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Generative Learning
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○ ML models that represent knowledge inferred from data under the 

form of probabilities
● Probabilities can be sampled: new data can be generated 

● Supervised, unsupervised, weakly supervised learning tasks 

● Incorporate prior knowledge on data and tasks 

● Interpretable knowledge (how data is generated) 

○ The majority of the modern task comprises large numbers of variables 
● Modeling the joint distribution of all variables can become impractical 

● Exponential size of the parameter space 

● Computationally impractical to train and predict 



The Graphical Models Framework
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○ Representation 
● Graphical models are a compact way to represent exponentially large probability 

distributions 
● Encode conditional independence assumptions 
● Different classes of graph structures imply different assumptions/capabilities

○ Inference 
● How to query (predict with) a graphical model? 
● Probability of unknown 𝑋 given observations 𝒅, 𝑃(𝑋|𝒅)
● Most likely hypothesis

○ Learning 
● Find the right model parameter 
● An inference problem after all 



Graphical Model Representation
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A graph whose nodes (vertices) are random variables whose
edges (links) represent probabilistic relationships between the
variables

Different classes of graphs 
Directed Models Undirected Models Dynamic Models

Directed edges express 
causal relationships

Undirected edges 
express soft constraints

Structure changes to 
reflect dynamic processes 



Generative Models in Machine Vision 
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Generative Models in Deep Learning 
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Probabilistic (generative) learning necessary to understand 
Generative Deep Learning



Generate New Knowledge 
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Complex data can be generated if your model is powerful enough to 
capture its distribution 



Probabilistic Models Module

Lesson 1 

Lesson 2-3

Lesson 4-5 

Lesson 6 

Lesson 7 

Lesson 8     

Lesson 9

Lesson 10
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Introduction: Directed and Undirected Graphical Models 

Bayesian Networks and Conditional Independence

Dynamic GM: Hidden Markov Model 

Undirected GM: Markov Random Fields 

Bayesian Learning: Approximated Inference 

Bayesian Learning: Latent Variable Models 

Bayesian Learning: Sampling Methods 

Bridging Neural and Generative: Boltzmann Machines 



Lecture Outline 
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○ Introduction 

○ A probabilistic refresher

● Probability theory 

● Conditional independence 

○ Inference and learning in generative models 

○ Graphical Models 

● Directed and Undirected Representation 

○ Conclusions

Module content is fully covered by David Barber’s book (OLD) or Chris 
Bishop’s Book (NEW) 
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Probability Refresher



○ A Random Variable (RV) is a function describing the outcome of a 
random process by assigning unique values to all possible outcomes of 
the experiment 

○ A RV models an attribute of our data (e.g. age, speech sample,...) 

○ Use uppercase to denote a RV, e.g. 𝑋, and lowercase to denote a value 
(observation), e.g. 𝑥

○ A discrete (categorical) RV is defined on a finite or countable list of 
values Ω

○ A continuous RV can take infinitely many values 

Random Variables 
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○ Discrete Random Variables 

● A probability function 𝑃(𝑋 = 𝑥) ∈ [0, 1] measures the probability of a RV 𝑋 attaining 
the value 𝑥

● Subject to sum-rule σ𝑥∈Ω𝑃(𝑋 = 𝑥) = 1

○ Continuous Random Variables 

● A density function 𝑝(𝑡) describes the relative likelihood of a RV to take on a value 𝑡

● Subject to sum-rule ׬Ω
𝑡
𝑝(𝑡)𝑑𝑡 = 1

● Defines a probability distribution, e.g. 𝑃(𝑋 ≤ 𝑥) = ∞−׬
𝑥
𝑝(𝑡)𝑑𝑡

○ Shorthand 𝑃(𝑥) for 𝑃(𝑋 = 𝑥) or 𝑃(𝑋 ≤ 𝑥)

Probability Functions 
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If a discrete random process is described by a set of RVs 𝑋1, . . . , 𝑋𝑁, then 
the joint probability writes 

𝑃(𝑋1 = 𝑥1, . . . , 𝑋𝑁 = 𝑥𝑛) = 𝑃(𝑥1 ∧ · · · ∧ 𝑥𝑛)

The joint conditional probability of 𝑥1, . . . , 𝑥𝑛 given 𝑦

𝑃(𝑥1, . . . , 𝑥𝑛|𝑦)

measures the effect of the realization of an event 𝑦 on the occurrence of 
𝑥1, . . . , 𝑥𝑛

A conditional distribution 𝑃(𝑥|𝑦) is actually a family of distributions 

○ For each 𝑦, there is a distribution 𝑃(𝑥|𝑦)

Joint and Conditional Probabilities 
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Probabilities Visually
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Chain Rule
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Definition (Product Rule a.k.a. Chain Rule)

𝑃 𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛 𝑦 =ෑ

𝑖=1

𝑁

𝑃(𝑥𝑖 ቚ 𝑥1, … , 𝑥𝑖−1, 𝑦)

Definition (Marginalization)

Using the sum and product rules together yield to the complete probability

𝑃(𝑋1 = 𝑥1) =෍

𝑥2

𝑃 𝑋1 = 𝑥1 𝑋2 = 𝑥2 𝑃(𝑋2 = 𝑥2)



Given hypothesis ℎ𝑖 ∈ 𝐻 and observations 𝒅

○ 𝑃(ℎ𝑖) is the prior probability of ℎ𝑖

○ 𝑃(𝒅|ℎ𝑖) is the conditional probability of observing 𝒅 given that hypothesis 
ℎ𝑖 is true (likelihood). 

○ 𝑃(𝒅) is the marginal probability of 𝒅

○ 𝑃(ℎ𝑖|𝒅) is the posterior probability that hypothesis is true given the data 
and the previous belief about the hypothesis

Bayes Rule (a ML interpretation)
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𝑃 ℎ𝑖 𝒅 =
𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝒅)
=

𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

σ𝑗 𝑃(𝒅|ℎ𝑗)𝑃(ℎ𝑗)
𝑃 ℎ𝑖 𝒅 =

𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝒅)
𝑃 ℎ𝑖 𝒅 =

𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝒅)
𝑃 ℎ𝑖 𝒅 =

𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝒅)
𝑃 ℎ𝑖 𝒅 =

𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝒅)
𝑃 ℎ𝑖 𝒅 =

𝑃 𝒅 ℎ𝑖 𝑃(ℎ𝑖)

𝑃(𝒅)



Independence and Conditional Independence
○ Two RV 𝑋 and 𝑌 are independent if knowledge about 𝑋 does not change the 

uncertainty about 𝑌 and vice versa 

𝐼 𝑋, 𝑌 ⇔ 𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑌 𝑃 𝑌

= 𝑃(𝑌|𝑋)𝑃(𝑋) = 𝑃(𝑋)𝑃(𝑌)

○ Two RV 𝑋 and 𝑌 are conditionally independent given 𝑍 if the realization of 𝑋
and 𝑌 is an independent event of their conditional probability distribution 
given 𝑍

𝐼 𝑋, 𝑌 𝑍 ⇔ 𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑌, 𝑍 𝑃 𝑌 𝑍

= 𝑃(𝑌|𝑋, 𝑍)𝑃(𝑋|𝑍) = 𝑃(𝑋|𝑍)𝑃(𝑌|𝑍)

○ Shorthand 𝑋 ⊥ 𝑌 for 𝐼(𝑋, 𝑌) and 𝑋 ⊥ 𝑌|𝑍 for 𝐼(𝑋, 𝑌|𝑍)
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Wrapping Up....
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○ We know how to represent the world and the observations 

● Random Variables ⟹ 𝑋1, . . . , 𝑋𝑁

● Joint Probability Distribution ⟹ 𝑃(𝑋1 = 𝑥1, . . . , 𝑋𝑁 = 𝑥𝑛)

○ We have rules for manipulating the probabilistic knowledge 

● Sum-Product 

● Marginalization 

● Bayes 

● Conditional Independence 

○ In this context, learning is about discovering the values for 𝑃(𝑋1 =
𝑥1, . . . , 𝑋𝑁 = 𝑥𝑛)
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Inference and learning with 
probabilities



Inference and Learning in Probabilistic Models 
Inference - How can one determine the distribution of the values of one/several RV, 
given the observed values of others? 

𝑃(𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒|𝑒𝑥𝑎𝑚1, . . . , 𝑒𝑥𝑎𝑚𝑛)

Machine Learning view - Given a set of observations (data) 𝒅 and a set of 

hypotheses ℎ𝑖 𝑖
𝐾 = 1 , how can I use them to predict the distribution of a RV 𝑋? 

Learning - A very specific inference problem! 

○ Given a set of observations 𝒅 and a probabilistic model of a given structure, how 
do I find the parameters 𝜃 of its distribution? 

○ Amounts to determining the best hypothesis ℎ𝜃 regulated by a (set of) 
parameters 𝜃
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3 Approaches to Inference
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Bayesian Consider all hypotheses weighted by their probabilities 

𝑃 𝑋 𝒅 =෍

𝑖

𝑃(𝑋|ℎ𝑖)𝑃(ℎ𝑖 |𝒅)

Infer 𝑋 from 𝑃(𝑋|ℎ𝑀𝐴𝑃) where ℎ𝑀𝐴𝑃 is the Maximum a-Posteriori
hypothesis given 𝒅

ℎ𝑀𝐴𝑃 = argmax
ℎ∈𝐻

𝑃(ℎ|𝒅) = argmax
ℎ∈𝐻

𝑃(𝒅|ℎ)𝑃(ℎ)

Assuming uniform priors 𝑃(ℎ𝑖) = 𝑃(ℎ𝑗), yields the Maximum 

Likelihood (ML) estimate 𝑃(𝑋|ℎ𝑀𝐿)

ℎ𝑀𝐿 = argmax
ℎ∈𝐻

𝑃(𝒅|ℎ)

MAP

ML



Considerations About Bayesian Inference
○ The Bayesian approach is optimal but poses computational and analytical 

tractability issues 

𝑃(𝑋|𝒅) = න
𝐻

𝑃(𝑋|ℎ)𝑃(ℎ|𝒅)𝑑ℎ

○ ML and MAP are point estimates of the Bayesian since they infer based only 
on one most likely hypothesis 

○ MAP and Bayesian predictions become closer as more data gets available 

○ MAP is a regularization of the ML estimation 

● Hypothesis prior 𝑃(ℎ) embodies trade-off between complexity and degree of fit 

● Well-suited to working with small datasets and/or large parameter spaces 
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Regularization
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○ 𝑃(ℎ) introduces preference across hypotheses

○ Penalize complexity

● Complex hypotheses have a lower prior probability

● Hypothesis prior embodies trade-off between complexity and degree of fit

○ MAP hypothesis ℎ𝑀𝐴𝑃

max
ℎ

𝑃(𝒅|ℎ)𝑃(ℎ) ≡ min
ℎ

− log2(𝑃(𝒅|ℎ)) − log2𝑃(ℎ)

Number of bits required to specify ℎ

○ MAP ⟹ choosing the hypothesis that provides maximum compression

○ MAP is a regularization of the ML estimation

log2𝑃(ℎ)



Maximum-Likelihood (ML) Learning
Find the model 𝜃 that is most likely to have generated the data 𝒅

𝜃𝑀𝐿 = argmax
𝜃∈Θ

𝑃(𝒅|𝜃)

from a family of parameterized distributions 𝑃(𝑥|𝜃). 

Optimization problem that considers the Likelihood function 
ℒ(𝜃|𝑥) = 𝑃(𝑥|𝜃)

to be a function of 𝜃. 

Can be addressed by solving 
𝜕ℒ(𝜃|𝑥)

𝜕𝜃
= 0
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Learning assuming 
that all RV X are 

visible, as in Naïve 
Bayes



ML Learning with Hidden Variables
What if my probabilistic models contains both 

○ Observed random variables X (i.e. for which we have training data) 

○ Unobserved (hidden/latent) variables Z (e.g. data clusters) 

ML learning can still be used to estimate model parameters 

○ The Expectation-Maximization algorithm which optimizes the complete likelihood 
ℒ𝑐(𝜃|𝑿, 𝒁) = 𝑃(𝑿, 𝒁|𝜃) = 𝑃(𝒁|𝑿, 𝜃)𝑃(𝑿|𝜃)

○ A 2-step iterative process 

𝜃(𝑘+1) = argmax
𝜃

෍

𝒛

𝑃 𝒁 = 𝒛 𝑿, 𝜃 𝑘 log ℒ𝑐(𝜃|𝑿, 𝒁 = 𝒛)
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We will see 
EM in action 

in HMMs



Bias of ML Learning
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Graphical Models



Joint Probabilities and Exponential Complexity
Discrete Joint Probability Distribution as a Table
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o Describes 𝑃 𝑋1, … , 𝑋𝑛 for all the RV instantiations 
o For 𝑛 binary RV 𝑋𝑖 the table has 2𝑛 entries! 

𝑋1 … 𝑋𝑖 … 𝑋𝑛 𝑃(𝑋1, … , 𝑋𝑛)

𝑋1
′ … 𝑋𝑖

′ … 𝑋𝑛
′ 𝑃(𝑋1

′ , … , 𝑋𝑛
′ )

𝑋1
𝑙 … 𝑋𝑖

𝑙 … 𝑋𝑛
𝑙 𝑃(𝑋1

𝑙 , … , 𝑋𝑛
𝑙 )

Any probability can be obtained from the Joint Probability Distribution 

𝑃(𝑋1, … , 𝑋𝑛) by marginalization but again at an exponential cost (e.g. 2𝑛−1 for a 
marginal distribution from binary RV).



Graphical Models
○ Compact graphical representation for exponentially large joint 

distributions 

○ Simplifies marginalization and inference algorithms 

○ Allow to incorporate prior knowledge concerning causal 
relationships and associations between RV 

● Directed Graphical Models a.k.a. Bayesian Networks 

● Undirected Graphical Models a.k.a. Markov Random Fields 
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Generative Models in Code
○ PyMC3 - Bayesian statistics and probabilistic ML; gradient-based Markov 

chain Monte Carlo variational inference (Python, Theano) 
○ Edward - Bayesian statistics and ML, deep learning, and probabilistic 

programming (Python, TensorFlow) 
○ Pyro - Deep probabilistic programming (Python, PyTorch) 
○ TensorFlow Probability - Combine probabilistic models and deep learning 

with GPU/TPU support (Python) 
○ PyStruct - Markov Random Field models in Python (some of them) 
○ Pgmpy - Python package for Probabilistic Graphical Models 
○ Stan - Probabilistic programming language for statistical inference (native 

C++, PyStan package) 
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Take Home Messages 
○ Generative models as a gateway for next-gen deep learning

○ Everything is an inference problem, including learning

○ Directed graphical models
● Represent asymmetric (causal) relationships between RV and conditional probabilities 

in compact way

○ Undirected graphical models
● Represent bi-directional relationships (e.g. constraints)

DAVIDE BACCIU - ISPR COURSE 37



Important Note

Tomorrow’s lecture (06/03/2024) is canceled due to 

Student’s General Assembly. Will be recovered 

eventually (TBD)
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Next Lecture (07/03/2024)

Conditional independence: representation and learning

○ Bayesian Networks

○ Markov properties in Bayesian Networks

○ Conditional independence as a graph-theoretic concept

○ Conditional independence in undirected models

○ Learning conditional independence relationships from data
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