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On the Nature of Relationships in 
Bayesian and Markov Networks
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Bayesian Networks Markov Networks

Directed edges 
representing 

asymmetric cause-
effect relationships

Undirected edges 
representing 

symmetric 
relationships

Can we reason on the structure of the graph to infer direct/indirect 
relationships between RVs?



Bayesian Network
○ Directed Acyclic Graph (DAG) 𝒢 = (𝒱, ℰ)

○ Nodes 𝑣 ∈ 𝒱 represent random variables 

● Shaded ⇒ observed 

● Empty ⇒ un-observed 

○ Edges 𝑒 ∈ ℰ describe the conditional independence 
relationships
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Conditional Probability Tables (CPT) local to each node describe the probability 
distribution given its parents

𝑃(𝑌1, . . . , 𝑌𝑁) =ෑ

𝑖=1

𝑁

𝑃(𝑌𝑖 |𝑝𝑎(𝑌𝑖))

○ Directed Acyclic Graph (DAG) 𝒢 = (𝒱, ℰ)

○ Nodes 𝑣 ∈ 𝒱 represent random variables 

● Shaded ⇒ observed 

● Empty ⇒ un-observed 

○ Edges 𝑒 ∈ ℰ describe the conditional independence 
relationships

○ Directed Acyclic Graph (DAG) 𝒢 = (𝒱, ℰ)

○ Nodes 𝑣 ∈ 𝒱 represent random variables 

● Shaded ⇒ observed 

● Empty ⇒ un-observed 

○ Edges 𝑒 ∈ ℰ describe the conditional independence 
relationships



A Simple Example
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○ Assume 𝑁 discrete RV 𝑌𝑖 who can take 𝑘 distinct values 
○ How many parameters in the joint probability distribution? 
𝑘𝑁 − 1 independent parameters

How many independent parameters if all 
𝑁 variables are independent? 

What if only part of the variables are 
(conditionally) independent? 

𝑃 𝑌1, … , 𝑌𝑁 =ෑ

𝑖=1

𝑁

𝑃(𝑌𝑖)

If the 𝑁 nodes have a maximum of 𝐿 children ⇒ 𝑘 − 1 𝐿 × 𝑁 independent 

parameters

𝑁 ∗ (𝑘 − 1)



A Compact Representation of Replication

DAVIDE BACCIU - ISPR COURSE 5

If the same causal relationship is replicated for a number of variables, 
we can compactly represent it by plate notation 

The Naive 
Bayes Classifier

Replication for 
𝐿 attributes

Replication for 
𝑁 data samples 

𝑃 𝐶, 𝑌1, … , 𝑌𝑁

= 𝑃(𝐶)ෑ

𝑖=1

𝑁

𝑃(𝑌𝑖|𝐶)



Full Plate Notation
○ Boxes denote replication for a number of times 

denoted by the letter in the corner 

○ Shaded nodes are observed variables 

○ Empty nodes denote un-observed latent variables 

○ Black seeds (optional) identify model parameters 

● 𝜋 → multinomial prior distribution 

● µ → means of the 𝐶 Gaussians 

● 𝜎 → std of the 𝐶 Gaussians 
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Gaussian Mixture Model 



Local Markov Property

𝑃𝑎𝑟𝑡𝑦 and 𝑆𝑡𝑢𝑑𝑦 are marginally independent 
○ 𝑃𝑎𝑟𝑡𝑦 ⊥ 𝑆𝑡𝑢𝑑𝑦
However, local Markov property does not support 
○ 𝑃𝑎𝑟𝑡𝑦 ⊥ 𝑆𝑡𝑢𝑑𝑦 | 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒
○ 𝑇𝑎𝑏𝑠 ⊥ 𝑃𝑎𝑟𝑡𝑦

But 𝑃𝑎𝑟𝑡𝑦 and 𝑇𝑎𝑏𝑠 are independent given 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒
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Definition (Local Markov property)

Each node / random variable is conditionally 
independent of all its non-descendants given a joint 
state of its parents 

𝑌𝑣 ⊥ 𝑌𝑉\ch 𝑣 |𝑌𝑝𝑎 𝑣 for all 𝑣 ∈ 𝑉



Markov Blanket
○ The Markov Blanket 𝑀𝑏 𝐴 of a node 𝐴 is the 

minimal set of vertices that shield the node from 
the rest of Bayesian Network 

○ The behavior of a node can be completely 
determined and predicted from the knowledge of 
its Markov blanket 

𝑃 𝐴 𝑀𝑏 𝐴 , 𝑍 = 𝑃 𝐴 𝑀𝑏 𝐴 ∀𝑍 ∉ 𝑀𝑏 𝐴

○ The Markov blanket of 𝐴 contains 
● Its parents 𝑝𝑎 𝐴

● Its children 𝑐ℎ 𝐴

● Its children’s parents 𝑝𝑎 𝑐ℎ 𝐴

DAVIDE BACCIU - ISPR COURSE 8



Joint Probability Factorization
An application of Chain rule and Local Markov Property
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𝑃 𝑃𝐴, 𝑆, 𝐻, 𝑇, 𝐶 =
𝑃 𝑃𝐴 · 𝑃 𝑆 𝑃𝐴 · 𝑃 𝐻 𝑆, 𝑃𝐴 · 𝑃 𝑇 𝐻, 𝑆, 𝑃𝐴 · 𝑃 𝐶 𝑇, 𝐻, 𝑆, 𝑃𝐴
= 𝑃 𝑃𝐴 · 𝑃 𝑆 · 𝑃 𝐻 𝑆, 𝑃𝐴 · 𝑃 𝑇 𝐻 · 𝑃 𝐶 𝐻

1. Pick a topological ordering of nodes 

2. Apply chain rule following the order 

3. Use the conditional independence 
assumptions



(Ancestral) Sampling of a BN
A BN describes a generative process for observations 
1. Pick a topological ordering of nodes 
2. Generate data by sampling from the local 

conditional probabilities following this order 
Generate 𝑖-th sample for each variable 𝑃𝐴, 𝑆, 𝐻, 𝑇, 𝐶
1. 𝑝𝑎𝑖 ∼ 𝑃 𝑃𝐴
2. 𝑠𝑖 ∼ 𝑃 𝑆
3. ℎ𝑖 ∼ 𝑃 𝐻 𝑆 = 𝑠𝑖 , 𝑃𝐴 = 𝑝𝑎𝑖
4. 𝑡𝑖 ∼ 𝑃 𝑇 𝐻 = ℎ𝑖
5. 𝑐𝑖 ∼ 𝑃 𝐶 𝐻 = ℎ𝑖
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There exist 3 fundamental substructures that determine the conditional 
independence relationships in a Bayesian network

○ Tail to tail (Common Cause)

○ Head to tail (Causal Effect)

○ Head to head (Common Effect)

Fundamental BN structures
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Tail to Tail Connections
○ Corresponds to 

𝑃 𝑌1, 𝑌3 𝑌2 𝑃(𝑌2) = 𝑃 𝑌1 𝑌2 𝑃 𝑌3 𝑌2 𝑃(𝑌2)

○ If 𝑌2 is unobserved then 𝑌1 and 𝑌3 are marginally 
dependent 

𝑌1 𝑌3

○ If 𝑌2 is observed then 𝑌1 and 𝑌3 are conditionally 
independent 

𝑌1 ⊥ 𝑌3|𝑌2
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When 𝑌2 in observed is said to block the path from 𝑌1 to 𝑌3



Head to Tail Connections
○ Corresponds to 

P(Y1, Y2, Y3) = P Y1 𝑃 Y2 Y1 P Y3 Y2

= P Y1 Y2 P Y3 Y2 P(Y2)

○ If 𝑌2 is unobserved then 𝑌1 and 𝑌3 are marginally 
dependent 

𝑌1 𝑌3

○ If 𝑌2 is observed then 𝑌1 and 𝑌3 are conditionally 
independent 

𝑌1 ⊥ 𝑌3|𝑌2
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Observed 𝑌2 blocks 

the path from 𝑌1 to 𝑌3



𝑌2

Head to Head Connections
○ Corresponds to 

𝑃 𝑌1, 𝑌2, 𝑌3 = 𝑃 𝑌1 𝑃 𝑌3 𝑃 𝑌2 𝑌1, 𝑌3

○ If 𝑌2 is observed then 𝑌1 and 𝑌3 are conditionally 
dependent 

𝑌1 𝑌3|𝑌2

○ If 𝑌2 is unobserved then 𝑌1 and 𝑌3 are marginally 
independent 

𝑌1 ⊥ 𝑌3
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If any 𝒀𝟐 descendants is observed it unlocks the path



Derived Conditional Independence Relationships
A Bayesian Network represents the local relationships encoded by the 3 basic 
structures plus the derived relationships

Consider
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Local Markov Relationships

𝑌1 ⊥ 𝑌3|𝑌2
𝑌4 ⊥ 𝑌1, 𝑌2|𝑌3

Derived Relationship

𝑌1 ⊥ 𝑌4|𝑌2



In other words, d-separation holds if at least one of the following holds

○ 𝑟 contains an head-to-tail structure 𝑌𝑖 → 𝑌𝑐 → 𝑌𝑗 (or 𝑌𝑖 ← 𝑌𝑐 ← 𝑌𝑗 ) and 𝑌𝑐 ∈ 𝑍

○ 𝑟 contains a tail-to-tail structure 𝑌𝑖 ← 𝑌𝑐 → 𝑌𝑗 and 𝑌𝑐 ∈ 𝑍

○ 𝑟 contains an head-to-head structure 𝑌𝑖 → 𝑌𝑐 ← 𝑌𝑗 and neither 𝑌𝑐 nor its 

descendants are in 𝑍

d-Separation
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Definition (d-separation)

Let 𝑟 = 𝑌1 ↔ · · ·↔ 𝑌2 be an undirected path between 𝑌1 and 𝑌2, then 𝑟 is d-
separated by 𝑍 if there exist at least one node 𝑌𝑐 ∈ 𝑍 for which path 𝑟 is 
blocked.



Markov Blanket and d-Separation

DAVIDE BACCIU - ISPR COURSE 17

Definition (Nodes d-separation)

Two nodes 𝑌𝑖 and 𝑌𝑗 in a BN 𝒢 are said to be d-separated by 𝑍 ⊂ 𝒱 (denoted by 
𝐷𝑠𝑒𝑝𝒢(𝑌𝑖 , 𝑌𝑗|𝑍) if and only if all undirected paths between 𝑌𝑖 and 𝑌𝑗 are d-
separated by 𝑍

Definition (Markov Blanket)

The Markov blanket 𝑀𝑏 𝑌 is the minimal set of nodes which d-separates a 
node 𝑌 from all other nodes (i.e. it makes 𝑌 conditionally independent of all 
other nodes in the BN) 

𝑀𝑏 𝑌 = {𝑝𝑎 𝑌 , 𝑐ℎ 𝑌 , 𝑝𝑎 𝑐ℎ 𝑌 }



Are Directed Models Enough?
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○ Bayesian Networks are used to model asymmetric dependencies (e.g. causal) 

○ What if we want to model symmetric dependencies 

● Bidirectional effects, e.g. spatial dependencies 

● Need undirected approaches 

Directed models cannot represent some (bidirectional) dependencies in the 
distributions

What if we want to represent 𝑌1 ⊥ 𝑌3|𝑌2, 𝑌4? 
What if we also want 𝑌2 ⊥ 𝑌4|𝑌1, 𝑌3? 

Cannot be done in BN! Need

undirected model



Markov Random Fields

DAVIDE BACCIU - ISPR COURSE 19

Again it is based on node separation, although it is way simpler! 
○ Node subsets 𝐴, 𝐵 ⊂ 𝒱 are conditionally independent given 𝐶 ⊂ 𝒱\{𝐴, 𝐵} if all 

paths between nodes in 𝐴 and 𝐵 pass through at least one of the nodes in 𝐶
○ The Markov Blanket of a node includes all and only its neighbors 

What is the undirected equivalent of d-separation in directed models?

𝐴 ⊥ 𝐵|𝐶



Joint Probability Factorization
What is the undirected equivalent of conditional probability factorization in 
directed models? 

○ We seek a product of functions defined over a set of nodes associated with 
some local property of the graph 

○ Markov blanket tells that nodes that are not neighbors are conditionally 
independent given the remainder of the nodes 

𝑃 𝑋𝑣 , 𝑋𝑖 𝑋𝒱\{𝑣,𝑖} = 𝑃 𝑋𝑣 𝑋𝒱\{𝑣,𝑖} 𝑃 𝑋𝑖 𝑋𝒱\{𝑣,𝑖}

○ Factorization should be chosen in such a way that nodes 𝑋𝑣 and 𝑋𝑖 are not in 
the same factor
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What is a well-known graph structure that includes only nodes

that are pairwise connected?



Cliques
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Definition (Clique)

A subset of nodes 𝐶 in graph 𝒢 such that 𝒢 contains an edge between all pair of nodes in 𝐶

Definition (Maximal Clique)

A clique 𝐶 that cannot include any further node from the graph without ceasing to be a clique



Maximal Clique Factorization
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Define 𝑿 = 𝑋1, . . . , 𝑋𝑁 as the RVs associated to the 𝑁 nodes in the undirected 
graph 𝒢

𝑃 𝑿 =
1

𝑍
ෑ

𝐶

𝜓 𝑿𝐶

○ 𝑿𝐶 → RV associated with nodes in the maximal clique 𝐶
○ 𝜓 𝑿𝐶 → potential function over the maximal cliques 𝐶
○ 𝑍 → partition function ensuring normalization 

𝑍 =

𝑿

ෑ

𝐶

𝜓 𝑿𝐶

Partition function is the computational bottleneck of undirected modes: 

e.g. 𝑂 𝐾𝑁 for 𝑁 discrete RV with 𝐾 distinct values



From Directed To Undirected
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Straightforward in some cases

Requires a little bit of thinking for v-structures 

Moralization a.k.a. marrying of the parents 
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Learning Causation (from data)



Learning with Bayesian Networks 
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Structure

Fixed Structure Fixed Variables

D
at

a C
o

m
p

le
te

Naive Bayes 
Calculate Frequencies (ML)

Discover dependencies 
from the data 

Structure Search 
Independence tests

In
co

m
p

le
te

Latent variables 
EM Algorithm (ML) 

MCMC, VBEM (Bayesian)

Difficult Problem 
Structural EM

Parameter Learning Structure Learning



The Structure Learning Problem
○ Observations are given for a set of

fixed random variables

○ Network structure is not specified

● Determine which arcs exist in the network 
(causal relationships)

● Compute Bayesian network parameters 
(conditional probability tables)

○ Determining causal relationships between 
variables entails

● Deciding on arc presence

● Directing edges
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Structure Finding Approaches
○ Search and Score

● Model selection approach

● Search in the space of the graphs

○ Constraint Based
● Use tests of conditional independence

● Constrain the network

○ Hybrid
● Model selection of constrained structures
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Search & Score

○ Search the space Graph(Y) of graphs 𝐺𝑘
that can be built on the random variables 

𝒀 = 𝑌1, … , 𝑌𝑁
○ Score each structure by 𝑆(𝐺𝑘)

○ Return the highest scoring graph 𝐺∗

○ Two fundamental aspects
● Scoring function

● Search strategy
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Scoring Function
○ Fundamental properties

● Consistency - Same score for graphs in the same equivalence class

● Decomposability - Can be locally computed

○ Approaches
● Information theoretic - Based on data likelihood plus some model-

complexity penalization terms  (AIC, BIC, MDL, …)

● Bayesian – Score the structures using a graph posterior (likelihood +  

proper prior choice)
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log 𝑃(𝐷|𝐺) ≈

𝐷



𝑋

log ෨𝑃(𝑥|𝒑𝒂(𝑥)) + log𝑃(𝐺)



Search Strategy
○ Finding maximal scoring structures is NP complete (Chickering, 2002)

○ Constrain search strategy
● Starting from a candidate structure modify iteratively by local operations (edge/node 

addition or deletion)

● Each operation has a cost

● Cost optimization problem: greedy hill-climbing, simulated annealing, …

○ Constrain search space
● Known node order – Can reduce the search space to the parents of each node (Markov Blanket)

● Search in the space of structure equivalence classes (GES algorithm)

● Search in the space of node orderings (Friedman and Koller, 2003)
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Constraint-based Models
○ Tests of conditional independence 𝐼(𝑋𝑖 , 𝑋𝑗|𝑍) determine edge presence 

(network skeleton)

○ Based on measures of association between two variables/nodes 𝑋𝑖 and 𝑋𝑗, 

given their neighbor nodes 𝑍
● Conditional mutual information

● Statistical hypothesis testing on association measures with a known distribution, e.g. 𝜒2

𝐺2 𝑋𝑖 , 𝑋𝑗 𝒁 = 2σ𝑥𝑖,𝑥𝑗,𝒛𝑛𝐷(𝑥𝑖 , 𝑥𝑗 , 𝒛)
𝑛𝐷(𝑥𝑖,𝑥𝑗,𝒛)𝑛𝐷(𝒛)

𝑛𝐷(𝑥𝑖,𝒛)𝑛𝐷(𝑥𝑗,𝒛)

○ Use deterministic rules based on local Markovian dependencies to determine 

edge orientation (DAG) 
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Testing Strategy
○ Choice of the testing order is fundamental for avoiding a super-exponential

complexity

○ Level-wise testing

● Tests 𝐼(𝑋𝑖 , 𝑋𝑗|𝑍) are performed in order of increasing size of the conditioning set 𝑍

(starting from empty 𝑍)

● PC algorithm (Spirtes, 1995)

○ Node-wise testing
● Tests are performed on a single edge at the time, exhausting independence checks 

on all conditioning variables

● TPDA Algorithm

○ Nodes that enter 𝑍 are chosen in the neighborhood of 𝑋𝑖 and 𝑋𝑗
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PC Algorithm
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Hybrid Models
○ Multi-stage algorithms combining previous approaches 

○ Independence tests to find a sub-optimal skeleton (good starting point)

○ Search and score starting from the skeleton
● Skeleton refinement

● Edge orientation

○ Max-Min Hill Climbing (MMHC) model
● Optimized constraint-based approach to reconstruct the skeleton (Max-Min Parents 

and Children)

● Use the candidate parents in the skeleton to run a search and score approach
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Learning a COVID-19 causal model
Example of integration of 

clinical knowledge with (sort 

of) causation information 

inferred from data

DAVIDE BACCIU - ISPR COURSE 36



Take Home Messages 
○ Directed graphical models

● Represent asymmetric (causal) relationships between RV and conditional probabilities 

in compact way

● Difficult to assess conditional independence (v-structures)

● Ok for prior knowledge and interpretation

○ Undirected graphical models
● Represent bi-directional relationships (e.g. constraints)

● Factorization in terms of generic potential functions (not probabilities)

● Easy to assess conditional independence, but difficult to interpret

● Serious computational issues due to normalization factor

○ Structure learning to infer multivariate causation relationships from 

data
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Next Two Lectures

Hidden Markov Model (HMM) 

○ A dynamic graphical model for sequences 

○ Unfolding learning models on structures 

○ Exact inference on a chain with observed and unobserved 

variables 

○ The Expectation-Maximization algorithm for HMMs
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