

VPN and symmetric encryption -II

 Each firewall pubblish a pubblic key and
know the corresponding secret key

 The two keys makes it possible to compute
a symmetric key for each ordered pair of
firewalls

 Data to be exchanged is protected with the
symmetric key

 IP v6

VPN: a shared problem

 Any implementation of any VPN may be the
target of a Denial of Service attack

 A VPN has to decrypt any message it receives. If
the output satisfies the protocol, it forwards the
cleartext otherwise it discards the message

 On receiving a flood of fake messages, the
receiver will be busy to discard them and cannot
run legal applications or receive legal messages

 This shows that any security solutions that only
applies encryption cannot guarantee resource
availability

IPSEC

 An IPv4 extension to authenticate and encrypt
information flows, to be used till IPv4 will be replaced by
IPv6  

 There are further solutions that offer security service at
distinct level of the OSI stacks (PGP, HTTPS, SSL, etc).

 Two IPSEC behaviours (protocols)
 Authentication Mode = authentication header
 Encapsulated Security Payload = the information is encrypted
 Both protocols can be used in one of two modes

 Transport Mode = the original packet is updated by inserting new
fields

 Tunnel Mode = the old IP is protected and becomes the information
of a new packet

IPSEC can also be used between

• two hosts (even clients),

• a gateway and an host

• two gateways.

By replacing IP with IPSEC, we increase communication
confidentiality and integrity in a more transparent way for
the involved hosts

No update to the software or hardware network
components to adopt IPSEC.

IPSEC

IPSEC defines the following, further protocols

AH (Authentication Header) it protect the integrity of
and authenticate the data

ESP (Encapsulating Security Payload) it offers
confidentiality because of payload encryption.

IKE (Internet Key Exchange) two partners can agree
on the key to be used and on how long it should
be used

ISAKMP (Internet Security Association and Key
Management Protocol) it is used to set up and
update “ Security Association (SA)” and their
attributes

IPSEC

A Security Association (SA) describes a directed connection
together with the security services paired with the traffic it
transmits

To secure a bidirectional connection, two SAs are required,
one in each direction

An SA also includes any information to execute the security
services

The security services of an SA are implemented either
through AH or through ESP. In general the protocols are
never applied simultaneously

IPSEC-SA

SA unidirectional

SPI – Header field

There are two types of SA that introduce some updates to an IP
packet:

Transport mode (SA between two hosts) the security header
immediately follows the IP header.

Tunnel mode (at least one end point is a gateway) there are
two IP headers

• The first one is the more external one and it shows where the
 tunnel ends
• The inner one defines the packet final destination

IPSEC

IPSEC

Authentication Header (AH)

IPSEC

Encapsulating Payload Protocol (ESP)

IPSEC

Authentication Mode

ESP

IPSEC

IPSEC Authentication Header (AH)

Original IP packed

MD5/SHA-1

Authenticated packet

IPSEC: ESP in Transport Mode

IP packet with ESP in Transport mode

Original IP packet

IPSEC

IPSEC: ESP in Tunnel Mode

new IP
 header

IP packet ESP + Tunnel mode

Original IP packet

Applying several SAs

SSL vs IPSEC

SSL = applicative VPN

Four protocols

SSL

 Fragment, at most 16384 bytes (2**14)

 SSLv3 does not specify a compression
method
 No information loss, and length increase

should be lower than 1024

 Default = no compression

 Encryption methods
 Idea (128) des (56) triple des (168)

 Stream cipher: rc4-40, rc4-128

Some definitions

 session:

 association between a client and a server that defines a set of
parameters such as algorithms used, session number etc.

 a session is created by the Handshake Protocol that allows
parameters to be shared among the connections made between the
server and the client. Sessions avoid negotiation of new parameters
for each connection.

 connection: logical client/server link, associated with the provision of a
suitable type of service. In SSL terms, it is a peer-to-peer connection with
two network nodes.

 A single session is shared among multiple SSL connections between the
client and the server. Multiple sessions may be shared by a single
connection, but this is not used in practice.

Session state

Session identifier: an arbitrary byte sequence, chosen by the
server to identify the state of an active session and can be reused
to continue the session ;

 Peer certificate: the node certificate that may not exist;
 Compression method: the algorithm to compress the data;
 Cipher spec: the encryption algorithm and the one use to compute

the MAC. It also defines cryptographic attributes as the
hash_size;

 Master secret: a 48 byte secret information shared by the client
and the server that will be used to compute the encryption keys;

 Is resumable: a flag that shows if the session can be reused

Connection State

The connection state is defined by the following parameters:

 Server and client random: a random byte sequence chosen by the client
and by the server for each connection ;

 Server write MAC secret: to compute the MAC on the server data ;
 Client write MAC secret: to compute the MAC on the client data;
 Server write key: to encrypt the data server  client ;

 Client write key: to encrypt the data client  server ;
 Initialization vectors: a data for Cipher Block Chaining encryption.

is shared by both partners because it is
needed both to encrypt and decrypt.

 Sequence numbers 0.. 264-1: each partner stores and manages sequence
numbers to send and receive messages
on each connection. A number is zeroed when
one partner sends a change cipher spec.

Record Protocol

 Frames and encrypts upper level data into one
protocol for transport through TCP (reliable
communications)

 5 byte frame

 1st byte protocol indicator

 2nd byte is major version of SSL

 3rd byte is minor version of SSL

 Last two bytes indicate length of data inside
frame, up to 214

 Message Authentication Code (MAC)

The Four Protocols

 Handshaking Protocol
 Establish communication variables

 ChangeCipherSpec Protocol
 Alert to a change in communication variables

 Alert Protocol
 Messages important to SSL connections

 Application Protocol: the one that is
encrypted

Four phases of SSL

Four Phases

Establishing security capabilities

 It exchanges security capabilities, started by the client_hello
message from the client to the server. It contains various
parameters:

 client_hello:
 version:

 client random : 32 bits timestamp + 28 bytes of random generated by
client

 session Id: variable session length, 0 mean new session, else client
want to update existing session.

 cipher Suite : list of the course for decreasing order like keys,
encryption methodology, etc..

 compression Method: method which used for compression etc

Establishing security capabilities

Establishing security capabilities

server_hello

• version: either send by client or server version if
• server random: similar type of client session but
 independent of client.
• session Id: if client id is 0 server put new session id which
 indicates new session else client id
• selected Cipher Suite: selected suites by client
• selected compression method: selected compression
 algorithm used in during transfer.

Phase-2: Server Authentication
and Key Exchange

Phase-2: Server Authentication
and Key Exchange

The server sends to the client.
 Certificate: it conveys server certificate to the client.

 server_key_exchange: server key exchange parameters sent
if server certificate does not contains enough data to allow
the client master pre secret.

 certificate_request: server request certificate from the client
it has two things: certificates types with list of certificate
types client may offer and list of distinguished name of
acceptable certificate authorities.

 server_hello_done: no parameter, it indicates client can
proceed with this phase exchange.

Phase-3: Client Authentication
and Key Exchange

Phase-3: Client Authentication
and Key Exchange

The client sends to the server.

 certificates: this message is sent if not suitable certificate is
available, if some aspect change unexpectedly

 client_key_exchange: depending on the cipher suit selector on
phase-1, with this message either pre master secret and
parametrs sent which is used to calculate both side,

 certificate_verify: use to provide explicit verification of client
certificate. it must immediately follows client_key_exchange.

Premaster secret vs secret

master_secret = MD5(pre_master_secret || SHA(‘A’ || pre_master_secret ||
ClientHello.random || ServerHello.random) || MD5(pre_master_secret || SHA(‘BB’ ||
pre_master_secret || ClientHello.random || ServerHello.random)) ||
MD5(pre_master_secret || SHA(‘CCC’ || pre_master_secret || ClientHello.random ||
ServerHello.random));

Cifratura del numero random
con chiave pubblica
del server

Phase-4: Finalizing Handshake
Protocol

Phase-4: Finalizing Handshake
Protocol

 Once session has been established then SSL
record protocol start sending data

 It is only session which enables multiple
connections.

 The SSL protocol creates a session identified by
cryptographic parameters. A session parameters
can be used across multiple connections to avoid
time consuming new security parameters.

Detail ChangeCipherSpec
Protocol

 Special protocol with only one message

 When Client processes encryption
information, it sends ChangeCipherSpec
message
 Signals all following messages will be

encrypted

 ChangeCipherSpec is always followed by
Finished message

Detail: The End of the Beginning

 Upon receipt of ChangeCipherSpec, Server
sends its own ChangeCipherSpec and
Finished messages

 After both Client and Server receive Finish
messages, Handshaking phase is over

 Any following communication is encrypted

 Encryption and compression methods can
be changed with new ChangeCipherSpec
messages

SSL – Record Protocol

Can they be swapped?

Why?

Message Authentication Code

 MAC secures connection in two ways
 Ensure Client and Server are using same

encryption and compression methods

 Ensure messages sent were received without
error or interference

 Both sides compute MACs to match them

 No match = error or attack

MAC

hash(MAC_write_secret || pad_2 || hash(MAC_write_secret || pad_1 || seq_num
|| SSLCompressed.type || SSLCompressed.length || SSLCompressed.fragment))

where :

 ||= concatenation;

 MAC_write_secret: secret shared key;

 hash: hash algorithm (MD5 o SHA-1);

 pad_1: byte 0x36 (00110110) repeated 48 times (384 bit) for MD5 and 40 (320
bit) for SHA-1;

 pad_2: byte 0x5C (01011100) repeated 48 times for MD5 and 40 for SHA-1;

 seq_num: sequential number of the message;

 SSLCompressed.type: higher level protocol to be applied;

 SSLCompressed.length: length of the compressed packet;

 SSLCompressed.fragment: compressed fragment (the clear text fragment if no
compression is applied).

Alert and Application
Protocols

 Alert protocol always two byte message
 First byte indicates severity of message

 Warning or Fatal

 A Fatal alert will terminate the connection

 Second byte indicate preset error code

 Secure connection end alert not always used

 Application Protocol is HTTP, POP3, SMTP,
or whatever application is being used
 Simply give a datagram to the Record Layer

Alert = Exception

 unexpected_message;

 bad_record_mac;

 decompression_failure;

 handshake_failure: the sender cannot negotiate an acceptable set of parameters

 illegal_parameter: an uncorrect handshake parameter.

 close_notify: sent by each side before closing its side of the connection

 no_certificate: reply if no certificate can be used ;

 bad_certificate: the received certificate has been manipulated

 unsupported_certificate: the receiver certificate is not supported ;

 certificate_revoked, _expired, _unknown: the certificate has been revoked, or is out
of date or it cannot be elaborated

Benefits

 Ease of implementation
 For network application developers

 As easy as implementing unsecured Sockets

 For network implementation developers
 Simply add layer to established network protocol

stack

 For Users
 Only need to authorize certificates

Drawbacks

 More bandwidth needed

 Slower

 Needs a dedicated port – 443 for HTTPS

 Assumes reliable transport for underlying
transport protocol
 No UDP

 Implications for streaming media, VoIP

HeartBleed

 A vulnerability discovered in April of 2014; it allowed
attackers unprecedented access to sensitive information,
and it was present on 17% web servers,

 Caused by a flaw in OpenSSL, an open source code
library that implemented the Transport Layer Security
(TLS) and Secure Sockets Layer (SSL) protocols.

 A malicious user could easily trick a vulnerable web
server into sending sensitive information, including
usernames and passwords.

HeartBleed

 A heartbeat is an important part of TLS/SSL protocols

 Essentially, it is how two communicating computers let
each other know they are still connected even if the
user isn't downloading or uploading anything at the
moment.

 Occasionally, one of the computers will send an
encrypted piece of data, a heartbeat request, to the
other. The second computer will reply back with the
exact same encrypted piece of data, proving that the
connection is still in place. Crucially, the heartbeat
request includes information about its own length.

HeartBleed

 If you haven't done anything in a while your browser
might send a signal to webmail servers saying

 "This is a 40 KB message you wiil get. Repeat it all back

to me."

 When servers receive that message,

 they allocate a 40 KB memory buffer based on the
reported length of the heartbeat request.

 they store the encrypted data from the request into
that memory buffer,

 They read the data back out of it and sends it back to
the browser.

HeartBleed Vulnerability

 OpenSSL implementation of the heartbeat functionality
was missing a crucial safeguard: the server that
received the request never checked to make sure the
request was actually as long as it claimed to be.

 So if a request claims it was 40 KB long but was actually
only 20 KB, the receiving server would set aside 40 KB
of memory buffer, then store the 20 KB it actually
received, then send back that 20 KB plus whatever
happened to be in the next 20 KB of memory.

 That extra 20 KB of data is information that the attacker
has now extracted from the web server.

HeartBleed Attack

 The attacker has no way to know in advance what
might be lurking in that 20 KB grabbed off the server

 There are a number of possibilities. It could be

 gibberish or useless cruft

 SSL private keys, which would enable the decryption
of secure communication to that server unlikely, but
the holy grail for an attacker).

 usernames and passwords that had been submitted
to applications and services running on the server.

HeartBleed Code

 It's not clear if any real-world exploitation of the
vulnerability took place before it was widely publicized.

 Attempted attacks detected by security companies as early
as 2013 maybe were probing the vulnerability and some
think the attackers were government agencies.

 After April of 2014, when the vulnerability was made
public, companies scrambled to update their systems, but
several attacks where successful

 An attack on Community Health Systems that stole patient
data was blamed on Heartbleed, as the theft of hundreds
of social ID numbers from the Canadian Revenue Agency.

HeartBleed Attacker

 The coding mistake that caused Heartbleed is due to a
single line of code:

memcpy(bp, pl, payload)

 The command copies data to bp from pl and payload is
the length of the data being copied.

 The problem is that there's never any attempt to check
if the amount of data in pl is equal to the value given of
payload.

VPN – The unsolved problem

 If a node hosts some malware, connecting
it through a vpn does not solve the
problem

 The trust on a machine strongly depends
upon the user and the machine status

 Encryption neglects the context and hence
cannot solve all the problems

 We need distinct inventories

Inventories

 Asset inventory:
 for each machine information on the os, the ids,

the patches that have been applied

 for some machines no info

 User inventory:
 the role of each user,

 the resources it needs to access

 Certificates to prove the identity of a
machine and of a user

Trust engine

 When a user A wants to access a resource
R using a machine M, the engine computes
a trust value

 How much we can trust A using M to access
R

 Access is granted according to the security
policy that pairs each R with a trust
threshold

Zero Trust – The future of VPN

U1

Ui

Un

Proxies

M1

Mi

Mn

Trust
Engine R1

R2

Rk

Asset Policy User

The inventory

Proxies

 Google is proposing a system design approach
that strongly uses proxy to decouple from

 Security

 Reliability

the various components of an application

 Properties of a proxy can be implemented and
tested more easily due to the low amount of
software

 Proxies can also simplify load balancing and
handle request overloads

Zero Trust

 The proxy receives a request

 It transmits the request parameters and the certificates
to the trust engine

 If the engine grant access, the proxy

 creates an encrypted connection to the machine

 interfaces only the access to a resource or even the
requests

 can also act as a load balancer but its main role is to
enforce control

 Proxy = firewall for services

Proxy Advantages

 User Identity Awareness and Protectio.

 Service Usage, Visibility and Control:

 Secure Encrypted Traffic

 Detect and Prevent Advanced Threats by
content analysis and anomaly detection

 Functions scalability

 Deployment Flexibility: proxies for distinct
services with distinct security requirements

Zero Trust

 Identities of the machine and of the user are
verified using certificates

 Problems arise to store the certificates in a
safe and secure way

 In particular, we have to relate the
configuration of the machine and the identity

 Identity is not a serial number, but a serial
number, an OS, an OS configuration ….

Zero Trust

 It overcomes perimeter defence us vs them), the
access is granted according to the status of the
requester (user+machine) and not according its
physical position or proximity to the resource

 Generalizes defence -in-depth

 Critical point: asset inventory, zero trust cannot be
adopted if the inventory cannot be built

 This points out that no security without inventories

 The least privilege strikes back :-D

Countermeasures - OS

 An OS that can offer a large set of security
policy native rather than a predefined one

 Implemented by the OS, built in the OS,
rather than emulated on top of the OS using
the ones the OS defines

 Large set of choices = MAC + DAC + RBAC ...

 It increases the security of the applications of
networking and of all the applications it
supports

Security Enhanced Linux

 A set of mechanisms to implement MAC + DAC
security policies as OS policy

 A set of tools that support
 A simple description of the security policy of interest

 Check the consistency of the description

 Produce the information to enable the adoption of the
policy by the OS

 Evolution of two OSs: Flask e Fluke

 Both are microkernel OS

 NSA + NAI + MITRE

SELinux – NSA statement
The increased awareness of the need for security has resulted in an
increase of efforts to add security to computing environments. However,
these efforts suffer from the flawed assumption that security can
adequately be provided in application space without certain security
features in the operating system. In reality, operating system security
mechanisms play a critical role in supporting security at higher levels. This
has been well understood for at least twenty five years and continues to be
reaffirmed in the literature. Yet today, debate in the research community as
to what role operating systems should play in secure systems persists. The
computer industry has not accepted the critical role of the operating system
to security, as evidenced by the inadequacies of the basic protection
mechanisms provided by current mainstream operating systems. The
necessity of operating system security to overall system security is
undeniable; the operating system is responsible for protecting application-
space mechanisms against tampering, bypassing, and spoofing attacks. If it
fails to meet this responsibility, system-wide vulnerabilities will result.

SELinux – NSA: an update

The increased awareness of the need for security has resulted in an
increase of efforts to add security to computing environments.

However, these efforts suffer from the flawed assumption that
security can adequately be provided in application space without
certain security features in the operating system. However is simpler
and resulting in a larger return for the computer industry to not
accept the critical role of the operating system to security, as
evidenced by the inadequacies of the basic protection mechanisms
provided by current mainstream operating systems. Instead, the
computer industry will offer further products to increase the very low
security that a standard OS offers.

An interesting comment...

Let me assure you that this action by the NSA was
the crypto-equivalent of the Pope coming down off
the balcony in Rome, working the crowd with a few
loaves of bread and some fish, and then inviting
everyone to come over to his place to watch the
soccer game and have a few beers.

There are some things that one just never expects to
see, and the NSA handing out source code along with
details of the security mechanism behind it was right
up there on that list.

Why do we need a SE Linux rather than
Linux?

Definition of the
security policy

Why do we need a SE Linux and not only
Linux?

Definition of the
security policy and
 its implementation

The least privilege
principle strike again

SeLinux vs Linux

 Linux defines the user rights on resources

 Selinux defines

 The rights of each program on resources

 The programs that each user can run

 Rights are defined in terms of types, of roles and
of levels

 Type1 can do this op on type2

 This role can run program with these types

 level comparison (orthogonal)

SE - Linux

 Final goal: the security policy is a
configuration parameter

 Both MAC and DAC security policy can be
defined

 No notion of root user
 Model to define security policies is based

upon two prototypes: Flask and Fluke

In brief – what SE Linux covers

 DAC = Discretionary Access Control = user rights
are defined by the owner

 MAC = Mandatory Access Control = system wide
constrains that the owner has to respect

 RBAC = Role Based Access control = rigths
defined according to the user role

 Role= set of users = distinct rights of the same
user at distinct times

 MLS = multilevel security = MAC constrain defined
in terms of levels of subjects and objects

General Model - SID

 Each subject and each object is paired with a
security context, the one used to solve access
control decisions

 Together with the user it defines the context =
user, type, role, level

 This information is stored in a security server that
is invoked before executing an operation

 Each process can only access a logical pointer to
this context that it transmits to the server

We have already seen this
Pointer - I

Proci

Prock

punt

punt

Package that should
be robust

Procp

Prock

Pointer array

i

i

An index is transformed into a
pointer by accessing the

pointer array

A more robust version

Relation among names, roles
etc.

Type Enforcement

 Object: system item that is acted upon (files, IPC, sockets, etc….)

 Subject: process that is requesting access to an object

 All Objects and Subjects contain a security context

 Security Context(s) are composed of four parts:user, role, type, and

level. Sometimes level is missing

 All Security Context components are checked against the policy to see

if access is allowed.

 Type is the base component while role and user are used to further

restrict type enforcement

TE Access Control

 Source type(s): The domain type of the process accessing the

object

 Target type(s): The type of the object being accessed by the

process

 Object class(es): The class of object to permit access to

 Permission(s): The kind of access permitted for the indicated

object class

allow user_t bin_t : file {read execute write getattr setattr}

Type Enforcement

 Several major keywords

 type

 attribute

 typeattribute

 typealias

 allow

 dontaudit

 auditallow

 neverallow

Type Enforcement

rule_name src_type_set target_type_set : class_set perm_set;

allow user_t bin_t : file { read getattr } ;

allow user_t bin_t : dir { read getattr search } ;

#invalid since file does not have a search permission

allow user_t bin_t { file dir } {read getattr search } ;

#valid

#dontaudit when this access is denied

dontaudit httpd_t etc_t : dir search ;

#audit when this access is allowed

#by default allowed access is not audited

auditallow domain shadow_t : file write ;

#This statement may never be allowed by any rule

neverallow user_t shadow_t : file write

allow user_t bin_t : { file dir } * ;

allow user_t bin_t : file ~{ write setattr ioctl };

Domain Transitions

 Analogous to SetUID programs

 Joe running as user_t (untrusted user) needs to change his

password. How does Joe change his password?

 allow user_t passwd_exec_t : file {getattr execute}

 allow passwd_t passwd_exec_t : file entrypoint

 allow user_t passwd_t : process transition

 Restricts trusted domain passwd_t and allows user_t to

transition to it.

 Implicit domain transitions provided via type_transition.

Domain Transitions

 allow user_t passwd_exec_t : file {getattr execute}

 allow passwd_t passwd_exec_t : file entrypoint

 allow user_t passwd_t : process transition

=
 user_t can eexcute a file passwd_exec_t

 the execution of the file result in a role transition

 the transition between two roles is legal

Users & Roles

 Two components of a security context

 SELinux usernames and DAC usernames differs

 SELinux usernames are granted roles in the system

 Roles

 collections of types geared towards a purpose

 can be used to further restrict actions on the system

MLS

 MLS portion of Security Context is composed of 4 parts

 Low/High

 Sensitivity/Category

 Includes syntax to define dominance of security levels

 Subjects with range of levels considered trusted subjects

 Implements a variation of Bell-La Padula

Architecture

LSM

 Kernel framework for security modules

 Provides a set of hooks to implement further checks

 Usually placed after existing DAC checks and before

resource access

 Implications? SELinux check is not called if the DAC

fails

 Makes auditing difficult at times.

SELinux - Implementation

Linux Security Module
To support policy configuration

SELinux LSM Module

User Space

Kernel Space

Selinux FilesystemSelinux FilesystemSelinux FilesystemSelinux Filesystem

Access Access Access Access
VectorVectorVectorVector
CacheCacheCacheCache

Security ServerSecurity ServerSecurity ServerSecurity Server
(Policy Rules and

Access Decision Logic)
LSM

Hooks

Various
Kernel

Object
Managers

Cache Miss

Yes or No?

SELinux LSM Module

Policy Management

Interface

General Model - PSID

 PSID = SID for persistent object

 Each file system includes a file to map each
inode into a PSID and then into a context

 This file is used when the file system is
mounted

General model - Interactions

Enforcement with no
informatio about the
security policy

Security policy with no
enforcement

SID and Context

Caching

We reduce security to reduce the overhead

PSID

Userspace Object Managers

Access
Vector
Cache

libselinux

User-Space

Object Manager

User Space

Kernel Space

Selinux FilesystemSelinux FilesystemSelinux FilesystemSelinux Filesystem

Policy
Management

Interface

Allow

access?

Yes or
No?

Access Access Access Access
VectorVectorVectorVector
CacheCacheCacheCache

Security ServerSecurity ServerSecurity ServerSecurity Server
(Policy Rules and

Access Decision Logic)

Cache Miss

Yes or No?

Policy Server

Access
Vector
Cache

libselinux

User-Space

Object Manager

Figure taken from SELinux by
Example

User Space

Kernel Space

Selinux FilesystemSelinux FilesystemSelinux FilesystemSelinux Filesystem

Policy

Managemen
t

InterfaceCache Miss?

Yes or
No?

User-SpaceUser-SpaceUser-SpaceUser-Space
Security ServerSecurity ServerSecurity ServerSecurity Server

PolicyPolicyPolicyPolicy
ManagementManagementManagementManagement

ServerServerServerServer

Load

User

Policy

Policy ServerPolicy ServerPolicy ServerPolicy Server

Access Access Access Access
VectorVectorVectorVector
CacheCacheCacheCache

Security ServerSecurity ServerSecurity ServerSecurity Server
(Policy Rules and

Access Decision Logic)

Cache Miss

Yes or No?

Policy Language

Make, Scripts,
M4, and so on

Type Enforcement
Statements

(Types, TE Rules,
Roles, Users)

Constraints

Resource labeling
Specifications

Classes and Permissions

Checkpolicyy

Binary Policy
File

Kernel Space

Selinux FilesystemSelinux FilesystemSelinux FilesystemSelinux Filesystem

Access Access Access Access
VectorVectorVectorVector
CacheCacheCacheCache

Security ServerSecurity ServerSecurity ServerSecurity Server
(Policy Rules and

Access Decision Logic)

Cache Miss

Yes or No?

SELinux LSM ModuleSELinux LSM ModuleSELinux LSM ModuleSELinux LSM Module

load_policy

Policy SourcePolicy SourcePolicy SourcePolicy Source

 ModulesModulesModulesModules
policy.confpolicy.confpolicy.confpolicy.conf

SELinux – Policy - Tools

SELinux – Policy

 The description of a policy is rather complex
even in the case of simple policies

 As an example, to specify the Linux policy ie to
build a SELinux that implements the Linux policy
 29 types

 121 operations

 27.000 rules

 Little support for an high level description and
to check the consistency of a policy

SELinux – Implementation

Implementation of Linux standard
Security policy

Overhead due to SE

This points out that the cost is
• Acceptable if we consider the execution overhead
• Fairly large if we consider the complexity of the

description

Webstone

Creates a load on a Web server by simulating multiple clients which
can be thought of as users, Web browsers that retrieves files from a
Web server. This simulation is carried out using multiple Web clients
running on one or more computers. It is possible to run in excess of
100 simulated Web clients on a single computer.
In order to create large loads on a Web server, WebStone is able to
distribute Web clients among client computers. The Webmaster is
the program that controls all of the testing done by WebStone. It
can be run on one of the client computers or on a separate
computer. The Webmaster distributes the Web client software and
test configuration files to the client computers. The Webmaster
combines the performance results from all the clients into a single
summary report.

AppArmor

It pairs a program with a profile and it supplements
rather than replaces the default Discretionary Access
Control (DAC). It's impossible to grant a process more
privileges than it had in the first place.

SELinux attaches labels to all files, processes and objects
and is very flexible. However configuring SELinux is
very complicated and requires a supported filesystem.

AppArmor on the other hand works using file paths
and its configuration can be easily adapted.

AppArmor

It proactively protects the operating system and applications from
external or internal threats and even zero-day attacks by enforcing a
specific rule set on a per application basis.

Security policies completely define
• what system resources individual applications can access,
• with what privileges.
Access is denied by default if no profile says otherwise.

Default policies are included with AppArmor.

Every breach of policy triggers a message in the system log and with
real-time violation warnings popping up on the desktop.

Profile Modes

AppArmor can operate in two types of profile modes:

Enforce
In the enforce mode, system begins enforcing the rules
and report the violation attempts in syslog or auditd
and operation will not be permitted.

Complain
In the complain mode, system doesn’t enforce any
rules. It will only log the violation attempts.

Profile

/usr/sbin/mysqld {

 #include <abstractions/base>

 ...

 capability dac_override,

 capability sys_resource,

 capability setgid,

 capability setuid,

 network tcp,

 /etc/hosts.allow r,

 /etc/hosts.deny r,

 /etc/mysql/*.pem r,

 /etc/mysql/conf.d/ r,

 /etc/mysql/conf.d/* rw,

 /etc/mysql/*.cnf r,

 }

Path entries: This has information on
which files the application is allowed to
access. Rights are read, write, execute,
lock

Capability entries: determines the
privileges (posix capability) a confined
process is allowed to use.

Network entries: determines the
connection-type. For example: tcp. For a
packet-analyzer network can be raw or
packet etc.

Using SELinux - NSA NetTop

Classified

VM

VPN

Internet

VM

Firewall

SE-Linux

NetTop = SE-Linux + VMware

 SE-Linux:
 Security-Enhanced Linux

 Mandatory Access Control with flexible security
policy

 VMware Workstation:
 VMs configuration limited by security policy

 NetTop:
 Locked-down SE-Linux policy

 No networking on the host itself

Attributes of VMware Virtual Machines

 Software compatibility
 Runs pretty much all software
 BIOS, OS, Apps, viruses, …

 Near-native performance
 Encapsulation

 Virtual machines are not tied to physical machines

 Consolidation
 Run multiple VMs on a single desktop or server

 Isolation

Isolation at multiple levels
 Data :

 Each VM is managed independently
 Different OS, disks ( files, registry), MAC address ( IP

address)
 Data sharing is not possible = Each file system is a SE Linux

file

 Faults:
 Crashes are contained within a VM

 Performance
 Guaranteed performance levels for individual VMs

 Security
 No assumptions on the software running inside a VM.

Physical LAN
Virtual network devices

Mandatory Interposition on all I/O

 2 levels of mandatory I/O interposition

(VM level and OS level)

 Guest cannot directly initiate I/O
 All guest I/O operations mediated by VMware

 VMware relies on the host for I/O access
  VMware process uses system calls to execute

all I/O requests.

 Example: networking, disk I/O

Processes running on the Host system

 “See without being seen” advantage
 Very difficult within a computer
 Possible on the host

 Observation points:
 Networking (through vmnet)
 Disk I/O (read and write)
 Any other I/O
 Physical Memory of the VM

Why NetTop?

Example: Access to classified networks

 Traditional tension : Security vs. Usability
 Secure systems are not that usable

 E.g: require some particular OS setups

 Flexible systems are not that secure
 Many documented examples

 Additional requirement:
 Data cannot flow between networks of different

classification

 Conventional solution:
 Dedicate distinct computer for access to each

network

Security of Isolation

 Q: How securely isolated are the virtual
machines?

 A: Pretty well …

All together now ...

We have seen a large number of countermeasures

 Static = to be adopted before attacks occur, hopefully before
deploying the system, (the sooner, the better)

 firewall

 VPN

 ids

 new OS

 honeypot

 Dynamic = in general they tune the behavior of the security policy
to better react to an ongoing attack. Distinct cost/perfomance ratio
may be acceptable when under attack

But ...

 Any approach based upon a risk analysis faces the
problem of partial and unaccurate information on
threats, their resources, their potential impact

 Even when considering partial information some
problems cannot be solved as exemplified by “know
unknown vs unknown unknown)

 Hybrid threat are arising (attacking with more
weapons ie cyber attack and fake news etc., the
Gerasimov strategy)

 Resilience is the new goal

Problems (in the words of one of my
friends)

“Emerging cyber realities and technologies are
presenting new threats with uncertain intensity and
frequency and the vulnerabilities and consequences in
terms of the extent of casualties, economic losses,
time delays, or other damages are not yet fully
understood or modeled. As a result, risk calculations
become more uncertain and generate costly solutions
since multiple, often hypothetical, threat scenarios
could point to many vulnerabilities and catastrophic
system failures that are unaffordable to mitigate,
absorb, or recover” (do you remember black swan?)

Resilience (in the words of the same
friend)

Security, robustness and risks are connected, they
are focused on preventing system from degrading
and keeping functionality within acceptable level
before and after the adverse event. Resilience is a
very different concept. Oxford defines it as

 “the capacity to recover quickly from difficulties.”

A resilience assessment thus starts with the
assumption that system is affected, functionality is
impaired and is focused on evaluation of recovery

speed.

Resilience

Cyber resilience is the ability of an ICT
infrastructure
 to resist to a stress (robustness)

 to reconfigure its ICT structure to offer
some services when resistence is no longer
possible (reconfiguration)

 to return to a normal behavior after the
stress ends (elasticity)

Cyber resilience

 While a robust system does not change its
behavior and the services it offers even when
under attack a resilient one reconfigures and
focuses on critical services

 Robustness may turn into fragility
 due to unexpected events

 with wrong threat modelling

 Resilience= Robustness now and when new
threats will arise

Cyber resilience

 Some important steps to achieve resilience

 Identify key threats and assess their impact on critical
cybersystems and functions

 Increase robustness

 Classify and prioritize critical services.

 Set cyber-resilience goals and objectives for critical
services

 Any resilience requires some redundancy we need to
choose a compromise between the investment in
robustness and the one in redundancy and diversity

Redundancy + Diversity

Client Load Balancer

Redundancy + Diversity

Google advocates
this model even
for releasing a new
release or a new
version of a server

Cyber resilience

 Some important steps to achieve resilience

 Identify key threats and assess their impact on critical
cybersystems and functions

 Increase robustness

 Classify and prioritize critical services.

 Set cyber-resilience goals and objectives for critical
services

 Any resilience requires some redundancy we need to
choose a compromise between the investment in
robustness and the one in redundancy and diversity

Resilience

 Plan/Prepare:
 robustness for know unknow and known

 redundancy/reconfiguration for unknow unknow

 Absorb
 at first robustness,

 then redundancy

 then reconfiguration

 Recover return to a normal behavior, maybe
with distinct performances

