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Objectives

Train machine learning (ML) specialists capable of

O designing novel learning models
O developing pattern recognition applications using ML

o developing intelligent agents using Reinforcement Learning (RL)
Focus on challenging and complex data

O Machine Vision: noisy, hard-to-interpret, semantically rich information

o Structured data: relational information (sequences, trees, graphs)

Lectures do not cover Natural Language Processing as there is a dedicated
course
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Expected Outcome

Methodology-oriented outcomes

O Gain in-depth knowledge of advanced machine learning models
O Understand the underlying theory

O Be able to individually read, understand and discuss research works in the
field

Application-oriented outcomes

O Learn to address modern pattern recognition problems
O Gain knowledge of ML, PR and RL libraries

O Be able to develop an application using ML and RL models

DAVIDE BACCIU - ISPR COURSE 3




Prerequisites

o Knowledge of machine learning fundamentals
® Pass the ML course or.. come discuss your ML skills with me

. D > =
o Mathematical tools for ML v /Zl,y <m>3

_ 2T
® Algebra and calculus O O P o
< V/ /72) V(/ l-‘-;/ J

e Optimization
e Probability and statistics
o Programming experience in Python (helpful)

...and, above all, a disposition not to get (easily) scared by math!
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Organization

The course covers five themes

o Introduction to Pattern Recognition
o Probabilistic (Generative) Models

o Deep Learning

o Generative Deep Learning

o Advanced models and applications

An incremental approach: from old school pattern recognition to state-of-
the-art deep learning
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Guest Lectures

Guest seminars by researchers and Ph.D. students on (tentative):
Practical lectures on deep learning frameworks (PyTorch, TF/Keras, Ray)
Reservoir computing

Alternative to backprop

Neural xDE framework

Short seminars on hot research topics by guest lecturers

0 O O O O O

I ———————————————————
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Topics (I)

O Introduction to Pattern Recognition

O Introduction to signal processing
O Introduction to image processing

o Probabilistic (Generative) Models

O Graphical models

Bayesian networks and causality

Hidden Markov Models

Markov Random Fields

Bayesian learning and variational inference
Sampling

Boltzmann machines

0O O 0O 0O 0O O
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Topics (I1)

o Deep Learning (DL) fundamentals

Deep autoencoders

Convolutional architectures

Gated recurrent networks

Transformers and encoder-decoder architectures

DL toolset: dropout, batch normalization, residual connections, attention
Neural memories

Deep learning with Pytorch and Keras-TF

O OO0 OO0 OO

o Generative deep learning
Exact likelihood models
Variational AE

Generative adversarial networks
Normalizing flow

Diffusion models
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Topics (Il)

o Advanced topics and applications

Reservoir computing

Dynamical systems and neural networks

Alternatives to backprop

Deep learning for graphs

Reinforcement learning

Machine vision, multimodal learning, Biolnformatics, robotics,...

0O O 0O OO0 OO
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Course Instructor

Davide Bacciu

O
O
O

Email — davide.bacciu@unipi.it

Tel - 050 2212749

Office - Room 3310, Dipartimento di
Informatica

Office hours - Thursday 16-18 (email me!)
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Course Schedule

Weekly Timetable:

Tuesday 11.00-12.45
Wednsday 16.15-18.00
Thursday 14.15-16.00

Talk now if there are incredibly worrisome issues with the schedule!

Course comprises 35-36 lectures

o Course will be given in-person and streamed online on Teams for Ph.D.
students

o Video recording of the lectures will be available (to everybody) on Teams
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Course Homepage

Reference Webpage on Moodle:

https://elearning.di.unipi.it/course/view.php?id=278

Here you can find

O Course information

O Lecture slides

O Articles and course materials

o Midterms and final project assignments

-@: Subscribe to the course to receive feeds and news
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Reference Books (changing this year)

For pattern recognition refer to slides (and additional material)

Previous years Starting this year

Probabilistic learning reference (free pdf): e Deep learning (free pdf):

David Barber, Bayesian Reasoning and Machine pesp Leaiiingll Simon J.D. Prince, Understanding Deep

Learning, Cambridge University Press (2012) Learning, MIT Press (2023)

Deep learning reference (free pdf): Probabilistic & deep learning (free pdf):

Chris Bishop, Hugh Bishop, Deep Learning

|. Goodfellow, Y. Bengio and A. Courville, RS £ (i Sl

Deep Learning, MIT Press (2016) & (2024)

| will keep reference to both sets of books for this year
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The Origins of Pattern Recognition (PR)

Machine recognition of meaningful regularities in noisy or complex environments

A variety of approaches to realize it

Statistical PR

Clustering

Rule-based systems (fuzzy)

Signal processing

Logic and reasoning

Structural and syntactic PR

...and of course, machine learning!

© 0O O 0 0O 0O ©°

DAVIDE BACCIU - ISPR COURSE 15



The Viola-Jones Algorithm

Consider the following two hand drawn pixel masks

Vil

Sum pixels in the white area and subtract those in the black portion

o VJlislarge in the eye region
o VJ2islarge on the nose stripe

VJ algorithm positions the masks on the image and combines the responses (=
5K hand aligned examples)
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PR Stages — An historical View

1. ldentification of distinguishing attributes of the object/entity (feature

detection)
2. Extraction of features for the defining attributes (feature extraction)

3. Comparison with known patterns (matching)

Basically, lots of sleepless nights
hand-engineering the best data
features
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PR Stages - A Modern View

Pattern recognition after the deep learning revolution

Apparently, a single stage process with a data crushing-and-munching neural
monster spitting out predictions
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The Dawn of the Revolution

convl conwv2 conv3 convid convs fcé fcT

Input

10 samples 1 sample

Class
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256x256 55x55 2Tx2T 13x13 13x13 13x13 4096 4096

conv conv conv conv conv Tull full
max Imiasc max
I norm (glelgpy] I I I
I I
Extract high level features Classify

each sample

AlexNet kills the ImageNet 2012 competition outperforming runner-up by over
10%
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Then.. Things Started Going Offthand

GoogleNet
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Long Short Term Memory

recurrent

block output ‘0,@ rif"mm
VR 4
output gate o, ¢
LSTM block YI o 4

Processing sequences and
rescuing gradients since 1996
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The Deep
Learning
Lego

Creating application by putting
together various combinations
of CNN and LSTM modules




Autonomous Driving




Teaching Robots to Manipulate
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Teaching Robots to Manipulate

DAVIDE BACCIU - ISPR COURSE

| Top primitive:
. the object is approached
b from the top with palm

down parallel to the table.

: Object center is

approximatively at the level
of middle phalanx. When
contact is established all
fingers are simultaneously
closed, achieving a firm
power-like grasp.




mmm===)  Discriminator Network - Predicted Labels
D-dimensional

noise vector

I - Generator Network

Generative Adversarial Networks

At the roots of the generative deep learning wave




Early
bedroom
uses...
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...and Psychedelic Pacman




Starting to get better at face generation




Face Swapping in Back to the Future




Or in any other clip you like




Variational Deep Learning

First attempts at bridging deep
learning with generative models

training encoder
process (=

encoded vector

(in latent space)

decoder
input d
generation sampler decoded content
process
(reconstructed input /

generated content)
sampled vector

(from latent space)
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Learning Entities and Relations from Images

Wﬂ“l A= -—wdAa
TE 8 M= =]




But nowadays nobody cares because we
have...

...diffusion models!
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Graph Neural Networks
4 )

——| DGN |[—
\_ J

An exploding field
in Deep Learning

u J —
Y Y

node representations graph representation
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Drug Repurposing

E Polypharmacy E
Doxycycline side effects Simvastatin

N=

Ciprofloxacin

[

=
M A Mupirocin

A Drug  © Protein r1 Gastrointestinal bleed side effect &——@ Drug-protein interaction

H Node feature vector T2 Bradycardia side effect @—@ Protein-protein interaction
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Generating Molecules
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Incorporating Knowledge Graphs
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Neural Algorithmic Reasoning
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Learning intelligent agents




The Course Philosophy

o Start from traditional PR approaches
® Introduce problems and tasks

e Learn some useful techniques

o Learn how old-school stuff has been reused in a modern way

o Understand how probability is fundamental to machine-deep-
reinforcement learning

o Connect the dots between traditional PR, generative and deep
learning

A practical approach with code complementing theory when possible
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On probabilities and pains of the sort

o From student anonymous advices (some 2 years ago)

o Too much attention on probabilistic models, which are not state of the
art....

o The course should only briefly mention probabilistic models and focus on
state-of-the-art models...
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Reference Languages

Reference language for the course is Python (but some Matlab might pop-up)

o Students of the Al curriculum should be already familiar with
o Easy-to-learn language enhanced by reasonable editors and graphical
environments

o Lots of library support for signal processing, image processing and machine
learning

For the final project there is some reasonable flexibility in which language
you can use (no deep learning in Pascal, please!)
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Exams — M.Sc. Students

M.Sc. students following the course lecture can complete the exam by
Midterm Assignments - A total of 4 short assignments on experiences related to course
topics
Oral Exam - An examination on the course program

The alternative way (for working students, those who fail or don’t like the other

way)
Final Project - A written report on a topic of interest for the course, a software
implementing a PR application, ....
Oral Exam - A 15 minutes presentation of the final project plus examination on the
course program

46
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Exams — Ph.D. Students

Let’s find a topic that is of interest for you, maybe part of your
research project, and that is consistent with the course topics.

Several options possible:

Essay — A research technical report on the topic of interest
Code — A software exploring/implementing some research model/experiment/benchmark

Anything else that makes sense for research...

No oral exam needed
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Midterm Assignments

o Delivery of a notebook/colab or a very short slide deck (e.g. 10 slides) on
e A quick and dirty (but working) implementation of a simple pattern recognition algorithm
® A report concerning the experience of installing and running a demo application realized using
available libraries
e A summary of a recent research paper on topics/models related to the course content

o Timeline
® One midterm every 3-4 weeks
e Should be doable with a couple of afternoons’ work
e Midterm published: early March, late March, late April, mid May
e Midterm delivered: late March, mid April, mid May, late May
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Final Project (I)

O Choose from a set of suggested topics or propose your own topic of interest
o Timeline

e Suggested topics list published: mid May
e Choose project: email me to arrange a topic

e Report (10 pages, for survey type) or code (for SW type) and presentation
(for all) delivery: by the standard exam date (appello) (strict)
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Final Project (1)

Possible project types

O Survey - Read at least five relevant and distinct papers on a topic, prepare a
presentation and write a report: not a simple summary, rather try to find
connections between the works and highlight interesting open problems

O Software - Develop a tested and commented software implementing a non-
trivial learning model and/or a pattern recognition application relevant for
the course. Prepare a presentation describing code and its validation.
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Oral Exam

O (Give your presentation on the final project (15 minutes))

. - . Only for those
e Discussitin front of me and anybody interested — who did not do

® Be prepared to answer my questions on the presentation the midterms

O An oral exam with questions covering the course contents

® Lectures whose content is not relevant for the final exam will be clearly marked as such

O Remember to upload the presentation/report/code on Moodle by the
appello deadline
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How to get past this course?

Grading (with midterms)

o Midterms only wave the final project and oral presentation: there is no vote
for them, only pass/fail
O The exam vote is given by the oral examination grade

(Gp+Go)
2

Grading (alternative way)

o Gp € [1,32] is the project grade
O Gp € [1,30]is the oral grade
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Upcoming...

Introduction to Pattern Recognition

An introduction to the fundamental PR problems in signal and image processing
and a summary of the old-school techniques to address them.

Topics

Pattern recognition in time/spatial and spectral domain
Timeseries and image analysis

Convolution and correlation operators

Visual feature descriptors

Visual feature detectors

Image segmentation

O O0OO0O0O0O0
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Next Lecture

Introduction to Signal Processing

O Timeseries

O Convolution and correlation
O Spectral analysis
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Changes to next week schedule!

O—Tdesday2/February — Cancelled
O—\Wednesday-28-February - Cancelled
O—Thursday-29-February - Cancelled

Extra (recovery) lectures

O Friday 01 March — Room L1 h14-16 (confirmation pending)
O Friday 08 March — Room L1 h14-16

O Friday 15 March — Room L1 h14-16

DAVIDE BACCIU - ISPR COURSE 55



Onboarding

Remember to register on the course Moodle

https://elearning.di.unipi.it/course/view.php?id=278

Within the end of this week please signup on this shared spreadsheet

O Your email address for the course mailing list
O Name and curriculum/course
O Note the different sheet for M.Sc./Ph.D.

When you send me an email include tag [ISPR] (or may end up in thrash)

Questions?
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