
Countermeasure Analysis

This step chooses how to change the
target system
-statically
-at run time (under attack)
to avoid or at least minimize the risk

Countermeasures
A first classification

 Proactive
 They are applied before an intrusion

eg a vulnerability is removed
 Dynamic

 They are applied as soon as an attack is detected
 eg a vulnerability is removed
 eg a connection is killed

 Reactive
 They are applied after a successful attack
 eg a vulnerability is removed
 eg a password is changed

Detection?

A more detailed taxonomy

Prevent Resist  Detect  Recovery  React

Deception
Honeypot

Resiliency
Robustness

Intrusion Detection
Consistency Checks

Heterogeneity
Cold/Hot Redundancy

Change to
1. Configuration
2. Architecture
3. Application

Identification, authentication, right management

Implementation mechanisms
 Countermeasures are implemented through

a set of common mechanisms
 A set of shared mechanisms

 It can increase the cost effectiveness of
countermeaures

 It should be highly robust because a vuln may
affect several countermeasures

Base mechanisms

 The mechanisms are defined on top of a
security kernel (= TCB) that manages
 The user identities
 User authentication (identity checks)
 User rights

 The TCB should not be confused with
the minimal system that is discussed in
the following

Countermeasures Glossary- I
 Deception = no information about the system

design is available = S&S, no open design +
honeypot

 Honeypot = fake systems to
 increase the complexity of discovering target nodes
 detect attack

 Resiliency/Robustness = prevent a single
vulnerability from enabling a successful intrusion
(S&S, least privilege etc)

 Intrusion Detection/ Consistency Check = checks
to discover the current or previous attacks

Countermeasures Glossary - II
 Redundancy = spare components to replace the

attacked ones. The impact is reduced and control
on the system is not lost
 Cold = Stand by spare components
 Hot = Spare components are in use (oversize system)

The underlying problem is a proper evaluation of
expected performance

 Heterogeneous components = genetic diversity =
the vulns of spare components differs from those
of standard components

 A generalization of triple modular redundancy

Triple Modular Redundancy

Module M copy 1

Module M copy 2

Module M copy 3

Voter

Safety, not security
anytime the three copies
share the same vul

If the three versions have
a different implementation
some security is achieved

Countermeasures Glossary- III
 Minimal system

 A subset of components
 More robust
 Large number of severe checks

 Control of the minimal system should
never be lost

 It is a starting point to gain back control
on the whole system

 Strongly related to normal vs power law
impact we have discussed

Countermeasures Glossary- IV
 Reaction = Updates to

 The configuration of the OS and applications
 System architecture
 Enabled application
 Patch

 The reaction usually updates the target
system and it not involves the attacking one

 Offensive security = react by attacking the
attacking system = Huge set of problems

Attacking the attacking sys?
 Attack attribution, remember the difference

between a missile and a worm?
 Stepping stone = a chain of hosts that starts at

the one of the attacker and that are, illegally,
controlled by the attacker =botnet + com&contr

 The attacker uses the chain to hide his/her node
 The last node in the chain implements the attack

to hide the first one
 Any node connected to the internet has a value

as it can be used as a stepping stone =hygene
 How can we discover a stepping stone?

Stepping stones = botnet

Attacker node

Target nodeStepping stones

Encrypted

Botnet that may be built or rented

Stepping stone detection - 1

 An analysis of input/output node channel to evaluate
their correlation

 If there are an input channel and an output one (i/o
port) that are correlated as far as concerns
 Time = when a communication occurs
 Data = size of exchanged data

 then the node may act as a stepping stone
 By repeating the analysis for the sender/receiver of the

two channeld, the whole chain of stepping stones (=
the whole botnet) may be discovered

Stepping stone detection- 2

 The proposed analysis is a traffic analysis
that can be applied even to encrypted flows
because it does not consider the information
content of the two flows

 No serious attacker uses stepping stone
chains that communicate in clear

Stepping stone

Attacker node

Target node

Stepping stones Correlation among these connections
can be discovered even if they are encrypted

Deception = Honeypot
 Both diffusion and adoption has increased because of

virtualization technologies that minimizes its cost
 It increases the complexity of attacks that use a vulnerability

scanner to discover nodes in a network that can be attacked
 For each address the scanner generates, the defender

creates a new fake virtual node the attacker has to analyze
 These virtual nodes are useless but as far as the scanning is

concerned, they behave like real nodes
 The fake nodes

 reply to the fingerprinting messages with frequency that
becomes slower and slower to slow down the scanning

 raise an alarm

Honeypot - Definition

An ICT resource whose value lies in
unauthorized or illicit use of that resource.

 Has no production value; anything going
to/from a honeypot is likely a probe, attack or
compromise

 Used for monitoring, detecting and analyzing
attacks

 Does not solve a specific problem. Instead,
they are a highly flexible tool with different
applications to security.

Classification

 By level of interaction
 High
 Low
 Middle

 By Implementation
 Virtual
 Physical

 By purpose
 Production
 Research

Level of Interaction

 Low interaction—A simple port listener is
considered extremely low interaction because,
after the connection, the attacker cannot do
anything else.

 Medium interaction—An emulated service that
analyzes communications and returns
simulated responses to replicate a real service

 High interaction—This involves the use of real,
but deceptive services, fully operational hosts
or complete deceptive networks.

Level of Interaction

 As the level of interaction increases, the attacker
ability to “play” with the resources also goes up.

 Higher interaction gives the attacker a more
realistic experience and also provides significantly
opportunities to analyze attacker activity.

 A better understanding of attacker activity allow
security teams
 to respond more effectively,
 to enhance their ability to design improved

deception scenarios.

Physical vs Virtual Honeypots

 Two types
 Physical

 Real machines
 Own IP Addresses
 Often highly-interactive

 Virtual
 Simulated by other machines that:

 respond to the traffic sent to the honeypots
 may simulate distinct virtual honeypots at the same

time

Production HPs: Protect the systems

 Prevention
 Keeping the bad guys out
 not effective prevention mechanisms.
 Deception, Deterence, Decoys do NOT work against

untargeted attacks: worms, auto-rooters, mass-rooters

 Detection
 Detecting the burglar when he breaks in.
 Great work

 Response
 Can easily be pulled offline
 Little or no data pollution

Research HPs: gathering information

 Threat Intelligence
 Collect compact amounts of high value

information
 Discover new ttps and tools
 Understand Motives, Behavior, and

Organization
 Develop Analysis and Forensic Skills
 Discover new worms/viruses and signatures

Sensor network for threat intelligence

Sensor network for threat intelligence

A sensor

 9 different honeypot types
 Each focused on observing distinct attacks against

SSH/telnet services, web services, remote management
protocols, databases, mail relays, ICS devices, including
exploits, scans, brute force attacks.

 Each sensor is a VM with at least:
 1 core
 512MB RAM
 5 GB hard drive
 2 or more static IPv4 addresses

Building your HoneyPots

 Specifying Goals
 Selecting the implementation strategies

 Types, Number, Locations and Deployment

 Implementing data capture
 Logging and managing data
 Mitigating risk
 Mitigating fingerprint

Just an anticipation …
 Firewall

 A system that connects two networks with distinct
security requirements

 It filters the information flowing across the two networks
and the services each network can access in the other
one

 It hides some components in the most critical networks
so that they cannot be accessed from the less critical
network

 It defends the most critical network from attacks
originating in the less critical and less protected one at
the expence of the bandwidth between the two networks

Location of Honeypots

 In front of the firewall
 Demilitarized

Zone
 Behind the

firewall (Intranet)
 Understand the depth

an attacker can reach

Capturing Information

 Host based:
 Keystrokes
 Syslog

 Network based:
 Firewall
 Sniffer
 IP not resolved name

Logging and Managing Data

 Logging
architecture

 Managing data

What is Honeyd?

 HoneydHoneyd: A virtual honeypot application,
which allows us to create thousands of IP
addresses with virtual machines and
corresponding network services.

 Written by Neil Provos available at
http://www.honeyd.org/

What can honeyd do?

 Simulates operating systems at TCP/IP stack
level, supporting TCP/UDP/ICMP;

 Support arbitrary services;

 Simulate arbitrary network topologies;

 Support tunneling and redirecting net traffic;

Illustration Simple

How it works?

routing

routing

Packet Dispatcher

TCP UDP ICMP

Services

Personality
EngineConfiguration

DataBase

Network

 Configuration

Why Personality Engine?

 To fool fingerprinting tools

 Uses fingerprint databases by
 Nmap, for TCP, UDP
 Xprobe, for ICMP

 It changes to the headers of every outgoing
packet before it is sent to the network

Why Routing topology?
 Simulates virtual network topologies;

 Some honeypots are also configured as routers
 Latency and loss rate for each edge is configured;

 Support network tunneling and traffic
redirection;

Current version

 Can implement passive fingerprinting to
discover some features of the remote
host that is attacking (the final stepping
stone)

 Can run actual OS to better mimic their
behavior

 To be run in a sandbox with ptrace

Passive fingerprinting

 This style of fingerprinting does not send any
packets, but relies on sniffing to analyze the
information sent in normal network traffic.

 If a target is running publicly available services,
passive fingerprinting may be a good way to start
off fingerprinting.

 It is less accurate than active fingerprinting and it
relies on an existing traffic stream

 It can also take much longer depending on the
activity level of the target system

p0f—a Passive Fingerprinting Tool

 p0f looks at the following IP and TCP fields:
 Initial Time To Live – IP header
 Don’t Fragment – IP header
 Overall SYN packet size – TCP header
 TCP Options like windows scaling or maximum

segment size – TCP header
 TCP window size –TCP header
 TCP session startups -the SYN segment.

 The program uses a fingerprint database to
identify the hosts that opens a connection

p0f—a Passive Fingerprinting Tool

-----------------MacOS-------------------
S2:255:1:48:M*,W0,E:.:MacOS:8.6 classic

16616:255:1:48:M*,W0,E:.:MacOS:7.3-8.6 (OTTCP)

16616:255:1:48:M*,N,N,N,E:.:MacOS:8.1-8.6 (OTTCP)

32768:255:1:48:M*,W0,N:.:MacOS:9.0-9.2

32768:255:1:48:M1380,N,N,N,N:.:MacOS:9.1 (1) (OT 2.7.4)

65535:255:1:48:M*,N,N,N,N:.:MacOS:9.1 (2) (OT 2.7.4)
 9.0-9.2 the initial window size is 32768 bytes, the initial time to

live is 255, the don’t fragment bit is on, the total length of the
SYN packet is 48 bytes, the maximum segment size option is
bolted on —as is the window scaling option, there is a no-
operation (NOP) in the option list

What is a Honeynet <> Honeypot

 A network with nodes and honeypots to
design a high-interaction honeypot able to:
 capture in-depth information
 learn who would like to use your system without

your permission for their own ends
 Its an architecture, not a product or

software.
 Populate with live systems.
 Can look like an actual production system

What is a Honeynet

 Once nodes are compromised, data is
collected to learn the tools, tactics, and
motives of the blackhat community.

 Information has different value to
different organizations.
 Learn vulnerabilities
 Develop response plans

What’s The Difference?

 Honeypots use known vulnerabilities to lure
attack.
 Configure a single system with special software or

system emulations
 Want to find out actively who is attacking the system

 Honeynets are networks open to attack
 often use default installations of system software
 behind a firewall
 hope attackers mess up the honeynet instead than

your production system

How a honeynet works

 A highly controlled network where every
packet entering or leaving is monitored,
captured, and analyzed.

 Any traffic entering or leaving the
Honeynet is suspect by nature.

Countermeasures - Deception
 Cryptography algorithms
 Information is coded so that only who knows

a further info, the key, can access it
 Already known

Just a reminder ...

 Cryptography does not solve the problems, it
only simplify the solution

 It is very difficult to safely store a 2 gb file
 It is simpler to encrypt the file through a 256

bit key and safely store the key
 The same problem has to be solved (safely

store an info) but now the solution is simpler
because the problem size has been reduced

Just a reminder ...
 Hiding and protecting

 Information at rest
 Exchanged information

 Integrity (hash function)
 Authentication (digital signature)

 Hash + Encrypt with private key
 Coprocessor (smartcard)

 Hardware root of trust
 Symmetric and Asymmetric

Resist – Robust (proactive) programming

 Validate program inputs aka input is evil
 Prevent buffer overflow
 Robust implementation
 Check the invocations to other resources
 Check returned results

Robust programming – Input validation

Input validation + default deny (S&S)
 Define the input legal structure
 Check that any input satisfy the defined

structure
Example: Strings

 A grammar that defines the structure
 Longest input string
 Define which special characters are legal
 Check that any input satisfies 1-2-3

Robust programming – Input validation

 The checks to validate the input should be specified
together with the program rather than after an attack

 In the correct approach, the specification may simplify
the design and the implementation of the checks
through a simple grammar, eg LR grammar, ie
controls implemented by finite state automaton

 A complex control may be useless if we are not
confident that it has been correctly implemented

 Several languages offer built in functions to check a
string against a regular expression or to filter out
dangerous characters

Robust programming – Input validation

 Parameters to be validated
 Environment variables
 File names (blanks , .., /,)
 Email addresses
 URL
 Html
 data

 Use built in function to match a string against a
predefined pattern, remove dangerous characters,
extract substring with the desidered length

Robust programming – no buffer overflow

 Do not use any library function that does not
check it input parameters

 Use only those functions that check the length
of their input strings

 Dynamic memory allocation of a data structure
according to its size rather than static allocation
of the largest amount of memory the structure
may require in some execution

Robust programming –
robust implementation - I

 Satisfy S&S
 Rigorous definition of the program interface
 Do not assume that input/output values are related

 If a function of a library returns a pointer and another
function of the same library has a pointer parameter, there
is no reason to assume that the second will receive only the
pointers the first function returns

 If an input parameter of a function should be the one
another function returns, the parameter type has to be
defined so that this relation can be checked

 Data and instruction should be different
 The data that each function needs to access should

be minimized

Pointer - I

Proci

Prock

punt

punt

Package that should
be robust

Procp

Prock

Pointer array

i

i

An index is transformed into a
pointer by accessing the

pointer array

A more robust version

A user data structure

Pointers - II
 By replacing an array of pointers with an array of

records where one field is a pointer we can
 Introduce fields in the records to discover whether

each element is properly initialized
 Check access to the array
 Define proper checks on the input output relation

of a pointer
 This is a simplified, redundant version of an access

control matrix for the pointers
 Built in in some programming languages

Pointers - III

 We can also return an encrypted index to one
position of the array of pointers rather than the
real one

realpositioin= m*returnedpos+cost

 It simplifies the detection of pointer manipulation
 Access control does not change

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Definition
	Classification
	Diapositiva 19
	Diapositiva 20
	Physical V.S. Virtual Honeypots
	Production HPs: Protect the systems
	Research HPs: gathering information
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Building your HoneyPots
	Diapositiva 28
	Location of Honeypots
	Capturing Information
	Logging and Managing Data
	What is Honeyd?
	What can honeyd do?
	Illustration Simple
	How it works?
	Diapositiva 36
	Why Personality Engine?
	Why Routing topology?
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	What is a Honeynet
	Diapositiva 44
	What’s The Difference?
	How it works
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58

