
IDS
Which actions can be automatically taken as soon
as an IDS discover an attack?
 any action on the target system is correct: kill an

internet connection increase the amount of data
recorded in a log, ends some user sessions

 No offensive security ie action against other systems,
eg the attacker one, for two reasons:

 Stepping stones
 False positives

Intrusion Detection System

E-mail
 web
E-mail
 web

Accoun
ting
Accoun
ting

ResearchResearch

Local
Network

fw

fw

fw

Initial configuration Segmentation+Defence in Depth+IDS

nIDS

nIDS

nIDS

Security information and
event management =SIEM

Local
Network

Initial configuration

Segmentation+Defence in Depth+IDS

fw

fw

fw

nIDS

nIDS

nIDS

SIEM

Sensors
 Two kind of sensors

 off-line: analyze the system and user logs to discover attacks that
have been implemented and their impact

 real-time: analyze the current system behavior to discover ongoing
attacks and stop them before they are successfull

 real time sensors
 Some compromises have to be accepted = minimize the number of

control to avoid a loss of performance
 Hardware supports, eg similar to the routing one for NIDS

 Off line = CIDF, common intrusion detection framework
standard for logs

 NIDS vs HIDS sensors
 hIDS

 It filter the requests from a user process to the OS, the
OS executes only requests that it has not rejected

 It may slow down a host but it controls any request
 nIDS is not involved in the service that manages a

given packet, there is no way to slow down the
receiving host
 NIDS has to be executed on a

dedicated host to analyze all the
information flows

hIDS and nIDS technologies

 Base element that is analyzed
 IP packects and protocol events for a nIDS
 OS call for a hIDS
 They can be generalized if the hierarchy of

virtual machines is considered
 String of vm invocations for a hIDS
 A sequence of information for a nIDS

 nIDS: some problems

 Fragmentation of IP packets
 Analysis of a TCP stream (reordering ..)
 Protocol analyis
 Normalization of a protocol to handle all

those cases that are not defined by a
standard (overlapping IP packets)

hIDS and nIDS technologies
 Anomaly detection

 By observing a system, we build a database that stores the normal
system behavior = measures of normal behavior

 Signals behaviors that differ more than a predefined threshold
 Zero day exploit can be detected (after the attack)

 Signature specification based
 Default allow (attack signatures have to be specified)

 A database storing attack signatures
 At run time it signals any behavior matching one in the database
 The update of the database is critical

 Default deny = legal behavior has to be specified

N&H-IDS: anomaly detection
First step: interesting measures
 Number of open file

 global & for each user
 Number of open port

 global & for each user
 Frequency of commands
 Number of connected user
 Time when a user connects
 Usage of system resources

N&H-IDS: anomaly detection
 An histogram is built by observing the system and by using a

number of intervals (eg 32)
 The intervals are chosen so that the last one include less

than 1% observations
 We monitor the system for a time interval (we observe the

value of interest at each minute, for 30 days) and build the
distribution that pairs each interval with a probability = long
term distribution

 We monitor the system for a shorter interval (eg. at each
minute for two hours) and build a short term distribution

 An anomaly arises if the two distributions differs

Generating a distribution

 Defined starting from an histogram of
the observations

1 2 31 32

Number of
Observations in the
corresponding
interval

The probability
is computed
by normalizing =
Ratio of observation
In an interval

N&H-IDS: anomaly detection
 The difference between two discrete distributions

is the sum of the absolute differences between
the two values in the corresponding intervals

 Dist= |long
i
-short

i
|

 Distinct distributions of the same measure are
generated by distinct observation frequency or for
distinct sets
 Open files

 Read the number at each minute or at each hour
 Read the number for each user or group of users

N&H-IDS: anomaly detection

The observations collected to build the short term
distribution and rise the alarms are also used to

 Update the long term distribution to mimic the
system evolution (a weigthed sum is used)

 The long term distribution is updated at predefined
times (eg at the end of the day) rather than in real
time

N&H-IDS: anomaly detection
 The overall system behavior may be seen as

a learning system
 Initially, the system learns its normal behavior

= initial long term distribution
 The learning and the discovery of anomalous

behavior are a life long property of the system
as the long term distribution is updated

N&H-IDS: anomaly detection
 The definition of anomaly is related to a user

defined threshold
 A large threshold corresponds to a large difference

among behaviors 

A few false positives, several false negatives
 A small threshold corresponds to a small difference

among behaviors 

 A few false negatives, several false positives
 Different measures, different set of measures

correspond to distinct ROC curves

Anomaly detection:
the foundation

 Nides = next generation intrusion detection system
defined in 1991

 To protect military systems
 First rigorous definitions of long and short term

distributions
 Measure

 Continuous = any value
 Categorical = one value in a predefined range
 Binary
 IDS related = The IDS activity is measured as well

NIDES - SRI - Continuous - I

 UCPU User CPU time
 SCPU System CPU time
 IO Number of character exchanged

in an application execution
 MEMCMB Largest amount of memory to

 execute the application
 MEMUSE Sum of the amount of memory

used multiplied by the time it
has been used = KByte*seconds.

NIDES - Continuous -II

 TEXTSZ Size of a segment
 OPENF Number of open file
 PGFLT Number of memory faults
 PGIN Number of disk pages read
 PRCTIME Elapsed time
 SIGNAL Number of received signals

NIDES - SRI - Categorical

 UID New user name if changed
 HOUR Hour when the application began
 RNETHOST Name of the remote host that has

invoked the program
 LNETHOST Name of the local host that has

invoked the program
 RNETTYPE Name of the application invoked by

the remote host

NIDES – SRI - Binary

 RNET Application executed on a
remote host

 LNET Application executed on a
local host

NIDES – IDS related

 INTARR continuous Seconds from the last
record

 I60 continuous Number of audit records
produced in 1 min

 I600 continuous Number of audit records
produced in 10 min

 I3600 continuous Number of audit records
produced in 1 hour

NIDES – Learning time - I

NIDES – Learning time - II

Detecting Masqueraders in Clouds based on
Security Events and NetFlow Data Analysis

Hisham A. Kholidy, Fabrizio Baiardi, and Salim Hariri

A real user

Detecting Masqueraders in Clouds based on
Security Events and NetFlow Data Analysis

Hisham A. Kholidy, Fabrizio Baiardi, and Salim Hariri

A server

Detecting Masqueraders in Clouds based on
Security Events and NetFlow Data Analysis

Hisham A. Kholidy, Fabrizio Baiardi, and Salim Hariri

An OS process

Detecting Masqueraders in Clouds based on
Security Events and NetFlow Data Analysis

Hisham A. Kholidy, Fabrizio Baiardi, and Salim Hariri

ROC curves

Detecting Masqueraders in Clouds based on
Security Events and NetFlow Data Analysis

Hisham A. Kholidy, Fabrizio Baiardi, and Salim Hariri

ROC curves
For local +networks
events

N&H-IDS: signature (or misuse)
detection

 The overall behavior strongly resembles an antivirus
 A pattern database (signature) for known attacks,

each action is matched against each pattern
 Currently an antivirus may store the patterns in a

server in a cloud that checks the actions
 Any matching is recorded
 Anytime a pattern has been fully matched, an alarm

is fired

N&H-IDS: signature detection
 A new challenge

 Describe an attack against a system where the IDS
stores its signature database in a cloud

 List some countermeasures

N&H-IDS: signature detection
 Wrt to Antivirus some differences:

 Dynamic generation of the elements to be matched
 Unknown time inbetween two consecutive generations
 An element can match several patterns

 The complexity is much larger for an IDS than
for an antivirus that has to match a sequence
of characters in a file against a set of patterns

 Cloud power does not help an IDS

N&H-IDS: signature detection
 msg=p1 msg=p2 msg=p1

 If the recognizer is currently in state 3 and a packet
= p1 is sniffed then the next state may be
 The one following 3 = 4
 The one following 1 = 2

 A nondeterministic behavior is required = the status
of the automata is both 2 and 4

32 3 41

Nimbda Signature (log)
GET /scripts/root.exe?/c+dir

GET /MSADC/root.exe?/c+dir

GET /c/winnt/system32/cmd.exe?/c+dir

GET /d/winnt/system32/cmd.exe?/c+dir

GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir

GET /_vti_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir

GET /_mem_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir

GET /msadc/..%5c../..%5c../..%5c/..\xc1\x1c../..\xc1\x1c../..\xc1\x1c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc1\x1c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc0/../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc0\xaf../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc1\x9c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%2f../winnt/system32/cmd.exe?/c+dir

HTTP-WHISKER-SPLICING-ATTACK-SPACE

Signature Snort compatible (snort,prelude,etc)

alert TCP $EXTERNAL any -> $INTERNAL 80 (msg: "IDS296/web-misc_http-whisker-splicing-

attack-space"; dsize: <5; flags: A+; content: "|20|"; classtype: suspicious; reference: arachnids,296;)

 Signature Dragon Sensor

T D T B 10 0 W IDS296:web-misc_http-whisker-splicing-attack-space /20

 Defenseworx Signature

1 B 6 T 0 80 [IDS296/web-misc_http-whisker-splicing-attack-space] "\20"

Pakemon Signature IDS296/web-misc_http-whisker-splicing-attack-space tcp * 80 "|20|"

Shoki Signature

tcp and (dst port 80) and (ip[2:2] > ((ip[0:1] & 0x0f) + (tcp[12:1] & 0xf0) + 5)) and (tcp[13]&16!=0)

65536 SEARCH IDS296 web-misc_http-whisker-splicing-attack-space '0x20' ALL 1 NULL

N&H-IDS:
signature detection & evasion

 When sniffing a packet P the NIDS has no mean
to anticipate
 Whether P will be received
 How P will be handled

 An attacker can iniject in the monitored network
packets to hide other ones or to confuse the IDS
(eg packet with a wrong checksum that the
receiver will discard)

 Encrypted traffic is a further problem

N&H-IDS:
MITRE TACTIC TA005: Defense Evasion

 The rise of defense evasion is mostly due to better
detection and protection technologies and increased
adoption rates.

 Attacks that once slipped trivially past network and
endpoint defenders are now routinely caught, and
adversaries need a way of circumventing security controls

 With the exception of discovery, more techniques that
relate to defense evasion are observed in systems than
any other MITRE ATT&CK™ tactic.

 Persistence is also adopted to defend against better
detection mechanisms

Bypassing NIDS - Fragmentation

 NIDS must reconstruct fragments
 Maintain state = drain on resources
 Must overwrite correctly = more drain on

resources

 Target server correctly de-frags
 Attack #1 - just fragment
 Attack #2 - frag with overwrite
 Attack #3 - start an attack, follow with

many false attacks, finish the first attack

Bypassing NIDS - TCP un-sync

 Inject a packet with a bad TCP checksum
 fake ‘FIN’ packet

 Inject a packet with a weird TCP
sequence number
 step up
 wrapping numbers

Bypassing NIDS – TTL attack

 This is an attack against the synchronization of the
IDS and the end host and requires a router
between the IDS sensor and the end host.

 A packet crafted with a TTL equal to the number of
hops of the router will result in a packet examined
by the IDS but never reaching the end host, thus
desynchronizing the end host and the IDS.

 It can be thwarted by a NIDS that examines the
TTL field and understands the network topology at
the expense of a larger overhead

NIDS - Overwhelming

 Send as many false attacks as possible
while still doing the real attack
 May overload console
 May drop packets
 Admins may not believe there is a threat

 Send packets that “cost” the NIDS CPU
cycles to process
 Fragmented, overlapping, de-synchronized web

attacks with the occasional bad checksum

NIDS - ‘Slow Roll’

 Detect port scans and sweeps
 Obvious: incremental destination ports
 Trivial: randomized ports
 Sweep: one port and many addresses
 Stealthy: random ports and addresses over

time

IP addresses

P
o
r
t
s

Port sweep
Port scan

Plotting all destination
ports from one source IP
to a target network …

IP addresses

P
o
r
t
s

random Simple port walk

Still maps out
a network with
one IP address

N&H-IDS: signature detection
 New attacks can be detected only if the

database is continuously updated and after the
update

 The detection of unknown attacks is fully
delegated to anomaly detection only

 Anomaly detection can discover a new attack
provided that it results in some anomaly for
some time

NIDS e HIDS: new attacks??

 An alternative approach considers the IDS as
a rule base expert system
 A rule database rather than a pattern database
 Rules describe attacks and anomaly

 A generalization (abstraction) procedure can
be applied to rules to discover, at least,
variants of attacks that are already known

Snort

 Freeware.
 Originally designed as a network sniffer.
 Useful for

– traffic analysis.

– intrusion detection.
 Warning: Has become a target of attackers!

 What’s more fun for them than to find a vulnerability
in security software.

Snort

 A good sniffer.
 A detection engine, based on rules.
 Packets that do not match any rule are

discarded (only from the analysis in
general) or they are logged.

 Rule matching packets can also trigger an
alert.

Snort Basics

 Rules try to match intrusions “signatures”
 Examples

 Directory Traversal Vulnerability
 Solaris Sadmind/IIS worm (2001)

 Allowed HTTP GET requests to change to root directory
with “../../”.

 Allowed to copy cmd.exe into the Scripts directory.
 Gained control usually at admin level

GET/ scripts/../../winnt/system32/cmd.exe /c+

copy+\wint\system32\CMD.exe+root.exe

Snort Basics

 Code Red Worm 2001
 Exploited vulnerability in IIS 4.0 and 5.0
 Buffer overflow vulnerability
 Footprint:

/default.ida?
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNN
%u9090%u6858%ucbcd3%7801%u9090%u6805%ucb
d3%u7801

Using Snort

● NIDS mode
● Load snort with a set of rules, configure packet

analysis plug-ins, and let it monitor hostile network
activity

● Sniff mode
● Logger mode
● IPS mode = if it filters traffic

Snort Architecture

 Sniffer
 Preprocessor
 Detection Engine
 Alert Logging

Snort: Architecture
 Packet Sniffer = Taps into network
 Packet Decode Engine

 Uses the libpcap package
 Packets are decoded for link-level protocols, then for higher

protocols.
 Preprocessor Plug-ins

 Each preprocessors examines and manipulates packets, e.g. for
alerts.

 RPC plug-in
 Port scanner plug-in

 Detection Engine
 Checks packets against the various options in the snort rules files.

 Detection Plug-Ins
 Allow additional examinations

 Output Plug-Ins

SNORT Architecture

 Detection Engine
 Signature-based implemented via rule-sets
 Rules

 Consists of rule header
 Action to take
 Type of packet
 Source, destination IP address
 …

 And rule option
 Content of package that should make the packet match the

rule

Snort Rules

 Rules header and rule option

alert tcp !10.1.1.0/24 any -> 10.1.1.0/24 any (flags: SF; msg: “SYN-FIN scan)

Alerts to traffic from outside the 10.1.1.x subnet to the 10.1.1.x subnet with the
Syn and the Fin flags set.

The flag combination is illegal method to handle such illegal/abnormal flag
combinations is not conveyed in the RFC of TCP. So, such illegal/abnormal flag
combinations are handled differently in various operating systems. Different
operating system also generate different kind of responses for such packets.

Rule Header

 It defines the "who, where, and what" of a packet, as
well as what to do in the event that a packet with all
the attributes indicated in the rule should show up.

 The first item is the rule action that tells Snort what to
do when it finds a packet that matches the rule
criteria.

 There are some available default actions in Snort,
other can be defined

Rule header: Action

alert: generate an alert using the selected method
and log

log: log the packet

pass: ignore the packet

activate: alert and then turn on another dynamic rule

dynamic: idle until activated by a rule, then act as a log rule

drop: block and log the packet (a filter and not a sniffer)

reject: block the packet, log it, and then send a TCP reset
if TCP or an ICMP port unreachable if UDP

sdrop: block the packet but do not log it.

Snort Rules

 Rule Header Fields
 Protocol Field

 TCP for example SMTP, HTTP, FTP
 UDP for example DNS traffic
 ICMP for example ping, traceroute
 IP for example IPSec, IGMP
 Others (ARP, RARP, GRE, …) to come

Snort Rules

 Rule Header Fields
 Source and Destination IP Address Field

 Format: Address/netmask or any or
 Address x.x.x.x
 Netmask = bits of network mask
 For example

 24.0.0.0/8 Class A
 24.3.0.0/16 Class b
 192.185.67.0/24 Class C
 192.185.67.188 host address

 Special keywords:
 any
 ! (negation)
 $HOME_NET (variable defined elsewhere)

Rule Options

 This section contains alert messages and
information on parts of the packet to inspect
to determine to take rule action

 All Snort rule options are separated from
each other using the semicolon ";"

 Rule option keywords are separated from
their arguments with a colon ":"

Snort Rules Options

 Four major categories of rule options.

General : provide information about the rule but
do not affect detection

Payload: look for data inside the packet
payload and can be inter-related

Non-payload: look for non-payload data

Post-detection: rule specific triggers that happen after
a rule has ``fired.''

Snort Rules Options

 Session Options
– Allows to capture TCP session.

 Rest Option
– Allows an automatic active response

 Tag Option
– Allows to dynamically capture additional

packets after a rule triggers.

Some options

 msg - prints a message in alerts and packet logs

 logto - log the packet to a user specified filename instead of the
standard output file

 ttl - test the IP header's TTL field value

 tos - test the IP header's TOS field value

 id - test the IP header's fragment ID field for a specific value

 ipoption - watch the IP option fields for specific codes

 fragbits - test the fragmentation bits of the IP header

 dsize - test the packet's payload size against a value

 flags - test the TCP flags for certain values

 seq - test the TCP sequence number field for a specific value

Other options

 ack - test the TCP acknowledgement field for a
value

 itype - test the ICMP type field against a value

 icode - test the ICMP code field against a value

 icmp_id - test the ICMP ECHO ID field against a value

 icmp_seq - test the ICMP ECHO sequence number
against a value

 content - search for a pattern in the payload

 content-list - search for a set of patterns in the
payload

Rule Order

 A packet should be checked in the order

 drop > pass > alert > log

 This scheme is the most secure since no packet passes
through without being checked against all drop rules

 However most of the packets are normal traffic and do not
show any intruder activity. Testing all of the packets against
all alert rules requires a lot of processing power.

 A more efficient, but more dangerous order is

Pass > Drop > Alert > Log

Snort Rules: Example

 Rule Header
 alert tcp $External_NET any -> $Home_Net21

 Rule Options
 (msg: “ftp Exploit”; flow_to_server, established;

content: “|31c031db 41c9b046 cd80 31c031db|”;
reference: bugtraq,1387; classtype:attempted-
admin; sid 344; rev4;)

Snort Rules

 Rule Header
 Action
 tcp: Protocol being used. UDP / IP / ICMP
 $External_NET: This is the source IP, default is any.
 any: This is the source port set to “any”
 ->: Direction of conversation.
 $Home_Net: This is a variable that Snort will replace with
 21: Port to be monitored.

 The header concerns all tcp packages coming from
any port from the outside to port 21 on the inside.

Snort Rules

Rule Options
 (): Rule option is placed in parentheses.
 msg: “ftp Exploit”;
 flow_to_server, established;
 content: “|31c031db 41c9b046 cd80 31c031db|”; check if the

package contains this string, the dangerous payload.
 reference: bugtraq,1387; links to third-party warnings.
 classtype:attempted-admin; Class Types allow users to quickly

scan for attack types
 sid 344; Snort rule unique identifier. Can be checked against

www.snort.org/snort-db.
 rev4; All rules are part of a revision process to limit false

positives and detect new attacks.

Snort Rules

 Rule Options
 Msg Option = message to print

alert udp any any -> 129.210.18.0 / 24 31337 \

(msg: “Back Orifice”;)

 [**] Back Orifice [**]

05/10-08:44:26.398345 192.120.81.5:60256 -> 129.210.18.34:31337

UDP TTL:41 TOS:0x0 ID:49951

Len: 8

Rule:

Log:

Snort Rules

 Rule Options
 Logto Option

 Specifies filename to which to log the activity.
 Allows to separate the annoyances from the

truly dangerous.

alert udp any any -> 129.210.18.0 / 24 31335 \
(msg: “trinoo port”; logto “DDoS”)

Snort Rules

 Rule Options, not paylod
 TTL option

 Allows to use the time to live field in packet
 Format: ttl: number

alert udp any any -> 129.210.18.0 / 24 33000;34000 \
(msg: “Unix traceroute”; ttl: 1;)

Snort Rules

 Rule Options
 ID option

 16-bit value found in the IP header of each
datagram.

alert udp any any -> 129.210.18.0 / 24 33000;34000 \
(msg: “Suspicious IP Identification”; ID: 0;)

Snort Rules

 Rule Options
 Dsize option

 Size of payload

alert icmp any any -> 129.210.18.0 / 24 any \
(msg: “Large ICMP payload”; dsize: >1024;)

Snort Rules

 Rule Options
 Sequence Option

 Value of tcp sequence number

 Ack option
 Value of ack number in tcp

alert tcp any any -> any any \
(msg: “Possible Shaft DDoS”; seq: 0x28374839;)

alert tcp any any -> any any \
(msg: “nmap tcp ping”; flags: A; ack: 0;)

Snort Rules

 Rule Options
 Itype and Icode Options

 Select ICMP message type and operations code

alert icmp 1.1.1.0/24 any -> 129.210.18.0 / 24 any \
(msg: “port unreachable”; itype: 3; icode: 3;)

Snort Rules

 Rule Options
 Flags option

alert tcp any any -> any any \
(msg: “null scan”; flags: 0;)

Snort Rules

 Rule Options
 Content Option

alert udp $EXTERNAL_NET any -> $HOME_NET 53 \
(msg: “Exploit bind tsig Overflow attempt”; \
content: “|00 FA 00 FF|”; content: “/bin/sh”;)

Zeek, previously Bro

 A network analyzer. rules-based engines aims to detect
exceptions, Zeek looks for specific threats and trigger alerts.

 Used as a traditional IDS but more frequently to record
network behavior, i.e. long-term records of all HTTP requests
and results – or tables correlating MAC and IP addresses.

 Zeek stores the network metadata it records more efficiently
so that it can be searched, indexed, queried, and reported in
ways previously unavailable. This makes it especially well-
suited for network anomaly detection and threat hunting.

 A disadvantage is that its deep-packet inspection is resource
intensive.

Structure of the Bro (Zeek)
System

Network

libcap

Event engine

Policy Script Interpreter

Packet Stream

Filtered Packet Stream

Event Stream

Real time notification
Policy script

Event Control

Tcpdump filter

Bro - libcap

• It’s the packet capture library used by tcpdump.
• Isolates Bro from details of the network link

technology.
• Filters the incoming packet stream from the network

to extract the required packets.

eg port finger, port ftp, tcp port 113 (Ident), port
telnet, port login, port 111 (Portmapper).

• Can capture packets with the SYN, FIN, or RST
Control bits set.

Bro – Event Engine

• The filtered packet stream from the libcap is
handed over to the Event Engine.

• Performs several integrity checks to assure
that the packet headers are well formed.

• It looks up the connection state associated
with the tuple of the two IP addresses and
the two TCP or UDP port numbers.

• It then dispatches the packet to a handler for
the corresponding connection.

Bro – TCP Handler

• For each TCP packet, the connection handler
verifies that the entire TCP Header is present
and validates the TCP checksum.

• If successful, it then tests whether the TCP
header includes any of the SYN/FIN/RST
control flags and adjusts the connection’s
state accordingly.

• Different changes in the connection’s state
generate different events.

Policy Script Interpreter

• The policy script interpreter

– receives the events from the Event Engine.

– executes scripts written in the Bro language
which generates events like

• logging real-time notifications,

• recording data to disk

• modifying internal state.
• To add new functionality to Bro we add a new

protocol analyzer to the event engine and then write
new events handlers in the interpreter.

Application Specific Processing -
Finger

Finger request

Event Engine

Generates Finger_request
event

Script interpreter

Tests for buffer overflow,
checks the user against
sensitive ids, etc

Event Engine

Generates event controls for
the reply based on the policy

Finger reply

Suricata

 Introduced in 2009

 Rules-based compatibility with Snort Rules, multi-threading
to process more rules across faster networks, with larger
traffic volumes, on the same hardware.

 A multi-threaded instance will balance the processing load
across every processor on a sensor to achieve 10-gigabit
speeds without sacrificing ruleset coverage,”

 Incorporated the Lua scripting language for greater
flexibility to create rules that identify conditions difficult or
impossible with a legacy Snort Rule.

 It is a little more involved to install and the community is
smaller than what Snort has amassed

Using a pubblic network

 Several institution have to connect remote, local
networks into a single infrastructure

 Leased lines are too expensive
 The most convenient connection exploits a pubblic

network, eg the internet
 The connection security is very low because

information flows on a pubblic network
 This is an instance of the shared connection

problem we will meet again in clouds

Countermeasures - Robustness

 Virtual Private Network
 It emulates a secure connection on top of an

unsafe connection
 Assuming that each local network is

protected by a firewall, secure connections
are established among the firewalls

 Secure = integrity and confidentiality are
achieved by encrypting the traffic between
any pair of firewalls

VPNVLAN

 VLAN denotes a logical network that is set
up to minimise the number of conflicts

 A vlan is built by pairing
 Transmission frequency
 Tags

with a subset of the nodes
 No security property is introduced only for

traffic shaping

Virtual Private Network

InternetInternet

net 4net 4

net 1net 1

net 2

net 3

Encrypted

communication

Virtual Private Network

 Symmetric Encryption due to the large
amount of transmitted data

 A distinct key for each pair of firewalls
 The key is updated according to the amount

of exchanged data
 The key is chosen in a preamble and update

when reaching an amount of information
that is exchanged

VPN and symmetric encryption - I

 The simpliest strategy to share a key
without transmitting it is the
Diffie_Helmann protocol
 each firewall produces a number
 All-to-all exchange
 After the exchange, each firewall produce a

key for each partner
 Man-in-the-middle attack

VPN and symmetric encryption -II

 Each firewall pubblish a pubblic key and
know the corresponding secret key

 The two keys makes it possible to compute
a symmetric key

 Data to be exchanged is protected with the
symmetric key

 IP v6

