable threshold of X ≥ 1/4 for the attack is possible.33 Figure 3 illus-
trates the process of a selfish attack as a state machine in a systematic order.

A “bribery attack” is a form of mining attack. Bonneau et al34 discussed three ways in which such attacks could
occur. First, in an out‐of‐band payment, owners of mining capacity are paid openly. The attacker is required to pay
slightly above market price to ensure having more than half the total hash power, which makes the attack statistically
effective. The second is a negative‐fee mining pool, and the third is an in‐band payment via forking, in which the
attacker endeavors to bribe using Bitcoin by creating a fork that covers the bribe money accessible to any miner embrac-
ing the fork. The cost of this attack can be randomly minor, but it requires a lot of a capital. However, it is unsafe and

FIGURE 3 State machine a selfish attack

8 of 36 HASANOVA ET AL.
appears to be difficult because miners do not merely rent their hash power to the highest bidder when they can use min-
ing pools that they trust. Thus, there is probably no way for an attacker to obtain more than the 50% of the total hash
power required to make the attack effective.34
2.4 | Network‐level attack

At present, blockchain network security problems become the most popular research issues on the network security
field. However, there are still various concerns about its scalability, security, availability, and sustainability. With the
rise of the digital currency market, cyber attacks that endeavor to influence marketing and business‐oriented services
are constantly increasing. Among the numerous attacks, distributed denial of service (DDoS) attacks are one of the most
common network bandwidth consumption attacks that have caused trouble for services. DDoS attacks on blockchain‐
based platforms are not like regular attacks. In a decentralized and peer‐to‐peer technology, it is more difficult and
costly than in conventionally distributed application architecture when an endeavor to subdue the network using a
large volume of small transactions occurs. However, blockchain‐based platforms, such as Ethereum and Bitcoin, are
vulnerable to DDoS attack. Therefore, there are adequate protection measures needed both at the network and applica-
tion level. In a case example, in 2016, the Ethereum and Bitcoin networks endured the same DDoS attacks as in 2014.
Thus, resilient and decentralized blockchain solutions can offer high accessibility, but DDoS attacks will remain a deter-
mined danger to security.16

In a cryptocurrency ecosystem, currency exchanges play a paramount role, but in most cases, these systems encoun-
ter DDoS attack more frequently. Feder et al35 stated that several currency exchanges have been shut down as a result of
DDoS attacks. Mt. Gox is one of the main exchanges that handles more than 70% of all Bitcoin transactions worldwide.
It is a leading Bitcoin intermediary, and is considered the biggest Bitcoin exchange. Vasek and Moore carried out a wide
empirical analysis of DDoS attacks in the Bitcoin ecosystem, and reported 58 attacks on exchanges and Bitcoin services.
In particular, there have been 142 unique DDoS attacks on 40 Bitcoin services, where 7% of all known operators have
faced attacks. The authors also report that exchanges, mining pools, gambling operators, wallets, and financial services
are far more vulnerable to DDoS attacks than other services are. Other reports indicate that 17.1% of small mining pools
have been affected by DDoS attacks, whereas 62.5% of large pools have faced similar attacks.36 Johnson et al37 studied a
series of game‐theoretical architectures of competition between two pools of varying sizes in order to carry out a DDoS
attack against another mining pool. They compared an honest approach with a dishonest strategy. Under the honest

HASANOVA ET AL. 9 of 36
paradigm, players of a coalition could invest in additional computing resources to increase the likelihood of winning the
next race. Dishonest player coalitions focused on a mining pool and triggered a costly DDoS attack to lower the expected
success of a competing mining pool. The authors made two other observations as to whether there was a greater incen-
tive to attack a larger mining pool than a smaller one. Each pool battle was designed for reward. Thus, eliminating the
largest mining pool had the greatest effect on the chance of the remaining mining pools winning. Second, a larger min-
ing pool had a relatively smaller competitor base, and eliminating a competitor from a small base yielded a greater ben-
efit than eliminating a competitor from a larger base. Therefore, there is a size threshold beyond which mining pools are
more likely to be subject to economically motivated attacks. Moreover, players smaller than this threshold tend to
receive the highest payoffs.37

Another example of attack on a Bitcoin system (peer‐to‐peer network) is called an eclipse attack, which occurs in a
context called a netsplit.38 The first work to study eclipse attacks was that of Heilman et al39 who demonstrated the first
attack against Bitcoin's system by controlling hundreds of nodes and architectures as an unstructured random graph. In
a P2P system, a distributed application architecture that divides tasks or workloads among peers, without stable hosts
and peers, communicates through gossip protocols.40 During an eclipse attack, a node becomes inaccessible to other
nodes on the network, which means it can be used by an attacker. This is a simple way to attack P2P systems, including
blockchains. The cost of launching an eclipse attack is high in an ideal state where each pair is always listening and
talking to other peers. Therefore, the hacker must control the entire network to hack the P2P system. In practice, how-
ever, each pair can only exchange information with a small group of its peers. Thus, the cost to hack the system is not as
high as first thought. In a simulation setting, Marus et al41 used a botnet of 4600 IPs, with two IPs per group, and 5 hours
of time to successfully fill a node's IP table. This is relatively small, because the Walowadac Botnet has 160 000 IPs and
25 000 groups, which shows that this attack is possible. The author performed a 1‐hour live experiment using 400 IPs
(400 groups), with one IP per group, and occupied 57% of the table tested with invader IPs.39,41,42
2.4.1 | Malleability attack

Let us assume that a dishonest user has n Bitcoin on an exchange and wishes to withdraw the coins. In this case, the
user requests that the exchange send the Bitcoins to a specified address. This can automatically generate a transaction,
which is transmitted for mining so that it can be included in the Bitcoin blockchain. However, the user can act as if the
coins were not received, and use the transaction malleability flaw to reproduce the original transaction. He or she
changes the digital signature to produce a different hash and retransmits the transaction with a different ID. There is
a chance that the transaction will be confirmed on the blockchain first, which means the network will accept the trans-
action as valid. The dishonest user then complains about that exchange did not complete the transaction. When the
exchange system checks the transaction and finds no record of its ID on the blockchain, it sends the coins again.
According to Andrychowicz et al43 this exchange is a custom implementation and is seemingly vulnerable to such
attacks.

An attacker can cause extensive harm to the Bitcoin network by intentionally initiating transaction malleability
attacks on multiple exchanges at once using software that is deliberately designed to create mutant transactions. The
back‐end accounting systems of these exchanges may be able to cope with moderate numbers of mutant transactions.
However, if they are assaulted repeatedly, this can cause logistical problems.43 In addition to protocol and network‐level
attacks, other attacks (eg, a Sybil attack) occur when networks lack admission controls. In this case, a blockchain net-
work allows a single user to generate several online identities, which he/she uses to manipulate the consensus process.
This allows the dominant group to confirm transactions and blocks, thus allowing double spending to occur.
Dominance can also be achieved by other means, such as controlling 51% of the mining power on a PoW network.
2.4.2 | Real DOS attack against the Ethereum network

A DDoS attack (computational), which caused miners and nodes to spend a long time waiting to process blocks, affected
the Ethereum network in September 2016. The root cause was EXTCODESIZE opcode—a low gas price opcode that
mandated nodes to read state information stored on a disk. This opcode was initiated roughly 50 000 times per block
by attackers. This lead to the network speed slowing down drastically.

In October 2016, a different DoS attack took place due to flaws inherent in the protocol. Attackers simply created
large numbers of cheap, empty accounts in the Ethereum state through the use of SUICIDE opcodes that transferred

10 of 36 HASANOVA ET AL.
functionality to “poke” a new account into existence, and then repeatedly called it within a single transaction until it
was deleted. Using this technique, 19 million empty accounts with zero balance and gas only valued at 90 were created
by nodes from attackers. These ghost accounts can be turned into nonempty accounts by just sending Ethers of any
amount to them. Technically, if a miner should accept transactions with zero fees, sending a transaction from an empty
account is made possible. The only exception is when empty accounts need to be stored in an Ethereum state tree.
Empty accounts cannot be stored in the state, which also means an attack cannot occur in the state. However, be it
in the state or not, having a whopping 19 million empty accounts creates another issue—waste of hard drive space
may increase sync time (especially fast sync and warp sync) and the reduce.44
2.5 | Specific flaw in DPoS

A while ago, we talked about PoW and PoS consensus security issues. In terms of security, there is a diverse opinion on
which solution is the best. Both mechanisms have their own advantage and drawback for different types of networks,
applications, and their overall security. Therefore, several consensus algorithms developed different blockchain imple-
mentation. Recently, delegated proof of stake (DPoS), which is a variant of PoS, became popular among the
cryptocurrency market due to its high scalability.45 DPoS consensus relay to a fixed number of elected entities called
block producers (BPs) which are selected to create blocks in a round‐robin order. BPs are voted into power by the users
of the network, and each gets a number of votes proportional to the number of tokens they own on the network (their
stake). Alternatively, voters can choose to delegate their stake to another voter, who will vote in the BPs election on
their behalf. BPs are those responsible for creating and signing new blocks. They are limited in number and are elected
by the voters. Block validators in DPoS refer to full nodes who verify that the blocks created by BPs follow the consensus
rules. Any user is able to run a block validator and verify the network.45,46

In aspects of security, there are various concerns around DPoS, because algorithms provide a high level of scalability
at the cost of limiting the number of block producers. Currently, well‐known DPoS chains are EOS, BitShares, Steemit,
Lisk, and Ark limited with 21, 101, 21 101, and 51 BPs, respectively.45,47,48 According to Vitalik and Haseeb Qureshi, due
to the nature of the permissionless network, an anonymous or pseudonymous party can participate in a combination of
usage, validation, and block production. As a result, these networks cannot prevent Sybil attacks, where a single user
creates multiple identities to use a network.49 Since DPoS uses trusted witnesses, the chain is less vulnerable to the gen-
eral flaw of proof of stake—“nothing‐at‐stake.” However, DPoS remains at risk from BPs paying for votes or colluding
for nefarious purposes (censorship attack). A group of dishonest users may also seek to take over the voting process.
Stakeholder apathy encourages such attacks and remains a weakness in DPoS.49 In this section, we outlined the major
DPoS attack vectors (possible attack) and evaluated the threat they present.
2.5.1 | Block producers collude

Theoretically, in any blockchain system, the threat of BPs (miners, validator) collusion is looming. Because of DPoS
relayed a small number of validators, it is always possible to organize collusion among them. According to Vitalik, three
major attacks could launch in those colluding BPs: censorship, changing system parameters, and double spends
attacks.49

Censorship attack
While a system is ultimately designed to encourage plutocracy and collusion among BPs, there is no guarantee for devel-
opers and users that their applications and transactions will not be censored. Censorship attack against to DPoS means
that BPs refuse to process valid transactions. If only a single BPs (or minor group) censors an individual, it will not be a
big issue for the network. The next honest majority of the BPs will probably validate the transaction in the following
block, which could cause delayed transactions by not processing them in their blocks. In DPoS systems, the attack will
be a success if the majority BPs is under the attacker's control (more than two‐thirds of all BPs).50

Changing system parameters
Under DPOS, all changes must be triggered by active stakeholder approval.48 It is technically possible that the BPs col-
lude and change their protocol parameters unilaterally. If an attack is a success, then the attacker (or attacker group)
may change the constitution, increasing their block rewards, forking out certain stakeholders, and other options on

HASANOVA ET AL. 11 of 36
protocol. The threshold for changing the rules is the same as replacing 51% of the elected witnesses. The more stake-
holder participation in electing witnesses, the harder it becomes to change the rules. DPoS is designed in such a way
that these attacks are not possible without implicit voter approval. In EOS case, changes to protocol parameters have
time delays before they are actually incorporated. In addition, approval by 17/21 BPs is required to change the consti-
tution, and they must maintain that approval for 30 consecutive days before the changes could take place.47 In case the
user does not accept changes, they can vote out that BPs during that time and replace them with producers that do not
support the changes. Ultimately, changing the rules depend upon everyone on the network to upgrade their software,
and no blockchain level protocol can enforce how rules are changed. This means that hard‐forking “bug fixes” can
be rolled out without requiring a vote of the stakeholders, so long as they remain true to the universally expected behav-
iour of the code. In practice, only security critical hard‐forks should be implemented in such a manner. The developers
and witnesses should wait for the stakeholders to approve even the most minor changes.48,51
2.5.2 | Exploit law voter turnout

This is one of the possible threats against a DPoS blockchain. In fact that on voting‐based blockchain platforms, few
participants actually show up and vote. On token voting platforms, users with small stake may not influence the direc-
tion of the platform with their votes. For small stake user, sometimes a vote may be costly than the value that voting
brings. To solve this problem, DPoS allows proxy voting where the user can lend their voting power to another user.
Results of these systems are that often overall voter turnout is low, and voting is mostly done by whales, exchanges,
and wallet providers. Vitalik has explained risk as follows: Let us assume that 10% of the total supply of tokens was
being used to vote, then a whale (or group of whales) with more than 5% of the total supply could step in and take over
governance.46
2.5.3 | Attacks at scale

Another possible attack vector involves assumptions about what an industrial‐scale DPoS blockchain looks like. Accord-
ing to Larimer, EOS is likely to scale in a way that large data centres act as BPs in order to provide the level of band-
width and speed the network requires. It has not yet been observed in practice; however, if it happens, the implications
are worth considering. If BPs are expected to be in dedicated data centres, it limits the number of potential BPs and
especially limits the number of entities that could step in to replace BPs that are voted out. If there is not any BPs with
sufficient resources to replace BPs that has been voted out, then, as a result, the network may suffer. Voters would have
to decide between punishing a misbehaving BPs and lowering the overall resources of the network.48,52
3 | VULNERABILITIES ON BLOCKCHAIN 2.0 (ATTACKS AGAINST SMART
CONTRACT)

Smart contracts on Ethereum represent the second generation of public blockchains, providing an open and global com-
puting platform that allows for the exchange of cryptomeda (Ether). Smart contracts are intelligent, self‐checking con-
tract applications that provide a foundation for digital asset proprietorship and a range of decentralized applications in
the blockchain domain. Ethereum and smart contracts are public, distributed, and immutable and, thus, are prone to
vulnerabilities caused by simple coding errors. Ethereum is the most popular blockchain platform in terms of current
cryptomeda market capitalization. Several studies provide taxonomies related to smart contract vulnerabilities. For
example, Atzei et al16 investigated security issues in Ethereum smart contracts and offered a taxonomy of common pro-
gramming faults, which they refer to as vulnerabilities. They investigated 12 types of vulnerabilities, classified by Solid-
ity, the Ethereum virtual machine (EVM), and Ethereum networks. Chen et al53 examined underoptimized smart
contracts, identifying seven gas‐costly patterns within two groups: useless‐code‐related patterns and loop‐related pat-
terns. They found three representative patterns in 4240 real smart contracts, showing that 93.5%, 90.1%, and 80% of con-
tracts are affected by each respective pattern.53 Luu et al54 examined the safety of running smart contracts based on
Ethereum, finding several new security issues that could be exploited for profit. They created a symbolic execution tool
called Oyente to find potential security bugs, enabling developers to write less vulnerable contracts. Table 1 (see also

TABLE 1 Smart contract vulnerabilities

Smart Contract Vulnerabilities Categories of Bugs

The DAO, Maker's ETH‐backed token Re‐entrance Re‐entrance (recursive‐calling vulnerability:
A calling B calling A)

Game‐theoretic weaknesses

Rubixi, FirePonzi (Ponzi scheme) Immutable bug
Wrong constructor name

Variable/function naming mix‐ups

King of the ether game Out‐of‐gas send
Exception disorder

Send failure due to 2300 gas limit

GovernMental (Ponzi scheme) Immutable bug
Stack overflow
Unpredictable state
Timestamp dependence

Arrays/loops and gas limits

FirePonzi Type casts Variable/function naming mix‐ups

Parity multisig wallet Visibility and delegate call Unintended function exposure

12 of 36 HASANOVA ET AL.
Table 2 the appendix B) shows common pitfalls and vulnerabilities in smart contracts. Moreover, Vitalik et al55 listed all
major bugs found in smart contracts based on real attacks on Ethereum, which they classified into six categories.
3.1 | Re‐entrance vulnerability (DAO attack)

Based on the largest attack (DAO attack) on Cryptomeo, re‐entrance is the most severe vulnerability in smart contracts.
The re‐entry vulnerability is explained as follows. The atomicity and sequence of transactions may induce programmers
to consider when a nonrecursive function is invoked because it cannot be reinserted before its completion. However,
this is not always the case, because the fallback mechanism may allow an attacker to re‐enter the caller's role. This
can result in unexpected behaviour and possibly loops of invocations that eventually consume all available gas.16 In
June 2016, Ethereum suffered a DAO attack that led to a large‐scale Ethereum node disruption, pitting the platform's
developers against the unknown antagonists.56 As a result, Ethereum implemented a hard fork, yielding two separate
platforms, namely, Ethereum and Ethereum Classic.

In a DAO attack, the attacker first publishes a malicious smart contract, which is called the “splitDAO” function
(this function updates user balances and totals at the end). In this way, the attacker sends 14 647 and receives 26 287
transactions, collecting Ether many times over within a single transaction. To prevent such attacks, the DAO commu-
nity proposed a software fork with a NO ROLLBACK function, starting from block number 1760000. Here, any trans-
actions that implement calls/callcodes/delegatecalls that execute code with an attacker hash code are rejected or
rendered invalid.57
3.2 | Parity multisig wallet

In July 2017, the second biggest attack occurred when ETH was stolen on the Ethereum network. The problem reported
by the Parity team that affected multisig portfolio contracts was part of the Parity software package. The attacker found
a vulnerability in the 1.5+ version of Parity multisig wallet, resulting in the theft of more than 150 000 ETH (about $30
million). A parity attack expands a combination of unsafe visibility modifiers and misuses the calling of delegates with
arbitrary data. Zeppelin Solution analyzed the cause and described the structure of the attack. An overview of the attack
is provided below.

The attacker sends two transactions for each of the affected contracts, where the first transaction gains exclusive
ownership of multisig, and the second moves all of the funds. The first transaction is a call to initWallet (line 216 of
WalletLibrary), a function possibly created to extract the wallet builder logic to a separate library.58 The portfolio con-
tract forwards all unequal function calls to the library using delegatecall (line 424 of Wallet).59 This makes it possible for
all public functions to be called by any user with contract functions or inherited contract functions, or by external users
from the library that includes initWallet, which can change contract owners. The attacker simply changes the status var-
iable of the contract owners to a list containing only his/her address, requiring only a confirmation to execute a

HASANOVA ET AL. 13 of 36
transaction. Then, it is just a matter of invoking the second function to send all funds to an account controlled by the
attacker. This execution is authorized automatically because the attacker is then the sole owner of multisig, effectively
draining the contract of all funds.60
3.3 | King of the ether throne

King (of the Ether Throne) has not succeeded because of the high gas value necessary to send Ether to a contract
address, where gas is the small amount of Ether required to perform computations on the blockchain. The flawed con-
tract was a gambling scheme through which a user could buy the “crown” for a dynamic price. When a new “king” was
crowned, the price for the crown would increase. Most payments expired to the leading king, with a small portion
extracted for the contract owners. If the leading king used a contract address rather than a simple wallet to send its
Ether and assume the crown, the contract would attempt to send the payment from the incoming king back to the
ousted king's contract address. This should have been acceptable, because a contract can hold Ether. However, sending
Ether to a contract costs more gas than sending it to a wallet. There were two problems with the scheme. First, the con-
tract failed to check for the success of the transaction before continuing its execution. Second, it sometimes failed to
allocate sufficient gas to send the Ether to a contract. In some cases, these meant payments would be reversed, but
the contract would go on to crown the new king. This left the earnings from the previous king locked in the contract,
accessible only by its owner.61
3.4 | GovernMental

GovernMental encounters a similar problem, albeit through subtler means. The contract was a Ponzi scheme. Users
would send Ether to the contract with the promise of an increased return and with the chance to win a “jackpot.”
The jackpot was collected from a portion of each participant's entry and was awarded to the last user to join in the event
that no one else had sent Ether to the contract in a 12‐hour period.

The contract stored its users' addresses in a dynamically sized array and needed to iterate over the arrays in order to
clear them when a jackpot was hit. However, it did not limit the size of the array. GovernMental eventually attracted
enough users that the gas allocation could not cover the entire array. As a result, it would constantly fail to reset the
game and award the jackpot to the winner, and the contract's state remained effectively frozen.
4 | VULNERABILITY ON BLOCKCHAIN 3.0

In this section, we will discuss existing security threats and their countermeasures for private blockchain and its under-
lying technologies. We provide a detailed discussion of potential vulnerabilities in the private blockchain network; we
will be taking a close look at the broad attack vector and their impact on the particular components. There are some
promising private blockchain implementations like Hyperledger, Corda, Quorom, Exonum, Ethereum as well as
Quorom and Ethereum private use in Ethereum public blockchains, which can be forked and redeveloped for the
use in private blockchain.62 Corda was designed for financial‐grade distributed ledger technology (DLT) platform. How-
ever, Corda designed for semiprivate networks requires obtaining an identity signed by a root authority for admission.63

Thus, we will approach Hyperledger private blockchain from a security perspective. The section will also provide a gen-
eral summary of possible risks on private blockchains.
4.1 | Attack against Hyperledger Fabric

Over time, these cyberattack incidents resulted in enhancements being made to BT. Hyperledger was created in
response to business needs, with the BT transforming its framework structure. This section discusses the security design
and vulnerabilities of the current framework. Hyperledger is an open‐source blockchain project created by the Linux
Foundation to back the cooperative development of blockchain‐based distributed ledgers. The project's objective is to
help businesses usher in a new era of trust, transparency, and accountability, with a particular focus on improving
the performance and reliability of distributed ledgers.64-66 The Hyperledger Modular Umbrella approach includes the

14 of 36 HASANOVA ET AL.
following five frameworks, each of which provides its own advanced functions in order to cope with business and indus-
try requirements: Fabric, Burrow, Iroha, Sawtooth, and Indy.66,67

IBM operates a smart contract (chaincode) in Fabric, and developed Hyperledger Fabric as a Hyperledger project.
The modular architecture delivers high degrees of performance, scalability, and levels of trust. In addition, Hyperledger
Fabric is a framework for permission networks. All participants have known identities, and every user participating in a
transaction must register on the network in order to obtain an enrollment ID. Fabric supports pluggable
implementations of a function that allows developers to use any programming language to implement chaincodes, with
the most common being the Go language, run within Docker containers.65 The intention of the Hyperledger Fabric is to
offer a number of SDKs for a wide variety of programming languages, including Node.js and Java SDKs. The
Hyperledger Fabric SDK for Node.js is designed in an object‐oriented programming style. Its modular construction
enables application developers to plug in alternative implementations of key functions, such as crypto suites, the state
persistence store, and a logging utility.68 Node.js has specific security flaws because it is susceptible to a remote DoS
attack.69 Node.js and Go can be exploited to execute code remotely, resulting in what is called a DNS rebinding vulner-
ability.70 The attack is possible from a malicious website that accesses the web browser on a computer that has network
access to the computer running the Node.js or Go process. The malicious website can use a DNS rebinding attack to
trick the web browser and bypass same‐origin‐policy checks, allowing HTTP connections to the localhost or to a host
on the local network. If a process with an active debug port is running on the localhost or on a host on the local net-
work, the malicious website can connect to it as a debugger and get full access to the code execution. In order to assess
the overall security of Fabric software products, Graham et al71 performed penetration testing on Hyperledger. Based on
the risk profile, primary security concerns, and vulnerabilities identified at the point of the engagement, they found that
Fabric requires moderate attention. Table 2 shows the overall security position of Fabric 1.1 software products, based on
the technical report.
4.1.1 | Hyperledger security design (insufficient chaincode sandboxing)

Fabric chaincode runs in a secured Docker container that is isolated from the endorsing peer process. However, this is
insufficient to prevent malicious chaincode from being written. The main concern is that chaincode is accessible on the
network and can easily be downloaded and installed in other software packages and security tools. Moreover, it can run
for long periods. The use of Docker greatly constrains what the chaincode can do. However, the chaincode still has suf-
ficient freedom, given that it can do the following:

• Install arbitrary software within the container, including security tools such as Nmap.
• Perform port scans against public or private networks that are visible to the node.
• Exploit any vulnerable hosts that are discovered.
• Accept commands from, and exfiltrate results to, a remote command‐and‐control server.
• Continue executing for a long period (perhaps indefinitely).

Remote access trojan (RAT) malware is formed by bringing together these capabilities, creating a foothold in a cor-
porate network that allows other systems to be scanned and attacked. The installation of malicious chaincode would be
a nontrivial exercise for most threat actors, given the level of access required. However, plausible scenarios exist. For
example, an attacker may create a new ledger with associated malicious chaincode, influence others to participate in
or infiltrate the organization responsible for developing and maintaining the chaincode for an existing ledger, and then
publish an update. Note that the chaincode does not necessarily contain any overtly malicious functionality at the time
it is installed on the network. It merely needs to be able to download and execute code from a command‐and‐control
server at some future point in time.71
4.1.2 | Docker container security

Docker containers are, by default, quite secure, especially when running processes as nonprivileged users inside the
container. While we certainly need to be aware of the issues related to using containers safely, if used properly, they
can provide a more secure and efficient system than virtual machines used alone. In this section, we discuss the

TABLE 2 Software security assessment of Hyperledger v1.1

Description Adverse Effects Recommendation Security Level

Chaincode
sandboxing
insufficient to
prevent malicious
behavior

With malicious chaincode capable of
performing an Nmap scan, an attacker may
connect to a server (command‐and‐
control), that provides sufficient
functionality for a “remote access Trojan”
(RAT) to be implemented as chaincode. If
installed on an internal company network,
such a trojan would provide an excellent
foothold that an attacker could use to pivot
to other systems.

1. Restrict network access provided by the
Docker container, preferably to just the
node that created it;

2. Have the chaincode execute as a nonroot
user;

3. Limit the length of time for which
chaincode can run, and ensure that the
chaincode cannot achieve persistence by
other means (eg, by spawning a
subprocess or running as a cron job).

Chaincode
sandboxing
insufficient to
prevent malicious
behavior

Comment headers
insufficient for
checking
implementation
and usage

Comment headers provide a detailed
specification of the behavior of each
function and it is desirable that the
“contract” between each function and its
callers be documented, because this would
limits the volume of code. This is a security
risk if it makes the code‐review process less
effective.

Specify function interfaces in
comment headers

Comment headers
insufficient for
checking
implementation
and usage

Log injection 1. Fabricate log messages;
2. Corrupt the log to prevent it from being
processed automatically;

3. Exploit terminal emulators or other
software used to view the log (uncommon
on modern systems)

Escape untrusted strings before
logging

Log injection

Code injection Code injection or remote code execution
(RCE) is an attack type that happens by the
injection of code which is then interpreted/
executed by the application. If it is possible
to embed newline characters within a
string, then it is possible to start a new
command on a new line, allowing access to
the full range of possible commands.

Either document behavior or
validate arguments

Code injection

Remote imports
allowed/
encouraged in
chaincode

One of the more notable features of the go
programming languages is the ability to
import packages from a remote repository,
identified by a URL. Fabric encourages the
use of this feature in chaincode, being the
method used in the documentation to load
the shim package and other support code

Require whitelisting of remote
repositories

Remote imports
allowed/
encouraged in
chaincode

Source: Graham Shaw (2017).53

HASANOVA ET AL. 15 of 36
potential security issues related to containers, as well as the major tools and techniques available for securing container‐
based systems.
4.1.3 | Container resource abuse

Containers are more numerous than virtual machines, on average. In addition, because they are so lightweight, large
clusters can be spawned on modest hardware. While this is definitely an advantage, it implies that a lot of software enti-
ties are competing for host resources. Software bugs, design miscalculations, or malware can easily result in a DoS
attack if resources are not properly configured, because all containers share kernel resources. If one container can
monopolize access to certain resources—for example, memory, or more esoteric resources, such as user IDs (UIDs)—
it can starve out other containers on the host, resulting in DoS, whereby legitimate users are unable to access part or

16 of 36 HASANOVA ET AL.
all of the system. In order to prevent this kind of attack, it should be possible to limit the resources allocated to each
container. Cgroups are the key components that Docker employs to deal with this issue. They control the amount of
resources (eg, CPU, memory, disk I/O) that any Docker container can use, ensuring that each container obtains its fair
share of the resources and preventing any container from consuming all resources. They also allow Docker to configure
the limits and constraints related to the resources allocated to each container. For example, one such constraint limits
the CPUs available to a specific container.72,73
4.1.4 | Container breakouts

Through the Docker container, an attacker can gain various privileges or can bypass isolation checks, thus accessing sensi-
tive information from the host. Normally, it should not be possible for an attacker to gain access to other containers or the
host. This is because Docker always runs in the background when a container is started. In this way, Docker creates a series
of namespaces and control groups for the container. The role of the namespaces is to isolate processes running inside the
container. However, they cannot carry out this function outside the container in which they are working. A notable flaw
of this process is that users are not namespaced. Therefore, any process that breaks out of a container will have the same
privileges on the host as it did in the container. For example, if a user is root user in the container, then it will be a root user
on the host. In addition, by default, the Docker daemon runs as a root. This can cause potential elevation attacks (elevated
privileges gained by user), such as those of the root user, usually through a bug in the application code that needs to runwith
additional privileges. If the host system is configured correctly, reducing the container's root capabilities and creating a user‐
level namespace, then containers can interact with each other through their respective network interfaces, just like they can
interact with external hosts. In addition, accessing a database or service may reveal certain details, such as an API key or
username and password. An attacker who accesses this information will also have access to the service.72,73
4.2 | General risk on private blockchain implementation

In terms of security, there are certainly advantages of private blockchains where the miners or validators cannot be
anonymous. Because organization preselects the participants and thus are highly trusted. Therefore, the chances of
someone acting maliciously on a network are less. Additional privacy solution is more assured on a private blockchain
than public.74 Different business cases have different requirements, and no solution would fit all the cases. Understand-
ing the different properties of platforms is vital to in making the decision regarding blockchain platform and even eval-
uating whether using blockchain to implement a business case make sense. If high confidentiality, transaction
throughput, and immediate finality are required, then private permissioned blockchains seem a promising technology.
We highlighted below some of the possible security issues and risks of private blockchain implementation:

• Poor architecture design: Private ledger network may get split and replicated into parallel fork chains creating ambi-
guity among child blocks for parallel parent fork chains. This replication may be susceptible to several attacks in par-
allel fork chains.

• Poor network design: Ledgers may be susceptible to DoS or transaction spamming if proper Membership Service
Providers75 (identity management) is not set for the private blockchain.

• Poor cryptography: Enterprise blockchains need to encrypt data to ensure maximum security. Apart from that, it
needs to follow the cryptographic standards that apply to public blockchains to secure transaction messages and
ensure transaction authenticity. If cryptographic keys are not stored or maintained properly, it could cause the com-
promise and disclosure of private keys leading to fraudulent transactions or loss of assets. This will lead to the
compromising of the integrity and privacy of the operations.

• Poor access management on smart contracts: Basically smart contract security depends on codified business logic.
For example, using Hyperledger Fabric needs codified business logic in Golang or JavaScript, which you can then
wrap around the nodes responsible for this sort of logic with Docker. With Exonum, you need to define all your busi-
ness logic in the Rust programming language and compile it as a module in you blockchain node software.76 In Quo-
rum (Ethereum private also), it needs Solidity, which will run on a virtual machine on each blockchain node. That is
why code vulnerabilities like call stack, stack size limit, reentrancy, malicious libraries, type casts, and open sensitive
information might deviate smart contracts' intended behaviour to malicious transactions or even unintended take
over for further compromise.

HASANOVA ET AL. 17 of 36
• Consensus: Enterprise blockchain transactions are more complex than public transaction. The consensus mecha-
nism would need to involve different roles, for example, the need to work on different parts of the transaction
lifecycle, such as endorsement, ordering, and validation. Mainly private blockchain uses different variants of
voting‐based BFT algorithms (pBFT, rBFT, aBFT) and Proof‐of‐Authority available on Ethereum private. Generally,
BFT‐based consensus suffers byzantine fault tolerance. In addition, some form of BFT‐based consensus needs the
nodes in the network to be known and must be totally connected.64
5 | POSSIBLE COUNTERMEASURES TO VULNERABILITIES

Here, we describe the existing countermeasures and detection algorithms available to BT that can be used to ensure pri-
vacy and security. For a comprehensive overview of this topic, we extract several papers and internet resources from
scientific databases. Figure 4 summarizes the results, including cutting‐edge solutions applied to blockchain environ-
ments that address security threats and enable strong privacy.
5.1 | Slasher: A punitive PoS algorithm

The Slasher technique is a hybrid of the PoW/PoS algorithms, and was first described by Vitalik Buterin, one of the
architects of Ethereum. Slasher uses PoW to generate and mine blocks. However, each unit is validated by both algo-
rithms. On the other hand, there is some modification. During the creation of a new block (block K), a miner must
include the value H(n) for some random n generated by the miner. This number serves as proof of mining. The miner
can claim his/her reward for the block, creating a special transaction that opens n. The reward for mining is closed for
100 blocks and is limited in time. As such, the miner can claim the reward by releasing a transaction and uncovering n
block K + 100, K + 101, ..., K + 900, where the average time taken to create a block set is 30 seconds. To create a valid
block, it must be cryptographically signed. Signatory users are selected randomly using a condition. Let us assume that
M is the total money supply and n[i] denotes the n value of block i. At block K + 1000, an address A with balances B
(B = ∑ a bal(a)—total number of coins in circulation) used to sign a privilege condition looks as follows:

signers hð Þ ¼ A:hash n K − 2000ð Þ;n K − 1999ð Þ;⋯;n K − 1901ð Þ;Að Þ ≤ 64M bal
A
B

� �� �
:

This means that an address has the chance of obtaining a signing privilege proportional to the amount of money it
has and, on average, 64 signing privileges are assigned to each block. To determine the correct block for the fork, the
total number of signatures is used. By signing the block, the user receives a reward that is closed for the next 1000
blocks. The reward for the signature is higher than that for mining, which prevents an arms race among the miners.
To combat forks of the blockade, Slasher uses a mechanism similar to that of Tendermint. Figure 5 shows how voters
that vote on the wrong fork are penalized and how voters that double‐vote is presented.

If the user of the system observes several blocks of the same height, signed by the same certifier, the user can publish
a transaction with these two signatures. If this transaction is included in the block before the reward for the block
becomes available for use by an unscrupulous certifier, 33% of the reward is paid to the user who has retreated from
the protocol, and the remaining funds are destroyed. Slasher largely prevents short‐term block forks. In fact, the vulner-
ability of PoS to short‐term attacks stems from the following observation. In the PoS architecture, the probabilities of
creating blocks for competing chains are independent of each other, because they depend on the hash of the last target
block. For system users, it makes sense to try to create blocks based on each of the chains, because this increases the
expected reward. On the other hand, in Slasher, the probability of becoming a block certifier is determined using a large
time interval and is the same for all chains, assuming they are relatively small. Thus, users have no reason to support
the fork of the block, because they know in advance whether they will sign the blocks in future. For users, Slasher does
not support multiple branches of the blocking system if they are not confident that the fork will survive more than 2000
blocks. Because Slasher uses PoW to create blocks, long‐term attacks require significant computing power. This gives
Slasher a significant advantage over PoS architectures that do not use PoW (eg, BitShares).77

FIGURE 4 Possible countermeasures for vulnerabilities

18 of 36 HASANOVA ET AL.

FIGURE 5 Nothing‐at‐stake problem with Slasher solution

HASANOVA ET AL. 19 of 36
5.2 | CASPER protocol

Several cryptocurrency consensus algorithms assign rewards to certifiers who participate in the PoS consensus algo-
rithm. From an algorithmic perspective, there are two major types of PoS: chain‐based PoS and Byzantine fault toler-
ance (BFT). The algorithm for BFT‐style PoS allows certifiers to “vote” with finality conditions and slashing
conditions by sending one or more types of signed messages. Vitalik et al78 introduced CASPER, a PoS‐based finality
system that followed the BFT tradition, with some modifications. CASPER is a partial‐consensus mechanism (a hybrid
PoW/PoS system designed to punish all malicious elements) that combines PoS algorithm research and BFT consensus
theory. CASPER introduces several new features, some of which are described below.
5.2.1 | Accountability

CASPER uses smart contracts to track the stakes and funds created. If a certifier violates a rule, CASPER can detect the
violation and identify the certifier, allowing it to penalize dishonest certifiers and, thus, solve the “nothing‐at‐stake”
problem in chain‐based PoS. CASPER provides a partial solution to the nothing‐at‐stake problem by punishing stakers.
In addition, it provides a full solution to the problem using the punishment feature and allowing users to choose off‐
chain centralized servers to determine which blockchain is legitimate in the case of multiple options. The penalty for
violating a rule is the “deposit” required by CASPER, which is locked for a set amount of time in order to participate
in staking. CASPER's accountability means that if two conflicting checkpoints (HASH1 and HASH2) are finalized, then
at least 1/3 of all certifiers must have violated some slashing condition (which means at least one‐third of the total
deposit is lost).

20 of 36 HASANOVA ET AL.
5.2.2 | Dynamic certifiers

The set of certifiers needs to be able to change. New certifiers must be able to join, and existing certifiers must be able to
leave. This feature allows CASPER to defend itself against well‐known PoS attacks: long‐range revisions and cata-
strophic crashes.78
5.3 | Tendermint

Tendermint proposed the concept of blocking, in which security is provided by a modified reconciliation protocol based
on share confirmation. Each block must be cryptographically signed by certifiers in the Tendermint consensus protocol,
where certifiers are simply users who confirm their interest in the security of the system by closing their funds with the
help of a bonding transaction. The weight of the opinion of each certifier is proportional to the number of closed funds.
After serving as a certifier, the user gets access to the closed funds by the return of the pledge (unbonding transaction).
The funds are unlocked with a certain delay (unbonding period). A block is considered correct if it is signed by certifiers
that, in sum, have at least two‐thirds of the total weight of votes. Thus, a fork of a blockage is possible only if there is a
group of certifiers with at least one‐third of the votes that sign the blocks in both competing blockhouses. In the case of
fork certifiers, signing several blocks can be punished by publishing an arbitrary transaction with a certificate contain-
ing evidence of their malicious intent, for example, their digital signatures for blocks of the same height from both
chains. The transaction certificate destroys all mortgaged funds of certifiers acting outside the protocol. This logic pre-
vents short‐term attacks. However, long‐term attacks are still possible. For example, certifiers with two‐thirds of all
votes can conspire and publish a fork of the blockade after their funds are unlocked. To prevent long‐term attacks, a
mechanism can be used that prohibits long forks of blocking (such as Nxt).79
5.4 | Smart pool

Mining pools are based on a centralized system in which individual miners join a pool and mine blocks to solve puzzles
by combining their resources to increase their computing power. After successful mining, the reward is split between
the miners' based on their individual contributions, thereby allowing miners to have a stable income. For this purpose,
a great number of mining pools have been created, and research in the field of miner strategies is also evolving. How-
ever, centralized cryptocurrency mining pools create problems. For example, five Bitcoin mining pools control 70% of
the total hash power, and two Ethereum pools control over 50% of its total hash power. This represents a serious prob-
lem, because blockchains should be decentralized in nature.80 Due to the dominant role played by such mining pools,
attack vectors that exploit vulnerabilities in pool‐based mining have also increased, making blockchain network archi-
tectures vulnerable to DDoS attacks.

As a solution, Loi et al80 proposed SMARTPOOL, a novel protocol design for a decentralized mining pool. The
authors focus on two key contributions. First, they propose running a decentralized pool mining protocol as a smart
contract on the Ethereum network. Second, their protocol is efficient and can scale to a large number of participants.
SMARTPOOL maintains two main lists in its contract state: a claim list claimList and a verified claim list verClaimList.
When a miner submits a set of shares as a claim for the current Ethereum block, it is added to the claimList. This step
acts as a cryptographic commitment to the set of shares claimed to be found by the miner. Each claim specifies the num-
ber of shares the miner claims to have found and each has a structure that aids verification in the subsequent step.
SMARTPOOL then verifies the validity of the claim. Once verified, it moves it to the verClaimList list. Claim verification
and payments for verified claims happen atomically in a single Ethereum transaction. Each claim allows miners to
submit a batch of shares (eg, one million shares). Submitted claims need to include sufficient meta‐data for verification
purposes.

During the first step of mining the shares, if a miner finds a valid block in the target cryptocurrency, it can directly
submit the block it found with a SMARTPOOL address as the beneficiary. Thus, miners receive payouts for their shares
of one or more blocks after SMARTPOOL receives a reward from the target network. This mechanism ensures that the
cryptographic commitment strictly precedes the verification step. Pools have several benefits, such as omitting the cen-
tralized operator that operates the protocol and manages other participants. This simply means that the pool is a fully
decentralized protocol with low running costs, offering participants a comparable reward for communication expenses,
communication bandwidth, local computation, and other costs. Furthermore, the protocol protects participants from

HASANOVA ET AL. 21 of 36
attackers who might steal rewards or prevent others from joining the protocol. This protocol is fair because participants
receive rewards in proportion to the share of their contributions.80
5.5 | DoS/DDoS and SPAM attack prevention

DoS/DDoS and SPAM attacks are still the biggest threats to centralized systems. However, a decentralized system can
also fall victim to such attacks, and thus, both systems need solutions. In accordance with security policy rules, if a DoS
or DDoS attack is detected, it needs to be registered for further auditing. Services that are not related to security can also
be used to detect a DDoS attack, for example, those services that redirect traffic over other communication channels,
including backup servers that can be used for copying information. Thus, there are various ways in which DDoS attacks
can be detected and prevented that are largely dependent on the system of protection. Countermeasures for DDoS
attacks can be divided into preventive and reactive defence strategies. To initiate a preventive defence, secured com-
puters can be used to reduce the possibility of attack, but they cannot guarantee perfect efficiency, even though they
can reduce the frequency and strength of DDoS attacks. In a reactive defence strategy, early warning systems are used
to detect attacks and react accordingly. Here, the main detection strategies are a signature based on a qualitative traffic
analysis, an anomaly based on a quantitative traffic analysis, and a hybrid strategy that combines the merits of the first
two methods. Today, anomaly detection methods have become popular and are widely used for detecting DoS/DDoS
and SPAM attacks. Here, the parameters of observed network traffic are compared with normal traffic, and new attacks
are detected to prevent a false alarm. The model of “normal traffic” must be kept updated, and the threshold that deter-
mines an anomaly must be properly adjusted. Table 3 summarizes the major detection approaches and their advantages
and disadvantages.

Blockchain networks show strong resistance to DDoS attacks. In general, each distributed node contains data, mak-
ing it inefficient and unreasonable for a hacker to attack the network. However, blockchain‐based systems are not
completely free from DoS/DDoS attacks. In order to effectively combat DoS/DDoS attacks, a user needs to know the
type and characteristics of the attack and must inform security services promptly to obtain such information. Making
adjustments to the system helps, but it is difficult to determine whether an attack is performed by at malicious program-
mer or as a DoS from unauthorized interference. Flooding a node with large amounts of junk data may make it so busy
that normal transactions cannot be processed. Bitcoin includes some protection against DoS attacks, but it is still vul-
nerable to more sophisticated DoS attacks. Table 4 shows the current Bitcoin protocol rules used to defend against a
DoS attack.

Furthermore, the Bitcoin protocol version 0.7.0 for client protection does not allow the forwarding of orphan trans-
actions or blocks, double‐spend transactions, or sending the same block transaction or alert to a peer more than once.
The unspent transaction output set is only stored in memory, and the remaining data are stored on disk. However,
Bitcoin clients do not directly limit peer bandwidth or CPU usage.81 All of the above techniques have disadvantages.
Thus, several studies have proposed new techniques for detecting DDoS/DoS or SPAM transactions in an anonymous
environment. According to Muhammad et al82 in the memory pools of cryptocurrency networks, DDoS attacks can lead
to massive transaction backlogs and higher mining fees. The authors also propose reactive measures to protect against
the same attack. These measures include fee‐based and age‐based designs, which can optimize the mempool size and
help to counter the effects of DDoS attacks. In the fee‐based design, an incoming transaction is accepted by the
mempool if it pays both the minimum relay fee and the minimum mining fee. The key idea behind this scheme is to
counter the strategy of an attacker by only accepting transactions that will be mined into the blockchain. As a result,
this technique puts a cap on incoming transactions and filters spam transactions, thus reducing the mempool size. In
an age‐based design, the authors counted the number of inputs or parent transactions for each incoming transaction,
and initialized a variable called “average age” to zero. Subsequently, they calculated the average age of the transaction
by adding the age of each parent transaction and dividing by the total number of parent transactions. This gives an esti-
mate of a mean confirmation score of the incoming transaction. After applying this filter to the mempool, the “mini-
mum age limit” could take any arbitrary value greater than zero. According to Bitcoin, a confirmation score of six is
considered sufficient for a transaction. If the transaction's mean age value fulfils the age criterion, only then does the
mempool accept the transaction. In this way, all unconfirmed transactions generated by an attacker or Sybil nodes will
be rejected by the mempool, while the transactions of legitimate users will be accepted. If an attacker still wants to spam
the network, it may return all its transactions as mined and wait for them to acquire a significant age. This increases the
cost of the attack and reduces the time window within which the attack can be launched.82

TABLE 4 Bitcoin protocol rules built to prevent DoS attack

Protocol Rules Limitation

1 Bans IP addresses that misbehave 24 hours default

2 Limits the number of stored orphan transactions 10 000 by default

3 Limits the number of stored signatures in the signature cache 50 000 signatures by default

4 Considers nonstandard signature scripts If size greater than 500 bytes

5 Restricts the block size 1 megabyte

6 Limits the size of each script Up to 10 000 bytes

7 Limits the number of key arguments OP_CHECKMULTISIG Up to 20 keys

8 Finite number of stack elements that can be stored simultaneously Up to 1000 elements

9 Limits the number of signature checks a block may request Up to 20 000 checks

10 Considered nonstandard transaction Transactions greater than 100 kilobytes

TABLE 3 Major detection approaches and their advantages and disadvantages

Approaches Advantage Disadvantage

Signature‐based or knowledge‐based
detection

The patterns of anomalies are filed in a directory
or database.

Useful in recognizing only defined and well‐
known attacks in real‐time and performs in
supervised mode.

Deployed on any network (source‐end, victim‐

end, or core‐end network).
Offers the features of robustness, scalability, and
flexibility.

Unable to identify new or novel
attacks.

Prior knowledge of attack signatures is
needed, which needs to be updated
regularly. Moreover, detailed
knowledge is needed for better
detection.

This is a highly complex and prolonged
task, because the effectiveness of the
knowledgebase requires thoughtful
and comprehensive dissection of each
vulnerability.

This approach faces various
generalization issues.

Anomaly‐based detection Identifies an attack by labeling the activity as
either abnormal or normal.

Able to expose new, unusual, or “zero‐days”
attacks and exceptional patterns if they do not
correspond to the presumed normal
functionalities.

Profiles of normal activities can be customized
for systems, applications, or networks.

Difficult to extract network features.
Thus, a training phase is needed to
recognize a normal activity profile.

Setting a threshold value to prevent false
positives and false negatives is
difficult.

Defining a rule set is difficult.
High false positive rate leads to low
detection efficiency.

Offers low throughput and is
computationally expensive because of
the cost of retaining a record of, and
perhaps refreshing several system
profile metrics.

Hybrid detection It runs in supervised and unsupervised mode.
Combines two or more detection approaches.
While it still misses some attacks, its low false
notification rate strengthens the plausibility of
exploring most alerts.

Exploits the benefits of both signature
and anomaly‐based detection
procedures, so the resulting hybrid
systems are not perpetually
favorable.

Leads to high complexity and
implementation costs.

Source: Parneet Kaur (2017).61

22 of 36 HASANOVA ET AL.

HASANOVA ET AL. 23 of 36
5.6 | Gas technologies

Ethereum uses the gas mechanism to ensure that every operation in smart contracts running on the EVM will eventu-
ally terminate and to broadcast and confirm transactions on the network. The Ethereum protocol charges a fee for each
computational step in a transaction. Every transaction is required to include a gas limit and a gas fee that the miner is
willing; miners have the choice of including the transaction. The gas price per transaction or contract is set up to deal
with the Turing‐complete nature of Ethereum and its EVM code to prevent infinite loops. If there is not enough Ether in
the account to perform the transaction or message, then it is considered invalid. The idea is to stop DoS attacks from
infinite loops, encourage efficiency in the code, and to make an attacker pay for the resources they use, including com-
putation, bandwidth, and storage. However, setting the gas costs of EVM operations improperly allows attackers to
launch DoS attacks on Ethereum. On the other hand, it is difficult to properly set the gas cost of each operation because
this requires a deep understanding of EVM internals, as well as a correct measurement of resource consumptions by
EVM operations on different types of computing resources. As mentioned earlier, in 2016, two DoS attacks were iden-
tified that exploited such operations, repeatedly executing two underpriced operations, namely EXTCODESIZE and
SUICIDE, thus resulting in slow transaction processing, wasted hard drive space, and long synchronization times.
Therefore, attackers can launch DoS attacks on Ethereum at a low cost by exploiting underpriced operations.83
5.7 | Countermeasure methods and tools for specific smart contract vulnerabilities

This section provides an overview of smart contract privacy and analysis tools that help developers to write a correct
smart contract. This section also covers current techniques and methods used to detect vulnerabilities, along with their
architectural classifications for smart contracts. We provide a detailed overview of the tools (Oyente, Securify,
SmartCheck, GASPER, Hawk, and Town Crier (TC)) and their specifications and limitations.

The first security analysis and symbolic execution tool proposed by Luu et al54 was called Oyente. It was meant to
find potential risk/threats (security bugs), which included transaction‐ordering dependence, timestamp dependence,
mishandled exceptions, and re‐entrance on the existing Ethereum system. Furthermore, it could analyze both Solidity
and the bytecode of a smart contract, and it had a modular design consisting of four main components, namely
CFGBuilder, Explorer, CoreAnalysis, and Validator. Each component had significance, for example, CFGBuilder was
responsible for constructing a control flow graph (CFG) of the contract, where nodes were basic execution blocks
and edges signified the execution jumps between the blocks. Explorer was the main module that systematically executed
the contract. Its output was then inputted to CoreAnalysis (location of implemented concepts to target the vulnerabil-
ities). Finally, Validator was responsible for filtering out false positives before reports were issued to the user. It is
important to note that symbolic execution can achieve better precision (or fewer false positives) compared with tradi-
tional approaches based on a static taint analysis or a general data flow analysis.

In the latter approaches, abstract program states are sometimes combined and real‐life execution of admitting states
never occurs, leading to a high false positive rate.54 Based on the above explanation Figure 6 demonstrates the architec-
ture and execution process of OYNETE.

An alternative security scanner for Ethereum is Securify, which exists as a web‐based security analysis tool that
delivers automation (to enable everyone to verify smart contracts), guarantees (for finding specific vulnerabilities),
FIGURE 6 OYNETE architecture and

execution process

24 of 36 HASANOVA ET AL.
and extensibility (to capture newly discovered vulnerabilities). Although it uses formal verification, it still relies on static
analysis checks. It has the multifaceted role of analyzing bytecode and Solidity, plus analyzing smart contracts using
their addresses.84

Another web‐based security code and extensible static analysis tool is called SmartCheck. It automatically searches
for bad coding habits and vulnerabilities. Moreover, it gives explanations for specific vulnerabilities and suggests possi-
ble solutions to avoid these security issues. However, it only runs on Solidity code, and its specific methods for identi-
fying vulnerabilities (eg, symbolic execution, formal verification, etc.) have not been confirmed. The correlation of each
detected vulnerability is shown alongside its severity level. Identified vulnerabilities are identified as DOS by the exter-
nal contracts, gas‐costly patterns, locked money, re‐entrance, timestamp dependency, tx.origin usage, and unchecked
external calls, while low severity (warning level) vulnerabilities such as compiler version not fixed, style guide viola-
tions, and redundant functions can also be identified. However, detecting high‐grade bugs such as taint analysis, or even
manual audit is a major flaw of the SmartCheck.85

Also, there is another security tool called GASPER by Chen et al.53 It tackles the vulnerability in under‐optimized
smart contracts that consume more gas than required. By analyzing the smart contract bytecode, it can identify gas‐
costly patterns by conducting symbolic executions of bytecodes to cover all reachable code blocks (a block is a
straight‐line code sequence with no incoming branches except for the entry, and no outgoing branches except for the
exit). The GASPER analysis process is as follows: First, it disassembles the bytecodes of the smart contracts it analyzes
using disasm (provided by Ethereum). Second, it constructs a CFG. The CFG efficiency improves gradually during sym-
bolic execution if new control flow transfers are found. This execution starts from the root node of the CFG and tra-
verses the CFG. While this occurs, if GASPER faces a conditional jump, it uses the Z3 solver to check which
branches are possible. If there are two possibilities, it selects one branch following an in‐depth search. Although it is
limited to gas‐costly pattern bugs, it is still a work in progress.53

So far, we have reviewed security tools that have helped to identify the technical problems that can be related to
bugs and vulnerabilities. However, for a blockchain system (which suffers from transaction privacy problems) and smart
contracts to be useful, privacy is needed. One method proposed by Ahmet et al86 is called Hawk. It is a framework for
building privacy and preserving smart contracts and does not require the implementation of cryptography; the compiler
automatically generates an efficient cryptographic protocol that uses the concept of zero‐knowledge proofs. When this
tool is used to develop smart contracts, the contract contains both private and public portions together. While the pri-
vate portion relies upon the private input data and the financial function related code, the public portion contains data
that does not touch private data or money. In general, the Hawk system shows how secure computations can be imple-
mented on top of a public system such as the blockchain.86

An authenticated data feed system Town Crier which enables smart contracts to use data from outside the
blockchain while still ensuring the preservation of anonymity using encrypted parameters was presented by Zhang
et al.87 As Figure 7 shows, its main role is to act as a connector between smart contracts and existing HTTPS‐enabled
websites that are trusted for blockchain applications like Ethereum. Also, it uses a front‐end smart‐contract with
FIGURE 7 Town crier architecture and data flow process

TABLE 5 Vulnerability detection tools and analysis results

Vulnerabilities

Vulnerability Detection Technique

OYNETE SmartCheck Security Gasper Hawk Town Crier

Timestamp dependency + + − − − −

Transaction‐ordering dependence + + + − − −

Re‐entrance vulnerability + + + − − −

Callstack depth attack + + + − − −

Mishandled exceptions (exception disorders, unchecked‐send
bug, and gasless send)

+ + + − − −

Tx.Origin usage − + + − − −

Gas costly patterns − + − + − −

Blockhash usage − + − − − −

DoS by external contract − + − − − −

Privacy issue − − − − + +

HASANOVA ET AL. 25 of 36
dependable hardware software guard extensions (SGX) for the back‐end to scrape HTTPS‐enabled websites and serve
source‐authenticated data to rely on smart contracts. It executes its main role as a relevant piece of code in an SGX
enclave, which protects against malevolent processes. It can attest (prove) to a remote client that the client is interacting
with a legitimate, SGX‐backed instance of the TC code. Moreover, with highly confidentiality, it enables private data
requests with encrypted parameters. Smart‐contract logic within TC can execute if the system permits secure use of user
credentials to scrape access‐controlled online data sources.

Conclusion of the section on scanning tools which is we mention above and their vulnerability detecting results on
smart contract presented in Table 5 with comparative aspects.
6 | DISCUSSION AND FUTURE RESEARCH DIRECTIONS

Several studies have examined the issues related to BT systems and their vulnerabilities. The major solution to secure
BT systems is that all nodes must upgrade their versions in order to solve a particular security issue. However, this
has made the security mechanism challenging to push all node upgrades in the blockchain network because this is a
radical change to the cryptocurrency protocol that introduces a new rule into the blockchain network called hard fork.
Contrarily, a hard fork is a permanent divergence from the previous version of the blockchain, and thus, nodes running
previous versions will no longer be accepted by the newest version. This has become the first major limitation of BT
because there will always be a misunderstanding among network participants about the blocks or transactions initiated
through a hard fork. The second major limitation of BT systems is their privacy. In the case of public BT, transactions
may appear private because they are not directly tied to a user identity. However, they are recorded in a public ledger.
Thus, transaction patterns can be observed, and it is possible to link a user identity to an address. A major contribution
of BT is the degree of transparency and decentralization that it provides along with an adequate level of security and
privacy that was previously deemed impossible. However, no solution for transaction privacy is perfect. Real attacks
on Ethereum and Bitcoin systems in an anonymous environment make it difficult to identify SPAM or DoS transactions
even over a significant time, such as a month. Thus, it is crucial to manage financial and network risks on BT‐based
cryptocurrency networks because there is lack of methods that prevent security threats, such as 51% attacks.

Potential security threats are still issues in BT system development that need to be overcome. Consistent efforts are
being made by researchers and developers to address issues related to BT systems security. These efforts are mainly
focusing on combining various cutting‐edge technologies, such as machine learning, artificial neural networks, and
deep learning into blockchain security mechanisms.

Generally, blockchain is difficult to manipulate but it is still possible with the DAO, Mt. Gox, and Bitfinex attacks.
Recently, machine learning (ML) techniques are being used to predict malicious and normal traffic where unsuper-
vised learning is widely used for anomaly and novelty detection. With such techniques, a large data that is reduced
and set into a smaller number of common labels can be understood for a particular transaction or account to be

26 of 36 HASANOVA ET AL.
“normal.” With a trained definition, transactions or accounts can determine the extent to which they are anomalous
by comparing them with the global average or to a recent historical average. These anomaly detection systems can
then be used to alert users about unusual events on the blockchain or within a subset of accounts or transactions.
With supervised technique on a blockchain, the authenticity of an account can be predicted and classified if it is a
fraud or spam attack. A protocol‐level data can also be used that are available on chains, such as transaction data,
and extract features of accounts to train ML algorithms for the above purposes. Models that provide actionable
insights about new accounts and recent behavioral data must satisfy certain requirements. For example, it is required
that they are updated in real time and that the features being used for classification and prediction are reliable and
complete when a model is run. This means that features that can be used to classify “old” accounts, such as “whether
a contract eventually self‐destructed” (SUICIDE) cannot be applied to accounts in real time. Because the value of a
feature may change over time and its true value is not really known when a model runs. In fact, blockchain is ideal
for storing highly sensitive, personal data because it holds data in an encrypted state. It means that account holders
must keep their private keys safe. Because RSA algorithms and the elliptic curve cryptography standard which are the
most widely used public key algorithms can all be broken by quantum computers. Information on a blockchain data-
base is stored indefinitely in every full node in the network because the database is append‐only and immutable.
Therefore, data storage imposes a huge cost on a decentralized network, where every full node must store increasing
amounts of data. As a result, storage remains a significant hurdle for blockchain applications. For example, a smart
contract can erase its code using SUICIDE or SELFDESTRUCT, but the address of the contract will not be erased. In
addition, many smart contracts contain no code or contain the same code as Ethereum, while many others contain
code that will never be executed. The time taken to process a chain increases over time, making this a chaotic data
environment. AI technology may introduce new methods for optimizing data sharding. This can help blockchains to
make smarter decisions about data storage and maintenance as well as provide reliable data sources. Blockchain
cryptocurrency implementations use centralized pools for mining. Each pool is comprised of miners with different
power who all try to verify new transaction blocks. Thus, many miners are wasting energy. In the future, AI may
improve mining pools, optimizing this process and decreasing the cost of mining.
7 | CONCLUSIONS

PoW is the most popular consensus mechanism and an underpinning technology that maintains Bitcoin. It is clear that
the construction of the Bitcoin with PoW and a secure timestamping service provides a strong security solution. But it
seems that this solution is subjected to a number of security threats, for example, double‐spending (or race attacks)
attack. Some blockchain platforms were designed to be permission less by adopting PoW and improved privacy and ano-
nymity, for example, LiteCoin that uses Segwit and allows technologies like Lightning Network. ZeroCoin is a crypto-
graphic extension to Bitcoin that provides unlikable and untraceable transactions by using zero‐knowledge proofs. This
design has good scalability, low transaction mining time, anonymous, and cheaper in terms of nodes participating in the
network though hard to remark on its survivability. The scalability of the network, the continuously decreasing rewards,
increasing transaction fee, and the security and privacy threats are the persistent issues, which need to be addressed for
a secure and successful system. Ethereum developed PoS consensus mechanism that is significantly faster and efficient
than PoW system, since technically anyone could become a miner, and it offers a linear scale relative to the percentage
of blocks which a miner could confirm because it is based on the cryptocurrency quota owned mechanism. In terms of
security, PoS mechanism also has its own drawbacks, such as nothing‐at‐stake. Although, BitShares developed new con-
sensus model (DPoS) which is an advanced variant of PoS that provides a high level of scalability. DPoS is designed as
an implementation of technology‐based democracy using voting and election process to protect blockchain from
malicious usage. In aspects of security, DPoS systems are vulnerable to centralization as a number of witnesses are
strictly limited.

In fact, BT has radically changed the transaction‐based industries. However, there are some security concerns and
risks that prevent this technology from being used as a general platform in other implementations around the world.
Several studies and practical implementations provide solutions against these risks. However, robust and effective secu-
rity solutions that can ensure proper functioning of BT in the future are still remaining as challenges and open research
issues. With the rapidity of its growth and development, it is believed that BT may soon become a very common tech-
nology in business areas as well as industrial sectors.

HASANOVA ET AL. 27 of 36
ACKNOWLEDGEMENTS

This work was supported by the Institute for Information & Communications Technology Promotion (IITP) grant
funded by the Korea Government (MSIT) (No. 2018‐0‐00539‐001) and Development of Blockchain Transaction Monitor-
ing and Analysis Technology.
CONTRIBUTION

This study presents a comprehensive review on the security and privacy aspects of blockchain—a distributed ledger
technology. The study explores emerging attack vectors in which various user security and vulnerabilities to blockchain
are identified. In fact, blockchain technology is being applied to various fields that range from finance, to gaming, gam-
bling, supply chain, manufacturing, trade, and ecommerce. Therefore, we discuss the capability of various state‐of‐the‐
art security solutions and intrusion detection methods that are proposed over the years addressing the existing security
and privacy challenges in crypto services. In particular, this study focuses on security challenges and possibilities of
attacks on current cryptocurrencies wherein the issues of user privacy and transaction anonymity are primarily
underlined. Besides, this study provides a comprehensive technical review on decentralized digital currencies emphasiz-
ing Bitcoins and Ethereum.

Previous studies have explored the technical architecture of Bitcoin and blockchain technologies. These studies have
discussed the fundamental background knowledge of crypto currency, preliminary overview of its use and functionali-
ties, and its privacy. With regards to the prevalence of crypto currencies with current security challenges, these studies
have done little on the vulnerabilities and privacy to blockchain. In view of the dynamic development attack methods
by the attackers, the existing approaches these studies discussed are slightly outdated. In the current study, we did not
attempt to solve any new challenge and threats to the current security situation. Nevertheless, we present an overview of
the blockchain security, and highlight vulnerabilities and threats along with its available countermeasures that may be
useful for security experts. The main contributions of this study are presented below.

Firstly, this study presents the critical background knowledge required for blockchain technology and highlights its
functionalities. The purpose is to provide the primary knowledge of distributed ledger technology, such as proof‐of‐
work, and smart contract. This may be required to understand the working methodology, benefits, and challenges that
are associated with the use of this technology. Second, this study demonstrates the existing security, privacy and detec-
tion methods (algorithms) that are used for blockchain technology. At various levels, we investigate the possibilities and
types of potential attacks, which may include both practical and theoretical risks of technology. Furthermore, we dis-
cuss the limitations of the state of‐the‐art solutions that address security threats and enable strong privacy. Finally,
based upon our review, this study provides directions for further study to tackle vulnerabilities to blockchain
technology.

The major benefit of blockchain may mitigate the risk that a cyberattack directed to a single point brings down the
entire network. However, a coded intrusion or any single system vulnerability could have wider negative consequences
on the state of a system. For example, if any attackers were to break the system might have access not only to the infor-
mation stored at the point of attack but also to the full breadth of information recorded on the ledgers. As such, the
security and privacy issues of blockchain technology become critical in cyber security. Due to this reason, it is crucial
to understand the scope and impact of security and privacy challenges in blockchain to predict the possible damage
caused by these threats and to corroborate whether the current technology is enough to withstand constant hacking.
ORCID

Huru Hasanova https://orcid.org/0000-0003-4316-2395
Myung‐Sup Kim https://orcid.org/0000-0002-3809-2057
REFERENCES

1. Yli‐Huumo J, Ko D, Choi S, Park S, Smolander K. Where is current research on Blockchain technology?—a systematic review. PLoS ONE.
2016;11(10):e0163477. https://doi.org/10.1371/journal.pone.0163477

2. Underwood S. Blockchain beyond bitcoin. Communications of the ACM. 2016;59(11):15‐17.

https://orcid.org/0000-0003-4316-2395
https://orcid.org/0000-0002-3809-2057
https://doi.org/10.1371/journal.pone.0163477

28 of 36 HASANOVA ET AL.
3. Brito J, Shadab H, Castillo A. Bitcoin financial regulation: securities, derivatives, prediction markets, and gambling. Colum Sci & Tech L
Rev. Apr 2014;16:144.

4. Fanning K, Centers DP. Blockchain and its coming impact on financial services. J Corp Acc Financ. Jun 2016;27(5):53‐57.

5. Eyal I., Gencer A. E., Sirer E. G., and Van Renesse R. bitcoin‐ng: a scalable blockchain protocol. In NSDI, 2016:45–59.

6. Antonopoulos AM. Mastering Bitcoin: Unlocking Digital Cryptocurrencies. O'Reilly Media, Inc; 2014.

7. Bradbury D. The problem with bitcoin. Comput Fraud Secur. 2013;2013(11):5‐8.

8. Singh S, Singh N. Blockchain: future of financial and cyber security. In: Contemporary Computing and Informatics (IC3I), 2016 2nd
International Conference on. IEEE; Dec 2016:463‐467.

9. Nakamoto S. Bitcoin: a peer‐to‐peer electronic cash system, https://bitcoin.org/bitcoin.pdf, retrieved on 28/04/2018

10. Crosby M, Pattanayak P, Verma S, Kalyanaraman V. Blockchain technology: beyond bitcoin. Appl Innov. 2016;2:6‐10.

11. Swan M. Blockchain: Blueprint for a New Economy. O'Reilly Media, Inc; 2015.

12. Zheng Z, Xie S, Dai H, Chen X, Wang H. An overview of blockchain technology: architecture, consensus, and future trends. In: Big data
(BigData congress), 2017 IEEE international congress on. IEEE; 2017:557‐564.

13. Sinha SR, Park Y. Dealing with security, privacy, access control, and compliance. In: Building an Effective IoT Ecosystem for Your Business.
Cham: Springer; 2017:155‐176.

14. Tschorsch F, Scheuermann B. Bitcoin and beyond: a technical survey on decentralized digital currencies. IEEE Commun Surv Tutorials.
2016;18: .

15. Conti M, Lal C, Ruj S. A survey on security and privacy issues of bitcoin. IEEE Commun Surv Tutorials https://doi.org/10.1109/
COMST.2018.2842460. 20(4):3416‐3452.

16. Atzei N, Bartoletti M, Cimoli T. A survey of attacks on ethereum smart contracts (sok). In: International Conference on Principles of
Security and Trust. Springer; 2017:164‐186.

17. King S, Nadal S. Ppcoin: Peer‐to‐peer crypto‐currency with proof‐of‐stake. self‐published paper; 2012.

18. Baliga A. Understanding blockchain consensus models. Tech. Rep., persistent systems ltd. Tech Rep. 2017 .

19. [Online]. Ethereum on Github. Available: https://github.com/ethereum/wiki/wiki/Proof‐of‐Stake‐FAQ

20. Proof of Stake versus Proof of Work: White Paper https://bitfury.com/content/downloads/pos‐vs‐pow‐1.0.2.pdf

21. Vasin P. Blackcoin's proof‐of‐stake protocol v2. URL: https://blackcoin.co/blackcoin‐pos‐protocol‐v2‐whitepaper.pdf. 2014

22. Xu JJ. Are blockchains immune to all malicious attacks? Financ Innov. Dec 2016;2(1):25.

23. Karame G, Androulaki E, Capkun S. Two bitcoins at the price of one? Double‐spending attacks on fast payments in bitcoin. IACR
Cryptology ePrint Archive. 2012;248:2012.

24. Ren L. Proof of Stake Velocity: Building the Social Currency of the Digital Age. Self‐published white paper; 2014.

25. Extance A. The future of cryptocurrencies: Bitcoin and beyond. Nature News. 2015;526(7571):21.

26. Scaife N, Carter H, Traynor P, Butler KR. Cryptolock (and drop it): stopping ransomware attacks on user data. In: Distributed Computing
Systems (ICDCS), 2016. IEEE 36th International Conference on. IEEE; 2016:303‐312.

27. Johnson D, Menezes A, Vanstone S. The elliptic curve digital signature algorithm (ECDSA). Int J Inf Secur. 2001;1(1):36‐63.

28. Van Dam W, Shparlinski IE. Classical and quantum algorithms for exponential congruence's. In: Workshop on Quantum Computation,
Communication, and Cryptography. Berlin, Heidelberg: Springer; 2008:1‐10.

29. Vedral V, Morikoshi F. Schrödinger's cat meets Einstein's twins: a superposition of different clock times. Int J Theor Phys.
2008;47(8):2126‐2129.

30. Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. In: Foundations of Computer Science, 1994 Proceed-
ings., 35th Annual Symposium on. Ieee; 1994:124‐134.

31. Lakshmanan T, Madheswaran M. Security and robustness enhancement of existing Hash algorithm. In: 2009 International Conference on
Signal Processing Systems. IEEE; 2009:253‐257.

32. Kiayias A., Konstantinou I., Russell A., David B., and Oliynykov R. A provably secure proof‐of‐stake blockchain protocol. IACR
Cryptology ePrint Archive, 2016

33. Eyal I, Sirer EG. Majority is not enough: Bitcoin mining is vulnerable. In: International conference on financial cryptography and data
security. Berlin, Heidelberg: Springer; 2014:436‐454.

34. Bonneau J. Why buy when you can rent? In: International Conference on Financial Cryptography and Data Security. Berlin, Heidelberg:
Springer; 2016:19‐26.

35. Feder A, Gandal N, Hamrick JT, Moore T. The impact of DDoS and other security shocks on bitcoin currency exchanges: evidence from
Mt. Gox J Cybersecurity. 2018;3(2):137‐144.

https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/COMST.2018.2842460
https://doi.org/10.1109/COMST.2018.2842460
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://bitfury.com/content/downloads/pos-vs-pow-1.0.2.pdf
https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf

HASANOVA ET AL. 29 of 36
36. Vasek M, Thornton M, Moore T. Empirical analysis of denial‐of‐service attacks in the bitcoin ecosystem. In: International conference on
financial cryptography and data security 2014 Mar 3. Berlin, Heidelberg: Springer; :57‐71.

37. Johnson B, Laszka A, Grossklags J, Vasek M, Moore T. Game‐theoretic analysis of DDoS attacks against Bitcoin mining pools. In: In
International Conference on Financial Cryptography and Data Security. Berlin, Heidelberg: Springer; 2014:72‐86.

38. Douceur JR. The sybil attack. In: International workshop on peer‐to‐peer systems. Berlin, Heidelberg: Springer; 2014:251‐260.

39. Heilman E, Kendler A, Zohar A, Goldberg S. Eclipse attacks on Bitcoin's peer‐to‐peer network. In: USENIX Security Symposium;
2015:129‐144.

40. Kermarrec AM, Van Steen M. Gossiping in distributed systems. ACM SIGOPS Operating Systems Review. 2007;41(5):2‐7.

41. Marcus Y., Heilman E., and Goldberg S. Low‐resource eclipse attacks on Ethereum's peer‐to‐peer network. Report 2018/236, 2018.

42. Stock B., Göbel J., Engelberth M., Freiling F. C., and Holz T. Walowdac‐analysis of a peer‐to‐peer botnet. In Computer Network Defense
(EC2ND), 2009 European conference on IEEE; 2009:13–20.

43. Andrychowicz M, Dziembowski S, Malinowski D, Mazurek Ł. On the malleability of bitcoin transactions. In: International Conference on
Financial Cryptography and Data Security. Berlin, Heidelberg: Springer; 2015:1‐18.

44. Empty Accounts and the Ethereum State https://www.ethnews.com/vitalik‐buterin‐on‐empty‐accounts‐and‐the‐ethereum‐state retrieved
on 24/07/2018

45. [Online]. Delegated Proof‐of‐Stake Consensus http://docs.bitshares.org/bitshares/dpos.html retrieved 10.02.2018

46. [Online]. Notes on Blockchain. Governance https://vitalik.ca/general/2017/12/17/voting.html retrieved 10.02.2018

47. EOS.IO Technical White Paper v2, Available on: https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
retrieved 10.02.2018

48. [Online]. Dan Larimer's DPOS Consensus Algorithm ‐ The Missing White Paper https://steemit.com/dpos/@dantheman/dpos‐consensus‐
algorithm‐this‐missing‐white‐paper retrieved 10.02.2018

49. [Online]. Governance, Part 2: Plutocracy Is Still Bad https://vitalik.ca/general/2018/03/28/plutocracy.html retrieved 10.02.2018

50. [Online]. Attacks on the network https://forums.eosgo.io/discussion/71/attacks‐on‐the‐network retrieved 10.02.2018

51. Myles S., Kyle S., and Tushar J., Delegated proof of stake: features & tradeoffs. 2018.

52. [Online]. Response to Cosmos white paper's claims on DPOS security. https://steemit.com/steem/@dantheman/response‐to‐cosmos‐
white‐paper‐s‐claims‐on‐dpos‐security retrieved 10.02.2018

53. Chen T, Li X, Luo X, Zhang X. Under‐optimized smart contracts devour your money. In: Software Analysis, Evolution and Reengineering
(SANER), 2017 IEEE 24th International Conference on. IEEE; Feb 2017:442‐446.

54. Luu L., Chu D. H., Olickel H., Saxena P., and Hobor A. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. ACM; 2016:254–269.

55. [Online]. Thinking smart contract security. Available: https://blog.ethereum.org/2016/06/19/thinking‐smart‐contract‐security retrieved
on 15/07/2018

56. Rodrigues, Usha, Law and the Blockchain. Iowa Law Review, Vol. 104, 2018, Forthcoming; University of Georgia School of Law Legal
Studies Research Paper No. 2018‐07. Feb 2018. Available at SSRN: https://ssrn.com/abstract=3127782

57. [Online]. CRITICAL UPDATE Re: DAO Vulnerability https://blog.ethereum.org/2016/06/17/critical‐update‐re‐dao‐vulnerability/:
Retrieved on 06/07/2018.

58. [Online]. Available: https://paritytech.io/blog/

59. [Online]. Available: https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/
enhanced‐wallet.sol#L424

60. [Online]. Available: https://blog.zeppelin.solutions/on‐the‐parity‐wallet‐multisig‐hack‐405a8c12e8f7

61. [Online]. Available: https://gist.github.com/ethanbennett/7396bf3f61dd985d3426f2ee184d8822#parity‐multisig‐wallet

62. [Online]. Quorum whitepaper https://github.com/jpmorganchase/quorum‐docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf

63. [Online]. Corda security model. https://docs.corda.net/releases/release‐M10.1/key‐concepts‐security‐model.html

64. [Online]. Hyperledger. Available: https://www.hyperledger.org/ retrieved on 06/07/2018

65. [Online]. Hyperledger Fabric. Available: https://hyperledger‐fabric.readthedocs.io/en/release‐1.1/ retrieved on 06/07/2018

66. Tien D., Ji W., Gang Ch., Rui L., Beng Ch., Kian‐Lee T., BLOCKBENCH: A Framework for Analyzing Private Blockchains. arXiv:
1703.04057v1 [cs. DB]. 2017.

67. Elli A., Artem B., Vita B., Christian C., Konstantinos Ch., Angelo D., David E., Christopher F., Gennady L., Yacov M., Srinivasan M., Chet
M., and Binh N., Hyperledger fabric: a distributed operating system for permissioned blockchains. EuroSys'18. Apr 2018, Porto, Portugal

68. [Online]. Available: https://fabric‐sdk‐node.github.io/

69. [Online]. Available: https://nodejs.org/en/blog/vulnerability/oct‐2017‐dos/

https://www.ethnews.com/vitalik-buterin-on-empty-accounts-and-the-ethereum-state%20retrieved%20on%2024/07/2018
https://www.ethnews.com/vitalik-buterin-on-empty-accounts-and-the-ethereum-state%20retrieved%20on%2024/07/2018
http://docs.bitshares.org/bitshares/dpos.html%20retrieved%2010.02.2018
https://vitalik.ca/general/2017/12/17/voting.html
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper%20retrieved%2010.02.2018
https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper%20retrieved%2010.02.2018
https://vitalik.ca/general/2018/03/28/plutocracy.html
https://forums.eosgo.io/discussion/71/attacks-on-the-network%20retrieved%2010.02.2018
https://steemit.com/steem/@dantheman/response-to-cosmos-white-paper-s-claims-on-dpos-security
https://steemit.com/steem/@dantheman/response-to-cosmos-white-paper-s-claims-on-dpos-security
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security
https://ssrn.com/abstract=3127782
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://paritytech.io/blog/
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L424
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L424
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://gist.github.com/ethanbennett/7396bf3f61dd985d3426f2ee184d8822#parity-multisig-wallet
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf
https://docs.corda.net/releases/release-M10.1/key-concepts-security-model.html
https://www.hyperledger.org/
https://hyperledger-fabric.readthedocs.io/en/release-1.1/
https://arxiv.org/abs/1703.04057v1
https://arxiv.org/abs/1703.04057v1
https://fabric-sdk-node.github.io/
https://nodejs.org/en/blog/vulnerability/oct-2017-dos/

30 of 36 HASANOVA ET AL.
70. [Online]. Available: https://nodejs.org/en/blog/vulnerability/march‐2018‐security‐releases/

71. Graham Sh. Security, Hyperledger Fabric version: 1.1 Assessment Technical Report. 2017.

72. [Online]. Docker security. Available: https://docs.docker.com/engine/security/security/#kernel‐namespaces retrieved on 12/07/2018

73. Mouat A. UsingDocker. Developing and Deploying Software with Containers. 2015.

74. [Online]. Stuart P., Confidentiality in Private Blockchain., http://kadena.io/docs/Kadena‐ConfidentialityWhitepaper‐Aug2016.pdf

75. [Online]. Membership Service Providers (MSP) https://hyperledger‐fabric.readthedocs.io/en/release‐1.2/msp.html

76. [Online]. Rust programming language https://www.rust‐lang.org/en‐US/

77. Punitive‐proof‐of‐stake‐algorithm https://blog.ethereum.org/2014/01/15/slasher‐a‐punitive‐proof‐of‐stake‐algorithm/ retrieved on 08/07/
2018

78. Vitalik B. and Virgil G. Casper the Friendly Finality Gadget, white paper, arXiv:1710.09437v2 [cs.CR]. Nov 2017

79. Jae K. Tendermint: Consensus without Mining. URL. https://tendermint.com/static/docs/tendermint.pdf retrieved on 08/07/2018

80. Loi L., Yaron V., Jason T., and Prateek S., SMARTPOOL: Practical Decentralized Pooled Mining, SEC'17 Proceedings of the 26th USENIX
Conference on Security Symposium, 2017:1409–1426.

81. [Online]. Available: https://en. Bitcoin.it/wiki/Protocol_documentation#BlockTransactions

82. Muhammad S., My T., Aziz M. POSTER: deterring DDoS attacks on blockchain based cryptocurrencies through mempool optimization.
Proceeding ASIACCS '18 Proceedings of the 2018 pp 809–811. https://doi.org/10.1145/3196494.3201584. 2018

83. Ting Ch., Xiaoqi L., Ying W., Jiachi C., Zihao L., Xiapu L., Man H., and Xiaosong Z. An Adaptive Gas Cost Mechanism for Ethereum to
Defend Against Under‐Priced DoS Attacks.13th International Conference, ISPEC 2017

84. Petar T., Andrei D., Drachsler C., Arthur G., Florian B. Securify: Practical Security Analysis of Smart Contracts. arXiv:1806.01143v1
[cs.CR]. 2018

85. Sergei T., Ekaterina V., Ivan I., Ramil T., Evgeny M., Yaroslav A. SmartCheck: Static Analysis of Ethereum Smart Contracts. 2017

86. Ahmed K, Andrew M, Elaine S, Zikai W, Charalampos P. Hawk: The Blockchain Model of Cryptography and Privacy‐Preserving Smart
Contracts. Proc. IEEE Symp. Secur. Privacy (SP). 2016; :839‐858.

87. Fan Z, Ethan C, Kyle C, Ari J, Elaine S. Town crier: An authenticated data feed for smart contracts. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS '16. ACM; 2016:270‐282.

88. [Online]. Vector76. The vector76 attack. Available onhttps://bitcointalk.org/index.php?topic=36788.msg463391#msg463391, retrieved on
28/04/2018.

89. [Online]. Solidity. Available: http://solidity.readthedocs.io/en/develop/, retrieved on 02/08/2018

90. [Online]. Known Attacks. Available: https://consensys.github.io/smart‐contract‐best‐practices/known_attacks/ retrieved on 02/08/2018

91. The Finney Attack, Available from https://bitcoincoreacademy.com/the‐finney‐attack, retrieved on 28/04/2018

AUTHOR BIOGRAPHIES
Huru Hasanova received her BS and MS degrees in Computer Science from Azerbaijan Technical University in
2008 and 2010, respectively. Now, she is a PhD student in The Korea University at Department of Computer and
Information Science. Her research focuses on internet security and Distributive Ledger Technologies

Ui‐Jun Baek received his BS Degree in Computer Science and Engineering from Korea University, Korea in 2018.
He joined Korea University, Korea, in March 2018, where he is studying for master's degree in the Department of
Computer and Information Science. His research interests include traffic classification, traffic analysis, and auto-
matic signature generation.

Mu‐Gon Shin is studying at Korea University for bachelor's degree. He is currently working as an undergraduate
researcher in the Department of Computer and Information Science. His research interests include traffic classifica-
tion, traffic analysis, and automatic signature generation.

Kyunghee Cho received her BA in English Literature from Syungkyul University in 1994, her MA in English Edu-
cation from Yonsei University in 1997, and her PhD in Computer Science from Korea University in 2018. Her
research interests include service and network management, and internet security, home network system related
to internet of things.

https://nodejs.org/en/blog/vulnerability/march-2018-security-releases/
https://docs.docker.com/engine/security/security/#kernel-namespaces
http://kadena.io/docs/Kadena-ConfidentialityWhitepaper-Aug2016.pdf
https://hyperledger-fabric.readthedocs.io/en/release-1.2/msp.html
https://www.rust-lang.org/en-US/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://tendermint.com/static/docs/tendermint.pdf
https://doi.org/10.1145/3196494.3201584
http://bitcointalk.org/index.php?topic=36788.msg463391#msg463391
http://solidity.readthedocs.io/en/develop/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://bitcoincoreacademy.com/the-finney-attack

HASANOVA ET AL. 31 of 36
Myung‐Sup Kim received his BS, MS, and PhD degrees in Computer Science and Engineering from POSTECH,
Korea, in 1998, 2000, and 2004, respectively. From September 2004 to August 2006, he was a postdoctoral fellow
in the Department of Electrical and Computer Engineering, University of Toronto, Canada. He joined Korea Univer-
sity, Korea, in September 2006, where he is currently working as an associate professor in the Department of Com-
puter and Information Science. His research interests include Internet traffic monitoring and analysis, service and
network management, and Internet security.

How to cite this article: Hasanova H, Baek U, Shin M, Cho K, Kim M‐S. A survey on blockchain cybersecurity
vulnerabilities and possible countermeasures. Int J Network Mgmt. 2019;e2060. https://doi.org/10.1002/nem.2060

APPENDIX A

POW AND POS‐BASED BT VULNERABILITIES
APPENDIX TABLE 1 Major attacks on BT system using POW and POS

Attack Description Adverse Effects Weaknesses of Technology

Consensus‐
level
attack

Double spending22 User makes more than one
payment using one form of
funds

Vendor may lose their product Fundamental problem of
blockchain protocol

Finney attack91 Form of double spending where
is attacker secretly premined
block and broadcast it for
purpose of double spending

Merchant lose some goods or
service

POW‐based consensus protocol

Vector76 attack88 Type of one‐confirmation attack
that attacker premines and not
publish a block, which
includes a deposit transaction
to the target (eg, an exchange
or similar service with pooled
hot wallet in which all funds
are held in a big pool, not
individual addresses for each
user) in this block

Attacker has received coin from
withdraw service and
transferred between two
addresses both are under the
attacker control

POW‐based consensus protocol

Brute force attack15 Brute‐force attack is an advance
form of the Finney.

Has similar effect as Finney
attack and it is a successful
double spending

POW‐based consensus protocol

Majority attack 51% Control over 50% hashpower
from total hashpower

The >50% attack is worst‐case
scenario in the blockchain
network. Attacker can reverse
transactions and perform
double‐spending attack

Can modify the ordering of
transactions and control the
confirmation operation of
normal transactions.

Fundamental problem of
blockchain system. POW base
system more vulnerable.

POS‐based blockchain also has
several form of 51% attack such
as finality reversion, attack is
liveness denial, censorship
attack

Nothing‐at‐stake19 When a stake moves, the existing
majority of stakeholders
remain honest wherein the
past account keys can be
negotiated that have no stake
at the present. Thus, this can
be a major weakness in PoS.

Set of malicious shareholders
from the past can form a
different blockchain using old
accounts

Nothing‐at‐stake important flaw
of proof‐of‐stake algorithms

(Continues)

https://doi.org/10.1002/nem.2060

APPENDIX TABLE 1 (Continued)

Attack Description Adverse Effects Weaknesses of Technology

Mining
pool
attack

Selfish mining16 Attacker not broadcasting blocks
immediately on the network
and publish block on selective
time.

Potentially allowing for 51%
attacks

PoW‐based blockchain is more
vulnerable.

Time base attack
Long‐range attack16

POW‐based system: Attacker
instead of starting a forking 1
or more blocks back, start
forking short after first block
even at the genesis block.

PoS‐based system: Attacker with
1% of all coins start make own
chain short after genesis block.
If attacker success may
produce many block and will
lead on long chain.

It has similar effect as traditional
51% attack

Long‐range attack is POW‐based
system vulnerability and
naively implemented PoS‐
based system also

Bribery attacks34 Adversary bribe miners to mine Increasing chance to double
spending

Both POW and POS‐based
system can happen. But POS
more vulnerable to that
because POS bribe attack cost
lower than POW bribe attack.

Network‐
level
attack

Transaction
malleability42,43

Attacker can change unique
signature of a Bitcoin
transaction (TXID) before a
transaction is put into a block
other words it is happen only
before transaction confirmed
on the Bitcoin network.

Exchange system will lose funds
because of double spending.

Implementation vulnerabilities
on Bitcoin protocol which
assist the DoS attacks

Wallet theft26 Stole or destroy private key of
users. Attack may happen not
proper implementation of
cryptographic solution for
security.

Wallet can be lost not access to
account

It is fundamental problem

DDoS36,37 Is aimed to disrupt the normal
operation of the
cryptocurrency network by
flooding the nodes

Honest node will be isolated
from network due to massive
spam request

POW more vulnerable

Sybil38 Sybil attack occurs when the
networks without admission
controls, it is can allow to user
to create many id and
monopolize the consensus
process.

With dominance allows to the
attacker or attacker groups
may change protocol
confirmation rules

POW more vulnerable

Eclipse or
netsplit38,39

Victim node essentially isolated
from the rest of the network
and its view can be
manipulated by the attacker.
Targets of attack nodes that
accept incoming connections
because not all nodes accept
incoming connections

Attacker can launch a 51% attack
with 40% mining power

POW more vulnerable

Time jacking15 Attacker speed‐up the majority of
miner's clock

Isolate a miner and consume of
its resources, affected the
mining difficulty calculation
process

Both POW and POS‐based
system can happen

(Continues)

32 of 36 HASANOVA ET AL.

APPENDIX TABLE 1 (Continued)

Attack Description Adverse Effects Weaknesses of Technology

Tampering15 Attacker can exploit these
measures in order to effectively
delay the propagation of
transactions and blocks to
specific nodes‐without causing
a network partitioning in the
system.

Adversary to easily mount
denial‐of‐service attacks,
considerably increase its
mining advantage in the
network, and double‐spend
transactions

POW more vulnerable

HASANOVA ET AL. 33 of 36
APPENDIX B

SMART CONTRACT–BASED BT VULNERABILITIES
APPENDIX TABLE 2 Common pitfalls and vulnerabilities in smart contracts

Pitfalls Description Adverse Effects Recommendations

“Bockhash”
usage89

Blockhash usage is similar with block
timestamp not recommended that to use
on crucial components, both of them can
be influenced by miners. Not using
proper Blockhash usage easily can
manipulate of output.

In the mining community attacker may run
a casino payout function on a chosen
hash and just retry a different hash if
they did not receive any money.

The current block
timestamp must be
strictly larger than the
timestamp of the last
block89

Use function getChances()
for check89

Balance equality84 It occur when not use proper code for
checking for strict balance equality

Attacker may manipulate contract logic by
forcibly sending ether to a contract
without triggering fallback function.

Use nonstrict inequality on
balances84

Call to the
unknown/DoS
with
unexpected
revert16

Callee/recipient function to invoke and to
transfer ether may have the side effect or
function is not exist

Primitively written fallback function may
be related with other vulnerabilities such
as “type cast,” “unpredictable state,” also
causes a permanent denial of service to
the contract

Recommended to possibly
avoid external calls

DoS by external
Contract84

When conditional statement (if, for, while)
depend on an external call: The callee
may permanently fail (throw or revert),
preventing the caller from completing the
execution.

Malicious bidder can become the leader
while making sure that any refunds to
their address will always fail. In this way,
they can prevent anyone else from calling
the bid() function, and stay the leader
forever.71

Conditional statement
should not depend on an
external call.

Set up a pull payment
system90

Ether lost in
transfer16

If ether is sent to an “orphan” address that
does not actually belong to any private
key or contract that ether will be lost and
cannot be retrieved.

Ether will lost permanently if sent to
orphan address. There are no way to find
out an address is orphan or not.

Use the withdraw pattern89

Exception
disorders or
mishandled
exceptions16

The exception disorder vulnerability
happen due to Solidity is inconsistent on
exception handling and it is depended on
the way contracts call each other. Due to
different types of exceptions calling
process can be fail. If A call B and if B
runs abnormal, B return false and stop
running. Then A must check the return
value explicitly for verify that call has
been executed properly. In case A not
checks the exception information it may
related to vulnerable.

The effect is that the calling contract
transaction is entirely reverted and all gas
is lost.

Use symbolic execution
tools: Oyente for detect
bug54

(Continues)

APPENDIX TABLE 2 (Continued)

Pitfalls Description Adverse Effects Recommendations

Gasless send16 If the callee of a send is a contract with a
relatively expensive fallback function,
then the amount of gas the caller is
limited to 2300 units for sending ether to
an address will is insufficient, and an out‐
of‐gas exception will be thrown.

In Ethereum for each transaction need
specific gas value. If there is not enough
gas to provided call function then
transaction will be fail. Gasless send bug
makes over gas consumption

Use a.transfer()84

Consider to develop function
that no need too much gas

Gas costly pattern
and Loops53

There is not having a fixed number of
iterations on loops. Ethereum set
gasvalue for each transaction. The
number of iterations in a loop can grow
beyond the block gas limit which can
cause the complete contract to be stalled
at a certain point.

Expensive computation inside loops may
exceed the block gas limit and can cause
gas consumption or ether lost

Avoid loops with big or
unknown number of
steps84

Use selfdestruct(x)89

Use “withdraw” pattern89

Reduce expensive operations

Generating
randomness16

For making unpredictable of the content of
future blocks using random numbers is
secure way. However, which transactions
are put in a block and in which order is
under miner control. Dishonest miner
may try to craft own block so to bias the
outcome of the pseudo‐random generator

A malicious miner could arrange their
block to influence the outcome of this
random number generation.

Timed commitment
protocols16

Immutable bugs/
mistakes16

Immutable bugs which refer to a bug or any
programming code pitfalls that, which is
cannot be altered after publish smart
contract.

Can cause in various attacks Make bugs impossible
Localize bugs

Lack of
transactional
privacy66

The present form of blockchain and smart
contracts technologies mainly vulnerable
to leakage of transactional privacy.
Because all public keys are visible to
everyone in the network.

Transaction patterns can be observed and it
is possible to link your identity to the
address

Use mixing and
anonymous solution to
achieve anonymity.

Use of “hawk” tool66

Secret contracts (Enigma's
secret contracts)

Use of “town crier (TC)”
tool67

Malicious
libraries84

Malicious code on library may collect
sensitive information on infected smart
contract

Third‐party or external libraries can be
malicious

Avoid external
dependencies or ensure
that third‐party library
source is authorized84

Redundant
fallback
function

This function is no name and cannot have
arguments, also not return anything and
should be external visibility.
Furthermore, when contract receives
plain ether this function is executed. The
fallback function has to marked payable
for received ether. If not the contract
cannot receive ether with regular
transactions. Function can only rely on
2300 gas being available.

Some fallback function requires more than
2300 gas. Such as, writing to storage,
creating a contract, sending ether. DAO
attack caused wrong design of fallback
function

Avoid creating big fallback
functions

Instructing users to
explicitly call the function
with more gas

Reentrancy16 In some cases, a contract's fallback function
allows it to re‐enter a caller function
before it has terminated. This can result
in the repeated execution of functions
intended only to be executed once per
transaction

Bug refers that functions that could be
called repeatedly and if user's balance is
not set to 0 until the end of function.
Then other invocations will succeed, and
will withdraw the balance many times
over in a single transaction.

Use send() instead of call.
value()89

Use Oyente tool for detect
bug54

(Continues)

34 of 36 HASANOVA ET AL.

APPENDIX TABLE 2 (Continued)

Pitfalls Description Adverse Effects Recommendations

Do not call an external
function until the internal
work terminate

Send instead of
transfer89

Send is the low‐level counterpart of
transfer. If the execution fails, the current
contract will not stop with an exception,
but send will return false89

In order to it can cause lost ether or gas
consumption

Check the return value of
send89

Timestamp
dependence86

Blockchain technology use timestamp for
each block. However, trigger conditions
of some smart contract depend on
timestamp, which is set by the miner
according to its local system time.

The timestamp of the block can be
manipulated by the miner.

Do not use for critical
components of the
contract

Use block numbers and
average time between
blocks to estimate the
current time.

Use secure sources of
randomness, such as
RANDAO84

Transaction‐
ordering
dependence86

This problem occurs when two dependent
transactions that invoke the same
contract are included in one block. The
order of executing transactions control by
the miner. But if those transitions were
not executed in the right order an
adversary can successfully launch an
attack.

This can be troublesome for things like
decentralized markets, where a
transaction to buy some tokens can be
seen, and a market order implemented
before the other transaction gets
included.

Use a precommit scheme89

Use Oyente tool for detect
bug54

Unchecked
external call16/
untrustworthy
data feeds
(oracles)

External contracts are that they can take
over the control flow, and make changes
to data that the calling function was not
expecting.

This class of bug can take many forms such
as reentrancy, and both of the major bugs
that led to the DAO's collapse were bugs
of this sort.

Check the return value of
send89

Secret contracts (Enigma's
secret contracts)

Use caution when making
external calls

Use of “town crier (TC)”
tool87

Unchecked
math84

Smart contracts mainly control upon
arithmetic operations, such as reiterating
over an array or computing balance
amounts to send to a participant. An
overflow occurs when a number gets
incremented above its maximum value.
However, Solidity can handle up to 256‐
bit numbers (up to 2256‐1), so
incrementing by 1 would result into 0.
When the number is unsigned,
decrementing will underflow the
number, resulting in the maximum
possible value and it is arithmetic
vulnerability.

Especially in the underflow case, token
holder has X tokens but attempts to
spend X + 1. If the code does not check
for it, the attacker might end up being
allowed to spend more tokens than it had
and have a maxed‐out balance

Use SafeMath library84

Use Smartcheck tool84

Using tx.origin84 Use of tx.origin for detecting the contract
caller can make the contract vulnerable.
If there is a chain of calls, msg.sender
points to the caller of the last function in
the call chain. Solidity's tx.origin attribute
allows a contract to check the address

Using tx.Origin makes you vulnerable to
attacks such as, phishing or cross‐site
scripting

Avoid to use tx.origin for
authorization89

Use msg.sender for
authorization89

(Continues)

HASANOVA ET AL. 35 of 36

APPENDIX TABLE 2 (Continued)

Pitfalls Description Adverse Effects Recommendations

that originally initiated the call chain,
and not just the last function call

Visibility or
exposed
functions
(fallout)16

Everything used in a smart contract is
publicly visible to all external observers,
even local variables and state variables
marked private.

Contract fields marked private are not
guaranteed to remain secret to set a
private field.

Avoid ambiguity: Explicitly
declare visibility level84

36 of 36 HASANOVA ET AL.

