Image Processing II -Detectors

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

DAVIDE.BACCIU@UNIPI.IT

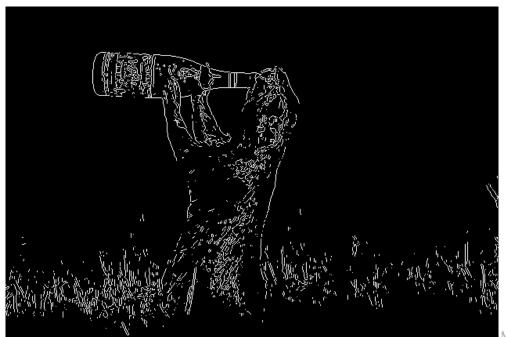
Visual Feature Detector

Repeatability

Detect the same feature in different image portions and in different images

- Photometric Changes in brightness and luminance
- Translation Changes in pixel location
- Rotation Changes to absolute or relative angle of keypoint
- Scaling Image resizing or changes in camera zoom
- Affine Transformations Non-isotrophic changes

Edge Detection



DAVIDE BACCIU - ISPR COURSE

Edges and Gradients

• Image gradient (graylevel) $\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right]$

direction of change of intensity

- Edges are pixel regions where...
 - Intensity gradient changes abruptly
- The return of finite difference methods

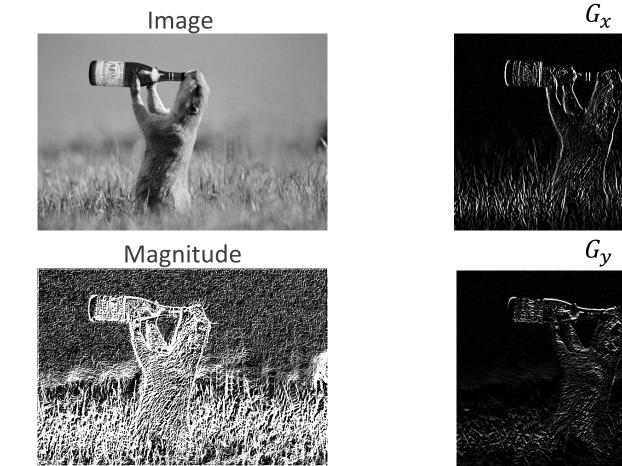
$$G_x = \frac{\partial I}{\partial x} \approx I(x+1,y) - I(x-1,y)$$
$$G_y = \frac{\partial I}{\partial y} \approx I(x,y+1) - I(x,y-1)$$

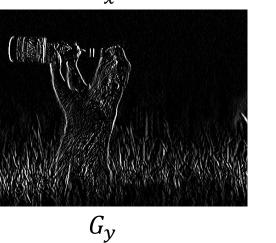
$$\begin{matrix} G_{\chi} \\ +1 & 0 & -1 \\ +1 & 0 & -1 \\ +1 & 0 & -1 \end{matrix}]$$

$$\begin{array}{c}
G_y \\
 \begin{bmatrix}
+1 & +1 & +1 \\
0 & 0 & 0 \\
-1 & -1 & -1
\end{array}$$

Prewitt operators

Convolving Gradient Operators





Sobel Operator

An additional level of smoothing of the central difference

$$G_x = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix}$$

$$G_y = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

In Code

Matlab

% Create an horizontal (x) Prewitt filter h = fspecial ('prewitt'); % Try also 'sobel ' % Convolve it to the image lg imH = imfilter (lg , h , 'replicate'); % Transpose filter for the y-derivative imV = imfilter (lg , h ' , 'replicate'); % Magnitude M = uint8 (sqrt (double ((imHor .^2) + (imVer .^2)))); % Then plot . . . imtool (imH); % etc . . .

Python

prewitt masks

 $\begin{aligned} & \text{kernelx} = \text{np.array} \left(\ [[1, 1, 1], [0, 0, 0], [-1, -1, -1]] \right) \\ & \text{kernely} = \text{np.array} \left(\ [[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]] \right) \end{aligned}$

convolving filters

img_prewittx = cv2 . filter2D (img_gray, -1, kernelx)
img_prewitty = cv2 . filter2D (img_gray, -1, kernely)

sobel (CV_8U is the output data type, ksize is the kernel size)

img_sobelx = cv2 . Sobel (img_gray, cv2 . CV_8U, 1, 0, ksize = 3)
img_sobely = cv2 . Sobel (img_gray, cv2 . CV_8U, 0, 1, ksize = 3)

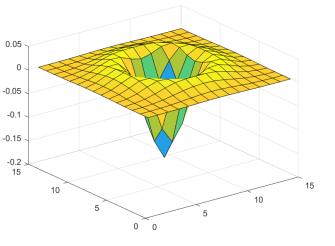
Blob Detection

- Blobs are connected pixels regions with little gradient variability
- Laplacian of Gaussian (LoG) $g_{\sigma}(x, y)$ has maximum response when centered on a circle of radius $\sqrt{2}\sigma$

$$\nabla^2 g_{\sigma}(x, y) = \frac{\partial^2 g_{\sigma}}{\partial x^2} + \frac{\partial^2 g_{\sigma}}{\partial y^2}$$

Typically using a scale normalized response

$$\nabla_{norm}^2 g_{\sigma}(x, y) = \sigma^2 \left(\frac{\partial^2 g_{\sigma}}{\partial x^2} + \frac{\partial^2 g_{\sigma}}{\partial y^2} \right)$$



LoG Blob Detection

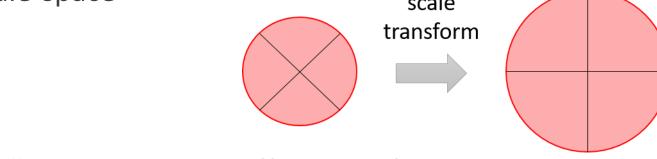
- 1. Convolve image with a LoG filter at different scales
 - $\sigma = k\sigma_0$ by varying k
- 2. Find maxima of squared LoG response
 - 1. Find maxima on space-scale
 - 2. Find maxima between scale
 - 3. Threshold

The LoG filter can be approximated as a Difference of Gaussians (DoG) for efficiency

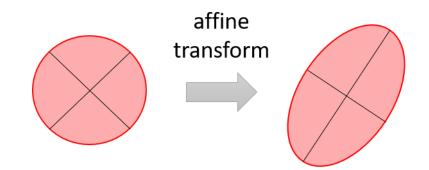
 $g_{k\sigma_0}(x,y) - g_{\sigma_0}(x,y) \approx (k-1)\sigma_0^2 \nabla^2 g_{(k-1)\sigma_0}$

Affine Detectors

 Laplacian-based detectors are invariant to scale thanks to the maximization in scale-space



• Still not invariant to affine transformations

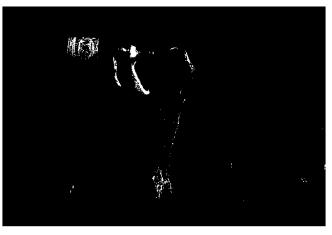


Maximally Stable Extremal Regions (MSER)

- Extract covariant regions (blobs) that are stable connected components of intensity sets of the image
- Key idea is to take blobs (Extremal Regions) which are nearly the same through a wide range of intensity thresholds
- The blobs are generated (locally) by binarizing the image over a large number of thresholds
 - Invariance to affine transformation of image intensities
 - Stability (they are stable on multiple thresholds)
 - Multi-scale (connected components are identified by intensity stability not by scale)
 - Sensitive to local lighting effects, shadows, etc..
- You can then fit an ellipse enclosing the stable region

Intuition on the MSER Algorithm

Generate frames from the image by thesholding it on all graylevels



- Capture those regions that from a small seed of pixel grow to a stably connected region
- O Stability is assessed by looking at derivatives of region masks in time (most³ stable ⇒ minima of connected region variation)

MSER in Code

Matlab

% Run MSER and returns regions regions = detectMSERFeatures (Ig) ; figure ; imshow (Ig) ; % plot image hold on ; plot (regions) ; % overlap regions % Alternatively can plot actual regions plot (regions , 'showPixelList ' , true , 'showEllipses ' , false) ;

Again, in OpenCV

import cv2

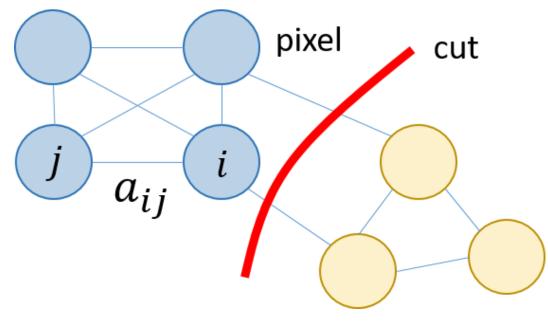
Load the mser detector from OpenCV
mser = cv2 . MSER_create ()
regions = mser . detectRegions (img , None)
Create a convex hull enclosing stable regions
hulls = [cv2 . convexHull (p . reshape (-1, 1, 2)) for p in regions]
Draw detected regions on image copy
vis = img . copy ()
cv2 . polylines (vis , hulls , 1 , (0 , 255 , 0))
cv2 . imshow ('img' , v i s)

Image Segmentation

The process of partitioning an image into set of homogeneous pixels, hoping to match object or their subparts

- A naive approach?
 - Apply k-means to pixels color (typically L * a * b) hoping to cluster together regions
- A slightly less naive approach?
 - Apply k-means to pixels color and (x, y) position hoping to enforce some level of spatial information in clusters

Normalized Cuts (Ncut)



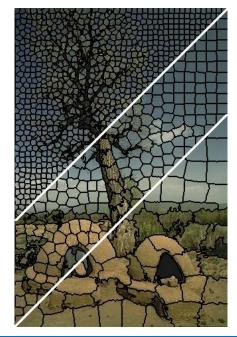
- Node = pixel
- a_{ij} = affinity between pixels (at a certain scale σ)

- A cut of G is the set of edges such whose removal makes G a disconnected graph
- Breaking graph into pieces by cutting edges of low affinity
- Normalized cut problem
 - NP-hard
 - Approximate solution as an eigenvalue problem

Pixel Issue

Pixels in image are a lot!

- Ncut can take ages to complete
- Likewise many other advanced segmentation algorithms



- Efficiency trick \Rightarrow Superpixels
 - Group together similar pixels
 - Cheap, local oversegmentation
 - Important that superpixels do not cross boundaries
- Now apply segmentation/fusion algorithms to superpixels: Ncut, Markov Random Fields, etc.

Code: https://ivrl.epfl.ch/research/superpixels

Take Home Messages

• Image processing is very much about convolutions

- Linear masks to perform gradient operations
- Gaussian functions to apply scale changes (zooming in and out)
- Computational efficiency is often a driving factor
 - Convolutions in Fourier domain
 - Superpixels
 - Lightweight feature detector? Random sampling

