Conditional Independence: Representation and Learning

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

RICCARDO MASSIDDA, DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

RICCARDO.MASSIDDA@DI.UNIPI.IT DAVIDE.BACCIU@UNIPI.IT

Probabilistic and Causal Learning

- Bayesian Networks (Tuesday 4th, today!)
 - Compact representation of joint probabilities
 - Plate Notation
 - Local Markov Property
 - Ancestral Sampling
- d-separation, Markov blankets (Thursday 6th)
- Graphical Causal Models (Tuesday 11th)
- Structure Learning and Causal Discovery (Wednesday 12th)

- The main goal of **probabilistic modeling** is to define models able to represent the **joint distribution** of a set of variables.
- Probabilistic models enable
 - **Sampling** new instances
 - Inferencing values of **hidden** variables
 - Estimating the **likelihood** of a configuration

TATES TATES

- Assume N discrete random variables with k distinct values.
- How many parameters in the **joint probability distribution**?

DAVIDE BACCIU - ISPR COURSE

- What if we compute the probability **one variable** at the time?
- We can exploit the **chain rule** to decompose the joint.

$$P(Y_1, Y_2, Y_3) = P(Y_1)P(Y_2 | Y_1)P(Y_3 | Y_1, Y_2)$$

= $P(Y_2)P(Y_1 | Y_2)P(Y_3 | Y_1, Y_2)$
= ...
= $P(Y_3)P(Y_2 | Y_3)P(Y_1 | Y_2, Y_3).$

• The order of the variables can be represented by directed graphs.

• Decomposing the joint with the **chain rule** reduces the **number of parameters**?

```
• No! 

P(Y_1, Y_2, Y_3) = P(Y_1)P(Y_2 | Y_1)P(Y_3 | Y_1, Y_2)
1 \quad 2 \quad 4
\sum_{i=0}^{N-1} (k-1)k^i = k^N - 1
```


Marginal and Conditional Independence

• Two random variables X and Y are **independent** if knowledge about X does not change the uncertainty about Y and vice versa

$$I(X,Y) \iff X \perp Y \iff P(X,Y) = P(X \mid Y)P(Y)$$
$$= P(Y \mid X)P(X) = P(X)P(Y).$$

• When variables are **independent**, we only need Nk parameters.

$$P(Y_1, Y_2, Y_3) = P(Y_1)P(Y_2 | Y_1)P(Y_3 | Y_1, Y_2)$$

= $P(Y_1)P(Y_2)P(Y_3)$

Marginal and Conditional Independence

• Two random variables X and Y are **conditionally independent** given Z if knowledge about X does not change the uncertainty about Y and vice versa on the conditional distribution

$$I(X, Y \mid Z) \iff X \perp Y \mid Z \iff P(X, Y \mid Z) = P(X \mid Y \mid Z)P(Y \mid Z)$$
$$= P(Y \mid X \mid Z)P(X \mid Z)$$
$$= P(X \mid Z)P(Y \mid Z).$$

• Conditional independences reduce the **number of parameters**

• Yes! 🔯

$$Y_{1} \perp Y_{3} \mid Y_{2}$$

$$\implies P(Y_{1}, Y_{2}, Y_{3}) = P(Y_{1})P(Y_{2} \mid Y_{1})P(Y_{3} \mid Y_{1}, Y_{2})$$

$$= P(Y_{1})P(Y_{2} \mid Y_{1})P(Y_{3} \mid Y_{2})$$

$$1 \qquad 2 \qquad 2$$

UNIVERSITÀ DI PISA

Bayesian Network

- Directed Acyclic Graph (DAG) $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Nodes $v \in \mathcal{V}$ represent random variables
 - Shaded \Rightarrow observed
 - Empty ⇒ un-observed
- Edges e ∈ E describe the conditional independence relationships

Conditional Probability Tables (CPT) local to each node describe the probability distribution given its parents

$$P(Y_1,\ldots,Y_N) = \prod_{i=1}^N P(Y_i \mid pa(Y_i))$$

Bayesian Networks

- Let L be the maximum number of ingoing edges in a Bayes Net.
- Then, the number of parameters is at most $N \cdot (k-1)^L$
- ⇒ The sparser the network, the less "complex" the parameters.

Bayesian Networks

- Are these relations **causal**?
- In general <u>no</u>, a Bayesian
 Network represent statistical dependence relations.
- However, they <u>might</u> coincide with causal dependence under further assumptions.

Compact Representation of Bayes Nets

If the same **dependencies are replicated** over different variables, we can compactly represent it by **plate notation**.

The Naive Bayes Classifier × L

Replication for *L* attributes

Replication for N data samples

Full Plate Notation

Gaussian Mixture Model

- Boxes denote replication for a number of times denoted by the letter in the corner
- Shaded nodes are observed variables
- Empty nodes denote un-observed latent variables
- Black seeds (optional) identify model parameters
 - $\pi \rightarrow$ multinomial prior distribution
 - $\mu \rightarrow$ means of the *C* Gaussians
 - $\sigma \rightarrow \text{std of the } C$ Gaussians

Local Markov Property

Definition (Local Markov property)

Each node / random variable is conditionally independent of all its non-descendants given a joint state of its parents

 $Y_{v} \perp Y_{V \setminus ch(v)} | Y_{pa(v)} \text{ for all } v \in V$

Party and Study are marginally independent

• $Party \perp Study$

However, local Markov property does not support

- Party ⊥ Study | Headache
- Tabs \perp Party

But *Party* and *Tabs* are independent given *Headache*

Joint Probability Factorization

An application of Chain rule and Local Markov Property¹

- 1. Pick a topological ordering of nodes
- 2. Apply chain rule following the order
- 3. Use the conditional independence assumptions

P(PA, S, H, T, C) = $P(PA) \cdot P(S|PA) \cdot P(H|S, PA) \cdot P(T|H, S, PA) \cdot P(C|T, H, S, PA)$ $= P(PA) \cdot P(S) \cdot P(H|S, PA) \cdot P(T|H) \cdot P(C|H)$

PArty

Tabs

Study

3

Coffee

Headache

(Ancestral) Sampling of a BN

A BN describes a generative process for observations

- 1. Pick a topological ordering of nodes
- 2. Generate data by sampling from the local conditional probabilities following this order

Generate *i*-th sample for each variable PA, S, H, T, C

1.
$$pa_i \sim P(PA)$$

2. $s_i \sim P(S)$
3. $h_i \sim P(H|S = s_i, PA = pa_i)$
4. $t_i \sim P(T|H = h_i)$
5. $c_i \sim P(C|H = h_i)$

Fundamental BN structures

There exist **three fundamental substructures** that determine the conditional independence relationships in a Bayesian Network.

• Tail-to-Tail (Fork, "Common Cause")

• **Head-to-Tail** (Chain, "Causal Effect")

• **Head-to-Head** (Collider, "Common Effect")

Tail-to-Tail Connections

• Corresponds to $P(Y_1, Y_3 | Y_2) P(Y_2) = P(Y_1 | Y_2) P(Y_3 | Y_2) P(Y_2)$

• If Y_2 is unobserved then Y_1 and Y_3 are marginally dependent

$$Y_1 \not\perp Y_3$$

• If Y_2 is observed then Y_1 and Y_3 are conditionally independent

$$Y_1 \perp Y_3 | Y_2$$

When Y_2 in observed is said to **block the path** from Y_1 to Y_3

Head-to-Tail Connections

Corresponds to $P(Y_1, Y_2, Y_3) = P(Y_1)P(Y_2|Y_1)P(Y_3|Y_2)$ $= P(Y_1|Y_2)P(Y_3|Y_2)P(Y_2)$

• If Y_2 is unobserved then Y_1 and Y_3 are marginally dependent Type equation here.

$$Y_1 \not\perp Y_3$$

Observed Y_2 blocks the path from Y_1 to Y_3 • If Y_2 is observed then Y_1 and Y_3 are conditionally independent

$$Y_1 \perp Y_3 | Y_2$$

Head-to-Head Connections

0

Corresponds to $P(Y_1, Y_2, Y_3) = P(Y_1)P(Y_3)P(Y_2|Y_1, Y_3)$

• If Y_2 is observed then Y_1 and Y_3 are conditionally dependent

$$Y_1 \pm Y_3 | Y_2$$

• If Y_2 is unobserved then Y_1 and Y_3 are marginally independent

$$Y_1 \perp Y_3$$

If any Y₂ descendants is observed it unlocks the path

Probabilistic and Causal Learning

- Bayesian Networks (Tuesday 4th)
- Reminder: no lecture tomorrow!
- Bayesian Networks (Thursday 6th, **next**!)
 - d-separation
 - Markov Property and Faithfulness
 - Markov Blanket
 - Introduction to Markov Random Fields
- Graphical Causal Models (Tuesday 11th)
- Structure Learning and Causal Discovery (Wednesday 12th)

Conditional Independence: Representation and Learning

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

RICCARDO MASSIDDA, DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

RICCARDO.MASSIDDA@DI.UNIPI.IT DAVIDE.BACCIU@UNIPI.IT

Probabilistic and Causal Learning

- Bayesian Networks (Tuesday 4th)
- Bayesian Networks (Thursday 6th, today!)
 - d-separation
 - Markov Property and Faithfulness
 - Markov Blanket
 - Introduction to Markov Random Fields
- Graphical Causal Models (Tuesday 11th)
- Structure Learning and Causal Discovery (Wednesday 12th)

Bayesian Network

- Directed Acyclic Graph (DAG) $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Nodes $v \in \mathcal{V}$ represent random variables
 - Shaded \Rightarrow observed
 - Empty ⇒ un-observed
- Edges e ∈ E describe the conditional independence relationships

Conditional Probability Tables (CPT) local to each node describe the probability distribution given its parents

$$P(Y_1,\ldots,Y_N) = \prod_{i=1}^N P(Y_i \mid pa(Y_i))$$

Fundamental BN structures

There exist **three fundamental substructures** that determine the conditional independence relationships in a Bayesian Network.

- Tail-to-Tail (Fork, "Common Cause")
- **Head-to-Tail** (Chain, "Causal Effect")
- **Head-to-Head** (Collider, "Common Effect")

Blocked Path

Let $r = (Y_1 \leftrightarrow \dots \leftrightarrow Y_2)$ be an **undirected path** between Y_1 and Y_2 . The path **r** is **blocked** by a set Z if one of the following holds:

- r contains a **fork** (tail-to-tail) $Y_i \leftarrow Y_c \rightarrow Y_i$ such that $Y_c \in Z$, or
- r contains a **chain** (head-to-tail) $Y_i \rightarrow Y_c \rightarrow Y_j$ such that $Y_c \in Z$, or
- r contains a collider (head-to-head) $Y_i \rightarrow Y_c \leftarrow Y_j$ such that neither Y_c nor its descendants are in Z.

d-Separation

Definition (d-separated path)

Let $r = Y_1 \leftrightarrow \cdots \leftrightarrow Y_2$ be an undirected path between Y_1 and Y_2 , then r is d-separated by Z if there exist at least one node $Y_c \in Z$ for which path r is blocked.

DAVIDE BACCIU - ISPR COURSE

d-Separation

Definition (d-separation)

Two nodes Y_i and Y_j in a BN \mathcal{G} are said to be d-separated by $Z \subset \mathcal{V}$ (denoted by $Dsep_{\mathcal{G}}(Y_i, Y_j|Z)$ if and only if all undirected paths between Y_i and Y_j are d-separated by Z

$$Y_1 \perp_{\mathcal{G}} Y_2 \mid Z$$

DAVIDE BACCIU - ISPR COURSE

Global Markov Property

$$Y_1 \perp_{\mathcal{G}} Y_2 \mid Z \implies Y_1 \perp Y_2 \mid Z$$

- A Bayesian Network respects the Global Markov condition whenever d-separations in the graph imply conditional independence relations.
- **Global** and **local** Markov properties are **equivalent**.

Markov Blanket

- The Markov Blanket Mb(Y) of a node Y is the minimal set of vertices that shield the node from the rest of the Bayesian Network.
- In a DAG, the Markov Blanket of Y contains
 - Its parents Pa(Y)
 - Its children Ch(Y)
 - Its children's parents Pa(Ch(Y))
- The behavior of a node can be completely determined and predicted from the knowledge of its Markov Blanket.

 $P(Y \mid Mb(Y), Z) = P(Y \mid Mb(Y)) \forall Z \notin Mb(Y)$

Faithfulness Property

$$Y_1 \perp Y_2 \mid Z \implies Y_1 \perp_{\mathcal{G}} Y_2 \mid Z$$

- A Bayesian Network is faithful whenever conditional independence relations imply d-separations.
- While the global Markov Condition requires the graph to represent only conditional independences, the Faithfulness condition requires to represent all conditional independences.

Faithfulness Property

$$Y_1 \perp Y_2 \mid Z \implies Y_1 \perp_{\mathcal{G}} Y_2 \mid Z$$

- Faithfulness is fundamental to concisely represent joint distributions.
- Intuitively, the more conditional independences we represent, the less parameters we need to store in the model.

Are Directed Models Enough?

- Bayesian Networks are used to model **asymmetric dependencies**
- What if we want to model **symmetric dependencies**?
 - Bidirectional effects, e.g. spatial dependencies
 - Need **undirected** approaches

Directed models cannot represent some (bidirectional) dependencies in the distributions

What if we want to represent $Y_1 \perp Y_3 | Y_2, Y_4$? What if we also want $Y_2 \perp Y_4 | Y_1, Y_3$?

> Cannot be done in BN! Need undirected model

Markov Random Fields

What is the **undirected equivalent** of **d-separation** in directed models?

Again it is based on node separation, although it is way simpler!

- Node subsets $A, B \subset \mathcal{V}$ are conditionally independent given $C \subset \mathcal{V} \setminus \{A, B\}$ if all paths between nodes in A and B pass through at least one of the nodes in $C \not\subset \mathcal{V}$
- The Markov Blanket of a node includes all and only its neighbors

I INIVERSITÀ DI PISA

Joint Probability Factorization

What is the undirected equivalent of conditional probability factorization in directed models?

- We seek a product of functions defined over a set of nodes associated with some local property of the graph
- Markov blanket tells that nodes that are not neighbors are conditionally independent given the remainder of the nodes $P(X_{v}, X_{i} | X_{v \setminus \{v,i\}}) = P(X_{v} | X_{v \setminus \{v,i\}}) P(X_{i} | X_{v \setminus \{v,i\}})$
- Factorization should be chosen in such a way that nodes X_v and X_i are not in the same factor

What is a **well-known graph structure** that **includes only nodes that are pairwise connected**?

Cliques

Definition (Clique)

A subset of nodes C in graph G such that G contains an edge between all pair of nodes in C

Definition (Maximal Clique)

A clique C that cannot include any further node from the graph without ceasing to be a clique

DAVIDE BACCIU - ISPR COURSE

Maximal Clique Factorization

Define $X = X_1, \ldots, X_N$ as the RVs associated to the N nodes in the undirected graph G

$$P(\boldsymbol{X}) = \frac{1}{Z} \prod_{C} \psi(\boldsymbol{X}_{C})$$

- $X_C \rightarrow$ RV associated with nodes in the maximal clique C
- $\psi(X_C) \rightarrow$ potential function over the maximal cliques C
- $Z \rightarrow$ partition function ensuring normalization

$$Z = \sum_{\boldsymbol{X}} \prod_{\boldsymbol{C}} \psi(\boldsymbol{X}_{\boldsymbol{C}})$$

Partition function is the **computational bottleneck** of undirected modes: e.g. $O(K^N)$ for N discrete RV with K distinct values

From Directed To Undirected

Straightforward in some cases

$$(X_1 \longrightarrow (X_2) \longrightarrow (X_3) \dots \bigcirc \implies (X_1 \longrightarrow (X_2) \longrightarrow (X_3) \dots \bigcirc (X_1 \longrightarrow (X_2) \longrightarrow (X_3) \dots \bigcirc (X_1 \longrightarrow (X_2) \longrightarrow (X_2) \longrightarrow (X_2 \longrightarrow (X_3) \dots \bigcirc (X_1 \longrightarrow (X_2) \longrightarrow (X_2) \longrightarrow (X_2 \longrightarrow (X_2) \longrightarrow (X_2 \longrightarrow (X_2) \longrightarrow (X_2) \longrightarrow (X_2 \longrightarrow (X_2 \longrightarrow (X_2) \longrightarrow (X_2 \longrightarrow (X_2$$

Requires a little bit of thinking for v-structures

Moralization a.k.a. marrying of the parents

DAVIDE BACCIU - ISPR COURSE

Next Lectures: Causal Learning

- Graphical Causal Models (Tuesday 11th)
 - Causation and Correlation
 - Causal Bayesian Networks
 - Structural Causal Models
 - Causal Inference
- Structure Learning and Causal Discovery (Wednesday 12th)
 - Constraint-Based Methods (PC, FCI)
 - Score-Based Methods (GES)
 - Parametric Assumptions (LiNGAM)

