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SET MEMBERSHIP PROBLEM

Let us consider the set S={s
1
,s

2
,...,s

n
} of n elements chosen from a very large 

universe U.  Define a data structure supporting queries like “k is an element of S?”

The function f returns value true or false according to the presence of k
in the given set
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CHAIN HASHING

 different hashing techniques optimizing space or time
 balls e bins model: throw m balls in n buckets, each  shot   is independent 

from the other ones
 chain hashing:

 a structure with m positions (bins), an hash function to insert the n 
elements of the set S  (balls)  in one position.

 random hash function; the location of each element is chosen uniformly at 
random

 non approximate look-up 
 all the elements of the same bins are chained in a list
 look-up time is proportional to the number of elements for each bin

 problem: compact bin representation (a lot of bins are empty)
 trade off: number of bins/look up times
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FINGERPRINT HASHING

 Goal: space optimization

 Exploit a hash function to compute the fingerprint of each element

 a 32-bits fingerprint for a 64 bits element

 look-up: search in the fingerprint lists

 approximate set membership problem
 false positives the same fingerprint for different elements
 the probability of false positives depends on the number of bis 

used for the fingerprint
 requires at least n bits, to guarantee a low false positive 

probability
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APPROXIMATE SET MEMBERSHIP PROBLEM

 S may be
 a set of keywords describing the files shared by a peer, selected form 

the Universe of all the keywords (Gnutella 0.6)
 The set of pieces of file owned by a peer (BitTorrent)
 The set of the 'crackable password' with the goal of showing to the 

user which passwords have to be avoided

 Problem: choose a representation of the elements in S such that: 
 the result of the query is computed efficiently
 the space for the representation of the elements is reduced

 to reduce the space required to represent the elements, the 
results may be approximated 

 possibility of returning false positives
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APPROXIMATE SET MEMBERSHIP PROBLEM
An approximate solution to the set membership problem:

        Trade off between:

• Space required

• Probability of false positives
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BLOOM FILTERS: COSTRUCTION

Given 
● a set S={s

1
,s

2
,...,s

n
} of n elements 

● a vector  B of m (n<<m) bits, b
i 
∈ {0,1}

● k hash independent functions h
1
, …, h

k
, for each h

i
: S ⊆ U →[1..m],  which         

   return a value uniformly distributed in the range [1..m]. 

Construction procedure for a Bloom Filter B[1..m]:
●  for each x∈ S, B[h

j
(x)]=1, ∀ j = 1,2,...k

●  a bit in B may be target for more than 1 element
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BLOOM FILTERS: LOOK UP

 To verify if y belongs to the set S mapped on the Bloom Filter, apply the k hash
 functions to y
 y∈S if B[h

i
(y)]=1, ∀ i=1,..k 

 if at least a bit = 0, the element does not belong to the set.

False positives: 
To test for membership, you simply hash the 
string with the same hash functions, then see 
if those values are set in the bit vector. 

If they aren't, you know that the 
element isn't in the set. 

If they are, you only know that it might be, 
because another element or some combination 
of other elements could have set the same 
bits.
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BLOOM FILTERS: TRADE OFF

The price paid for this efficiency is that a Bloom filter is a 
probabilistic data structure: it tells us that the element either 
definitely is not in the set or may be in the set.
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PROBABILITY OF FALSE POSITIVES
 let us consider a set of n elements  mapped on a vector of m bits 

through k hash functions.

 The hash functions used in a Bloom filter should be independent and 
uniformly distributed and as fast as possible .

 for instance hi(x) = MD5( x + i) or MD5(x || i) would work

 basic assumption: hash functions random and independent
 balls e bins paradigm: like throwing  k×n balls in m buckets

 goal:  evaluate the probability of false positives
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PROBABILITY OF FALSE POSITIVES

First step: compute the probability that, after all the elements are mapped 
to the vector, a specific bit of the filter has still value 0

The approximation is derived from the definition of e
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PROBABILITY OF FALSE POSITIVES

 A fraction of             bits are 0, after its construction. 

 Consider an element not belonging to the set: apply the k functions, a false 
positive is obtained if, all hash functions, return a value = 1

 Probability of false positives =                         
    depends on

 m/n:  number of  bits exploited for each element of the set
 k: number of hash functions

 If m/n is fixed, it seems two conflicting factors for defining k do exist....
 decreasing k increases the number of 0 and hence the probability to have 

a false positive should decrease, but....
 increasing k increases the number of elements to be checked and the 

precision of the method. Hence the probability of false positive should 
decrease...
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PROBABILITY OF FALSE POSITIVES
 lFix the ratio m/n, the probability of false negatives first decreases, then 

increases, when considering increasing values of k
 es: m/n=2, a few bits for each element, “too much hash functions” cannot 

be exploited because they fill the filter of 1.
 es: m/n=10, a larger number of hash functions decreases the probability 

of false positives
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PROBABILITY OF FALSE POSITIVES
 let us now suppose that k is fixed, the probability of false positives 

exponentially decreases when m increases (m number of bits in the filter).
 for low values of m/n (a few bits for each element), the probablity is higher 

for large values of k
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PROBABILITY OF FALSE POSITIVES

A Bloom filter becomes effective when m= c × n, with c constant 

value (low value), for instance c = 8

In this case with 5-6  hash functions the probability of false 

positives is low

Good performances with a limited number of bits
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PROBABILITY OF FALSE POSITIVES
 trade-off between space/number of hash functions/probability of false 

positives
 if n and m are fixed (fix the number of bits for each element) 

 determine which is the value of k minimizing the probability of false 
positives

 compute the derivative of the function of the previous slide so 
obtaining the minimum  (ln 2 ≈ 0.7)

To this value, corresponds a value of the probability equal 
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PROBABILITY OF FALSE POSITIVES
 probability as a function of the number of elements of the set, with k 

optimum and m variable as a function of n
 logarithmic scale
 if the number of bits for each element is not sufficient the probability 

exponentially grows
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PROBABILITY OF FALSE POSITIVES

with the values computed in the previous slides, the probability that one bit is 

still equal to 0 after the application of the k functions is

the optimal values are obtained when the probability that a bit is equal to 0 

after the application of the k functions to the  n elements is equal to ½

an  “optimal” Bloom Filter is a “random bitstring” where half of the bits 

chosen uniformly at random, is 0. 
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BLOOM FILTERS: OPERATIONS

 Union - Given two Bloom Filters, B1 e B2 representing, respectively, the set S1 
and S2 through the same number of bits and the same number of hash 
functions, the Bloom filter representing S1 ∪ S2 is obtained by computing the 
bitwise OR bit of B1 and B2

 Delete: note that it is not possible to set to 0 all the elements indexed by the 
output of the hash functions, because of the conflicts

 Counting Bloom Filters: each entry of the Bloom Filter is a counter, instead 
of a single bit

 exploited to implement the removal of elements from the Bloom filter
 at insertion time, increment the counter
 at deletion time, decrement the counter
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BLOOM FILTERS: OPERAZIONS

 Intersection: Given two Bloom Filters B1 and B2 representing 
respectively,  the sets S1 and S2 through the same number of bits and 
the same number of hash functions. 

 Bloom Filter obtained by computing the bitwise and of B1 and B2 
approximates S1 ∩ S2

 as a matter of fact, if a bit is set to 1 in both Bloom filters, this may 
happen because:

 this bit corresponds to an element ∈ S1  ∩ S2, therefore it is set 
to 1 in both filters: in this case no approximation

 this bit corresponds to an element ∈ S1 - (S1 ∩ S2) and to an 
element ∈ S2 - (S1 ∩ S2) hence it does not correspond to any 
element in the intersection
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BLOOM FILTER: APPLICATIONS
 Approximate Set Re conciliation (BitTorrent)
 Bloom Filter Based Routing, implemented in Gnutella 0.6
 Several applications in the P2P area....

Bloom Filter routing

in Gnutella
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BLOOM FILTER BASED ROUTING

 a naive implementation  in Gnutella 0.6

 a more refined implementation: Attenuated Bloom Filters

 each peer: 
 has a vector of bloom filters for each connection C in the P2P overlay
 the first filter in the vector summarizes the resources published by 

the one-hop neighbour connected through C
 the i-esimo filter is obtained by merging the filters of all the 

neighbours which can be reached by i hops through the connection C.
 Bloom Filters guide the routing
 attenuated: exponentially decreasing waeights are paired with the 

different filtering levels
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ATTENUATED BLOOM FILTERS
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ATTENUATED BLOOM FILTERS

 Query evaluation with respect to an Attenuated Bloom Filter
 An example: in the attenuated Bloom Filter F

AB 
the value associated to the 

query
 “
Uncle Jhon's Band” is 1 /4 +1/8 = 3/8 and this gives the probability 

that the query is solved by exploiting the connection with node B in 2 or 3 
steps 

 Query Routing Protocol:
 depth first search guided by the evaluations returned by the attenuated 

Bloom Filters

 Update Protocol: 
 flooding of the modified filter with TTL=d
 to reduce the number of message

 store the filters of the neighbours and sends only the modified values
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BLOOM FILTERS APPLICATIONS

Some applications....

 Google BigTable and Apache Cassandra use Bloom filters to avoid costly disk 

lookups considerably and to increases the performance of a database query.

 The Google Chrome web browser uses a Bloom filter to identify malicious 

URLs. Any URL is first checked against a local Bloom filter and only upon a 

hit a full check of the URL is performed.

 Bitcoin uses Bloom filters to verify payments without running a full network 

node.

 Gnutella 0.6 exploits a simplified version of Bloom Filters

but many other ones currently exist....
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BLOOM FILTERS: APPLICATIONS
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PROBLEM CONTEXT

 let us first consider the problem context which brings to the definition of 

the Merkle Trees

 many fragments of a single object are distributed across many nodes of a 

distributed system
 a file is divided into chunks and distributed to the peers of a P2P network 

(eMule, Bittorrent)

 there is a trusted 3rd party
 must guarantee the integrity of the data
 may be a trusted server which does not belongs to the P2P network
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SOLUTION 1: SINGLE HASH

 Hash the object
 the 3rd party stores the hash

 pros:
 simple
 small amount of state stored per object

 cons:
 must retrieve all fragments before checking
 every write does work proportional to the size of the 



39
Laura Ricci 

Data Structures for P2P Systems 
Dipartimento di Informatica
Università degli Studi di Pisa

SOLUTION 2: HASH EACH FRAGMENT

 Hash each fragment

 the 3rd party stores the hashes

 pros:
 fine-grained data integrity
 each write does work proportional to the size of the fragment

 cons:
 large amount of state per object, i.e. doesn’t scale
 checking entire object requires  many hash function checks



40
Laura Ricci 

Data Structures for P2P Systems 
Dipartimento di Informatica
Università degli Studi di Pisa

EMULE: INTELLIGENT CORRUPTION HANDLING

 Each file is decomposed into a set of parts and each part is fragmented
 9.28 MB part
 each part is divided into  chunks(blocks) of 180K bytes (53 blocks for each 

part)
 compute a MD4 hash for each part
 HashSet: includes the hash of each part of the file
 Link e2k with HashSet

        ed2k://|file|<nome file>|<dimensione file>|<file hash>|p=<hash set>|

  

/BLOCCO
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EMULE: INTELLIGENT CORRUPTION HANDLING

 An example of e2k link for a file composed by a single part
  ed2k://|file|ubuntu-5.10-install-i386.iso|lungh.file|901E6AA2A6ACD.........          

An example of e2k  link for a file composto composed by a set of parts
 ed2k://|file|ubuntu-5.10-install-i386.iso|lungh.file|901E6AA2A6ACD......|

          p=264E6F6B.....:17B9A4D1DCE0E4C.....|/ 

includes the hash of the entire file and of each part of the file

/BLOCCO
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INTELLIGENT CORRUPTION HANDLING

 Basic idea of ICH: repeat the download of each chunk of the part, until 
the part is repaired

 The client download the hash set of the file before any part

 each time a client download a part of the file, it computes the hash H of 
that part and compares H with the corresponding value in the hash set

 if the values are equal, the part is not corrupted and it is put in the 
shared folder

 If the values are not equal, the is repeated, chunk by chunk
 For each chunk/block downloaded, the hash of the entire part is 

computed. If the part is “repaired”, the download of further chunks is 
avoided

 with this procedure the 50% of the chunk download are avoided on the 
average
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SOLUTION 3: MERKLE TREE
 Hash trees or Merkle trees

 a data structure summarizing information about a big quantity of data 
with the goal to check the content 

 introduced by Ralph Merkle in 1979

 characteristics
 simple
 efficient
 versatile

 a complete binary tree built starting form a initial set of symbole
 exploits a hash function H (SHA1, MD5)
 leaves:  H applied to the initial symbols
 internal nodes: H applied to the sons of a node
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SOLUTION 3: MERKLE TREE
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SOLUTION 3: MERKLE TREE

 Build Merkle tree

 3rd party stores root

 log(n) hashes are sufficient for checking each fragment

 “Data integrity over untrusted storage with small  communication cost”

  Pros:
 scales logarithmically in the number of objects
 fine-grained data integrity
 each write does work proportional to the size of the fragment

 Cons:
 static: smallest segment size = smallest unit of verification
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MERKLE TREE DEFINITION

 Let us consider an initial set of symbols S, S={s
1
, ...., s

n
}, n=2h, h tree 

height

 Merkle Tree MTP Merkle Tree Procedure= <CMT,DMT>

 CMT (Coding Merkle Tree): starting from the initial set S of symbols, 
build the complete binary tree of height h

 Leaves               = H(s
i
)

 Internal Nodes = hash of the concatenation of the hash values of 
the sons H(L||R)

                                  
 Output

 the root of the binary tree
 a “witness” w

i
 for each symbol s

i

 w
i
 = siblings of the nodes on the path from the leaf s

i
 to the root
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MERKLE TREE DEFINITION
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MERKLE TREE

 DMT(s
i
,w

i
,root): Decoding Merkle Tree

 The soundness of s
i
 is deduced from the comparison between the root 

generated during the decoding phase and the root generated in the coding 

phase

 Each symbol s
i
 is authenticated by considering the witness  w

i
 and the root
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MERKLE TREE

To verify the authenticity of a block, compute the labels of the internal nodes, 
through the hash function. If the computed value for the root of the Merkle 
tree is the same of that found on a trusted server, the block is correct

If someone would corrupt that block, it would be very computationally expensive 
to define an authentication path returning the correct hash starting from the 
corrupted value of the block.
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AICH:ADVANCED INTELLIGENT CORRUPTION HANDLING
 the standard ICH is pretty effective although it has its limitations as only 

the whole 9.28 MB can be verified and no finer blocks

 AICH creates much finer hashes and cares about their integrity

 recall: 9.28 MB parts in a file. Each part is divided into 180 KB blocks, 
resulting in 53 blocks for each part

 
 AICH computes a hash value for each block (block hash) using the SHA1 hash 

algorithm
 the size of this hash set may be huge: 24.000 hash for a file of 4 GB 

 The hash set of a file: set of hashes of all the blocks of the file
 starting from the block hashes, the hash set is  organized as a Merkle 

tree computed by eMule for each shared file
 stored in /config/known_64.met
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APPLICATION OF MERKLE TREE: EMULE
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AICH:ADVANCED INTELLIGENT CORRUPTION HANDLING

 when a peer detects a corrupted part, it looks for a "recovery packet"
 it includes the 53 block-hash of the corrupted part
 a “Merkle witness” or check-hash for that packet to verify its 

correctness
 the number of witness is such that 2x ≥ [n° parts] , where x is the number 

of the witness (check hash).

 when the peer detecting the corrupted part receives the check-hash
 checks the correspondence between the trusted root hash and the root 

computed through the check hashes
 if the two root hashes are equal, it compares the 53 hashes of the 

corrupted part with those received in the packet. When a correspondence 
is detected, the block is maintained, otherwise the block is corrupted and 
it is downloaded again

 for instance, if a single byte is corrupted, eMule maintains all the blocks, with 
the exception of the single block including the corrupted byte
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AICH:ADVANCED INTELLIGENT CORRUPTION HANDLING

 The Root Hash must be trusted

 If the root hash is included in a link e2k and the server publishing that 
link is considered trusted, the Root hash is considered trusted as well

 Otherwise, the link may be returned from the peers which are fonts of 
the file

 In this case the root hash is considered valid if at has received the root 
hash from at least 10 different fonts

 voting algorithm

 If the AICH system cannot be exploited, because a root hash has not 
been detected, eMule switches to the ICH to recover the corrupted part
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MERKLE TREES: APPLICATION
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