# Conditional independence and Causality

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

DAVIDE.BACCIU@UNIPI.IT

## On the Nature of Relationships in Bayesian and Markov Networks

**Bayesian Networks** 

Directed edges representing asymmetric causeeffect relationships



**Markov Networks** 



Undirected edges representing symmetric relationships

Can we reason on the structure of the graph to infer direct/indirect relationships between RVs?



## Bayesian Network



- Directed Acyclic Graph (DAG)  $G = (V, \mathcal{E})$
- Nodes  $v \in \mathcal{V}$  represent random variables
  - Shaded ⇒ observed
  - Empty ⇒ un-observed
- Edges  $e \in \mathcal{E}$  describe the conditional independence relationships

Conditional Probability Tables (CPT) local to each node describe the probability distribution given its parents

$$P(Y_1,...,Y_N) = \prod_{i=1}^N P(Y_i | pa(Y_i))$$

## A Simple Example

- o Assume N discrete RV  $Y_i$  who can take k distinct values
- How many parameters in the joint probability distribution?  $k^N-1$  independent parameters

How many independent parameters if all What if only part of the variables are  $N \times (k-1)$  (conditionally) independent?

$$(Y_1)$$
  $(Y_2)$  ...  $(Y_N)$ 

$$P(Y_1, \dots, Y_N) = \prod_{i=1}^N P(Y_i)$$



If the N nodes have a maximum of L children  $\Rightarrow (k-1)^L \times N$  independent parameters

## A Compact Representation of Replication

If the same causal relationship is replicated for a number of variables, we can compactly represent it by plate notation



The Naive
Bayes Classifier



Replication for *L* attributes



Replication for *N* data samples



#### **Full Plate Notation**



Gaussian Mixture Model

- Boxes denote replication for a number of times denoted by the letter in the corner
- Shaded nodes are observed variables
- Empty nodes denote un-observed latent variables
- Black seeds (optional) identify model parameters
  - $\pi \rightarrow$  multinomial prior distribution
  - $\mu \rightarrow$  means of the *C* Gaussians
  - $\sigma \rightarrow \text{std of the } C$  Gaussians



## Local Markov Property

#### **Definition (Local Markov property)**

Each node / random variable is conditionally independent of all its non-descendants given a joint state of its parents

$$Y_v \perp Y_{V \setminus \operatorname{ch}(v)} \mid Y_{pa(v)} \text{ for all } v \in V$$

Party and Study are marginally independent

o Party ⊥ Study

However, local Markov property does not support

- o Party ⊥ Study | Headache
- o Tabs ⊥ Party

But Party and Tabs are independent given Headache





#### Markov Blanket



- The Markov Blanket Mb(A) of a node A is the minimal set of vertices that shield the node from the rest of Bayesian Network
- The behavior of a node can be completely determined and predicted from the knowledge of its Markov blanket

$$P(A|Mb(A),Z) = P(A|Mb(A)) \ \forall Z \notin Mb(A)$$

- The Markov blanket of A contains
  - Its parents pa(A)
  - Its children ch(A)
  - Its children's parents pa(ch(A))



## Joint Probability Factorization

An application of Chain rule and Local Markov Property <sup>1</sup>

- 1. Pick a topological ordering of nodes
- 2. Apply chain rule following the order
- 3. Use the conditional independence assumptions

$$P(PA, S, H, T, C) =$$

$$P(PA) \cdot P(S|PA) \cdot P(H|S, PA) \cdot P(T|H, S, PA) \cdot P(C|T, H, S, PA)$$

$$= P(PA) \cdot P(S) \cdot P(H|S, PA) \cdot P(T|H) \cdot P(C|H)$$



## (Ancestral) Sampling of a BN

A BN describes a generative process for observations

- 1. Pick a topological ordering of nodes
- 2. Generate data by sampling from the local conditional probabilities following this order

Generate i-th sample for each variable PA, S, H, T, C

1. 
$$pa_i \sim P(PA)$$

- 2.  $S_i \sim P(S)$
- 3.  $h_i \sim P(H|S = s_i, PA = pa_i)$
- $4. \quad t_i \sim P(T|H=h_i)$
- 5.  $c_i \sim P(C|H = h_i)$



#### Fundamental BN structures

There exist 3 fundamental substructures that determine the conditional independence relationships in a Bayesian network

Tail to tail (Common Cause)



Head to tail (Causal Effect)







#### Tail to Tail Connections



- o Corresponds to  $P(Y_1, Y_3 | Y_2)P(Y_2) = P(Y_1 | Y_2)P(Y_3 | Y_2)P(Y_2)$
- o If  $Y_2$  is unobserved then  $Y_1$  and  $Y_3$  are marginally dependent

$$Y_1 \not\perp Y_3$$

 $\circ$  If  $Y_2$  is observed then  $Y_1$  and  $Y_3$  are conditionally independent

$$Y_1 \perp Y_3 \mid Y_2$$



When  $Y_2$  in observed is said to **block the path** from  $Y_1$  to  $Y_3$ 

#### Head to Tail Connections



Corresponds to

$$P(Y_1, Y_2, Y_3) = P(Y_1)P(Y_2|Y_1)P(Y_3|Y_2)$$
$$= P(Y_1|Y_2)P(Y_3|Y_2)P(Y_2)$$



o If  $Y_2$  is unobserved then  $Y_1$  and  $Y_3$  are marginally dependent

$$Y_1 \not\perp Y_3$$

Observed  $Y_2$  blocks the path from  $Y_1$  to  $Y_3$ 

o If  $Y_2$  is observed then  $Y_1$  and  $Y_3$  are conditionally independent

$$Y_1 \perp Y_3 | Y_2$$

#### Head to Head Connections



- o Corresponds to  $P(Y_1, Y_2, Y_3) = P(Y_1)P(Y_3)P(Y_2|Y_1, Y_3)$
- o If  $Y_2$  is observed then  $Y_1$  and  $Y_3$  are conditionally dependent

$$Y_1 Y_2 Y_3 | Y_2$$

o If  $Y_2$  is unobserved then  $Y_1$  and  $Y_3$  are marginally independent

$$Y_1 \perp Y_3$$



If any Y<sub>2</sub> descendants is observed it unlocks the path

## Derived Conditional Independence Relationships

A Bayesian Network represents the local relationships encoded by the 3 basic structures plus the derived relationships

#### Consider



Local Markov Relationships

$$Y_1 \perp Y_3 | Y_2$$
$$Y_4 \perp Y_1, Y_2 | Y_3$$

**Derived Relationship** 

$$Y_1 \perp Y_4 \mid Y_2$$



## d-Separation

#### Definition (d-separation)

Let  $r = Y_1 \leftrightarrow \cdots \leftrightarrow Y_2$  be an undirected path between  $Y_1$  and  $Y_2$ , then r is departed by Z if there exist at least one node  $Y_c \in Z$  for which path r is blocked.

In other words, d-separation holds if at least one of the following holds

- o r contains an head-to-tail structure  $Y_i \to Y_c \to Y_j$  (or  $Y_i \leftarrow Y_c \leftarrow Y_j$ ) and  $Y_c \in Z$
- o r contains a tail-to-tail structure  $Y_i \leftarrow Y_c \rightarrow Y_j$  and  $Y_c \in Z$
- o r contains an head-to-head structure  $Y_i \rightarrow Y_c \leftarrow Y_j$  and neither  $Y_c$  nor its descendants are in Z



## Markov Blanket and d-Separation

#### Definition (Nodes d-separation)

Two nodes  $Y_i$  and  $Y_j$  in a BN G are said to be d-separated by  $Z \subset V$  (denoted by  $Dsep_G(Y_i, Y_j|Z)$  if and only if all undirected paths between  $Y_i$  and  $Y_j$  are d-separated by Z

#### Definition (Markov Blanket)

The Markov blanket Mb(Y) is the minimal set of nodes which d-separates a node Y from all other nodes (i.e. it makes Y conditionally independent of all other nodes in the BN)

$$Mb(Y) = \{pa(Y), ch(Y), pa(ch(Y))\}\$$

Università di Pisa

## Are Directed Models Enough?

- Bayesian Networks are used to model asymmetric dependencies (e.g. causal)
- What if we want to model symmetric dependencies
  - Bidirectional effects, e.g. spatial dependencies
  - Need undirected approaches

Directed models cannot represent some (bidirectional) dependencies in the distributions



What if we want to represent  $Y_1 \perp Y_3 | Y_2, Y_4$ ? What if we also want  $Y_2 \perp Y_4 | Y_1, Y_3$ ?

Cannot be done in BN! Need undirected model



#### Markov Random Fields

What is the undirected equivalent of d-separation in directed models?



Again it is based on node separation, although it is way simpler!

- o Node subsets  $A, B \subset \mathcal{V}$  are conditionally independent given  $C \subset \mathcal{V} \setminus \{A, B\}$  if a paths between nodes in A and B pass through at least one of the nodes in  $C \subset \mathcal{V}$
- The Markov Blanket of a node includes all and only its neighbors

## Joint Probability Factorization

What is the undirected equivalent of conditional probability factorization in directed models?

- We seek a product of functions defined over a set of nodes associated with some local property of the graph
- Markov blanket tells that nodes that are not neighbors are conditionally independent given the remainder of the nodes

$$P(X_{v}, X_{i} | X_{v \setminus \{v,i\}}) = P(X_{v} | X_{v \setminus \{v,i\}}) P(X_{i} | X_{v \setminus \{v,i\}})$$

• Factorization should be chosen in such a way that nodes  $X_v$  and  $X_i$  are not in the same factor

What is a well-known graph structure that includes only nodes that are pairwise connected?

## Cliques

#### **Definition** (Clique)

A subset of nodes C in graph G such that G contains an edge between all pair of nodes in C

#### **Definition (Maximal Clique)**

A clique C that cannot include any further node from the graph without ceasing to be a clique





## Maximal Clique Factorization

Define  $X = X_1, ..., X_N$  as the RVs associated to the N nodes in the undirected graph  $\mathcal{G}$ 

$$P(X) = \frac{1}{Z} \prod_{C} \psi(X_{C})$$

- $\circ$   $X_{\mathcal{C}} 
  ightarrow \mathsf{RV}$  associated with nodes in the maximal clique  $\mathcal{C}$
- $\psi(X_C)$   $\rightarrow$  potential function over the maximal cliques C
- $Z \rightarrow$  partition function ensuring normalization

$$Z = \sum_{X} \prod_{C} \psi(X_{C})$$

Partition function is the **computational bottleneck** of undirected modes: e.g.  $O(K^N)$  for N discrete RV with K distinct values

#### From Directed To Undirected

Straightforward in some cases



Requires a little bit of thinking for v-structures



Moralization a.k.a. marrying of the parents



## Learning Causation (from data)



## Learning with Bayesian Networks





## The Structure Learning Problem

| <i>Y</i> <sub>1</sub> | Y <sub>2</sub> | <i>Y</i> <sub>3</sub> | $Y_4$ | <i>Y</i> <sub>5</sub> | <i>Y</i> <sub>6</sub> |
|-----------------------|----------------|-----------------------|-------|-----------------------|-----------------------|
| 1                     | 2              | 1                     | 0     | 3                     | 4                     |
| 4                     | 0              | 0                     | 0     | 1                     | 2                     |
|                       |                |                       |       |                       |                       |
| 0                     | 0              | <br>1                 | 3     | 2                     | 1                     |



- Observations are given for a set of fixed random variables
- Network structure is not specified
  - Determine which arcs exist in the network (causal relationships)
  - Compute Bayesian network parameters (conditional probability tables)
- Determining causal relationships between variables entails
  - Deciding on arc presence
  - Directing edges

## Structure Finding Approaches

#### Search and Score

- Model selection approach
- Search in the space of the graphs

#### Constraint Based

- Use tests of conditional independence
- Constrain the network

#### Hybrid

Model selection of constrained structures



## Search & Score



• Search the space Graph(Y) of graphs  $G_k$  that can be built on the random variables

$$\mathbf{Y} = Y_1, \dots, Y_N$$

- Score each structure by  $S(G_k)$
- $\circ$  Return the highest scoring graph  $G^*$
- Two fundamental aspects
  - Scoring function
  - Search strategy



## **Scoring Function**

#### Fundamental properties

- Consistency Same score for graphs in the same equivalence class
- Decomposability Can be locally computed

#### Approaches

- Information theoretic Based on data likelihood plus some modelcomplexity penalization terms (AIC, BIC, MDL, ...)
- Bayesian Score the structures using a graph posterior (likelihood + proper prior choice)

$$\log P(D|G) \approx \sum_{D} \sum_{X} \log \tilde{P}(x|\boldsymbol{pa}(x)) + \log P(G)$$



## Search Strategy

- Finding maximal scoring structures is NP complete (Chickering, 2002)
- Constrain search strategy
  - Starting from a candidate structure modify iteratively by local operations (edge/node addition or deletion)
  - Each operation has a cost
  - Cost optimization problem: greedy hill-climbing, simulated annealing, ...
- Constrain search space
  - Known node order Can reduce the search space to the parents of each node (Markov Blanket)
  - Search in the space of structure equivalence classes (GES algorithm)
  - Search in the space of node orderings (Friedman and Koller, 2003)



#### Constraint-based Models

- Tests of conditional independence  $I(X_i, X_j | Z)$  determine edge presence (network skeleton)
- Based on measures of association between two variables/nodes  $X_i$  and  $X_j$ , given their neighbor nodes Z
  - Conditional mutual information
  - Statistical hypothesis testing on association measures with a known distribution, e.g.  $\chi^2$

$$G^{2}(X_{i}, X_{j} | \mathbf{Z}) = 2 \sum_{x_{i}, x_{j}, \mathbf{Z}} n_{D}(x_{i}, x_{j}, \mathbf{z}) \frac{n_{D}(x_{i}, x_{j}, \mathbf{z}) n_{D}(\mathbf{z})}{n_{D}(x_{i}, \mathbf{z}) n_{D}(x_{j}, \mathbf{z})}$$

 Use deterministic rules based on local Markovian dependencies to determine edge orientation (DAG)

## **Testing Strategy**

- Choice of the testing order is fundamental for avoiding a super-exponential complexity
- Level-wise testing
  - Tests  $I(X_i, X_j | Z)$  are performed in order of increasing size of the conditioning set Z (starting from empty Z)
  - PC algorithm (Spirtes, 1995)
- Node-wise testing
  - Tests are performed on a single edge at the time, exhausting independence checks on all conditioning variables
  - TPDA Algorithm
- $\circ$  Nodes that enter Z are chosen in the neighborhood of  $X_i$  and  $X_j$



## PC Algorithm



Initialize a fully connected graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ 

for each edge  $(Y_i, Y_j) \in \mathcal{V}$ 

• if  $I(Y_i, Y_j)$  then prune  $(Y_i, Y_j)$ 

**for each** test of order K = |Z|

- for each edge  $(Y_i, Y_j) \in \mathcal{V}$ 
  - $Z \leftarrow$  set of conditioning sets of K-th order for  $Y_i, Y_j$
  - if  $I(Y_i, Y_j|z)$  for any  $z \in Z$  then prune  $(Y_i, Y_j)$
- K ← K + 1

return  $\mathcal{G}$ 

## **Hybrid Models**

- Multi-stage algorithms combining previous approaches
- Independence tests to find a sub-optimal skeleton (good starting point)
- Search and score starting from the skeleton
  - Skeleton refinement
  - Edge orientation
- Max-Min Hill Climbing (MMHC) model
  - Optimized constraint-based approach to reconstruct the skeleton (Max-Min Parents and Children)
  - Use the candidate parents in the skeleton to run a search and score approach



## Learning a COVID-19 causal model

Example of integration of clinical knowledge with (sort Creatinine of) causation information (Short breath Kidney disease inferred from data Outcom Confusion (Hypertension) Hypercolesi (Cerebrovasc, disease

## Take Home Messages

- Directed graphical models
  - Represent asymmetric (causal) relationships between RV and conditional probabilities in compact way
  - Difficult to assess conditional independence (v-structures)
  - Ok for prior knowledge and interpretation
- Undirected graphical models
  - Represent bi-directional relationships (e.g. constraints)
  - Factorization in terms of generic potential functions (not probabilities)
  - Easy to assess conditional independence, but difficult to interpret
  - Serious computational issues due to normalization factor
- Structure learning to infer multivariate causation relationships from data

#### **Next Two Lectures**

#### Hidden Markov Model (HMM)

- A dynamic graphical model for sequences
- Unfolding learning models on structures
- Exact inference on a chain with observed and unobserved variables
- The Expectation-Maximization algorithm for HMMs

