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Limitations of DFT

Sometimes we might need localized frequencies rather than global frequency

analysis
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Graphical Intuition
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Split signal in frequency bands only if they exist in specific time-intervals or

portion of the space
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S MA/\/W\/\/ Basis function upon with to decompose the
signal in Fourier transform

Wavelet ’\/V\/\/_ Basis function upon with to decompose the
signal in wavelet tranform
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Wavelets

Split the signal using an orthonormal basis generated by translation and dilation of a mother
wavelet

> x(0) W (®
t
Terms k and j regulate scaling and shifting of the wavelet

P (t) = ﬁ‘l’((t —)/2)

with respect to the mother W(+).

o k < 1 Compresses the signal
o k > 1 Dilates the signal
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A wavelet browser to play with
http://wavelets.pybytes.com/

A (partial) wavelet dictionary

Many different possible choices for the mother wavelet function
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http://wavelets.pybytes.com/

Scaling/dilation is akin to (sort of)
frequency

High scale
o Stretched wavelet
o Slowly changing, coarse features

U o Low frequency Signal 1

Amplitude

ﬂ Low scale

o Compressed wavelet o w o
JMv o Rapidly changing details

o High frequency
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Shifting moves the wavelet in
time/space on the signal
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Coefficient Plot

This Is once-

again the power-

spectrum of the

signal, revealed
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Discrete Wavelet Transform (DWT)

o Use a finite set of scales and shifts rather than “any possible
value” as in the continuous wavelet transform

o Subset scale continuous values using power-of-two values with
step 1 (and translates proportionally to scale if decimated)

o Key aspects
o Efficient and sparse representation
e Orthnormal basis
e Can always be inverted
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Using the WT in PR Applications (I)

Human Activity Recognition Using Smartphones Dataset
(Reyes-Ortiz et al, 2012)

AX5XTERE

9-components sensor measurements of people doing
different activities (walking, laying, standing, ...)




Using the WT in PR Applications (II)

Activity: walking upstairs Activity: laying

component no 0 component no 1 1

.

component no

component no &
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Spectrograms for different activities alone lead to a classification accuracy of 0.91
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Using the WT in PR Applications (lIl)

Feature maps
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Convolutions Subsampling Convolutions Subsampling Fully connected

Using wavelet transform + convolutional neural networks => 0.96
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Code

o PyWavelets - Wavelet transforms in Python

o Wavelet Toolbox — Wavelet transforms in Matlab



pywavelets.readthedocs.io
https://it.mathworks.com/help/wavelet/index.html?s_tid=CRUX_lftnav

Take Home Messages

O Fourier transform

® Basis functions: sinusoids

® Only offers frequency information

O Wavelet transforms

® Basis functions: small waves (wavelets)
®* Frequency and temporal/spatial information

o Wavelets can be more effective on discontinuous and bursty data
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Next Lecture

Generative and Graphical Models
o Introduction to a module of 10 lectures

o A refresher on probabilities

® Probability theory
® Conditional independence
® Inference and learning in generative models

o Graphical models representation
o Directed, undirected and dynamic graphical models
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