ICT Risk Assessment

Fabrizio Baiardi
f.baiardi@unipi.it

F.Baiardi — ICT RA Cloud Computing — Introspection

Syllabus

* Security
* New Threat Model
* New Attacks

Introspection and a large number
of tools and security controls that
access the memory of a virtual machine

F.Baiardi — ICT RA Cloud Computing — Introspection

g AT

Virtual Machine Introspection

VMI formally defines techniques and tools to monitor the VM run time
behavior to protect the VM from internal and external attacks

Inspect a VM from the outside to assess what's happening on the
inside
Possible for security tools

— Virus scanners

— Intrusion detection systems

Observe and respond to VM events from a "safe" location outside the
monitored machine

This is another countermeasure that exploits virtualization. Another
example of how virtualization changes the computing framework

With respect to static attestation, virtual machine introspection
implements a form of run time attestation that aims to discover not
only which software a system runs but also its run time integrity

F.Baiardi — ICT RA Cloud Computing — Introspection

Virtualization Overview

Windows XP Linux Solaris x86
virtual machine virtual machine wirtual machine

Virtual machine monitor

Operating system (physical host)

Physical hardware

F.Baiardi — ICT RA Cloud Computing — Introspection

Memory Mapping

Process
ACCES5es
memory M
address

(a}

Operating system
Process 1
accesses
memory

address

Page tables
(b)

Virtual machine Virtual
operating system machine
Process - mcnitor
accesses |
memory page-rame
address >
number from
Page tables virtual to
physical

F.Baiardi — ICT RA Cloud Computing — Introspection

Memory Mapping

* A process perspective
— Request results in direct access to the memory address

* The OS layer has an active role in providing memory location
access

— Access the page table to map the logical memory address to
a physical memory address

* VMM provides an abstraction layer between
— Each VM OS's memory management
— The underlying physical hardware

* VMM translates the VM-requested page frame number into a
page frame number for the physical hardware

* Gives the VM access to that page

F.Baiardi — ICT RA Cloud Computing — Introspection

VMM Memory Accesses

* VMM accesses memory pages assigned to each VM
directly by

— VMM's active involvement in this process
— Its elevated privileges
* Without the VM actually requesting the page
* Can also make those pages accessible to other Vms

* Another software module has a complete and transparent
access to the memory pages of a virtual machine

* This requires an hardware module when working with
physical machines

F.Baiardi — ICT RA Cloud Computing — Introspection

Ly TPM vs. Introspection

AR

TPM VM Introspection
Root of trust rely on hardware Root of trust rely on hypervisor
Passive device Introspection agents = modules

Platform and software stack have the Initiative

decide what to measure Security vendor / policy dictate
what to measure

Need software update to .
Coverage is content, and can

change measurement change independently of VM

coverage _ Designed to continuously scan
Can not detect compromise VMs and to detect

in software stack since compromise

verification

F.Baiardi — ICT RA Cloud Computing — Introspection

Virtual Machine Introspection -1

By implementing a physical machine through a virtual one, we can
check the integrity of any component of the physical machine by
evaluating a predicate on the state of the virtual one = on some
memory subset of the physical one = from physical to information

If the checks are delegated to the VMM the complexity of the VMM
strongly increases together with the probability of a successful attack

If the VMM has not been successfully attacked, then the same task
can be delegated to another VM, the introspection one

This is a dynamic, or semantic, attestation where the Introspection VM
gives some assurance on the current status status of another VM

Bootstrap = the Introspection VM assures the integrity of a component
on another VM that, in turn, assures the integrity of another VM

F.Baiardi — ICT RA Cloud Computing — Introspection

Virtual Machine Introspection -2

There are alternative implementation of VMI

— Asynchronous: the introspection VM evaluates some
invariant independent of the current code the VM executes

— Synchronous: the introspection VM monitors the execution of
the other VM and, at some predefined moments,

* freezes the VM execution
* evaluates the invariant on the status of the frozen VM
* resume the execution or kills the VM

Synchronous is more complex because of the VMs
synchronization

Semantic gap problem:

the Introspection VM access single memory positions but
the invariant is defined at a higher abstraction level

10
F.Baiardi — ICT RA Cloud Computing — Introspection

Virtual Machine Introspection - 3

* The VMM separates
— The environment to be monitored, monitored VM
— The monitoring environment, introspection VM

* The VMM separations results in controls more expensive but more
robust than those implemented by two processes sharing memory

* To minimize the control overhead, a chain of trust is built where
— some components in the monitored VM implement some control
— the introspection VM checks the integrity of these components

* |In any case, the controls requires the formal definition of a process
self to be compared against the actual process behaviour

11
F.Baiardi — ICT RA Cloud Computing — Introspection

Virtual Machine Introspection -1 - bis

Integrity
check T
\; . .
Local introspection
Introspection VM Target of the assessment

Monitored VM

12
F.Baiardi — ICT RA Cloud Computing — Introspection

Monitored VM Introspection VM
- -

USER-SPACE

INTROSPECTOR

SIMPLE
INTROSPECTION LIBRARY
]
L >

#
l KERNEL |

-
Introspection > _

Virtual Machine Monitor “

HARDWARE

A simple introspection library to access the
memory of the Monitored VM

A kernel module that checks the integrity of the
IDS on the Monitored VM

The integrity of the kernel of the Monitored VM
is protected by the Introspector in the
Introspection VM

Definition of the Introspector depends upon that
of the module in the kernel

Checks can be implemented anytime a given
number of kernel invocation has occurred

13

F.Baiardi — ICT RA Cloud Computing — Introspection

Level 3
chkrootklt, Snort,
Tripwire, ...

Level 2
Extensions to the karnel,
SELinux, LIDS, ...

L 4

Chain of Trust

Monitored VM

File Metwork
S ystem
A A
@ I
”

Level 1

text area, list open files,

»

10T fsyscall table integrity,

F.Baiardi — ICT RA Cloud Computing — Introspection

Introspection VM

3

INTROSPECTOR

I
X

SiMPLE
INTROSPECTION LIBRARY

module KERNE g

) i ~
introspection ~

1

"I

Virtual Machine Monitor ™| sofmres
HARDWARE

14

Further advantages of VMI

Full visibility of the system running inside the Monitored VM: the
Introspection VM can access every Monitored VM component,
such as the main memory or the processor's registers.

Transparency: the security checks can be implemented without
modifying the software on the Monitored-VM and they are
almost invisible even to time based control

— If the underlying architecture fully support virtualization, no
software on the Monitored VM has to be updated

— Otherwise we may have to modify the kernel but not the
application running on the Monitored VM

15
F.Baiardi — ICT RA Cloud Computing — Introspection

A full HIDS: Introspection and Alerts

Introspection VM: monitors all the VMs.

@ The introspector protects kernel integrity.
@ The director:
Q collects the alerts;
Q@ executes actions in response to an alert: stops a VM.

Monitored VM Introspection VM

‘ COLLECTOR nltEf:Tm*Imursr-Ecmn
;] 1 v |

-

[LINUX ﬁz

; '%mintrn spection:

[
[] “"-l,‘,'f |
alerts: ", . '
' "'n-...%"_b : |
; ||||| I,um -
wcontrol network
_______________ INTERFACE
x E N wirtual
bridge

16
F.Baiardi — ICT RA Cloud Computing — Introspection

A more general case

Mﬂmtnred VM 1 Monitored VM 2 Introspection VM
- ™ i N
7 COLLECTOR T - COLLECTOR |I:IIFLECTO|1 INTROSPECTOR
: B 1 7 - T
i ., ; l"‘ i - ¢ 4
l| modute| = LINUX l| modute| = LINUX S
. a J \ » ! y
.] E,. - 1
a'elrts : ' IIIIIIIIII E'.I‘E.i"ts [] ""-\.t) . : 1
= introspection ™., . ", Introspection = i
: g T : !
: P— e :
YI.FI“I?-tI':uIIIIqIEIt-‘I“I?Ir-kIIIY-III-III-IIII-III SEEEEEEm CGNTRDL
INTERFACE

XEN Virtus

bridge

17
F.Baiardi — ICT RA Cloud Computing — Introspection

Semantic Integrity and Introspection

A trivial attack classification
* Attacks against user-level processes:
— the attacker injects some code into a process

— the attacker diverges the original control-flow to execute the
injected code.

* Attacks against the kernel modify
— some kernel functionalities
— the kernel behavior to hide any sign of the attack.

* User level attacks are the first step of a complex attack = a

privilege escalation that, after increasing the attacker privileges
results in the execution of an attack against

— the kernel or
— the kernel and then the VMM

18
F.Baiardi — ICT RA Cloud Computing — Introspection

Process Self

* Process Self
— The process properties that determine its run-time behavior
— It can be approximated through static analysis.

 Axiom: Any difference between the process current behavior and the
process self is due to an attack.

* Measuring the semantic integrity:
— the approximation of the process self

— the monitoring of the actual process behavior to assure its coherence
with the process self.

* If P is a generic process that we want to protect.
— Self (P) refers to the process self of P
— SourceCode(P) is the source code of P program= syntactic integrity

19
F.Baiardi — ICT RA Cloud Computing — Introspection

All the relations

program

%
inherit the self

P

N,
current
behaviou

~ menitor trace of
system calls un-time

compare

measuring the
semantic integrity

exec(program);
prog extract the
properties
static
analysis
program
analyze the
T compile the code code
compiler [«——— source code

SourceCode(F)

F.Baiardi — ICT RA Cloud Computing — Introspection

20

d

Self and OS calls

It is widely accepted that an abstract description of a process self
should consider the OS calls issued by the process

Any attempt to violate the security policy, to hide the trace of an
attack, to avoid intrusion detection mechanisms involves some
interaction with the OS

Hence the process self should be defined in terms of the OS calls
Two alternative approaches to define the self
. Monitor and learn = anomaly detection

@ Deduce the self from some representation of the process

code

The first is more general as it does not require the availabilty of the
source code but less accurate

F.Baiardi — ICT RA Cloud Computing — Introspection

21

Self: Alternative Descriptions

Default Allow = black list (no politically correct)

Forbidden Calls: the set of system calls that P cannot issue

Forbidden Parameters: the set of system calls that P cannot
iIssue and assertions on the parameters it cannot transmit to a
call

Default Deny = whitelist (even more no politically correct)

Hashing or Memory Invariants; memory invariants to be
evaluated anytime P issues a given system call

Allowed Calls: the set of system calls that P can issue and
assertions on their parameters

Enriched Traces: the sequence(s) of system calls that P may
iIssues in one execution; each call may be coupled with an
assertion on the process memory

F.Baiardi — ICT RA Cloud Computing — Introspection

22

Enriched Traces

A set of enriched traces fully describes alternative legal behaviors of P

Proper static tools may be designed to map SourceCode(P)
into Self (P) described through enriched traces = <CFG(P), IT(P) >

CFG(P) =

— context-free grammar that defines the system call traces that P
may issue during its execution

— a set of strings on an alphabet with a symbol for each system call

IT(P)= a set of invariants {I(P, 1), ..., I(P, n) }, each associated with a
program point i, 1<i<n, where P invokes a system call.

23
F.Baiardi — ICT RA Cloud Computing — Introspection

Grammar Generation Algorithm - 1

* A static tool can generate CFG(P) while traversing AST(P), the
abstrax syntax tree of the program of P

 CFG(P)= <T,F, S, R>where
— T is a set of terminal symbols with one symbol for each
distinct system call in SourceCode(P)

— F is a set of non-terminal symbols, one for each function
defined in SourceCode(P); each symbol corresponds to a
subset of T.

— S is the starting symbol, which corresponds to main;

— R is the set of production rules X —-B where
« Xis a non-terminal symbol
* B a sequence of terminal and non-terminal symbols.

24
F.Baiardi — ICT RA Cloud Computing — Introspection

Grammar Generation Algorithm - 2

GGA analyzes AST(P) and for each function fun defined
inSourceCode(P) it inserts into F a new non-terminal symbol S

and a new rule Rnew into R with S, as its left-hand-side

fun

fun

To generate the right-hand side of the rule, GGA linearly scans
the definition of fun in SourceCode(P)

Distinct production rules may be generated, according to the type
of statements in the body of fun.

For each statement, GGA generates a new rule and adds a new
symbol to the right-hand side of Rnew .

In this way, CFG(P) represents the system calls that fun can
invoke and the ordering among the invocations in the body of fun.

25
F.Baiardi — ICT RA Cloud Computing — Introspection

Grammar Generation Algorithm - 2

GGA analyzes AST(P) and for each function fun defined
inSourceCode(P) it inserts into F a new non-terminal symbol S

and a new rule Rnew into R with S, as its left-hand-side

fun

fun

To generate the right-hand side of the rule, GGA linearly scans
the definition of fun in SourceCode(P)

Distinct production rules may be generated, according to the type
of statements in the body of fun.

For each statement, GGA generates a new rule and adds a new
symbol to the right-hand side of Rnew .

In this way, CFG(P) represents the system calls that fun can
invoke and the ordering among the invocations in the body of fun.

26
F.Baiardi — ICT RA Cloud Computing — Introspection

s Ve o T (s R B TR %

=

(o R P N

e I B B T O O

Grammar Generation Algorithm - 3

f(){
open () ;
read (});
g(): . .
close (); E?}_} :I;:Sifd (G) close;
g(){
getpid ();
f(){
open |); (F)— open (5Ty);
ifi(x) (5T1)— read | &;
read (); . o e
) May result in a false positive
F)4 . {IFELy);
open (); EEELl;?p:"(STJFﬁ |
if{x) e (ELSE3);
e|5;63 O {5TIF3)— read;
close ();) {EI—S-'.—:S}—’ close;
I May result in a false negative

F.Baiardi — ICT RA Cloud Computing — Introspection

27

Assertion Generator -1

* The Assertion Generator traverses AST(P) and analyzes the
variables, functions and language statements to build the invariant

table (IT(P)).
* To simplify the analysis, we restrict to:

— integer variables: only files and socket descriptors to express
relations among these variables and the system calls;

— string variables: in case of arrays of char statically declared,
functions to manipulate strings are treated like assignments;

— struct members: only integer or string type field.

28
F.Baiardi — ICT RA Cloud Computing — Introspection

Assertion Generator - 2

Any assertion is the composition of any of the followings:

Parameters assertions. They express data-ow relations among
parameters of distinct calls, e.g. the file descriptor in a read call is
the result of a previous open call.

File Assertions. To prevent symlink and race condition attacks,
they check, as an example, that the real file-name corresponding
to the le descriptor belongs to a known directory.

Buffer length assertions. They check that the length of the string
passed to a vulnerable function is not larger than the local buffer
to hold it.

Conditional statements assertions. They prevent problems due to
impossible paths by relating a system call and the expression in
the guard of a conditional statement (important difference wrt self
described as CFG only)

29
F.Baiardi — ICT RA Cloud Computing — Introspection

The Analyst - 2

The Analyst in the I-VM verifies the integrity of the self of P through:

» |exical Analyzer: it verifies that the system call that P wants to issue
belongs to the set of system calls returned by the static analysis of
SourceCode(P);

» Parser: it checks that the current trace of system calls issued by P is
coherent with CFG(P), i.e. it is a prefix of a word allowed by CFG(P);

» Assertion Checker: it checks whether the invariant coupled with the
current system-call holds.

30
F.Baiardi — ICT RA Cloud Computing — Introspection

Monitored VM (MON-VM)

[menftored process address space] i N
Low [memory & YCOPU-context
call =writepplt= |BxBA4R595 introspection I,_ ____________ _,I
now ExfFIFFFfo e inyariant table
ctack Vkebp) SEan LIWCPD dntri"kernel_sp=] --= @xcTa2FFfa | [oxBpimsad,
basa & 2imapl@xcTa2FIfR] i: pxbfadfEsa: int,
Bxb¥fadffa |oxbfadfaon j==5]
BxEO4859d |oxbfadfgec (ret) | 3)resd “espt value --= @xbfadfaoy | (o1
dimaplexbfadfang] 1 I
high :
9 5 Bxbfadfese (1) Slread "ret” value --= BxBE04559d I I
acFezfefe [Jhigh]&imapi@xbfadf858): “i* in invariant set ! ¥ !
Wintrospectian I
tespl] Axbfadfans irasd "i® valug --= 5 il tibrer I
kernel
. Blevaluate invariant: (i==5)7 o e e e - - J
VCPU s 4
(adx) 6 Kernel
(kernal_sp) | ook) axpodates
E)‘C?Efffﬂ fEhlﬁ 3]_m
F. N -
A A~
L | " B | |
. XenStore/Event channel (synchronization) .
¥ L
- ... R EEEEEEEEEE R ...

Invariant Evaluation - 1

Introspection VM (I-VM)

Xen Virtual Machine Monitor

F.Baiardi — ICT RA Cloud Computing — Introspection

Memory Monitoring
Implementation

32
F.Baiardi — ICT RA Cloud Computing — Introspection

Xen overview

Runs directly on the physical hardware

Special management domain is called DomO to provide a management
interface

The VMM gives Dom0 system access to a control library

— create, destroy, start, pause, stop, and allocate resources to VMs
from DomO

Provides drivers for the host’s physical hardware
Can also request that memory pages allocated to unprivileged VMs

33
F.Baiardi — ICT RA Cloud Computing — Introspection

The XenAccess Library

= root@bluemoon:/home/bdpayne

Fle Edit View Terminal Tabs Help
root@bluemoon examples]# ./process-list 1

An open source VM
introspection library

Access to virtual addresses,
kernel symbols, and more

Works with Xen and dd-style
memory 1mage files

Released in Spring 2006

Maintained by Georgia Tech
Inf. Sec. Center to encourage
more research

http://www.xenaccess.org

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

4] System
420] smss.exe
468] csrss.exe
496] winlogon.exe
548]
552] lsass.exe
7808] swvchost.exe
760] svchost.exe
828] svchost.exe
876] svchost.exe
924] svchost.exe
1220] spoolsv.exe
1792] alg.exe
1876] wscntfy.exe
1952] explorer.exe
148] ctfmon.exe

1924] procexp.
root@bluemoon examp

exe

/¥ initialize the xen access library #*/
xa_init(dom, &xai);

services .exe /* get the head of the list #*/

xa_read long sym(&xai, "PsInitialSystemProcess", &list head);

memory = xa_access_wirtual_address(&xal, list_head, &offset);

memcpy (&next_process, memory + offset + ActiveProcessLinks_OFFSET, 4);
list_head = next_process;

/¥ print out the first process */

name = (char *) (memory + offset + ImageFileName_OFFSET);
memcpy (&pid, memory + offset + UniqueProcessId_OFFSET, 4);
printf (" [%5d] %s\n", pid, name);

munmap (memory, xal.page_size);

/* walk the process list */

while (1}{
/* follow the next pointer */
memory = xa_access_virtual_address(&xal, next_process, &offset);
memcpy (&next_process, memory + offset, 4);

J* 1if we are back at the list head, we are done */
if {list_head == next_process){

break;
}

/* print out the next process */

name = (char *) (memory + offset + ImageFileName_OFFSET -
ActiveProcessLinks_OFFSET);

memcpy (&pid, memory + offset + UniqueProcessId_OFFSET -
ActiveProcessLinks_OFFSET, 4);

printf("[%5d] %s\n", pid, name);

munmap (memory, xal.page_size);

}

/¥ cleanup */
xa_destroy(&xal);

F.Baiardi — ICT RA Cloud Computing — Introspection

34

Passive Monitoring

To monitor application memory of another virtual machine
we have to map the memory into an address of the

Monitoring VM (dom0) monitoring one
Monitor
Mapping “raw memory view” to virtual addresses and
Q é symbols requires the steps shown in figure below.

XenAccess

Address and symbol mapping can be performed by a VM
;’""!:“_@ A introspection library (e.g., XenAccess)
User VM (domU)

5 swapper pg_dir I
page table

kernel data

BD Payne, M Carbone, and W Lee. Secure and Flexible Monitoring of Virtual Machines. In ACSAC 2007.

35
F.Baiardi — ICT RA Cloud Computing — Introspection

Steps for Passive Monitoring

Dom0 application wants to Requested Address = OnCOOO0000, KPGD address = OxC0712000 (from swapper_pg_dir)is

read kemel modile struct but also above directly mapped in range direcily mapped by kemel,

at address OxCEI32TE0 in memary, so use DomU Kemel Page [OxCO000000, 0xCOD00000 + *(rmax_fow_pfn << 12]], so
Doml Global Directary (KPGD) PFN = {0xCO0712000 - 0xCO000000) >> 12 = 0x712

Call Xen VWM to convert Physical Frame
Number (DomU context) into Maching Frame
Number (Physical Machine context):
PFN Ox712 = MFN 0x13303

Call Xen VMM to map MFN into Dom0

l

DomU KPGD now
mapped to Domi space

memory space; MFN 0x133b3 mapped fo
address 0xBFF54000

J

* L Call Xen VMM to convert Physical Frame
0C8932780 >> 22 =X __ ey ﬁxu?ugg%%?aﬂgxgg#cm Paﬁﬁniﬁa:eﬁ iy SOERHIETR] SeE KT ML IHeL R
{Index into Page Directory) v - - = Number (Physical Machine context).
: (Address of Page Table) PFN = Ox07d20000 >> 12 = Ox7d90 PEN 057490 = MEN Dx20FT8
r
f Call Xen VMM to map MFN into Domd memaory space:
l L MFMN 0x20F78 mapped to address 0xBTF54000
DomU Page Table now
mapped to Domd space
= =0x132 }»___ - U::I]bf:;t:HE:]. _ | Oe0685F163 > 12 = 0x685F Number (DemU context) into Machine Frame
{Index into Page Table) = | (Physical Frame Number) Mumber {Physical Machine context):
i PFN 0x685F = MFN Ox22449

Y

-

kemel module struct

Dom0 application now has access fo requested DomU Call Xen VMM to map MFN into Dom memory space:

MFN 0x224A9 mapped to address 0xBTF53000

F.Baiardi — ICT RA Cloud Computing — Introspection

36

Active Monitoring

Monitoring application receives event notification from Guest VM when code execution
reaches one of the hooks installed in the Guest VM kernel.

Hooks and all associated code are protected from tampering using hypervisor-enforced
memory protections (i.e., User VM can not modify these security-critical components).

Hooks invoke trampoline, which transfers control to the security application.

Guest VM Security VM

Hypervisor

Hardware (CPU + virtualization extensions)

37

BD Payne, W.BaiBothe;-MSh &t ehaud CeampriiAnehfdnSeaspediiene Monitoring Using Virtualization. In Oakland 2008.

Ether: Experiments

Two tools to test the Ether framework:

— EtherUnpack: extracts hidden code from obfuscated
malware

— EtherTrace: Records system calls executed by
obfuscated malware

Evaluation

— EtherUnpack: how well current tools extract hidden
code by obfuscating a test binary and looking for a
known string in the extracted code

— EtherTrace: a test binary which executes a set of known
operations obfuscated and then observes if these
operations were logged by the tool

38
F.Baiardi — ICT RA Cloud Computing — Introspection

Ether: EtherUnpack Results

Armadillo yes
Aspack no yes yes
Asprotect yes yes yes
FSG yes yes yes
MEW yes yes yes
MoleBox no yes yes
Morphine yes yes yes
Obsidium no no yes
PECompact no yes yes
Themida no yes yes
Themida VM no no yes
UPX yes yes yes
UPX Scrambled yes yes yes
WinUPack no yes yes
Yoda’s Protector no yes yes

F.Baiardi — ICT RA Cloud Computing — Introspection

Ether: EtherUnpack Results

PolyUnpack = Approach 1s based on the observation that sequences
of packed or hidden code in a malware instance can be

made self-identifying when its runtime execution 1s checked
against 1ts static code model

Renovo = An approach based on the observation that sequences

of packed or hidden code in a malware instance can be

made self-identifying when its runtime execution 1s checked

against its static code model. Any new code 1s considered as an attack

Both use virtual machine emulators

40
F.Baiardi — ICT RA Cloud Computing — Introspection

——
None

Armadillo
UPX
Upack
Themida
PECompact
ASPack
FSG
ASProtect
WinUpack
tElock
PKLITE32
Yoda’s Protector
NsPack
MEW
nPack

I RLPack

F RCryptor

Ether: EtherTrace Results

yes yes yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

no

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

41

VIX

Virtual Introspection for Xen
Place in the privileged Dom0 VM
Interact through a stable API

Reduce the application's ability to perform inline processing
(requests in real time)

F.Baiardi — ICT RA Cloud Computing — Introspection

42

How VIX works

Pauses operation of the target VM
Maps some of its memory into the Dom0
Acquires and decodes the memory pages
Resumes operation of the target VM
Reference task_struct data structures
— process ID, process name, memory map, and execution time
Traverses the list of task_structs

F.Baiardi — ICT RA Cloud Computing — Introspection

43

List of task_structs

-

S e —

PID: 1613
MNMame: sshid

PID: 1 541 _—
Mame: dhclient

-»
- init__task
-»

PID: 5110 PID: 1
MName: bash PID: O - Mame: init
- MName: swapper ———

Linux stores this list as a circular double-linked list
Each kernel version has an associated memory address for the
first process

44
F.Baiardi — ICT RA Cloud Computing — Introspection

VMI Functionality

Not depend on any VM OS functionality for information
VIX application
ViX-ps,
vix-netstat,
Vix-Isof,
Vix-pstrings,
viX-lsmod,
vix-pmap, and
vix-top
VIX-PS
Traverse the entire task list
Output as the ps command

F.Baiardi — ICT RA Cloud Computing — Introspection

45

VM Introspection - VMware Initiatives

Security API’s
* Designed for security productization
* Agent runs within a VM
* Capabilities
*Memory access events
*Selected CPU events
*VM lifecycle events

*Access to VM memory & CPU state
*Page Table walker

F.Baiardi — ICT RA Cloud Computing — Introspection

46

Security APIs (VMsafe)

A new security technology for virtualized environments that can help to
protect your virtual infrastructure in ways previously not possible with
physical machines.

VMsafe provides a unique capability for virtualized environments
through an API-sharing program to develop security products

VMsafe enables third-party security products to gain the same visibility
as the hypervisor into the operation of a virtual machine to identify and
eliminate malware. Security vendors can leverage VMsafe to detect
and eliminate malware that is undetectable on physical machines.

This advanced protection is achieved through fine-grained visibility into
the virtual hardware resources of memory, CPU, disk and I/O systems
of the virtual machine that can be used to monitor every aspect of the
execution of the system and stop malware

47
F.Baiardi — ICT RA Cloud Computing — Introspection

Security APls (VMsafe)

Goals

* Better than physical
— Exploit hypervisor interposition to place new security agent
— Provide security coverage for the VM kernel (and apps)

* Hypervisor as a Base of Trust
— Divide responsibilities between the hypervisor and in-VM agent
— Hypervisor covers the VM kernel, the rest from within the VM
— Insure in-VM security agent execution and correctness

* Security as an infrastructure service
— “Agent less” security services for Vms
— Flexible OS independent solutions

48
F.Baiardi — ICT RA Cloud Computing — Introspection

Verify-Before-Execute Flow

- 0w T

Power On

A

Query VM

VM Information

A

Install Triggers

Page access event

Security

A

Agent Query CPU & Memory state

CPU State & Memory Pageqd

A

Install / Remove Triggers

Power Off

A

49
F.Baiardi — ICT RA Cloud Computing — Introspection

Sample Introspection Agents

Verify-Before-Execute
Utilize memory introspection to validate all executing pages
NX [NX | NX | NX | NX

Flow
Trace all pages for execution access

NX NX | NX | NX

NX / NW
NX / NW Is bad?

On execution detection
Trace for page modification
Verify if page contain malware NW
Remove execution trace

NW / NX

On modification detection
Trace for execution NX
Remove modification trace

50
F.Baiardi — ICT RA Cloud Computing — Introspection

Security APls — Use cases

VM Kernel coverage

— Detect infection in early boot process

* Device opt ROM attacks

* Boot loader

* Boot records

« OSimage
— Detect code injection due to kernel vulnerabilities
— Detect self modifying code in kernel

— Lock kernel after initialization

F.Baiardi — ICT RA Cloud Computing — Introspection

Security APls — Use cases cont’

Watch dog services

Liveness check for in-VM security agent
Detect agent presence
Verify agent periodic execution
Protect agent code and static data

F.Baiardi — ICT RA Cloud Computing — Introspection

52

‘WJ.V.L\‘

“%: VMsafe — Network Introspection

* Capabilities
— Place an inline network agent on any VM virtual nic
— Allow reading, injecting, modifying, and dropping packets.

* Benefits
— Efficiently monitor inter-VM network communication
— Integrated support for live migration

* Virtualization only applications

— Correlate VM internals with network policy. (using CPU/ Memory
inspections one can learn OS version, patch level, configuration etc)

— Build a trusted distributed firewall.

53
F.Baiardi — ICT RA Cloud Computing — Introspection

Retrospective Security

* Motivation
—Detect whether you have been attacked in the past
—Detect if you might be still compromised by a past attack
* Method

—VMware Record & Replay allow for a deterministic replay of
VM using recorded logs

— Potentially the recordings have captured an attack

— The security API's are detached from the recorded VM
(unlike in-VM agent) and can attach to a replay session

F.Baiardi — ICT RA Cloud Computing — Introspection

54

Retrospective Security

* What is it good for?

—Run more aggressive policies that will not be acceptable in
production environments

—Discover Odays used to exploit your system
—Learn how the malware / attacker have navigated your system

—Use data tainting technique to detect any side effects that still exist
on your system

—Possibly clean the finding from last step on your production VM.

—Learn about the scope of the damage done to your system, i.e.
what is the extent of data leakage

55
F.Baiardi — ICT RA Cloud Computing — Introspection

Threat Monitoring/Interfering

* Other approaches are possible
* An important classification is
— Monitor subject
— Interfere with subject
* Only monitor subject behavior
— Livewire
— Monitor a system can only detect and report problems
* Interfere with subject behavior
— LycosID, pDenali
— Can actually respond to a detected threat
— Might terminate the relevant processes or VM

— Might reduce the resources available to the VM (starve the
attacker)

56
F.Baiardi — ICT RA Cloud Computing — Introspection

Livewire

* An early host-based intrusion detection system
* Monitors VMs to gather information and detect attacks
* Merely reports it rather than interfering

Policy Engine

Policy Modules

=11

A
¥

Config File|_*___*‘ Policy Framewcrkki

Monitored Host

h!
I
I
I
I
I
I
I
I
I
I
I
I
I

Command Guest Apps

e

)
Query Response

Guest OS

Guest 0S5

Metadata

H“ﬂﬂ:os Interface Libra;%
) Virtual Machine

A -

callback or

______________ A
Hardware State T Response

T o o — — — — — — — — — o — ——

[Virtual Machine Monitor

F.Baiardi — ICT RA Cloud Computing — Introspection

LycosID

* Uses crossview validation techniques to compare running
processes = compares high level and low level view of an object

* Patches running code to enable reliable identification of hidden

processes

F.Baiardi — ICT RA Cloud Computing — Introspection

40 - 1 proc/s 1.0e+00 1 procls
20 1.0e-02
o 1.0e-04
20 1 1 DB0E e o e ettt e et et e
1.0e-08
o] 30 60 90 120 150 180 210 240 270 300 330 90 120 150 180 210 240 270 300 330
40 - 10 procs/s 1.0e+00 10 procs/s
20 1 1.0e-02
(1] Wl—vh-.—.m—rhnv—.mmu—.—akq”.— 1.0e-04
20 |] D F =
g MOt 1.0e-08
s o] 30 60 90 120 150 180 210 240 270 300 330 o 30 60 90 120 150 180 210 240 270 300 330
k] =Y
5 40f 25 procs/s 1 = 1.0e+00 25 procs/s
= 20 1 =2 1.0e-02
5 1] mm'—ﬁfhﬂ-ﬂ-%ﬂ-—-uvﬂ—Hm“—vﬂﬂfﬂ—MrﬂbﬂwnWT P 1.0e-04
& -20 |] B 10008 frem e oo eem et ees et ee s e e et ot eem et e et et et s e e
w40 [L N N L 1 3;_ 1.0e-08 L L N - |
g o] 30 60 90 120 150 180 210 240 270 300 330 o 30 60 90 120 150 180 210 240 270 300 330
1=
O a0 f 50 procs/s 1 1.0e+00 | 50 procs/s
20 | 1 1.0e-02
0 i IJJIJ T 'jl""‘ll’ w1 e 'd i . l Tnf¥ I"'I-“‘" 1.0e-04
20 | i 1 0BOE e e e T et et et
-0t . s 1.0e-08 .
o] 30 60 90 120 150 180 210 240 270 300 330 o 30 60 90 120 150 180 210 240 270 300 330
40 - 100 procs/s 1.0e+00 100 procs/s
20 1.0e-02 |
1.0e-04
B T S SO
L 1.0e-08 +
o] 30 60 90 120 150 180 210 240 270 300 330 o 30 60 90 120 150 180 210 240 270 300 330
Time (seconds) Time (seconds)
58

Manitou

* A VMI designed to detect malware

* Compares known instruction-page hashes with
memory-page hashes at runtime before starting a
program

* The instruction-page is corrupted and nonexecutable
if no match

* A self attestation model

F.Baiardi — ICT RA Cloud Computing — Introspection

59

Manitou

* A VMI designed to detect malware

* Compares known instruction-page hashes with
memory-page hashes at runtime before starting a
program

* The instruction-page is corrupted and nonexecutable
if no match

* A self attestation model

F.Baiardi — ICT RA Cloud Computing — Introspection

60

Semantic Awareness

* Account for different guest OS

« provide information that is more detailed

* parse kernel memory to build a process table map
* Unaware VMI simply see memory as bits

LARES

* Gives each VM an internal "hook"
— Activate an external monitoring control upon execution

* Monitor can interrupt execution and pass control to a security
mechanism

— The hook is injected into the VM OS
— Hypervisor write-protects both the hook and the transfers control
— Triggers at a meaningful system execution point

61
F.Baiardi — ICT RA Cloud Computing — Introspection

IntroVirt

* |t supports the construction of vulnerability specific predicates
* Attempt to bridge the "semantic gap" between

— The VMI application

— The target VM

* Using functionality on the target VM itself to lend context to the
acquired data

* Basic mechanism insert assertion + replay VM

62
F.Baiardi — ICT RA Cloud Computing — Introspection

IntroVirt: the patch complexity

lines in

Application Reference Description of bug Type of bug pred [patch
Linux kernel [CAN-2003-0961 | integer overflow in do_brk integer overflow 8 2
OpenSSL CAN-2002-0656 | SSL2 client master key arg bufler overflow buffer overflow 7 3
squid CAN-2005-0173 | squidddap-auth incorrectly handles usernames w/ spaces | malformed input 27 20
Linux kernel | CAN-2004-0109 [ISO9660 fs long symlink buffer overflow buffer overflow 41 17
find 120] TOCTTOU race condition race condition 63 | N/A
bind CAN-2005-0033 | buffer overflow in q-usedns buffer overflow 16 2
emacs CAN-2005-0100 | format string vulnerability in movemail utility format string 9 1
gv CAN-2002-0838 | unsafe call to sscanf buffer overflow 1 2
imapd CAN-2005-0198 | incorrect logic in CRAM-MD5 authentication logic error 6 1
Linux kernel | CVE-2003-0985 | mremap zero-area VMA remapping vulnerability missing validation 8 2
Linux kernel | CVE-2004-0077 | mremap missing do_munmap return value check missing validation 15 7
Linux kernel | CAN-2004-0415 | file offset pointer race condition race condition 107 90
osCommerce | CAN-2005-0458 | cross-site scripting vulnerability in contact-us.php malformed input 27 1
phpBB (CAN-2004-1315 | code injection via highlight parameter malformed input 30 1
smbd CAN-2003-0201 | buffer overflow in call_trans2open buffer overflow 10 1
squid CAN-2005-0094 | buffer overflow in gopherToHTML buffer overflow 8 4
util-linux CVE-2002-0638 | chsh/chfn temporary file race condition race condition 25 1
wu-ftpd CVE-2000-0573 | format string vulnerability in Ireply format string 16 1
wu-ftpd CAN-2003-0466 | off-by-one bug in fbrealpath off-by-one 11 1
xpdf/cups CAN-2005-0064 | decryption function buffer overflow vulnerability buffer overflow 7 2

63

F.Baiardi — ICT RA Cloud Computing — Introspection

Event Replay

* Ability to replay, or log events on a VM is useful
— Debugging OSs
— Replaying compromises
* VM must record (in a log file) enough information to reconstruct
interesting portions
* The penalty is to record extra information

Revirt

* An example of a logging VMI

* Serves as the basis for time-traveling VMs that allow replay
from any previous VM state

64
F.Baiardi — ICT RA Cloud Computing — Introspection

ReVirt

Workload Runtime with logging (normalized | Log growth | Replay runtime (normalized
to UMLinux without logging) rate to UMLinux with logging)
POV-Ray 1.00 0.04 GB/day 1.01
kernel-build 1.08 0.08 GB/day 1.02
NFS kernel-build 1.07 1.2 GB/day 1.03
SPECweb99 1.04 1.4 GB/day 0.88
daily use = 1 0.2 GB/day 0.03

F.Baiardi — ICT RA Cloud Computing — Introspection

65

Tainting

APPROACH

*Track OS-level information flow
provenance by assigning a unique

LSSD

identifier (color) to each potential

malware entry point 4* .

*Color individual processes/data based ’
on their interaction with potential entry Attacker

points or other previously colored
processes/data

*Color-based identification of malware
contaminations

Vlrtual Machine
Mg_ﬂ” A

Ori S

MySQL 5\ s Sen;jmal Apach
ISRt Y A 5~

*Color-based reduction of log data to be
analyzed

Guest OS

Virtual Machine Monitor (VMM)

*Highlight event anomalies via abnormal
color interactions present in logs

*Leverage virtual machine technology
for tamper resistance of log coloring

F.Baiardi — ICT RA Cloud Computing — Introspection

66

Dynamic taint analysis

Taint analysis should be applied anytime a malicious user input
can be the vector of an attack. Very important even in the case of
web applications.

Mark input data as “tainted”

Monitor program execution to track how tainted attributes
propagate

Check when tainted data is used in dangerous ways

67
F.Baiardi — ICT RA Cloud Computing — Introspection

Dynamic taint analysis

TaintCheck performs dynamic taint analysis on a program by running the
program in its own emulation environment.

X8&6 1nstructions

UCode
Binary re-writer
17 Taint Check
X86 instructions U
UCode

Dynamic taint analysis

68
F.Baiardi — ICT RA Cloud Computing — Introspection

Dynamic taint analysis

‘ Exploit Analyzer
Taint seed TaintTracker TaintAssert
— > Useas | Attack detected
Memory byte / Fn pointer
untainted
Shadow Memory Shadow Memory
X Taint Data structure* TaintCheck

*TDS holds the system call number, a snapshot of the current stack, and a copy of the data that was written

69
F.Baiardi — ICT RA Cloud Computing — Introspection

Dynamic taint analysis

TaintSeed

— It marks any data from untrusted sources as “tainted”

« Each byte of memory has a four-byte shadow memory that stores a
pointer to a Taint data structure if that location is tainted, or a NULL
pointer if it is not.

Memory is mapped to TDS

70
F.Baiardi — ICT RA Cloud Computing — Introspection

TaintTracker

— It tracks each instruction that manipulates data in order to

Dynamic taint analysis

determine whether the result is tainted.

* When the result of an instruction is tainted by one of the operands,
TaintTracker sets the shadow memory of the result to point to the

same Taint data structure as the tainted operand.

Memory is mapped to TDS

Result 1s mapped to TDS

F.Baiardi — ICT RA Cloud Computing — Introspection

TaintTracker

— It tracks each instruction that manipulates data in order to

Dynamic taint analysis

determine whether the result is tainted.

* When the result of an instruction is tainted by one of the operands,
TaintTracker sets the shadow memory of the result to point to the

same Taint data structure as the tainted operand.

Memory is mapped to TDS

Result 1s mapped to TDS

F.Baiardi — ICT RA Cloud Computing — Introspection

TaintAssert

Dynamic taint analysis

— It checks whether tainted data is used in ways that its
policy defines as illegitimate

Exploit Analyzer

— The Exploit Analyzer can provide useful information about
how the exploit happened, and what the exploit attempts

to do.

Memory is mapped to TDS

Operand is mapped to TDS

<«—— vulnerability

F.Baiardi — ICT RA Cloud Computing — Introspection

73

Dynamic taint analysis

Types of attacks detected by TaintCheck are

— Qverwrite attack

* jump targets (such as return addresses, function pointers,
and function pointer offsets), whether altered to point to
existing code (existing code attack) or injected code (code
injection attack).

— Format string attacks

 an attacker provides a malicious format string to trick the
program into leaking data or into writing an attacker-chosen
value to an attacker-chosen memory address.

— E.g.. use of %s and %x format tokens to print data from the stack or
possibly other locations in memory.

74
F.Baiardi — ICT RA Cloud Computing — Introspection

Dynamic taint analysis

Why to use TaintCheck ?

— Does not require source code or specially compiled
binaries.

— Reliably detects most overwrite attacks.
— Has no known false positives.

— Enables automatic semantic analysis based signature
generation.

F.Baiardi — ICT RA Cloud Computing — Introspection

75

Evaluation

False Negatives

— A false negative occurs if an attacker can cause sensitive data to
take on a value without that data becoming tainted.
- Eg.if(x==0)y=0;elseif(x==1)y=1,; ...

— If values are copied from hard-coded literals, rather than
arithmetically derived from the input.
— IS translates ASCII input into Unicode via a table
— If TaintCheck is configured to trust inputs that should not be
trusted.

— data from the network could be first written to a file on disk, and then read back
into memory.

76
F.Baiardi — ICT RA Cloud Computing — Introspection

Evaluation

False Positives

— TaintCheck detects that tainted data is being used in an
illegitimate way even when there is no attack taking place.

* |t indicates, there are vulnerabilities in the program

— E.g. A program uses tainted data as a format string, but makes sure it does not
use it in a malicious way.

77
F.Baiardi — ICT RA Cloud Computing — Introspection

Evaluation

Synthetic

— To detect
* Overwritten return addresses
* Overwritten function pointer
* Format string vulnerability
Actual exploits
— ATPhttpd exploit (buffer overflow)
— Cfingerd exploit (format string vulnerability)
— Wu-ftpd exploit (format string vulnerability)

F.Baiardi — ICT RA Cloud Computing — Introspection

78

Evaluation

Program Overwrite Method Overwrite Target | Detected
ATPhttpd buffer overflow return address v
synthetic buffer overflow function pointer v
synthetic buffer overflow format string 4
synthetic format string none (info leak) v
cfingerd syslog format string GOT entry v
wu-ftpd | venprintf format string return address v

F.Baiardi — ICT RA Cloud Computing — Introspection

79

Evaluation

Performance
— CPU bound
— a 2.00 GHz Pentium 4, and 512 MB of RAM, running RedHat 8.0. was used to
compress bzip2(15mb)
» Normal runtime 8.2s
» Valgrind nullgrind skin runtime25.6s (3.1 times longer)
» Memcheck runtime 109s (13.3 times longer)
» TaintCheck runtime 305s (37.2 times longer)
— Short-lived

— Common case

80
F.Baiardi — ICT RA Cloud Computing — Introspection

Evaluation

Performance
— CPU bound
— Short-lived

* Basic blocks are cached and hence the penalty is
acceptable over long lived programs. For short
lived programs it is still significantly large

» Normal runtime for Cfingerd was0.0222s
» Valgrind nullgrind skin runtime took 13 times longer
» Memcheck runtime took 32 times longer
» TaintCheck runtime took 13 times longer

— Common case

81
F.Baiardi — ICT RA Cloud Computing — Introspection

Evaluation

Performance
— CPU bound
— Short-lived
— Common case

* For network services the latency experienced is
due to network and/or disk 1/O and the TaintCheck
performance penalty should not be noticeable

82
F.Baiardi — ICT RA Cloud Computing — Introspection

Application

It is not practical to implement TaintCheck as a
standalone due to the performance overhead
— TaintCheck enabled honeypots could use TaintCheck to
monitor all of its network services

» TaintCheck will verify the exploit and provide additional
information about the detected attack

— TaintCheck with OS randomization

* identify which request contained an attack and generate
signature for the attack or blocking future requests from the
user.

— TaintCheck in a distributed environment

83
F.Baiardi — ICT RA Cloud Computing — Introspection

Evaluation

Performance
30

[B MNo Valgrind]
= 25 -] H MNullgrind —
E B Bl Memcheck i
2 Fl TaintCheclk
= 20— —]
= 15 —
Z 10 —
£ 5 .

1 KB 10 KB 100 KB 1 WnIBE 10 ™A
563 1ms BT ms 205 ms O 79O mis 264 ms 251 ms

F.Baiardi — ICT RA Cloud Computing — Introspection

84

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Dynamic taint analysis
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Evaluation
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Application
	Diapositiva 84

