
ICT Risk Assessment

Fabrizio Baiardi
f.baiardi@unipi.it

Syllabus

• Security
• New Threat Model
• New Attack Cloud provider/SysAdm

• Countermeasures Homorphic encryption
Enclaves encryption + execution

Working with encrypted data (soft solution)

• A client stores its data on a cloud system
• The client wants to implement some computations on the data

without leaking any information about
• the data
• the data and which data is used by the computation

• Examples
• Store your personal information on the cloud and compute your tax declaration
• Store some information on the cloud and search this information

• Requires some proper encryption scheme because only a few
schemes satisfies the constrains

Homorphic encryption = Holy gray of encryption

Let
• R and S be sets
• E an encryption function R →S

E is
• Additively homomorphic if E(a+b)=PLUS(E(a), E(b))
• Multiplicatively homomorphic if E(a×b)=MULT(E(a), E(b))
• Mixed-multiplicatively homomorphic E(xy)=Mixed-mult(E(x),E(y))

E is fully homomorphic if there are no limitations on the
manipulations that can be performed.

Homomorphic encryption

• Data is stored at the provider
• Computation is implemented at the provider
• Inputs are encrypted by the client
• The output is transmitted to the client that decrypts it
• No trivial solution is accepted = almost all the computation has to

be executed by the provider to prevent cases where
– the data is transmitted to the client,
– the client decrypts the data
– the client computes the results
– the results are encrypted
– the results are transmitted to the provider

Fully homomorphic

In the following the manipulation will be represented as a circuit
that implements some boolean operations on the data of
interest and where the operators are gates

AND OR

AND

NOT

Fully homomorphic = NAND gates
so that any function can be computed

Meaning

● Any computation can be expressed as a Boolean circuit: a series of additions
and multiplications

● Using such a scheme, any circuit (consisting of AND and XOR) could be
homomorphically evaluated, effectively allowing the construction of programs
which may be run on the encryptions of their inputs to produce an encryption
of their output

● Since such a program never decrypts its inputs, it could be run by an untrusted
party without revealing its inputs and internal state.

 But our case introduce further constrains-1
• No optimization of the computation is possible

• Circuit minimization may not be applied because it leaks information about data that is
accessed

• A random access machine cannot be used because it leaks the information of which data has
been accessed by the computation (use an Oblivious RAM is possible)

• This efficiency can be recovered only if information about data that has been used can leak

• The size of the output must be fixed in advance = the number of output wires in the circuit must
be fixed in advance.
• If I request all of my files that contain a combination of keywords, I should also specify how

much data I want to be retrieved (e.g. 1MB).
• From my request, the cloud will generate a circuit for a function that outputs the first megabyte

of the correct files,
• The output is truncated or padded with zeros prevent leaking something a priori about the

relationship between the function (that is known) and my data.

 But our case introduce further constrains-2
• semantic security against chosen-plaintext attacks (CPA) : given a ciphertext c that encrypts either m0 or

m1, it is hard for an adversary A to decide which of the two values c encrypts, even if it is allowed to
choose both m0 and m1.

“hard” = if A runs in polynomial time and guesses correctly with probability 1/2 + OE, then OE = A’s
advantage, must be negligible.

 Otherwise, A breaks the semantic security of the encryption scheme.

• If an encryption scheme is deterministic (= there is only one ciphertext that encrypts a given message)
then it cannot be semantically secure.

An attacker can easily tell whether c encrypts m0 by encrypting m0 and by checking if the results is
equal to c.

• A semantically secure encryption scheme must be probabilistic
– several ciphertexts that encrypt a given message
– encryption chooses one randomly according to some distribution

Encryption scheme e
• Four algorithms

– KeyGene , Encrypte , Decrypte (must be efficient)
– Evaluatee

• Efficient = runs in time poly(L) where L = bit-length of the keys.
• KeyGene uses L to generate

– a single key sk in a symmetric scheme,
– two keys an asymmetric scheme, a public key pk and secret key sk.

• Evaluatee is associated to a set Fe of permitted functions such that
– f in Fe

– if c1, …, ct are such that ci = Encrypte (pk, mi) then
• Evaluatee,(pk, f, c1, …, ct) = c
• f(m1, …, mt) = Decrypte(sk, c) (sk if symmetric)

 e is fully homomorphic if any function belongs to Fe

Constrains

• decrypting c, the output of Evaluatee takes the same amount of
computation as decrypting c1, a ciphertext output by Encrypte

• c is the same size as c1 (compact ciphertexts requirement)

Informally,

• the size of c and the time needed to decrypt it do not grow with the
complexity of f; rather, they are completely independent of f

• the complexity of Decrypte, as well as those of KeyGene and
Encrypte, must remain polynomial in L

A first approximation - 1
Assume L= N, P = L2 and Q = L5 A (symmetric) Encryption Scheme

●

KeyGene(L): The key is a random P-bit odd integer p.
Encrypt

e
(p, m): To encrypt a bit m in {0, 1},

1) choose a random N-bit number m’ such that m’ = m mod 2.
2) output c= m’ + pq, where q is a random Q-bit number.

Decrypte(p, c): Output (c mod p) mod 2 where
1) (c mod p) = c’ in (−p/2,p/2)
2) p divides c − c’

 we recover q by finding the multiple of p closest to c and the noise parity is the encrypted bit

(c mod p) = noise associated to the ciphertext c
= distance to the nearest multiple of p

●

Decryption works because the noise m’ has the same parity as the message m.
A ciphertext output by Encrypt is a fresh ciphertext, since it has small (N-bit) noise.

m' and m have the
same parity

A first approximation – 1 bis

A first approximation - 2

Adde(c1, c2) = c1 + c2

Sube(c1, c2) = c1 − c2

Multe(c1, c2) = c1 • c2.

Evaluatee(f, c1, …, ct) =

1) Express f as a circuit C with XOR and AND gates
2) Let C’ be the same circuit as C, but with XOR and AND gates replaced by addition

and multiplication gates over the integers.
3) Output c = f ‘(c1, …, ct) where f ‘ is the multivariate polynomial that

 corresponds to C’.

If this work, we can deduce a pubblic encryption scheme

A full homomorphic scheme

Suppose that
a) e can handle De augmented by some gate, e.g., Add; call this augmented circuit DAdd.
b) c1 and c2 encrypt m1 and m2 respectively, under pk1,

if c’ 1 and c‘ 2 encrypt the bits of the ciphertexts under pk2 then
 c =Evaluatee(pk2, DAdd, sk1, c ‘1 , c ‘2)
encrypts m1 m2 under pk2 .

We get a fully homomorphic encryption scheme e’ by recursing this process
where the key in e’ is

a) a sequence of public keys (pk1, …, pka+1)
b) a chain of encrypted secret keys sk1, ..., ska, where ski is

encrypted under pki+1.

OP

E

E

K1 K2 K1

A

B

(B)K1

A(K1)

On premise Cloud

(OP(A,B))K1 ((OP(A,B))K1)K2

E

OP(A,B)K2

Original noise Noise increase Noise increase Original noise

K1
…
Kn

A full homomorphic scheme
To evaluate a function f in e’,

1. we express f as a circuit, topologically arrange its gates into levels,
2. scan sequentially the levels and for a gate at level i + 1(e.g., an Add gate)

1. take as input the encrypted secret key ski and a couple of ciphertexts associated to output
wires at level i that are under pki,

2. homomorphically evaluate DAdd to get a ciphertext under pki+1 associated to a wire at
level i + 1.

3. output the ciphertext associated to the output wire of f.

Putting the encrypted secret key bits sk1, ..., ska in the public key of e’ is not a problem for
security because these bits are indistinguishable from encryptions of 0 as long as e is
semantically secure

Last step: reduce the complexity of the key, instead of several pubblic keys we have the
same key for all the level (no information is leaked by revealing the encyption of a secret
key under a pubblic key, circular security)

Breakthrough(2009)

Practical … ?

According to an article on Forbes.com, Gentry's solution has a
catch: It requires immense computational effort. In the case of a
Google search, for instance, performing the process with
encrypted keywords would multiply the necessary computing
time by around 1 trillion, Gentry estimates.

1 trilion = 10 12

If we exploit Moore’s law , after 40 years an homomorphic
search would be as efficient as a search today

 An hardware solution

• 1. Trustworthy data processing in untrusted clouds

• 2. Overview of Intel SGX

• 3. Description of SGX-LKL Design

• 4. Description of preliminary SGX-Spark Design

• 5. Source code release of Java support on GitHub

 Trust Issues: Provider Perspective

• Cloud provider does not trust users

• Use virtual machines to isolate
users from each other and the host

• VMs only provide one way protection

Redis

OS

VMM

Firmware

Cloud platform

Staff

…

tru
st

ed

21

 Trust Issues: User Perspective

• Users trust their applications

• Users must implicitly trust
cloud provider

• Existing applications implicitly
assume trusted operating system or
system admin

Redis

OS

VMM

Firmware
Cloud
platform
Staff

…

un
tru

st
ed

22

Trusted Execution Support with Intel SGX

• Users create HW-enforced trusted
environment (enclave)

• Supports unprivileged
user code

• Protects against strong attacker
model

• Remote attestation
• Available on

commodity CPUs

OS

VMM

Firmware
Cloud
platform
Staff

…

un
tru

st
ed

Enclave

23

Trusted Execution Support with Intel SGX

24

Trusted/
Untrusted?

2. Overview of Intel SGX

25

 Trusted Execution Environments

• Trusted execution environment (TEE)
in process

– Own code & data

– Controlled entry points

– Provides confidentiality & integrity

– Supports multiple threads

– Full access to application memory

TEE = Intel

Enclave = Microsoft

Confidential Computing Jan 2021

User process

Application
code

Application
data

Enclave

OS Enclave

Enclave
code

Enclave
data

Threads
…

26

 Intel Software Guard Extensions (SGX)

• Extension of Instruction Set Architecture (ISA) in recent Intel CPUs
– Skylake (2015), Kaby lake (2016)

• Protects confidentiality and integrity of code & data in untrusted
environments

– Platform owner considered malicious

– Only CPU chip and isolated region trusted

 In a few words

28

 SGX Enclaves

• SGX introduces notion of enclave
– Isolated memory region for code & data
– New CPU instructions to manipulate enclaves

and new enclave execution mode
• Enclave memory encrypted and integrity-

protected by hardware
– Memory encryption engine (MEE)
– No plaintext secrets in main memory

• Enclave memory can be accessed only by enclave code
– Protection from privileged code (OS, hypervisor)

• Application has ability to defend secrets
– Attack surface reduced to just enclaves and CPU
– Compromised software cannot steal application secrets

Process

OS

Enclave

Hypervisor

✘✘ ✘
✔

Enclaved page cache

Enclaved page cache mapping

Memory Access Control

MAC from enclaves to “outside”:

● All memory access has to conform to segmentation and paging policies by the OS/VMM.
● Enclaves cannot manipulate those policies, only unprivileged instructions inside an enclave

(enclaves cannot change enclaves).
● Code fetches from inside an enclave to a linear address outside that enclave will results in a

General Protection Fault (0)exception.

From “outside” to enclaves

● Non-enclave accesses to EPC memory results in abort page semantics.
● Direct jumps from outside to any linear address that maps to an enclave do not enable

enclave mode and result in a about page semantics and undefined behavior.
● Hardware detects and prevents enclave accesses using logical-to-linear address

translations which are different than the original direct EA used to allocate the page.
● Detection of modified translation results in General Protection Fault (0).

SGX Instructions and Data Structures:

• 18 Instruction
– 13 Supervisor Instructions.

– 5 User Instructions.
• 13 Data Structures

– 8 data structures associated to a certain enclave.

– 3 data structures associated to certain memory page(s).

– 2 data structures associated to overall resource management.

SGX Supervisor Instructions:

• ENCLS[EADD] Add a page
• ENCLS[EBLOCK] Block an EPC page
• ENCLS[ECREATE] Create an enclave

• ENCLS[EDBGRD] ENCLS[EDBGWR] Read/Write data by debugger
• ENCLS[EEXTEND] Extend EPC page measurement
• ENCLS[EINIT] Initialize an enclave
• ENCLS[ELDB] Load an EPC page as blocked
• ENCLS[ELDU] Load an EPC page as unblocked
• ENCLS[EPA] Add version array
• ENCLS[EREMOVE] Remove a page from EPC
• ENCLS[ETRACK] Activate EBLOCK checks
• ENCLS[EWB] Write back/invalidate an EPC page

37

SGX User Instructions:

• User Instruction Description
• ENCLU[EENTER] Enter an Enclave
• ENCLU[EEXIT] Exit an Enclave
• ENCLU[EGETKEY] Create a cryptographic key
• ENCLU[EREPORT] Create a cryptographic report
• ENCLU[ERESUME] Re-enter an Enclave

SGX Data Structures in Details:

• SGX Enclave Control Structure (SECS) Represents one enclave and it store Hash, ID, size .
• Thread Control Structure (TCS) one for each thread in the enclave. It stores Entry

point,pointer to SSA.
• State Save Area (SSA) It save the state of the running threat when an AEX

occurs
• Page Information (PAGEINFO) data structure used as a parameter to the EPC-

management instruction Linear Address, Effective
address of the page (aka virtual address SECINFO +
SECS

• Security Information (SECINFO) Meta-data about an enclave pag R/W/X,Page type
(SECS, TCS, normal page or VA)

• Paging Crypto MetaData (PCMD): Crypto meta-data of a paged-out page. With PAGEINFO
it used to verify, decrypt, and reload a paged-out page
EWB writes out (the reserved field and) MAC values.
ELDB/U reads the fields and checks the MAC Contains
Enclave ID, SECINFO and MAC

SGX Data Structures in Details:
Version Array (VA)

• Each VA page is an EPC page to securely store the versions of evicted EPC pages
with 512 slots, each with an 8-byte version number for a page evicted from the
EPC.

– When an EPC page is evicted, an empty slot in a VA page receives the unique
version number of the evicted page

– When the EPC page is reloaded, a VA slot must hold the page version when
the VA slot is cleared.

– When evicting a VA page, a version slot in some other VA page must be used
to receive the version for the VA being evicted

– Version number = nonce to prevent reply attack

41

Memory Encryption Engine

42

Memory Encryption Engine

43

Memory Encryption Engine: Integrity Tree

44

nonces

Memory Encryption Engine: Performance

45

SGX SDK Code Sample
SGX application: untrusted code

char request_buf[BUFFER_SIZE];
char response_buf[BUFFER_SIZE];

int main()
{
 ...
 while(1)
 {
 receive(request_buf);
 ret = EENTER(request_buf, response_buf);
 if (ret < 0)
 fprintf(stderr, "Corrupted message\n");
 else
 send(response_buf);
 }
 ...
}

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);
 process_msg(input_buf, output_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);
 EEXIT(0);
 } else
 EEXIT(-1);
}

Server:
• Receives encrypted requests
• Processes them in enclave
• Sends encrypted responses

46

SGX Enclave Construction

Enclave populated using special instruction (EADD)
• Contents initially in untrusted memory
• Copied into EPC in 4KB pages
Both data & code copied before execution commences in enclave

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);
 process_msg(input_buf, output_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);
 EEXIT(0);
 } else
 EEXIT(-1);
}

EPC

DRAM
1
2

3

47

SGX Enclave Construction
• Enclave contents distributed in plaintext

– Must not contain any (plaintext) confidential data
• Secrets provisioned after enclave constructed and integrity verified
• Problem: what if someone tampers with enclave? Supply chain attack

– Contents initially in untrusted memory

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);
 process_msg(input_buf, output_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);
 EEXIT(0);
 } else
 EEXIT(-1);
}

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);
 process_msg(input_buf, output_buf);
 copy_msg(output_buf, external_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);
 EEXIT(0);
 } else
 EEXIT(-1);
}

Write unencrypted response to outside memory

SGX Enclave Attestation

• Is my code running on remote machine intact?
• Is code really running inside an SGX enclave?

• Local attestation
– Prove enclave’s identity (= measurement) to another enclave on same CPU

• Remote attestation
– Prove enclave’s identity to remote party

• Once attested, enclave can be trusted with secrets

SGX Enclave Measurement

• CPU calculates enclave measurement hash during enclave construction
– Each new page extends hash with page content and attributes (read/write/execute)

– Hash computed with SHA-256

• Measurement can be used
to attest enclave to local or
remote entity

CPU computes enclave measurement
hash during enclave construction
Different measurement if enclave modified

EPC

DRAM CPU

c0 94 7d bc 35 52 ba

9a 16 a6 63 0b 72 09

0d 0f 15 0b d0 2d ae
1a 55 f9 2f a8 20 98

50

Local Attestation

• Prove identity of A to local enclave B

1. Target enclave B measurement required for key generation
2. Report contains information about target enclave B, including its measurement
3. CPU fills in report and creates MAC using report key, which depends on random CPU fuses and target

enclave B measurement
4. Report sent back to target enclave B
5. Verify report by CPU to check that generated on same platform, i.e. MAC created with same report key

(available only on same CPU)
6. Check MAC received with report and do not trust A upon mismatch

CPU

Enclave A Enclave B
1. Hi! I’m 5f904ba8910bff! Who are you?

0d 0f 15 0b d0 2d ae

Measurement (enclave A)

5f 90 4b a8 91 0b ff

Measurement (enclave B)2. Please create a report for
5f904ba8910bff

0d 0f 15 0b d0 2d ae

3. Here you go!

4. Here is my report

0d 0f 15 0b d0 2d ae

5. Please give me my report
verification key

6. Here you go!

51

Remote Attestation

• Transform local report to remotely verifiable “quote”

• Based on provisioning enclave (PE) and quoting enclave (QE)
– Architectural enclaves provided by Intel

– Execute locally on user platform

• Each SGX-enabled CPU has unique key fused during manufacturing
– Intel maintains database of keys

– Similar to TPM assumptions

52

Remote Attestation

• PE communicates with Intel attestation service (acting as CA)
– Proves it has key installed by Intel

– Receives asymmetric attestation key

• QE performs local attestation for enclave
– QE verifies report and signs it using attestation key

– Creates quote that can be verified outside platform

• Quote and signature sent to remote attester, which communicates with Intel
attestation service to verify quote validity

53

SGX Limitations & Research Challenges
• Amount of memory enclave can use needs to be known in advance

– Dynamic memory support in SGX v2

• Security guarantees not perfect
– Vulnerabilities within enclave can still be exploited

– Side-channel attacks possible

 Performance overhead
– Enclave entry/exit costly

– Paging very expensive

 Application partitioning? Legacy code? …

COMPARISON

3. Description of SGX-LKL

56

SGX-LKL: Supporting Managed Runtimes in
SGX

• Many applications need runtime support
– JVM

– .NET

– JavaScript/V8/Node.js
•
• Requires complex system support

– Dynamic library loading

– Filesystem support

– Signal handling

– Complete networking stack

SGX-LKL: Linux Kernel Library in SGX
Enclaves

• Based on Linux Kernel Library (LKL)
– Implemented as architecture-specific port of mainline Linux (github.com/lkl)

– Follows Linux no MMU architecture

– Full filesystem support

– Full network stack available

58

SGX-LKL Architecture

• Runs unmodified Linux applications in SGX enclaves
• Applications and dependencies provided via disk image
• Full Linux kernel functionality available

• Custom memory allocator
• User-level threading

– In-enclave synchronisation
primitives

SGX-LKL Architecture:
How many instructions in enclaves

Memcached is an in-memory key-value store for small chunks of arbitrary data

Digital Bitbox DBB1707 Hardware Wallet Criptovalute Per Btc/eth

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Trust Issues: Provider Perspective
	Trust Issues: User Perspective
	Trusted Execution Support with Intel SGX
	Diapositiva 24
	2. Overview of Intel SGX
	Trusted Execution Environments
	Intel Software Guard Extensions (SGX)
	In a few words
	Diapositiva 29
	Diapositiva 30
	
	SGX Enclaves
	
	Diapositiva 34
	
	SGX Instructions and Data Structures:
	SGX Supervisor Instructions:
	SGX User Instructions:
	SGX Data Structures in Details:
	Diapositiva 40
	
	Memory Encryption Engine
	Memory Encryption Engine
	Memory Encryption Engine: Integrity Tree
	Memory Encryption Engine: Performance
	SGX SDK Code Sample
	SGX Enclave Construction
	Diapositiva 48
	SGX Enclave Attestation
	SGX Enclave Measurement
	Local Attestation
	Remote Attestation
	Remote Attestation
	SGX Limitations & Research Challenges
	Diapositiva 55
	3. Description of SGX-LKL
	SGX-LKL: Supporting Managed Runtimes in SGX
	SGX-LKL: Linux Kernel Library inside SGX Enclaves
	SGX-LKL Architecture
	Diapositiva 60

