
Attack analysis

Elementary vs complex attack

● Each attacker has a goal = system resources it aims to
control or steal (exfiltrate) that it can achieve by acquiring
distinct access rights on system modules

● Usually these rights may be acquired by composing
several elementary attacks against distinct modules =
privilege escalation, lateral movements

● This requires other actions besides elementary attacks

● The resulting attack is denoted as complex attack,
penetration, intrusion

● A plan is a complex attack where each elementary attack
is required to reach the goal. Non minimal complex attack
arise due to lack of information

Lack of information

1

2
3

Target system

Due to lack of
Information,
2 is attacked even
If it useless

Sequence 1;2;3

Minimal 1;3
Goal

Modelling an elementary attack - I
Any attack can be modelled through (at least) six attributes

1. precondition

● rights on system modules
● resources
● competences
● info

2. post condition

● rights on system modules
3. enabling vulns (component, vulnerabilities)

4. actions to be executed

5. success probability

6. noise

Notice these attributes
include the tuple
to decide whether an
attacker can execute
an attack

Modelling an elementary attack - II

 The attack post condition is the set of access rights
granted by a successful execution of the attack

 The attacker access rights after an attack always
include those before the attack (monotone acquisition)

 The actions to execute an attack include
 Human actions
 Program execution

 Fully automated attack = no human actions

 Noise = events the attack generates and that enable
the detection of the attack = the detection probability

Example -I

● To implement a buffer overflow, an attacker needs
● The rights to invoke a procedure (rights)
● How to write parameter to inject the code to execute

(know how)
● The memory map to determine the parameter size

(info)
● Fully automated attack

● Success probability = depends on controls in the attacked
system and on the exploit accuracy

● If the attack is successful, the injected program is
executed as root and it can access any resource

Example -II

● The attack noise is a function of the checks that
the target system executes and that make it
possible to detect or prevent the attack

● These checks influence both the success
probability and the noise as they can

● only discover (log) or

● prevent (type -canary) the attack

Attack taxonomies

● Several alternative attack taxonomies are
focused on just one feature/attribute of the attack

● Enabling vuln

● The agent that can implement the attack

● The impact produced by the attack

● The target component

● All these properties are important but a risk
assessment should be focused on several
features simultaneously

An example of an elementary attack taxonomy

1. Buffer/stack/heap overflow

2. Exchanged information is illegally read (sniffing)

3. Some of the legal messages of a legal user are repeated (replay attack)

4. Interface operations invoked in an unexpected order (interface attack)

5. Interception and manipulation of information exchanged between two
entities (man-in-the-middle)

6. Information flows are diverted

7. Time-to-use Time-to-check (Race condition)

8. XSS (cross site scripting)

9. Covert channel (Bell -Lapadula policy)

10. Impersonating (Masquerading)
1. A user

2. A machine (IP spoofing, DNS spoofing, Cache poisoning)

3. A connection (connection stealing/insertion)

Cryptographic elementary attacks

 A dedicated taxonomy

a) Brute force attack h) Known-plaintext attack

b) Differential cryptanalysis i) Power analysis

c) Linear cryptanalysis j) Timing attack

d) Meet-in-the-middle attack k) Man-in-the-middle attack

e) Chosen-ciphertext attack

f) Chosen-plaintext attack

g) Ciphertext-only attack

Elementary attacks against the
TCB

● bypassing

● tampering

● direct attack (by exploiting vulns in TCB)

● misused

Another metrics

● The model measure the danger of a vulnerability
through 5 orthogonal (independent) coordinates

● This maps each elementary attack into a point in
a 5 dimensions space

● Technology competence

● Info on the target system

● Attack experience

● Probability of opportunity

● Devices

Danger decreases with
the distance from the
origin of the space

Danger of an elementary attack

The danger of an
attack decreases
as the value
increases

vulnerabilities in a context indipendent way

 Consists three metric groups: Base, Temporal, and Environmental

 Base metric : constant over time and with user
environments

 Temporal metric : change over time but constant with
user environment

 Environmental metric : unique to user environmen

 Recently added the
 Authorization metrics

 Personalization metrics

 An attempt to classify vulnerability by evaluating the severity of the
 attacks they enable, an alternative solution to threat intelligence to

discover the vulnerability to patch first

 Highest severity vulnerability enables highly critcal attacks hence

 Highest severity vulnerability should be patched before other ones

 Ranking vulnerabilities in a system indipendent way is a bad idea,
furthermore there is a huge number of vulnerability that have a high
rank

 Complex attacks shows that severity is a system dependent notion

CVSS (Cont’d)

CVSS metric groups
Each metric group has sub-matricies

Each metric group has a score associated with it
Score is in the range 0 to 10

Access Vector

This metric takes into account the proximity
condition to exploit a vulnerability

● Local Network = the same network
● Adjacent Network
● Network

Access Complexity

 This metric measures the complexity of the
attack to exploit the vulnerability

● High: Specialized access conditions exist

● Medium: The access conditions are
 somewhat specialized

● Low: Specialized access conditions do
not exist

Authentication

 This metric measures the number of times
an attacker must authenticate to a target to
exploit a vulnerability

● Multiple: The attacker needs to authenticate
two or more times

● Single: One instance of authentication is
required

● None: No authentication is required

Confidentiality Impact

This metric measures the impact attack on

Confidentiality, the disclosure of information

● None: No Impact
● Partial: There is a considerable disclosure
● Complete: There is total disclosure

Similar metrics for the Integrity Impact and the
 Availability Impact

Base Score

Base Score = Function(Impact, Exploitability)

Impact =

10.41 * (1-(1-ConImp)*(1-IntImp)*(1 AvailImpact))

Exploitability =
20*AccessV*AccessComp*Authentication

Base Score Example
CVE-2002-0392

●Apache Chunked Encoding Memory Corruption

BASE METRIC EVALUATION SCORE

Access Vector [Network] (1.00)

Access Complex. [Low] (0.71)

Authentication [None] (0.704)

Availability Impact [Complete] (0.66)

Impact = 6.9 Exploitability = 10.0

BaseScore = (7.8)

A context dependent approach

● It is meaningless (and dangerous) to evaluate
the danger of an attack independently of the target
system

● Any evaluation should consider the context of the
whole system = all the complex attacks it enables
because a pair of low rank vulnerabilities may be
more risky than just one high rank vulnerability

● Let us classify target systems. ...

A pyramid

Mass Attack

Targeted Attack

Critical
Infrastructure

National
Security

Higher levels also have to
face the intrusions of
the lower ones

To understand the possible
complex attacks we need
to classify a system in
the pyramid

Economic impact

Economic +social impactstate security

Mass= Untargeted Intrusion

Take advantage of the openness of the Internet

● phishing - sending emails to large numbers of people
asking for sensitive information (such as bank details) or
encouraging them to visit a fake website

● water holing - setting up a fake website or compromising a
legitimate one in order to exploit visiting users

● ransomware - it includes disseminating disk encrypting
extortion malware

● scanning - attacking wide swathes of the Internet at
random

Targeted Intrusion

Tailored to attack systems, processes or personnel, in the
office and sometimes at home.

● those we are discussing here

● spear-phishing - sending emails to targeted individuals that
could contain an attachment with malicious software, or a
link that downloads malicious software

● DDOS (Distributed Denial of Service) attack through a
botnet

● subverting the supply chain - to attack equipment or
software being delivered to the organisation

Targeted Intrusion: Attack Surface

● The attack surface of an attacker A against a system S
includes all the first elementary attacks A can
implement in an intrusion against S

● Sometime attack surface is used to denote the
components that are the target of the first attacks of A

● The attack surface of S depends upon the legal rights
of A, hence it changes with A

● The attack surface of an insider is much larger than
the one of an outsider

The pyramid

Mass Attack

Targeted Attack

Critical
Infrastructure

National
Security

Initially we describe
intrusions against
these systems

Elementary vs
complex targeted attack

● In a complex system the attacker composes elementary
attacks into a complex one (intrusion, privilege escalation)
to increase its rights till reaching one of its goals

● Intelligent attackers build/ and implement several actions to
implement an intrusion against their target = an action chain

● The attack chain is the subsets of the actions chain with all
the attacks

● Attack chain = The precondition of each elementary attack
in the chain is included in the attacker rights
after the previous attacks in the chain (the
union of the postconditions of these attacks
plus any initial rights)

Elementary vs
complex targeted attack

To reach a goal, an attacker needs to execute both elementary
attacks and other actions

– Host discovery: which are the hosts in a network

– Topology discover: message routing in the network

– Vulnerability discovery: the vulnerability of an host

– Attack selection: choose the attack to execute

– Failure handling: handle an attack failure

– Defence evasion: avoid defence mechanisms

– Persistence remain in the system

All these actions takes time and increase the overall attack time

Information discovery and attack are interleaved, this is not planning

Complex Targeted Attack

Initial Compromise Persistence Escalate Privileges Internal Recon Complete Mission

Attackers Move Methodically to Gain
Persistent & Ongoing Access to Their Targets As Described in the MITRE Att&ck matrix

At organizations in the last year, the typical target attack
 went undetected for 273 days.

Move
Laterally

Maintain
Presence

•Custom malware

•Command and control

•3rd party application

exploitation

•Credential theft

•Password cracking

•“Pass-the-hash”

•Critical system recon

•System, active directory & user

enumeration

•Social engineering

•Spear phishing e-mail with

custom malware

•Net use

commands

•Reverse shell

access

•Backdoor variants

•VPN subversion

•Sleeper malware

MITRE ATT&CK MATRIX

● MITRE’s Adversarial Tactics, Techniques, and
Common Knowledge (ATT&CK) is a knowledge
base and model for cyber adversary behavior

● It reflects the various phases of an adversary’s
attack lifecycle (attack plan, complex targeted
attack) in a specific technological domain

● Describes TTP, tactics, techniques and
procedures an adversary uses to reach its goal

● Each adversary is characterized through the
TTPs it uses (threat analysis)

MITRE ATT&CK MATRIX

TTP

● Tactics, denoting short-term, tactical
 adversary goals during an attack

(the matrix columns);

● Techniques, describing the means by which
adversaries achieve tactical goals

(the individual cells);

● Procedures = Documented adversary usage of
techniques and other metadata

● Mitigation = How to defend from a technique

● Detection = How to discover procedures of a technique

Technological domains

● Entreprise – 12 tactics

● ICS – 11 tactics

● Mobile – 13 tactics

● Pre-Att&ck – 26 tactics

each characterized by a set of TTPs

Entreprise - Tactics

– Initial Access – 11

– Execution - 34

– Persistence - 63

– Privilege Escalation - 32

– Defense Evasion - 73

– Credential Access - 23

– Discovery - 25

– Lateral Movement - 20

– Collection - 14

– Command and Control -
22

– Exfiltration - 10

– Impact - 16

TTP – Example - I

● Tactic = Privilege Escalation =
adversaries use to gain higher-level permissions on a system or network
Adversaries enter and explore a network with unprivileged access but
require elevated permissions to follow through on their objectives

● 32 techniques, among them

– Exploitation = Exploitation of a software vulnerability occurs when an
adversary takes advantage of an error in a program, service, or within the
operating system software or kernel itself to execute adversary-controlled code.

– Process injection = Process injection is a method of executing arbitrary
code in the address space of a separate live process. Running code in the
context of another process may allow access to the process's memory,
system/network resources, and possibly elevated privileges. Execution via
process injection may also evade detection .

TTP – Example - II

Exploitation – 15 Procedures among them

– APT32 has used CVE-2016-7255 to escalate privileges.

– APT33 has used a publicly available exploit for CVE-2017-0213 to escalate
privileges on a local system.

– Cobalt Group has used exploits to increase their levels or privileges

– Cobalt Strike can exploit vulnerabilities such as MS14-058.[4]

– CosmicDuke attempts to exploit privilege escalation vulnerabilities CVE-
2010-0232 or CVE-2010-4398.

– Empire can exploit vulnerabilities such as MS16-032 and MS16-135.[5]

– FIN6 has used tools to exploit Windows vulnerabilities in order to escalate
privileges. The tools targeted CVE-2013-3660, CVE-2011-2005, and CVE-
2010-4398, all could allow local users to access kernel-level privileges.

– FIN8 has exploited the CVE-2016-0167 local vulnerability.[20][21]

TTP – Example - III

 Exploitation – Mitigation = Countermeasures

● Application Isolation and Sandboxing = Make it difficult for adversaries to
advance their operation through exploitation of undiscovered or
unpatched vulnerabilities by using sandboxing. Other types of
virtualization and application microsegmentation may also mitigate the
impact of some types of exploitation.

● Exploit Protection = Security applications that look for behavior used
during exploitation such as WDEG and EMET can mitigate some
exploitation behavior. Control flow integrity checking is another way to
potentially identify and stop a software exploit from occurring.

● Threat Intelligence Program = Develop a robust cyber threat intelligence
capability to determine what types and levels of threat may use software
exploits and 0-days against a particular organization.

● Update Software = Update software regularly by employing patch
management for internal enterprise endpoints and servers

TTP – Example - IV

Exploitation – Detection

Detecting software exploitation may be difficult depending on the
tools available. Software exploits may not always succeed or may
cause the exploited process to become unstable or crash. Also
look for behavior on the endpoint system that might indicate
successful compromise, such as abnormal behavior of the
processes. This could include suspicious files written to disk,
evidence of Process Injection for attempts to hide execution or
evidence of Discovery.

Higher privileges are often necessary to perform additional actions
such as some methods of Credential Dumping. Look for additional
activity that may indicate an adversary has gained higher
privileges.

TTPs and Threat Intelligence

Mass Attack: an Example

● ￬

A Targeted Attack

Complex Attacks - I
 Alternative points of view on a complex attack

 Program (elementary attack = instruction)
 Planning (steps to achieve a given goal)

 Fundamental difference = coverage
 Planning or programming is interested in one program

/strategy (optimal or suboptimal) to reach a goal
(one robot moving in a space)

 Several attacks can be seimplemented
 (several robots move simultaneously)

A risk assessment has to discover all the programs/
strategies an attacker can implement to achieve a goal (we
have to stop all the robots)

Complex attack: An example

Some other example

C:\Users\fabrizio\Documents\CloudMe\didattica\riferimenti\BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf

A twelwe steps attack

System evolution

● We can draw a graph that represents the
evolution of the global system state

● The global system state is the cartesian
product of the states of any attacker (user)

● Cycles are possible in the graph that
describes the system evolution because an
attacker may reduce the rights of other ones
by implementing a DOS

Evolution of a user state

legal

illegal

State= set of rights

Attack1, c1
Attack3, c2

A goal is achieved
= some resources are controlled

Some states are useful only to reach a final state

The same attack
can laber several
arcs of the graph

Attack2, c3

Attack2, c1

Attack2, c2

State explosion

● There is a huge number of states that strongly increases
the complexity of any analysis

● It is not practical to build this graph and then analyze it
due to state explosion

● Two main reasons for the explosion

● Several attacks in a sequence may commute

● Distinct attackers can implement their attacks

– Sequentially

– In parallel

Attack graph

● It shows how a threat can compose elementary attacks to
achieve a goal, a partial view = only attacks no other actions

● Each node models a set of access rights

● The graph is

● a function of current vulns and of the attacker goals

● acyclic because of monotone right acquisition

● the worst case where attacks are successful

● In each node the threat can execute all the attacks that are
possible in the previous states – the executed one + those
granted by the rights granted by the last attack

System architecture

Attack Graph

One goal of one user

Attack Graph

One goal of one user

Monte Carlo Analysis

● The size of the graph can be strongly reduced by
focusing on an attacker behaviour

● Starting from the attack surface, we emulate the
attacker behavior to discover only the paths the attacker
may select according to its preferences and priorities

● More efficient than buillding all the paths and then prune
those the attacker does not implement

● Multiple executions to handle

● Non determinism in the behaviour

● Handling of attack failures

Monte Carlo Analysis

● The approach is based upon the joint executions
of the system model and the attacker one

● Multiple joint executions build a subset of the
attacker attack graph

● The accuracy of the subset depends upon the
accuracy of

● System model

● Attacker model

● Number of executions = confidence level

Elementary vs complex attacks

● The discovery of elementary attacks against the
system modules strongly differs from discovering
how to compose them in an intrusion to a goal

● The discovery of elementary attacks depends
upon the vulns in the system vulns and in the
system components

● The discovery of complex attacks may be
seen as an instance of a well known optimization
problem = how to reach some nodes of a graph

Attack surface

● This surface includes any elementary attack that is the starting point of
a complex attack, the first elementary attack of acomplex one

● The execution of an elementary attack in an intrusion outside the surface
can be prevented by preventing the attacks in the surface

● The ratio r between the number of attacks in the surface and the overall
number of attacks in intrusion is an approximated evaluation of the
system security

● r®0 by stopping a few attacks in the surface we stop all the plans

● otherwise there are several ways to compose the attacks into plans
 so increasing the overall security is complex and

expensive due to the large number of initial attacks

Attack Tree Analysis – I

 A top down approach to discover a tree that
decompose a complex attack into simpler ones till
we reach elementary attacks

 The top down decomposition ends when the frontier
of the tree (each leaf) corresponds to an elementary
attacks only

 Two alternative decompositions

AND = all the attacks are required

OR = just one of the attacks is required

Attack Tree Analysis - II

ATM attack

The ATM is stolen
The user is attacked

and

The card is
cloned

Monitor the
user to discover
the PIN

Attack Tree

Attack Tree Analysis -III

 Thinking of a tree may be misleading because
elementary attacks may be shared among subtrees

 How to discover problems shared among subtrees?

 A model based on a finite state automata may simplify
the recognition of equivalent states = the same set of
access rights and, hence, of common subproblems

 States = set of access rights that have been acquired

 Automata = attack graph

Attack tree vs graph (automata)

● The attacks in an AND relation in the tree
belongs to the same path of the graph

● An OR nodes implies that several paths can be
defined and do exist in the graph

● A tree represents one or more complex attacks
● Consider the subtree rooted in the tree root

● The subtree includes all the sons of an AND node
and one son of an OR node

● The complex attack composes all the leaves
(elementary attacks) of the subtree

Attack tree vs graph

or

and

graph path

and

graph path

Two complex attacks that are represented as two paths

Attack tree vs graph

and

or

graph path

or

graph path

Nine complex attacks that include one descendant of each or node

Countermeasure

● Any change to a system that decrease the
success probability of an attacker

● Static countermeasure = it changes the target
system for all its life

● Dynamic countermeasure = it changes the
system only when it is under attack.
Requires some monitoring tool to discover
ongoing attacks and the effectiveness depends
upon the one of the monitoring

Complex attacks and
countermeasures

● To stop a complex attack we stop any of its elementary
attacks ie by affecting the enabling vulnerability

● A countermeasure of an elementary attack A stops all
the complex attacks where A appears

● Cut set of an attack graph = a set of arcs (= of
elementary attacks) such that no goal can be reached if
they are cut (if we stop the corresponding attacks)

● A cut set includes at least one elementary attack for
each complex one that enables a threat to reach a goal
(we need to discover all the complex attacks)

● Shared attacks are the key to cost effectiveness

Selecting the countermeasures

 Several cut sets may exist, each with a distinct cost
 Cost effective solutions stop

 the most shared elementary attacks

 attacks with cheapest countermeasures

 Betweeness of an attack = how many paths to a
goal shares an arc that corresponds to the attack

Stopping attacks with a large betweeness reduces
the overall security investment

A pyramid

Mass Attack

Targeted Attack

Critical
Infrastructure

National
Security

We consider now
attacks that can be automated
and implemented against any system

Mass Attack = Automated Attack

Fully automated attacks

K
n

o
w

 h
o

w
 &

 i n
fo

time

attacker

attack

now

Fully automated attacks

 The functions show how really dangerous attacks may
be implemented through tools that are distributed and
accessed through the web

 The window of exposure becomes more and more
critical = the interval between two times
 An exploit is pubblicly available
 The vuln is removed from the system

= even a complex organization has to apply the
 patches to remove a vuln in a very short time

(good point to remember with the next slide)

Patch adoption

Fully automated attacks: an example
Thu Feb 24 09:45:47 HTTP request from 202.109.114.209: POST /_vti_bin/_vti_aut/fp30reg.dll

Thu Feb 24 09:45:54 possible overflow attempt via HTTP from 202.109.114.209 (request line is 65552
bytes long)
Thu Feb 24 09:45:54 HTTP bogus request from 202.109.114.209: SEARCH
/�HH
HHH...

Thu Feb 24 15:48:21 possible overflow attempt via HTTP from 81.30.200.55 (request line is 65552 bytes long)
Thu Feb 24 15:48:21 HTTP bogus request from 81.30.200.55: SEARCH
/�HH
HHH...
Thu Feb 24 15:48:23 HTTP request from 81.30.200.55: POST /_vti_bin/_vti_aut/fp30reg.dll

Thu Feb 24 15:57:37 possible overflow attempt via HTTP from 218.43.229.149 (request line is 65552 bytes long)
Thu Feb 24 15:57:37 HTTP bogus request from 218.43.229.149: SEARCH
/�HH
HHH...
Thu Feb 24 15:57:41 HTTP request from 218.43.229.149: POST /_vti_bin/_vti_aut/fp30reg.dll

Thu Feb 24 16:00:34 HTTP request from 61.54.219.101: GET /default.ida?
XX
XX
XX
%u9090%u685...

Three attacks in two seconds

The ICT zoo (malware)

 Virus

 Worm

 Trojan Horse

 Hybrid

 Autonomous Hybrid

Most important problem

Now and in the future

Ransomware Attack
Impacts Aluminum Production

https://www.nozominetworks.com/blog/breaking-research-lockergoga-ransomware-impacts-norsk-hydro/
● According to media reports, the malware attack began on the evening of

Monday, March 18th, Oslo time (UTC + 1). On March 19th, the company’s
website was not available and production impacts had been reported:

● Potlines, which monitor molten aluminum, and need to be kept running 24
hours a day, had been switched to manual mode

● Some factories have been forced to halt production
● Several metal extrusion plants have been closed
● At certain facilities, some computer systems are unavailable, and

printed orders are being fulfilled
● Power plants are functioning normally
● No safety-related incidents have been reported

Some statistics

Top Ten Malware families 2020

Top Infected OS

Age of Vulnerabilities

Ransomware statistics

Malware and money …

Virus

 A program that
 Hides itself in another program or data
 It is transmitted together with the infected

program or data (parasite)
 Can be activated at a prefined time
 The behaviour is fully dependent upon the

programmer of the virus

 Currently USB keys and devices are the main
diffusion mechanisms (dropped keys as attacks)

 Mobile devices of outsourcers

slide 82

First Virus: Creeper

Written in 1971 at BBN

Infected DEC PDP-10

 machines running TENEX OS

Jumped from machine to machine over ARPANET

• Copied its state over, tried to delete old copy

Payload: displayed a message

 “I’m the creeper, catch me if you can!”

Later, Reaper was written to hunt down Creeper

slide 83

Polymorphic Viruses

Encrypted viruses:

constant decryptor followed by the encrypted
virus body

Polymorphic viruses:

each copy creates a new random encryption of
the same virus body

• Decryptor code constant and can be detected
• Historical note: “Crypto” virus decrypted its body by brute-

force key search to avoid explicit decryptor code

slide 84

Virus Detection

Simple anti-virus scanners

• Look for signatures (fragments of known virus code)
• Heuristics for recognizing code associated with viruses

• Example: polymorphic viruses often use decryption loops

• Integrity checking to detect file modifications
• Keep track of file sizes, checksums, keyed HMACs of contents

Generic decryption and emulation

• Upload code to a remote system
• The system emulate CPU execution for a few hundred

instructions, recognize known virus body after decryption
• Does not work very well against viruses with mutating bodies

and viruses not located near beginning of infected executable

Virus Detection by Emulation

slide 86

Metamorphic Viruses

Obvious next step: mutate the virus body, too

Apparition: an early Win32 metamorphic virus

• Carries its source code (contains useless junk)
• Looks for compiler on infected machine
• Changes junk in its source and recompiles itself
• New binary copy looks different!

Mutation is common in macro and script viruses

• A macro is an executable program embedded in a word processing
document (MS Word) or spreadsheet (Excel)

• Macros and scripts are usually interpreted, not compiled

slide 87

Obfuscation and Anti-Debugging

Common in all kinds of malware

Goal: prevent code analysis and signature-based
detection, foil reverse-engineering

Code obfuscation and mutation

• Packed binaries, hard-to-analyze code structures
• Different code in each copy of the virus

• Effect of code execution is the same, but this is difficult to detect by
passive/static analysis (undecidable problem)

Detect debuggers and virtual machines, terminate
execution

slide 88

Obfuscation and Anti-Debugging

slide 89

Mutation Techniques

Real Permutating Engine/RPME, ADMutate, etc.

Large arsenal of obfuscation techniques

• Instructions reordered, branch conditions reversed, different
register names, different subroutine order

• Jumps and NOPs inserted in random places
• Garbage opcodes inserted in unreachable code areas
• Instruction sequences replaced with other instructions that have

the same effect, but different opcodes

 = Mutate SUB EAX, EAX into XOR EAX, EAX or

 MOV EBP, ESP into PUSH ESP; POP EBP

There is no constant, recognizable virus body

slide 90

Example of Zperm Mutation

From Szor and Ferrie, “Hunting for Metamorphic”

slide 91

Example of Zperm Mutation

From Szor and Ferrie, “Hunting for Metamorphic”

slide 92

Legal obfuscation : Skype

slide 93

Skype: Code Integrity Checking

slide 94

Skype: Anti-Debugging

slide 95

Skype: Control Flow Obfuscation (1)

slide 96

Skype: Control Flow Obfuscation (2)

slide 97

Putting It All Together: Zmist

Designed in 2001 by the Russian virus writer
Z0mbie of “Total Zombification” fame

Technique: code integration

• Virus merges itself into the instruction flow of its host
• “Islands” of code are integrated

 into random locations in the host
 program and linked by jumps

• When/if virus code is run, it infects
 every available portable executable

• A randomly inserted virus entry point
 may not be reached in a particular execution

slide 98

MISTFALL Disassembly Engine

To integrate itself into host’s instruction flow, virus
must disassemble and rebuild host binary

Tricky - addresses are based on offsets, must be
recomputed when new instructions are inserted

Iterative process: rebuild with new addresses, see
if branch destinations changed, rebuild again

Requires 32MB of RAM and explicit section names (DATA, CODE, etc.) in
the host binary – doesn’t work with every file

slide 99

Fully automated and mobile attacks
 Worms implement automated autonomous attacks that

can replicate onto attacked nodes

 Worm=a program that attack other nodes and replicates
itself onto successfully attacked nodes (remote attack)

 Attack vector = the code to attack (infect) other nodes
 A payload (send spam, steal/update/modify node info)
 Connect to a C&C network and download the payload
 Domain flux

 The worm attacks any node the infected one can reach

 Genetic diversity of target nodes is an important defense
mechanism but a worm can exploit distinct vulnerabilities

Command&Control Network

● Some nodes under the control of the worm writer

● They can update the worm attack vector and
payload

● Domain flux = generation of alternative domains
nodes or aliases for C&C nodes to increase the
complexity of a shut down (flux as a detection
mechanism)

● Botnet= overlay network including the nodes that
have been attacked and controlled by the worm
creator rather than by the legal owner

Sapphire/Slammer worm

 376 byte in one UDP packet
 It exploits a vuln in the SQL server
 An infected node can infect from 100 to 10000

further node in one second

 The number of infected nodes (worm metric
doubles in 8.5 seconds

 100 times faster than previous worms
 More than 75.000 infected nodes

Sapphire/Slammer worm …

 In 10 minutes it has infected 90% of nodes that may
have been infected = worm attacks are successful

 This may not be a “good” feature
 It creates a lot of “noise” that strongly simplifies

attack detection
 “Stealth worm” = slow attack, low amount of noise,

difficult detection
 One of the features of CoVid 19 that makes it soo

dangerous is that for a long period of time infection
has no visible simptoms

Conficker: an hybrid

● Can attack:

Windows 2000, Windows XP, Windows Vista,
Windows Server 2003, Windows Server 2008, e
Windows Server 2008 R2 Beta

● Hybrid as it can exploit: USB device, share, email

● 9 milions system attacked (e.g. English defence
dept, french air army, hospitals) in jan. 2009

● 30% of nodes is currently vulnerable

● It can download updates, 5 versions

Conficker vs p2p

● Let us assume that an infected node is attacked again

● The infected node

● understands that the attacker is a peer (is infected)

● connects to the attacker and downloads any update

Conficker

● It implements Domain flux to download the
updates

● Input/output connessions are encrypted

● Payload = information collection + creation of
a botnet

An important point

“Whereas a missile comes with a return
address, a computer virus (or worm)
generally does not.”

Deterrence and Dissuasion in Cyberspace,
J.Ney

The general structure of a worm

Generate
random IP
address

Generate
random IP
address

“Probe”
that

address

“Probe”
that

address

Machine
Exists?

Machine
Exists?

Infect the
machine

Infect the
machine

No

Yes Vulnerable
Service?

Vulnerable
Service?

Yes

No Search for more

The program is stored in one
UDP packet

The fundamental program is the local
vs global ratio and how to exploit
available information on infected
nodes

Multiple exploits

Failure

Success or
end of exploits

Version A Version B

Conficker

Generation of IP addresses in an infected nodes

Address generation
 Two disjoint subsets

 Local (high density) = subnet of the infected node
 Global (low density)

 Density = the probability that a random address
belonging to the set corresponds to a real node

 If the ratio of local vs global addresses is too low the
worm may be detected and removed before spreading,
eg infecting other nodes

 If the local density is too large, then after infecting all
nodes resources are wasted because one node may be
infected several times

 Even low changes in the ratio may be very critical, non
linear effects

The influence of the ratio

