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Signals = Time series

A sequence of measurements in time
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Formalization

A time series X is a sequence of measurements in time ¢t
X = X0, X1y eees Xty ey XN

where x, (or x(t)) is the measurement at time t.

O Observations can be observable at irregular time intervals

O Time series analysis assumes weakly stationary (or second-order stationary)
data
o E|x;]=uforallt
o Cov(xiir,x;) =y, forallt (y doesonlydependonlagTt)
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Goals

Description - Summary statistics, graphs

Analysis - Identify and describe dependencies in data

Prediction - Forecast the next values given information up to time t

Control - Adjust the parameters of the generative process to make the time
series fit a target

O O O O

The goal of this lecture is providing knowledge on some basic techniques
that can be useful as
® Baseline

® Preprocessing
e Building blocks
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Key Methods

o Time domain analysis - Assesses how a signal changes over time
e Correlation and Convolution

e Autoregressive models

o Spectral domain analysis - Assesses the distribution of the signal

over a range of frequencies
e Fourier Analysis
e Wavelets (in 2 lectures)
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Mean and Autocovariance

Some interesting estimators for time series statistics are

Sample mean
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Mean and Autocovariance

Some interesting estimators for time series statistics are

Sample mean
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Autocorrelation

Autocovariance serves to compute autocorrelation, i.e. the
correlation of a signal with itself

Vx(T)

Vx(0)

ﬁx (T) —

Autocorrelation analysis can reveal repeating patterns such as the
presence of a periodic signal hidden by noise

I ———————————————————
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Autocorrelation Plot

A revealing view on time series statistics
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What do you see in this Autocorrelogram reveals a
time series? sine wave




Cross-Correlation (Discrete)

A measure of similarity of x! and x? as a function of a time lag T

min{(T1-1+1),(T%2-1)}

P 1,2(T) = z xt(t — 1) - x%(t)

t=max{0,7}

o T€[—(Tt-1),..,0,.., (Tt =1)]
o The maximum ¢,1,2(7) w.r.t. T identifies the displacement
of x1 vs x?




Cross-Correlation (Discrete)

Normalized cross-correlation returns an amplitude independent value

qulxz () = Prix e|—1,+1]

JE5 ) 25 (2 )

o ¢,1,2(t) = +1 = The two time-series have the exact same shape if
aligned attime t

o ¢,1,2(t) = —1 = The two time-series have the exact same shape
but opposite sign if aligned at time t

o) cﬁxlxz (t) =0 = Completely uncorrelated signals
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Cross-Correlation - Something already seen...

What is this?

(f * g)[n Z fn—6)g(t)

o Discrete convolution on finite support [—M, +M|
o Similar to cross-correlation but one of the signals is reversed
(i.e. —t in place of t)

o Convolution can be seen as a smoothing operator (commutativel)




A View of Time Domain Operators

Convolution Cross-correlation Autocorrelation
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Autoregressive Process

A timeseries Autoregressive process (AR) of order K is the linear system

K
X¢ = 2 A Xi_1 T €
k=1
o autoregressive = x, regresses on itself
o a, = linear coefficients s.t. [a] < 1
o €, = sequence of i.i.d. values with mean 0 and fixed variance
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ARMA

Autoregressive with Moving Average process (ARMA)

K

Q
Xp = Z ApXi_j + z Bg€i—q T €t
q=1

k=1

O

e, = Random white noise (again)
The current timeseries value is the result of a regression on its past

O

values plus a term that depends on a combination of stochastically

uncorrelated information
O Denotes new information or shocks at time t
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Estimating Autoregressive Models

o Need to estimate
® The values of the linear coefficients a, (and £,)
® The order of the autoregressor K (and Q)

o Estimation of the «a is performed with the Levinson-Durbin recursion
® Native Matlab: a = levinson (x,K)
® |Included in several Python modules: statsmodels, Spectrum, ...

o The order is often estimated with a Bayesian model selection criterion,
e.g. BIC, AlC, etc.

The set of autoregressive parameters a{, e a}; fitted to a specific
timeseries x' is used to confront it with other timeseries
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https://www.statsmodels.org/dev/about.html#about-statsmodels
pyspectrum.readthedocs.io/en/latest/index.html

Comparing Timeseries by AR

O Timeseries clustering

d(xt, x2) = |lat — a?||%

o Novelty/anomaly detection
Test Err(x:, X;) < &
where X; is the AR predicted value

O Encode time series as a set of a' vectors and feed them to a flat ML model
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B

The horror!
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Spectral Analysis

Analyzing time series in the frequency domain

Key ldea

Decompose a time series into a linear combination of sinusoids (and
cosines) with random and uncorrelated coefficients

o Time domain - Regression on past values of the time series
o Frequency domain - Regression on sinusoids

Use the framework of Fourier Analysis
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Fourier Transform

o Discrete Fourier transform (DFT)

o Transforms a time series from the time domain to the frequency
domain

o Can be easily inverted (back to the time domain)

o Useful to handle periodicity in the time series
e Seasonal trends

® Cyclic processes
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Note for Fourier lovers

o The following slides contain a
wild oversimplification of the
breadth and depth of Fourier
analysis

o Apologies in advance
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Representing Functions

We (should) know that, given an orthonormal system {e;; e,,...} for E, we can represent any function f €

D (freer
k=1

1 . .
{ﬁ' sin(x), cos(x), sin(2x), cos(2x), ...}

the linear combination above becomes the Fourier Series

E by a linear combination of the basis

Given the orthonormal system

a
70 1 z [a; cos(kx) + by, sin(kx)]
k=1

with a,, b, being coefficients resulting from integrating f (x) with the sin and cos functions
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Representing Functions in Complex Space

Using cos(kx) — i sin(kx) = e ** with i = v/—1 we can rewrite the Fourier

series as
0]
z Xke—ikx

k=—o0
on the orthonormal system
S
{1, elx’ e Lx, e lx, e Lx, }

and X, integrates f(x) with e 7%
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Graphically

A

Im

Re




Representing Discrete Time series

1. Consider a discrete time series x = xy, X4, ..., Xy_1 Of length Nand x,, € R

2. Using the exponential formulation, the orthonormal system is made of

{eg,eq, ...,en_q1} vectors e, € CV

3. The n-th component of the k-th vector is

—2mink
[ek]n =e N
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Graphically (again)

A

Im A basis e,, at frequency k
has N elements sampled
from the roots of the
unitary circle in imaginary-

Re real space
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Discreet Fourier Transform

Given a time series x = xg, X1, ..., Xy—1 its Discrete Fourier Transform (DFT) is the

sequence (in frequency domain)

N-1
—annk

Xp€
=1

N—
1 2TClTLk
Xn —NZ

S

The DFT has an inverse transform

to go back to the time domain.
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Basic Spectral Quantities in DFT

We would like to measure relevance/strength/contribution of a target frequency bin k

o Amplitude
Ak — |Xk | — \/Rez (Xk) + I'm? (Xk) (you can also compute phase)
o Power
|X |2 (under some conditions this is a
P, = k more-or-less reasonable estimate of
k N the power spectral density)
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DFT Power spectrum in use

Amplitude

X = fft(x); % x - sample signal
n = length(x);
f = (0:n-1)*(fs/n);

power = abs(X). 2/n;

% fs - sample frequency (Hz) /f — frequency range

Power Spectrum

DAVIDE BACCIU - ISPR COURSE

Signal
; ‘.‘ : |gna _ | i | 25
| /\I [ H fll o "‘ ‘ll rﬂ | ﬂ H
°¢ ARy
oo AR [l "]
I | | (| I
v |I || || | |\ | || | || H “ “‘ ‘ ‘| ‘ | ‘lw \ﬂ\ |H| il \l‘ll‘“ll‘l
' T STRNHTIEAE
NN | | s | |
| ] | n T
0r ‘l ‘|\| ||||““‘H } n%_ ' J.|Im|
| | | | ‘ ‘ ‘ i v
0.2 ' | . ‘ ‘ t 10 |
| ||||||||‘|H‘ J
LT m
= AT 1
08 Ve Moo
. “\‘\J. U , ‘I‘l / l \ J L| |’J ‘.I ‘H‘ | |‘ . | | | l ‘\IﬂW\u '"'up'u' ‘Uﬁl;hl‘ “"wl N | -‘n‘lﬂnﬁ i llf'. Nﬁ llﬁvﬁ'ir" A
0 0.2 0.4 0.6 0.8 1 0 10 20 30 40 50 60 70 80
Time (s) Frequency (Hz)




DFT Power spectrum in use

Back to the time domain (keeping only relevant frequencies)

Signal + Fourier Reconstruction

Power Spectrum
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DFT in Action

O Use the DFT elements X,,..., Xk as representation of the signal to train
predictor/classifier

O Representation in spectral domain can reveal patterns that are not clear in

e -,

, 1
50 “l | “J ||\ /‘ | ,\ ‘| f f ‘II\ \
\/ f [ A [ A
1 FVLIV W S L N A IV
V ‘\ \ "," W“v“ \“\'w JV '"'ﬁ.“f \’ "\:"‘I ‘.wu‘\lg K‘ﬁ."u / "’,‘\VAUIMI V\\\"\,

Mag

Temperature {(Fahrenheit
~ ~ ~ ~ ~ ~

(Fahrenheit)
(=2 )
~ ©o
e I T _|;,——!—'—_‘
e ——————
_Ji___._—_'_=f
N b
| — e
e —  ————
T ———
o L .
T
—_——
—_——
o | —_—
——

DAVIDE BACCIU - ISPR COURSE 31



Some less basic spectral descriptors

o Spectral Centroid
o Spectral Spread
o Spectral Skewness
o Spectral Kurtosis
o Spectral Entropy
o Spectral flatness
o Spectral crest

o Spectral flux

o Spectral slope




Spectral Centroid

Spectral-weighted average frequency (between frequency bands b,
and b,)

b
Yzp fKSk
— 1
"= —5,

Zk=b1 Sk

o f is the k-th frequency (in Hz)

o Sy is the corresponding spectral weight (e.g. amplitude A;, or
power spectrum Py,)




Higher-order moments

o Spread - Standard deviation around the spectral centroid u

b
Ykep, Fre—m)*sk
b
Zk=b1 Sk

0O =

N

o Kurtosis — (4™ order moment) Measures flatness or non-Gaussianity of
the spectrum around the centroid u

o = Tk, Frmitse &

b
4 yh2 .
o Zk:bl Sk k = pkurtosis(x)



https://it.mathworks.com/help/signal/ref/pkurtosis.html#d123e124825

Kurtosis Example

Chirp Signal with White Gaussian Noise Spectral Kurtosis of Chirp Signal with White Gaussian Noise
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Spectral Entropy

Spectral Entropy
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https://it.mathworks.com/help/signal/ref/pkurtosis.html#d123e124825

Take Home Messages

O

Old-school pattern recognition on timeseries is about learning coefficients
that describe properties of the time series

e Autoregressive coefficients (time domain)

e Fourier coefficient (frequency domain)

Often linear methods

e Autocorrelation reveals similitude of a signal with delayed versions of itself

® Cross-correlation provides hints on time series similarity and how to align them
Fourier analysis allows to identify recurring patterns and key frequencies in

the signal (and represent this information through spectral descriptors)
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Next Lecture

Introduction to image processing (l)

o Representing images and visual content
Intensity gradients and histograms
Filters

Spatial descriptors: SIFT

Spectral analysis in 2D

O O O O
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