ICT Risk Assessment

Fabrizio Baiardi
f.baiardi@unipi.it

Syllabus

* Security
* New Threat Model

«Cloud provider/SysAdm

Homorphic encryption
Enclaves encryption + execution

Working with encrypted data (soft solution)

* Aclient stores its data on a cloud system

* The client wants to implement some computations on the data
without leaking any information about
* the data
* the data and which data is used by the computation
* Examples
* Store your personal information on the cloud and compute your tax declaration
* Store some information on the cloud and search this information
* Requires some proper encryption scheme because only a few
schemes satisfies the constrains

Homorphic encryption = Holy gray of encryption

Let
R and S be sets
E an encryption function R =S

Eis
Additively homomorphic if E(a+b)=PLUS(E(a), E(b))
Multiplicatively homomorphic if E(axb)=MULT(E(a), E(b))

Mixed-multiplicatively homomorphic E(xy)=Mixed-mult(E(x),E(y))

E is fully homomorphic if there are no limitations on the
manipulations that can be performed.

Homomorphic encryption

* Data is stored at the provider

* Computation is implemented at the provider

* Inputs are encrypted by the client

* The output is transmitted to the client that decrypts it

* No trivial solution is accepted = almost all the computation has to

be executed by the provider to prevent cases where
— the data is transmitted to the client,
— the client decrypts the data
— the client computes the results
— the results are encrypted
— the results are transmitted to the provider

Fully homomorphic

In the following the manipulation will be represented as a circuit
that implements some boolean operations on the data of
interest and where the operators are gates

|

Fully homomorphic = NAND gates
so that any function can be computed

Meaning

. Any computation can be expressed as a Boolean circuit: a series of additions
and multiplications

. Using such a scheme, any circuit (consisting of AND and XOR) could be
homomorphically evaluated, effectively allowing the construction of programs

which may be run on the encryptions of their inputs to produce an encryption
of their output

. Since such a program never decrypts its inputs, it could be run by an untrusted
party without revealing its inputs and internal state.

But our case introduce further constrains-1

* No optimization of the computation is possible
* Circuit minimization may not be applied because it leaks information about data that is
accessed
* A random access machine cannot be used because it leaks the information of which data has
been accessed by the computation (use an Oblivious RAM is possible)
* This efficiency can be recovered only if information about data that has been used can leak

* The size of the output must be fixed in advance = the number of output wires in the circuit must
be fixed in advance.

* If Irequest all of my files that contain a combination of keywords, | should also specify how
much data | want to be retrieved (e.g. 1MB).

* From my request, the cloud will generate a circuit for a function that outputs the first megabyte
of the correct files,

* The output is truncated or padded with zeros prevent leaking something a priori about the
relationship between the function (that is known) and my data.

But our case introduce further constrains-2

semantic security against chosen-plaintext attacks (CPA) : given a ciphertext c that encrypts either mO or
m1, it is hard for an adversary A to decide which of the two values c encrypts, even if it is allowed to
choose both m0 and m1.

“hard” = if A runs in polynomial time and guesses correctly with probability 1/2 + OE, then OE = A’s
advantage, must be negligible.

Otherwise, A breaks the semantic security of the encryption scheme.

If an encryption scheme is deterministic (= there is only one ciphertext that encrypts a given message)
then it cannot be semantically secure.

An attacker can easily tell whether ¢ encrypts mO by encrypting m0 and by checking if the results is
equal to c.

A semantically secure encryption scheme must be probabilistic
— several ciphertexts that encrypt a given message
— encryption chooses one randomly according to some distribution

Encryption scheme e

* Four algorithms
— KeyGen_, Encrypt_, Decrypt, (must be efficient)

— Evaluate,
* FEfficient = runs in time poly(L) where L = bit-length of the keys.
* KeyGen, uses L to generate

— asingle key sk in a symmetric scheme,
— two keys an asymmetric scheme, a public key pk and secret key sk.

« Evaluate, is associated to a set F, of permitted functions such that
— finF,
— if cl, ..., ct are such that c¢i = Encrypt, (pk, mi) then

« Evaluate,(pk, f, c1, ..., ct)=c
« fim1, ..., mt) = Decrypt_(sk, c) (sk if symmetric)

e is fully homomorphic if any function belongs to F,

Constrains

 decrypting ¢, the output of Evaluate, takes the same amount of
computation as decrypting c1, a ciphertext output by Encrypt,

* cisthe same size as c1 (compact ciphertexts requirement)

Informally,

* the size of c and the time needed to decrypt it do not grow with the
complexity of f; rather, they are completely independent of f

« the complexity of Decrypt,, as well as those of KeyGen_ and
Encrypt,, must remain polynomial in L

A first approximation - 1

Assume L= N, P=12and Q=L> A (symmetric) Encryption Scheme
KeyGen (L): The key is a random P-bit odd integer p.
Encrypte(p, m): To encrypt a bit min {0, 1},

1) choose a random N-bit number m’ such that m’ = m mod 2.
2) output c= m’ + pg, where q is a random Q-bit number.

Decrypt,(p, c): Output (c mod p) mod 2 where ond o
1) (c mod p) =’ in (-p/2,p/2) - m and m | ave the
2) pdividesc- ¢’ same parity

we recover g by finding the multiple of p closest to c and the noise parity is the encrypted bit

(c mod p) = noise associated to the ciphertext c
= distance to the nearest multiple of p

Decryption works because the noise m’ has the same parity as the message m.
A ciphertext output by Encrypt is a fresh ciphertext, since it has small (N-bit) noise.

A first approximation — 1 bis

A Somewhat Homomorphic Scheme
e KEYGEN,: Output a random odd integer p

e For bit me {0,1}, leta random m" = m mod 2 (ie. n? is even if m = 0,
odd if mm = 1). Pick a random q. Then ENCRYPT.(m,p) = ¢c = m’ + pq.
m’ is the noise associated with the plaintext.

e Let ¢ = cmod pwhere ¢ € (—p/2,p/2). Then
DECRYPT.(p.c) = ¢’ mod 2. ¢’ is considered to be the noise associated

with the ciphertext (ie. the shortest distance to a multiple of p)
The Homomorphism: (Multiplication) Let my, m> € {0.,1}. Then

e(m,p)e(mz, p) = (Mg + pgi)(mMs + pqgz)
— d(c) = (m] + pqg1)(m; + pgz) mod pmod 2 =mj - m; mod 2 = my - mo

A first approximation - 2

Add (c1,c2) =cl+c2
Sub,(c1, c2) =cl-c2
Mult (cl,c2) =clec2.
Evaluate(f, c1, ..., ct) =

1) Express f as a circuit C with XOR and AND gates

2) Let C’ be the same circuit as C, but with XOR and AND gates replaced by addition
and multiplication gates over the integers.

3) Outputc=f"(cl, .., ct) where f‘ is the multivariate polynomial that
corresponds to C..

If this work, we can deduce a pubblic encryption scheme

A full homomorphic scheme

Suppose that
a) e can handle De augmented by some gate, e.g., Add; call this augmented circuit DAdd.
b) c1and c2 encrypt m1l and m2 respectively, under pk1,

if ¢’ 1 and ¢’ 2 encrypt the bits of the ciphertexts under pk2 then
¢ =Evaluate (pk2, DAdd, sk1,¢c1,c 2)

encrypts ml @ m2 under pk2.

We get a fully homomorphic encryption scheme e’ by recursing this process
where the key in e’ is
a) asequence of public keys (pkl, ..., pka+1)

b) achain of encrypted secret keys ski, ..., ska, where ski is
encrypted under pki+1.

K1

Kn KI — » K2 K1

A —— _ AKIT)

(OP(A,B))K1 ((OP(A,B))K1)K2

OP » E > >

- ~ OP(AB)K2

Noise increase Noise increase Original noise

On premise Cloud

A full homomorphic scheme

To evaluate a function f1n e’,

1. we express f as a circuit, topologically arrange its gates into levels,
2. scan sequentially the levels and for a gate at level i + 1(e.g., an Add gate)

1. take as input the encrypted secret key ski and a couple of ciphertexts associated to output
wires at level i that are under pki,

2. homomorphically evaluate DAdd to get a ciphertext under pki+1 associated to a wire at
level i + 1.

3. output the ciphertext associated to the output wire of f.

Putting the encrypted secret key bits sk1, ..., ska in the public key of e’ 1s not a problem for
security because these bits are indistinguishable from encryptions of 0 as long as e is
semantically secure

Last step: reduce the complexity of the key, instead of several pubblic keys we have the
same key for all the level (no information is leaked by revealing the encyption of a secret
key under a pubblic key, circular security)

Breakth rough(2009)

=] IEM Press room - 200

IH(E) $=EEE) EE(EI FB=2(8) =H‘ﬂ:(_:| TEmMm #FEEIH)

& -c o @ x

(£ IBM Press room - 2009-06-25 IBM... | -+

Solutions ~

m http:ffwnw-03.ibm.comyfpressfusfen/pressrelease/27840.wss¥#feeds

Services -

United States [change]

Products ~ Support & downloads ~ My IEM ~

| »

Welcome [IBM Sign in] [Register]

m

Press releases

Press kits

Photo gallery
Biographies
Background

Press room feeds
Global press resources
Press room search

Media contacts

Related links

= IT Analyst support center
= Investor relations

FEAE

(R

L

[5] € T

IBM Researcher Solves Longstanding Cryptographic Challenge
Discovers Method to Fully Process Encrypted Data Without Knowing its
Content; Could Greatly Further Data Privacy and Strengthen Cloud
Computing Security

4+ Press release
4+ Related XML feeds

4 Contact(s) information

ARMONEK, M.Y. - 25 Jun 2009: An IBM Researcher has solved a thorny mathematical
problem that has confounded scientists since the invention of public-key encryption
several decades ago. The breakthrough, called "privacy homomorphism,” or "fully
homomorphic encryption,” makes possible the deep and unlimited analysis of
encrypted information -- data that has been intentionally scrambled -- without
sacrificing confidentiality.

IBM's solution, formulated by IBM Researcher Craig Gentry, uses a mathematical object
called an "ideal lattice,"” and allows people to fully interact with encrypted data in ways
previously thought impossible. With the breakthrough, computer vendors storing the
confidential, electronic data of others will be able to fully analyze data on their clients’
behalf without expensive interaction with the client, and without seeing any of the
private data. With Gentry's technique, the analysis of encrypted information can yield
the same detailed results as if the original data was fully visible to all.

Using the solution could help strengthen the business model of "cloud computing,”

Mo Paper Weight
[4

Make paper practices
greener, leaner, and more
compliant.

L= Register for the white
paper and ROI calculator

Content Collection and
Archiving

=2 1 0 hustacer@gmail.com

aos W)
2010/3/21 | |

|

Practical ... ©-

According to an article on Forbes.com, Gentry's solution has a
catch: It requires immense computational effort. In the case of a
Google search, for instance, performing the process with
encrypted keywords would multiply the necessary computing
time by around 1 trillion, Gentry estimates.

1 trilion =10 12

If we exploit Moore’s law , after 40 years an homomorphic
search would be as efficient as a search today

An hardware solution

1. Trustworthy data processing in untrusted clouds

2. Overview of Intel SGX

3. Description of SGX-LKL Design

4. Description of preliminary SGX-Spark Design

5. Source code release of Java support on GitHub

Cloud provider does not trust users

Use virtual machines to isolate
users from each other and the host

VMs only provide one way protection

71

Trust Issues: User Perspective

Users trust their applications

Users must implicitly trust
cloud provider

Existing applications implicitly
assume trusted operating system
system admin

79

Trusted Execution Support with Intel SGX

Users create HW-enforced trusted
environment (enclave)

=

— =
e —— "h s
- e -

Firmware

Supports unprivileged
user code

Protects against strong attacker
model

Remote attestation

untrusted

Available on
commodity CPUs
o

72

Eil0Ea s = Hermote Caarmmasler
Compeuder
|:'.-|:Irl"l|'_'l_llfﬂﬁ:lri o e

DHspatcher

Sebup

Feiasas e

e riTee Sl

Frieaite ats I

ITITITlTITITI*ITITITITITITITITIT‘
1
HUE EYE BN O YN O O O B O O O O O e ..

I
I
|
-
i
|
o
|
|
|
)
i
i
i
By
i
i
i
oY
i
i
i
L

ﬁ N ﬁ Trusted/
Untrusted?
e s = —
Frgnere 1- Secours remole coamepubalbiors. A user relees on @3 rermoslss

compuber, v naed by an umtrnesbed party, 1o performm sormes commypeari et o
o her daka,. The wwser has soames assugsneces o Lhe compulsisoem s
imlegrmly amkl comficdenizalbby.

M

2. Overview of Intel SGX

9 1™

Trusted Execution Environments

Trusted execution environment (TEE) User process
INn process

0S

- Own code & data
Enclave

- Controlled entry points

code

- Provides confidentiality & integrity

Enclave

Enel
nclave data

- Supports multiple threads

- Full access to application memory Aoolicag;
pplication
code

TEE = Intel

Application
Enclave = Microsoft data

Confidential Computing Jan 2021

TG

Extension of Instruction Set Architecture (ISA) in recent Intel CPUs
- Skylake (2015), Kaby lake (2016)

Protects confidentiality and integrity of code & data in untrusted
environments

- Platform owner considered malicious

- Only CPU chip and isolated region trusted

In a few words

Allow application developers to protect sensitive data from unauthorized access or
modification by rogue software running at higher privilege levels.

Enable applications to preserve the confidentiality and integrity of sensitive code and data
without disrupting the ability of legitimate system software to schedule and manage the use
of platform resources.

Enable the development of trusted applications using familiar tools and processes.

Allow the performance of trusted applications to scale with the capabilities of the underlying
application processor.

Enable software vendors to deliver trusted applications and updates at their cadence, using
the distribution channels of their choice.

Enable applications to define secure regions of code and data that maintain confidentiality
even when an attacker has physical control of the platform and can conduct direct attacks
on memory.

71Q

The Basic Issue: Why Aren’'t Compute Devices
Trustworthy?

Protected Mode (rings) protects OS from apps ...

I

Privileged Code .

.. and apps from each other ...

.. UNTIL a malicious app exploits a flaw to gain full
privileges and then tampers with the OS or other apps

The Basic Issue: Why Aren’'t Compute Devices
Trustworthy?

Protected Mode (rings) protects OS from apps ...

Bad

- Code

Privileged Code

.. and apps from each other ...

.. UNTIL a malicious app exploits a flaw to gain full
privileges and then tampers with the OS or other apps

Application gains ability to defend

Its own secrets Attack surface with Enclaves
- Smallest attack surface (App + processor)

- Malware that subverts 05/VMM, BIOS, Drivers
etc. cannot steal app secrets

Familiar development/debug

- Single application environment
- Build on existing ecosystem expertise

Attack Surface

SGX Enclaves

SGX introduces notion of enclave

- Isolated memory region for code & data

- New CPU instructions to manipulate enclaves
and new enclave execution mode

Enclave memory enerypted and integrity-

0S

protected by hardware

Hypervisor

- Memory encryption engine (MEE)
- No plaintext secrets in main memory

Enclave memory can be accessed only by enclave code
- Protection from privileged code (OS, hypervisor)

Application has ability to defend secrets

- Attack surface reduced to just enclaves and CPU
- Compromised software cannot steal application secrets

SGX High-level HW/SW Picture

Instructions

)) EEXIT
Application T T EGETKEY
Environment EREPORT

EENTER
SGX User SGX User ERESUME

Runtime Runtime

Instructions ETRACK
ECREATE EWB

Privileged E‘;}?EEND ELD
i Page EPA
Environment g EINIT EREMOVE
tables EBLOCK
Enclaved page cache mapping
Hdw Data Structure
Hardware
Exposed Runtime
Hardware M Application
05 Dala siructure
Enclaved page cache

Memory Access Control

MAC from enclaves to “outside’:

« All memory access has to conform to segmentation and paging policies by the OS/VMM.

« Enclaves cannot manipulate those policies, only unprivileged instructions inside an enclave
(enclaves cannot change enclaves).

» Code fetches from inside an enclave to a linear address outside that enclave will results in a
General Protection Fault (0O)exception.

From “outside” to enclaves

* Non-enclave accesses to EPC memory results in abort page semantics.

 Direct jumps from outside to any linear address that maps to an enclave do not enable
enclave mode and result in a about page semantics and undefined behavior.

 Hardware detects and prevents enclave accesses using logical-to-linear address
translations which are different than the original direct EA used to allocate the page.

» Detection of modified translation results in General Protection Fault (0).

SGX Access Control

posnlll Traditional [k
|A Page Table
Checks

Y ARTARY

SGX Imstructions and Data Structures:

18 Imnstruction
- 13 Supervisor Instructions.

- 5 User Instructions.

13 Data Structures
- 8 data structures associated to a certain enclave.
- 3 data structures associated to certain memory page(s).

- 2 data structures associated to overall resource management.

SGX Supervisor Instructions:

EINIT,
ELDB]

EADD]
EBLOCK]

ECREATE]

EDBGRD] ENCLS[EDBGWR]
EEXTEND]

ELDU]
EPA]

EWB]

EREMOVE]
ETRACK]

Add a page

Block an EPC page

Create an enclave

Read/Write data by debugger
Extend EPC page measurement
Initialize an enclave

Load an EPC page as blocked
Load an EPC page as unblocked
Add version array

Remove a page from EPC
Activate EBLOCK checks

Write back/invalidate an EPC page

SGX User Instructions:

User Instruction

ENCLU
ENCLU
ENCLU
ENCLU
ENCLU

EENTER]
EEXIT]
EGETKEY]
EREPORT]

ERESUME]

Description

Enter an Enclave

Exit an Enclave

Create a cryptographic key
Create a cryptographic report

Re-enter an Enclave

SGX Enclave Control Structure (SECS)
Thread Control Structure (TCS)

State Save Area (SSA)

Page Information (PAGEINFO)

Security Information (SECINFO)

Paging Crypto MetaData (PCMD):

SGX Data Structures in Details:

Represents one enclave and it store Hash, ID, size .

one for each thread in the enclave. It stores Entry
point,pointer to SSA.

It save the state of the running threat when an AEX
occurs

data structure used as a parameter to the EPC-
management instruction Linear Address, Effective
address of the page (aka virtual address SECINFO +
SECS

Meta-data about an enclave pag R/W/X,Page type
(SECS, TCS, normal page or VA)

Crypto meta-data of a paged-out page. With PAGEINFO
it used to verify, decrypt, and reload a paged-out page
EWB writes out (the reserved field and) MAC values.
ELDB/U reads the fields and checks the MAC Contains
Enclave ID, SECINFO and MAC

SGX Data Structures in Details:

Version Array (VA)

Each VA page is an EPC page to securely store the versions of evicted EPC pages

with 512 slots, each with an 8-byte version number for a page evicted from the
EPC.

- When an EPC page is evicted, an empty slot in a VA page receives the unique
version number of the evicted page

- When the EPC page is reloaded, a VA slot must hold the page version when
the VA slot is cleared.

- When evicting a VA page, a version slot in some other VA page must be used
to receive the version for the VA being evicted

- Version number = nonce to prevent reply attack

Protection vs. Memory Snooping Attacks

Non-Enclave
Access

= Security perimeter is the
CPU package boundary

« Data and code unencrypted
inside CPU package

= Data and code outside CPU
package is encrypted and/or
integrity checked

« External memory reads and
bus snoops see only
encrypted data

N1

- i
=i
o

Leegmared

teH mibated transsctions to the ==ired repon '.

|verdgfupdate the imegrey tree|

Lromyprned transact s bo bR Proaected region

- - — -

Transsctions bo pereral junprobecied] mepons

RIS

RIBU3S) EIER DEIIEI0N]
il

i)

Objective 1. Providing confidentiality for the data that is
written to the Protected region (on the DRAM).
Objective 2. Data iniegrity with replay prevention, as-
suring that data which is read back from the DEAM s Pro-
tected region to the CPU, is the same data that was most
recently written from the CPU to the DRAM.

Remark 1. The MEE is not designed to be an Oblivi-
ous RAM. An adversary with the assumed ability to track
DRAM changes over time, can, by definition, carry out
traffic analysis. He can learn when CL's are written, and
to which CL addresses (though the contents of this traffic
remains confidential). Preventing such analvsis is not an
objective of the MEE.

Memory Enceryption Engine

Property 1. The MEE keys are generated uniformly at
random at boot time, and never leave the die.

Property 2. The encryption keys and the authentication
keys are separate.

Property 3 (Drop-and-lock policy). Tree verifications
(and updares) enforce the following “drop-and-lock™ pol-
icy. The MEE computes the MAC rags of data that it reads,

and compares them to expected values, fetched from the
integrity free on the DRAM. If all comparisons maich, the
aperation continues. However, as soon as any mismaich is
detected, the MEE emits a failure signal, drops the trans-
acfion (i.e., no unverified data ever reaches the cache)
and immediately locks the MC (ie., no further transac-
rions are serviced). This causes the system to hang, and it
needs to be re-booted. After re-boot, the MEE starts over
with newly generated kevs.

N2

Memory Encryption Engine: Integrity Tree

nonces

Dy
P e
g =) =

©9: Memory Eneryption Engine: Performance

Figure 3 Performance companson of the 443.gobmk

component of SPECINT 2006, with 10 mput files (see

s explanations In the text). The bars show that the perfors
mance degradation (in %) incurred by enabling the MEE,
vanes from 2.2% to 14%, with an average of 3.5%.

perizrmeEks degradaiion mpec lin%
* I
* Il -
« I
‘:':l:- .h.
I
* I i
* I
* I i
L
T
“ M

i

SGX SDK Code Sample

SGX application: untrusted code

char request buf[BUFFER SIZE];
char response buf [BUFFER SIZE];

int main()

{

while (1)
{
receive (request buf) ;
ret = EENTER (request buf, response buf) ;
if (ret < 0)
fprintf (stderr, "Corrupted message\n") ;
else
send (response_buf) ;

Enclave: trusted code

char input buf[BUFFER_SIZE];
char output_ buf [BUFFER SIZE] ;

int process_request(char *in, char *out)
{
copy _msg(in, input buf) ;
if (verify MAC (input_buf))
{
decrypt _msg(input_buf) ;
process msg(input buf, output buf);
encrypt msg(output buf) ;
copy_msg (output buf, out);
EEXIT(O) ;
} else
EEXIT(-1) ;

Receives encrypted requests
Processes them in enclave
Sends encrypted responses

NA

char input buf[BUFFER SIZE]; ~"tee—o
char output_buf [BUFFER_SIZE] ;

int process_request(char *in, char *out)
{
copy msg(in, input buf);
if (verify MAC (input_buf))
{
decrypt _msg(input_buf) ;
process_msg (input_buf, output buf);
encrypt msg(output_ buf) ;
copy_msg (output _buf, out);
EEXIT (0) ;
} else
EEXIT (-1) ;

Enclave populated using special instruction (EADD)
Contents initially in untrusted memory
Copied into EPC in 4KB pages

Both data & code copied before execution commences in enclave

N7

SGX Enclave Construction

Enclave contents distributed in plaintext

- Must not contain any (plaintext) confidential data
Secrets provisioned after enclave constructed and integrity verified

Problem: what if someone tampers with enclave? Supply chain attack

- Contents initially in untrusted memory

int process_request(char *in, char *out) int process_request(char *in, char *out)
{ {
copy_msg(in, input_ buf); copy _msg(in, input buf) ;
if (verify MAC (input_buf)) if (verify MAC(input_buf))
{ {
decrypt msg(input buf) ; decrypt _msg(input_buf) ;
process msg(input_buf, output buf); process msg(input_buf, output buf);
encrypt msg (output_buf) ; [:::::C> copy _msg (output buf, external buf) ;
copy_msg (output_buf, out); encrypt msg(output_ buf) ;
EEXIT (0) ; copy_msg (output _buf, out);
} else EEXIT (0) ;
EEXIT (-1) ; } else

} EEXIT (-1) ;

Y ARTARY

SGX Enclave Attestation

Is my code running on remote machine intact?

Is code really running inside an SGX enclave?

- Local attestation

- Prove enclave’s identity (= measurement) to another enclave on same CPU

- Remote attestation

- Prove enclave’s identity to remote party

Once attested, enclave can be trusted with secrets

SGX Enclave Measurement

CPU calculates enclave measurement hash during enclave construction

- Each new page extends hash with page content and attributes (read/write/execute)
- Hash computed with SHA-256

cO0 94 7d bc 35 52 ba

Measurement can be used
to attest enclave to local or s e
remote entlty la 55 £9 2f a8 20 98

9a 16 a6 63 0b 72 09

CPU computes enclave measurement
hash during enclave construction
Different measurement if enclave modified

SN

Local Attestation

Prove identity of A to local enclave B

N

1. Hi! 'm 5£904ba8910b£f£! Who are you?

0d 0f 15 Ob dO0 2d ae

o
<

0d 0f 15 Ob dO

2d ae\

|

2. Please create a report for
5£904ba8910bff

J

3. Heréxyou go!

\®_/
4. Here is my report

-

Measurement (enclave A)

0d 0f 15 Ob dO 2d ae

Measurement (enclave B)

5£ 90 4b a8 91 0b ff

6. Hereyou go!

1. Target enclave B measurement required for key generation
2. Report contains information about target enclave B, including its measurement

3. CPU fills in report and creates MAC using report key, which depends on random CPU fuses and target

enclave B measurement
4. Report sent back to target enclave B

5. Verify report by CPU to check that generated on same platform, i.e. MAC created with same report key

(available only on same CPU)

6. Check MAC received with report and do not trust A upon mismatch

51

5. Please give me my report
verification key

Remote Attestation

Transform local report to remotely verifiable “quote”

Based on provisioning enclave (PE) and quoting enclave (QE)
- Architectural enclaves provided by Intel

- Execute locally on user platform

Each SGX-enabled CPU has unique key fused during manufacturing
- Intel maintains database of keys

- Similar to TPM assumptions

gy}

Remote Attestation

PE communicates with Intel attestation service (acting as CA)
- Proves it has key installed by Intel

- Receives asymmetric attestation key

QE performs local attestation for enclave
- QE verifies report and signs it using attestation key

- Creates quote that can be verified outside platform

Quote and signature sent to remote attester, which communicates with Intel
attestation service to verify quote validity

£2

SGX Limitations & Research Challenges

Amount of memory enclave can use needs to be known in advance

- Dynamic memory support in SGX v2

Security guarantees not perfect

- Vulnerabilities within enclave can still be exploited

- Side-channel attacks possible

Performance overhead
- Enclave entry/exit costly
- Paging very expensive

Application partitioning? Legacy code? ...

Untrusted
component

Attack
surface
Sensitive
< code
and data
Performance
overhead

TCB size

COMPARISON

Homomorphic Encryption Secure element

e.g., TPM
Data integrity Y Y (subject to code integrity) Keys only
Data confidentiality Y Y Keys only
Code integrity Y No Y
Code confidentiality Y (may require work) No Y
Authenticated Launch Varies No No
Programmability Y Partial (“circuits”) No
Attestability Y No Y
Recoverability Y No Y

Table 1 - comparison of security properties of Confidential Computing vs. HE and TPMs

3. Description of SGX-LKL

CA

AATAN

o\s‘,i

SGX-LKL: Supporting Managed Runtimes in

SGX

Many applications need runtime support
- JVM
- .NET
- JavaScript/V8/Node.js

Requires complex system support
- Dynamic library loading
- Filesystem support
- Signal handling

- Complete networking stack

SGX-LKL: Linux Kernel Library in SGX

Enclaves
Based on Linux Kernel Library (LKL)

- Implemented as architecture-specific port of mainline Linux (github.com/1k1)

- Follows Linux no MMU architecture

- Full filesystem support

- Full network stack available Legend
Core LKL API
Application
Unmodified Linux Kernel PP LKL to Host API
l * Synchronous call

Additional LKL virtual | Ikl_syscall()

. : i A Asynchronous call
lkl_trigger_irq() | computer architecture .

R _",-',t ____________ & _______________ ‘} _____________ __Environment-indendent
: as port of Linux
Memaory Threading Common virtio backend Environment-specific

~native operations
(Linux, MacOS,
Windows, etc.)

Time Timers devices interfaces

i Semaphores Mutexes Block Network

EQ

SGX:-LKL Architecture

Runs unmedified Linux applications in SGX enclaves

Applications and dependencies provided via disk image

Full Linux kernel functionality available

Custom memory allocator

User-level threading

- In-enclave synchronisation
primitives

Host

Network/block

LKL

Unmodified application

operations | device operations Syscall interface

4

A |

Y Y

—I Y

Unmodified standard C wrappers not handled Unmodified standard C
by LKL (threading, synchronisation, memory, time)| |wrappers handled by LKL

L 2 Y

dimalloc Ithread
Memory allocator

Userland scheduler

v v

Unmodified system call stubs

Loader

~

Y

Unmodified system call server

[L —

loads as a shared library

Application Total code size (LOCs) Enclave size (LOCs)

Memcached 31,000 12,000 (40%)
DigitalBitbox 23,000 8,000 (38%)
LibreSSL 176,000 38,000 (22%)

Memcached is an in-memory key-value store for small chunks of arbitrary data

Digital Bitbox DBB1707 Hardware Wallet Criptovalute Per Btc/eth

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Trust Issues: Provider Perspective
	Trust Issues: User Perspective
	Trusted Execution Support with Intel SGX
	Diapositiva 24
	2. Overview of Intel SGX
	Trusted Execution Environments
	Intel Software Guard Extensions (SGX)
	In a few words
	Diapositiva 29
	Diapositiva 30
	
	SGX Enclaves
	
	Diapositiva 34
	
	SGX Instructions and Data Structures:
	SGX Supervisor Instructions:
	SGX User Instructions:
	SGX Data Structures in Details:
	Diapositiva 40
	
	Memory Encryption Engine
	Memory Encryption Engine
	Memory Encryption Engine: Integrity Tree
	Memory Encryption Engine: Performance
	SGX SDK Code Sample
	SGX Enclave Construction
	Diapositiva 48
	SGX Enclave Attestation
	SGX Enclave Measurement
	Local Attestation
	Remote Attestation
	Remote Attestation
	SGX Limitations & Research Challenges
	Diapositiva 55
	3. Description of SGX-LKL
	SGX-LKL: Supporting Managed Runtimes in SGX
	SGX-LKL: Linux Kernel Library inside SGX Enclaves
	SGX-LKL Architecture
	Diapositiva 60

