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On the Nature of Relationships in
Bayesian and Markov Networks

Bayesian Networks Markov Networks

Directed edges Undirected edges
representing representing
asymmetric cause- symmetric
effect relationships Cj/ relationships

Can we reason on the structure of the graph to infer direct/indirect
relationships between RVs?

DAVIDE BACCIU - ISPR COURSE 2




Bayesian Network

o Directed Acyclic Graph (DAG) G = (V, )
o Nodes v € V represent random variables
e Shaded = observed

e Empty = un-observed

o Edges e € £ describe the conditional independence
relationships

Conditional Probability Tables (CPT) local to each node describe the probability
distribution given its parents

N
P, i) = | [ PCti Ipacr)
=1
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A Simple Example

o Assume N discrete RV Y; who can take k distinct values
o How many parameters in the joint probability distribution?
k" — 1 independent parameters

How many independent parameters if all  What if only part of the variables are
N variables are independent? N * (k — 1) (conditionally) independent?

N

P(Yy, ..., Yy) = 1_[ P(Y;)
i=1

If the N nodes have a maximum of L children = (k — 1)* x N independent
parameters
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A Compact Representation of Replication

If the same causal relationship is replicated for a number of variables,
we can compactly represent it by plate notation

© —
P(C, h, . .

N e &

\ N/
The Naive Replication for Replication for
Bayes Classifier L attributes N data samples
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Full Plate Notation

o Boxes denote replication for a number of times

(" @ ) CT-[) denoted by the letter in the corner
< o
o Shaded nodes are observed variables
) o Empty nodes denote un-observed latent variables
__,/® o Black seeds (optional) identify model parameters
g e 1 —> multinomial prior distribution
L @ e U - means of the C Gaussians
N \_C.J
\ J e 0 - std of the C Gaussians

Gaussian Mixture Model
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Local Markov Property

Each node / random variable is conditionally

independent of all its non-descendants given a joint
state of its parents

Yy L Yinchw) |Yoa@w) forallv eV

Party and Study are marginally independent

o Party L1 Study

However, local Markov property does not support
o Party 1 Study | Headache

o Tabs L Party

But Party and Tabs are independent given Headache
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Markov Blanket

o The Markov Blanket Mb(A) of a node A4 is the
minimal set of vertices that shield the node from
the rest of Bayesian Network

. —

= -
4

;“f X “\\ o The behavior of a node can be completely
;’ \ determined and predicted from the knowledge of
| Q p | its Markov blanket
| !
1o P(AIMb(A),Z) = P(A|Mb(A))VZ ¢ Mb(A)
Q O \__’ o The Markov blanket of 4 contains

¥ " -;-. e Its parents pa(A4)
A ' e |Its children ch(4)
e |ts children’s parents pa(ch(A))
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Joint Probability Factorization

An application of Chain rule and Local Markov Property 1
1. Pick a topological ordering of nodes

2. Apply chain rule following the order

3. Use the conditional independence
assumptions

P(PA,S,H,T,C) =
P(PA) - P(S|PA) - P(H|S,PA) - P(T|H,S,PA) - P(C|T,H, S, PA)
= P(PA) - P(S) - P(H|S, PA) - P(T|H) - P(C|H)




(Ancestral) Sampling of a BN

A BN describes a generative process for observations

1. Pick a topological ordering of nodes

2.  Generate data by sampling from the local
conditional probabilities following this order

Generate i-th sample for each variable PA, S, H, T, C

1. pa; ~ P(PA)

S; ~ P(S)

h; ~ P(H|S = s;,PA = pa;)

ti ~ P(TlH — hl)

¢i ~ P(C|H = h;)

St R N




Fundamental BN structures

There exist 3 fundamental substructures that determine the conditional
independence relationships in a Bayesian network

o Head to tail (Causal Effect)
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o Tail to tail (Common Cause)

o Head to head (Common Effect)




Tail to Tail Connections

o Corresponds to
o P(Yy, Y3IY)P(Yy) = P(Y1[Yo)P(Y3|Y2)P(Y2)
o ° o IfY, is unobserved then Y; and Y; are marginally
dependent
(x o
o IfY, is observed then Y; and Y; are conditionally

o ° independent
Y, L Ys|Y,

When Y, in observed is said to block the path from Y; to Y3
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Head to Tail Connections

o Corresponds to
P(Yy, Y3, Y3) = P(Y1)P(Y2 Y1) P(Y5]|Y3)

— P(Y1|Y2)P(Y3|Y2)P(Y2)

o IfY; isunobserved then Y; and Y5 are marginally

dependent
1 L Y;

o IfY, is observed then Y; and Y; are conditionally

Observed Y, blocks .
independent

the path from Y; to Y;

Y; L Y3]Y;
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Head to Head Connections

o Corresponds to
o P(11,Y3,Y3) = P(Y1)P(Y3)P(Y2|Yy, Y3)
o ° o IfY, is observed then Y; and Y; are conditionally
dependent
o Y, v, Y35
o IfY; isunobserved then Y; and Y5 are marginally

o ° independent
Y, LY,

If any Y, descendants is observed it unlocks the path
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Derived Conditional Independence Relationships

A Bayesian Network represents the local relationships encoded by the 3 basic
structures plus the derived relationships

Consider
Local Markov Relationships Derived Relationship

Y, 1L Y3|Y, Y; LY,|Y,
Y, LY, Y5|Y;
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d-Separation

Definition (d-separation)

Letr =Y; & - Y, bean undirected path between Y; and Y,, then r is d-
separated by Z if there exist at least one node Y. € Z for which path r is
blocked.

In other words, d-separation holds if at least one of the following holds

O r contains an head-to-tail structure Y; - Y, - Y; (orY; « Y. <Y, )and Y. € Z

O r contains a tail-to-tail structure ¥; « Y, - Y;and Y, € Z

O r contains an head-to-head structure Y; — Y, < Y; and neither ¥, nor its

descendants are in Z
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Markov Blanket and d-Separation

Definition (Nodes d-separation)

Two nodes Y; and Y; in a BN G are said to be d-separated by Z c V (denoted by
Dseps(Y;,Y;|Z) if and only if all undirected paths between Y; and Y; are d-
separated by Z

Definition (Markov Blanket)

The Markov blanket Mb(Y) is the minimal set of nodes which d-separates a
node Y from all other nodes (i.e. it makes Y conditionally independent of all

other nodes in the BN)
Mb(Y) = {pa(Y), ch(Y),pa(ch(Y))}

»
L S = 3 § g o S
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Are Directed Models Enough?

o Bayesian Networks are used to model asymmetric dependencies (e.g. causal)

o What if we want to model symmetric dependencies

e Bidirectional effects, e.g. spatial dependencies

e Need undirected approaches

Directed models cannot represent some (bidirectional) dependencies in the
distributions
What if we want to represent Y; 1 Y3|Y,,Y,?
What if we alsowant Y, L Y,|Y;, Y3?

o.o Cannot be done in BN! Need

undirected model
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Markov Random Fields

What is the undirected equivalent of d-separation in directed models?

/ hY

\ /
VAL s BB

Again it is based on node sepa}étion, although it is way simpler!

o Node subsets A, B c V are conditionally independent given C c V\{4, B} if all
paths between nodes in A and B pass through at least one of the nodes in C

o The Markov Blanket of a node includes all and only its neighbors
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Joint Probability Factorization

What is the undirected equivalent of conditional probability factorization in
directed models?

o We seek a product of functions defined over a set of nodes associated with
some local property of the graph

o Markov blanket tells that nodes that are not neighbors are conditionally
independent given the remainder of the nodes

P(Xu, Xi| X\gwiy) = P(Xo| Xinw,) P (Xi [ X ,y)
o Factorization should be chosen in such a way that nodes X, and X; are not in
the same factor

What is a well-known graph structure that includes only nodes
that are pairwise connected?
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Cliques

Definition (Clique)

A subset of nodes C in graph G such that G contains an edge between all pair of nodes in C

Definition (Maximal Clique)

A clique C that cannot include any further node from the graph without ceasing to be a clique
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Maximal Clique Factorization

Define X = X4,..., Xy as the RVs associated to the N nodes in the undirected
graph §

1
P =] |wexo
C

o X = RV associated with nodes in the maximal clique C
o YP(X,) > potential function over the maximal cliques C
o Z —» partition function ensuring normalization

Z = ZHIP(XC)
X ¢

Partition function is the computational bottleneck of undirected modes:
e.g. O0(K") for N discrete RV with K distinct values
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From Directed To Undirected

Straightforward in some cases

—=0—=® - O = - - O

Requires a little bit of thinking for v-structures

e/ -

Moralization a.k.a. marrying of the parents




Learning Causation (from data)




Learning with Bayesian Networks

Structure

Fixed Structure Fixed Variables

j P(Y 1X) C @ P(X.Y) @

Naive Bayes
Calculate Frequencies (ML)

Data

Latent variables
EM Algorithm (ML)
MCMC, VBEM (Bayesian)

Incomplete | Complete

Parameter Learning
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The Structure Learning Problem

TV T T T e T Ve o Observations are given for a set of
1 2 1 0 3 4 . )
et T fixed random variables

o Network structure is not specified

e Determine which arcs exist in the network
(causal relationships)

e Compute Bayesian network parameters

@ @ (conditional probability tables)

o Determining causal relationships between
0 variables entails

@ e Deciding on arc presence

e Directing edges
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Structure Finding Approaches

o Search and Score
e Model selection approach

e Search in the space of the graphs

o Constraint Based

e Use tests of conditional independence
e Constrain the network

o Hybrid

® Model selection of constrained structures
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Search & Score

| R
" P—
S(Gx)
o
. j/}(Gm
-
G 1
) /)

Search the space Graph(Y) of graphs G,
that can be built on the random variables
Y=Y,.. Yy

Score each structure by S(Gy)

Return the highest scoring graph G*

Two fundamental aspects

® Scoring function

® Search strategy
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Scoring Function

o Fundamental properties

e Consistency - Same score for graphs in the same equivalence class

e Decomposability - Can be locally computed

o Approaches
e Information theoretic - Based on data likelihood plus some model-
complexity penalization terms (AIC, BIC, MDL, ...)
® Bayesian — Score the structures using a graph posterior (likelihood +
proper prior choice)

logP(D|G) = ZZlog P(x|pa(x)) +logP(G)
X

D
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Search Strategy

O Finding maximal scoring structures is NP complete (Chickering, 2002)

O Constrain search strategy
® Starting from a candidate structure modify iteratively by local operations (edge/node
addition or deletion)

® Each operation has a cost
® Cost optimization problem: greedy hill-climbing, simulated annealing, ...

o Constrain search space
® Known node order — Can reduce the search space to the parents of each node (Markov Blanket)

® Search in the space of structure equivalence classes (GES algorithm)
® Search in the space of node orderings (Friedman and Koller, 2003)
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Constraint-based Models

O

Tests of conditional independence I(X;, Xj|Z) determine edge presence
(network skeleton)

Based on measures of association between two variables/nodes X; and X;,
given their neighbor nodes 7
® Conditional mutual information

® Statistical hypothesis testing on association measures with a known distribution, e.g. x?

2(y. v.17) — AT (xix},Z)np(2)
G*(X;,X|Z) =2 Lxyx;,z D (xl,x],z)nD(xi’Z)nD(xj’Z)
Use deterministic rules based on local Markovian dependencies to determine

edge orientation (DAG)
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Testing Strategy

O

Choice of the testing order is fundamental for avoiding a super-exponential
complexity

Level-wise testing

® Tests I(X;, X;|Z) are performed in order of increasing size of the conditioning set Z

(starting from empty Z)
® PCalgorithm (Spirtes, 1995)

Node-wise testing
® Tests are performed on a single edge at the time, exhausting independence checks

on all conditioning variables
® TPDA Algorithm

Nodes that enter Z are chosen in the neighborhood of X; and X;
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PC Algorithm

Initialize a fully connected graph G = (V, £)
for each edge (Y;, Y;) € V

o if /(Y;, Y;) then prune (Y, Y))
Yg Y3 K — 1
' for each test of order K = |Z|

o foreachedge (Y, Y)) eV
@ Z «— set of conditioning sets of K-th order for Y;, Y;
e if I(Y}, Yj|z) for any z € Z then prune (Y}, Y))

@ @ o K— K+ 1

return ¢
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Hybrid Models

O Multi-stage algorithms combining previous approaches

O Independence tests to find a sub-optimal skeleton (good starting point)

O Search and score starting from the skeleton
® Skeleton refinement
® Edge orientation

o Max-Min Hill Climbing (MMHC) model

® Optimized constraint-based approach to reconstruct the skeleton (Max-Min Parents
and Children)

® Use the candidate parents in the skeleton to run a search and score approach
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Learning a COVID-19 causal model

Example of integration of
clinical knowledge with (sort

of) causation information
inferred from data

@2

Diarrhea)
(yaioid
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Take Home Messages

O Directed graphical models

Represent asymmetric (causal) relationships between RV and conditional probabilities
in compact way

Difficult to assess conditional independence (v-structures)

Ok for prior knowledge and interpretation

O Undirected graphical models

Represent bi-directional relationships (e.g. constraints)

Factorization in terms of generic potential functions (not probabilities)
Easy to assess conditional independence, but difficult to interpret
Serious computational issues due to normalization factor

o Structure learning to infer multivariate causation relationships from
data
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Next Two Lectures

Hidden Markov Model (HMM)

O

O

O

A dynamic graphical model for sequences

Unfolding learning models on structures
Exact inference on a chain with observed and unobserved

variables
The Expectation-Maximization algorithm for HMMs
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