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Lecture Plan (Part I and II)
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○ A probabilistic model for sequences: Hidden Markov Models (HMMs) 

○ Exact inference on a chain with observed and unobserved variables 

● Sum-product message passing example 

● Max-product message passing example 

○ Using inference to learn: the Expectation-Maximization algorithm for 

HMMs 

○ Graphical models with varying structure: Dynamic Bayesian Networks 



Part I
Introduction to HMM and forward-backward recursion



Sequences 
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○ A sequence 𝒚 is a collection of observations 𝑦𝑡 where 𝑡 represent the 

position of the element according to a (complete) order (e.g. time)

○ Reference population is a set of i.i.d sequences 𝒚1, . . . , 𝒚𝑁

○ Different sequences 𝒚1, . . . , 𝒚𝑁 generally have different lengths 

𝑻1, . . . , 𝑻𝑁



Markov Chain
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First-Order Markov Chain

Directed graphical model for sequences s.t. element 𝑋𝑡 only depends on its predecessor in the 
sequence

○ Joint probability factorizes as 

𝑃(𝑿) = 𝑃(𝑋1, . . . , 𝑋𝑇 ) = 𝑃(𝑋1) ෑ

𝑡=2

𝑇

𝑃(𝑋𝑡 |𝑋𝑡−1)

○ 𝑃(𝑋𝑡|𝑋𝑡−1) is the transition distribution; 𝑃(𝑋1) is the prior distribution 

○ General form: an 𝐿-th order Markov chain is such that 𝑋𝑡 depends on 𝐿 predecessors



Observed Markov Chains
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Can we use a Markov chain to model the relationship between 
observed elements in a sequence?

Of course yes, but..

Does it make sense to represent 𝑃(𝑖𝑠|𝑐𝑎𝑡)?



Hidden Markov Model (HMM) (I) 
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Stochastic process where transition dynamics is disentangled from observations 
generated by the process

State transition is an unobserved (hidden/latent) process characterized by the 
hidden state variables 𝑆𝑡

● 𝑆𝑡 are often discrete with value in {1, . . . , 𝐶}
● Multinomial state transition and prior probability (stationarity assumption)

𝐴𝑖𝑗 = 𝑃(𝑆𝑡 = 𝑖|𝑆𝑡−1 = 𝑗) and 𝜋𝑖 = 𝑃(𝑆1 = 𝑖)



Hidden Markov Model (HMM) (II) 
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Stochastic process where transition dynamics is disentangled from observations 
generated by the process

Observations are generated by the emission distribution 

𝑏𝑖(𝑦𝑡) = 𝑃(𝑌𝑡 = 𝑦𝑡 |𝑆𝑡 = 𝑖)



HMM Joint Probability Factorization
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Discrete-state HMMs are parameterized
by 𝜃 = (𝜋, 𝐴, 𝐵) and the finite number 
of hidden states 𝐶
○ State transition and prior distribution 𝐴

and 𝜋
○ Emission distribution 𝐵 (or its 

parameters) 

𝑃 𝒀 = 𝒚 =

𝒔

𝑃 𝒀 = 𝒚, 𝑺 = 𝒔

= 

𝑠1,…,𝑠𝑇

𝑃(𝑆1 = 𝑠1)𝑃(𝑌1 = 𝑦1|𝑆1 = 𝑠1)ෑ

𝑡=2

𝑇

𝑃(𝑆𝑡 = 𝑠𝑡|𝑆𝑡−1 = 𝑠𝑡−1)𝑃(𝑌𝑡 = 𝑦𝑡|𝑆𝑡 = 𝑠𝑡)



HMMs as a Recursive Model

○ Indicates that the hidden state 𝑆𝑡 at time 𝑡 is 
dependent on context information from 

● The previous timestep 𝑠−1

● Two timesteps earlier 𝑠−2

● ... 

○ When applying the recursive model to a sequence 
(unfolding), it generates the corresponding 
directed graphical model 
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A graphical framework describing how contextual information is recursively 
encoded by both probabilistic and neural models



HMMs as Automata
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Can be generalized to transducers 
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3 Notable Inference Problems
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Definition (Smoothing)

Given a model 𝜃 and an observed sequence 𝒚, determine the distribution of the hidden state
at time t 𝑃(𝑆𝑡|𝒀 = 𝒚, 𝜃)

Definition (Learning)

Given a dataset of 𝑁 observed sequences 𝒟 = {𝒚1, . . . , 𝒚𝑁} and the number of hidden states 𝐶, 
find the parameters 𝜋, 𝐴 and 𝐵 that maximize the probability of model 𝜃 = 𝜋, 𝐴, 𝐵 having 
generated the sequences in 𝒟

Definition (Optimal State Assignment)

Given a model 𝜃 and an observed sequence 𝒚, find an optimal state assignment 
𝒔 = 𝑠1

∗, . . . , 𝑠𝑇
∗ for the hidden Markov chain



Forward-Backward Algorithm
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Smoothing - How do we determine the posterior 𝑃(𝑆𝑡 = 𝑖|𝒚)?

Exploit factorization

𝑃 𝑆𝑡 = 𝑖 𝒚 ∝ 𝑃 𝑆𝑡 = 𝑖, 𝒚 = 𝑃 𝑆𝑡 = 𝑖, 𝒀1:𝑡 , 𝒀𝑡+1:𝑇

= 𝑃(𝑆𝑡 = 𝑖, 𝒀1:𝑡)𝑃(𝒀𝑡+1:𝑇|𝑆𝑡 = 𝑖) = 𝛼𝑡 𝑖 𝛽𝑡(𝑖)

𝛼-term computed as part of forward recursion (𝛼1(𝑖) = 𝑏𝑖 𝑦1 𝜋𝑖)

𝛼𝑡(𝑖) = 𝑃(𝑆𝑡 = 𝑖, 𝒀1:𝑡) = 𝑏𝑖(𝑦𝑡)

𝑗=1

𝐶

𝐴𝑖𝑗𝛼𝑡−1(𝑗)

𝛽-term computed as part of backward recursion (𝛽𝑇(𝑖) = 1, ∀𝑖)

𝛽𝑡(𝑗) = 𝑃(𝒀𝑡+1:𝑇|𝑆𝑡 = 𝑗) =

𝑖=1

𝐶

𝑏𝑖 𝑦𝑡+1 𝛽𝑡+1 𝑖 𝐴𝑖𝑗



Sum-Product Message Passing 
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The Forward-Backward algorithm is an example of a sum-product message 
passing algorithm

A general approach to efficiently perform exact inference in graphical models 
● 𝛼𝑡 ≡ µ𝛼(𝑋𝑛) → forward message 

𝜇𝛼(𝑋𝑛)
𝛼𝑡(𝑖)

=

ถ



𝑋𝑛−1

σ𝑗=1
𝐶

𝜓(𝑋𝑛−1, 𝑋𝑛)
𝑏𝑖 𝑦𝑡 𝐴𝑖𝑗

𝜇𝛼(𝑋𝑛−1)
𝛼𝑡−1(𝑗)



A general approach to efficiently perform exact inference in graphical models 
● 𝛼𝑡 ≡ µ𝛼(𝑋𝑛) → forward message 
● 𝛽𝑡 ≡ µ𝛽(𝑋𝑛) → backward message 

𝜇𝛽(𝑋𝑛)

𝛽𝑡(𝑗)

=

ถ



𝑋𝑛+1

σ𝑖=1
𝐶

𝜓(𝑋𝑛, 𝑋𝑛+1)
𝑏𝑖 𝑦𝑡+1 𝐴𝑖𝑗

𝜇𝛽(𝑋𝑛+1)

𝛽𝑡+1(𝑖)

Sum-Product Message Passing 

DAVIDE BACCIU - ISPR COURSE 15

The Forward-Backward algorithm is an example of a sum-product message 
passing algorithm



Part II
Parameter estimation and Viterbi Algorithm



Learning in HMM
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Learning HMM parameters 𝜃 = (𝜋, 𝐴, 𝐵) by maximum likelihood

ℒ 𝜃 = logෑ

𝑛=1

𝑁

𝑃 𝒀𝑛 𝜃 = logෑ

𝑛=1

𝑁



𝑠1
𝑛,…,𝑠𝑇𝑛

𝑛

𝑃(𝑆1
𝑛)𝑃(𝑌1

𝑛|𝑆1
𝑛)ෑ

𝑡=2

𝑇𝑛

𝑃(𝑆𝑡
𝑛|𝑆𝑡−1

𝑛 )𝑃(𝑌𝑡
𝑛|𝑆𝑡

𝑛)

○ How can we deal with the unobserved random variables 𝑆𝑡
𝑛 and the nasty 

summation in the log ?

○ Expectation-Maximization algorithm

● Maximization of the complete likelihood ℒ𝑐(𝜃)

● Completed with indicator variables

𝑧𝑡𝑖
𝑛 = ቊ

1 if 𝑛−th chain is in state 𝑖 at time 𝑡
0 otherwise



Complete HMM Likelihood
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Introduce indicator variables in 𝐿(𝜃) together with model parameters 𝜃 = (𝜋, 𝐴, 𝐵)

ℒ𝑐 𝜃 = log 𝑃 𝒳,𝒵 𝜃 = logෑ

𝑛=1

𝑁

ቐෑ

𝑖=1

𝐶

𝑃 𝑆1 = 1 𝑃 𝑌1
𝑛 𝑆1 = 𝑖 𝑧1𝑖

𝑛

ቑෑ

𝑡=2

𝑇𝑛

ෑ

𝑖,𝑗=1

𝐶

𝑃 𝑆𝑡 = 𝑖 𝑆𝑡−1 = 𝑗 𝑧𝑡𝑖
𝑛𝑧 𝑡−1 𝑗

𝑛

𝑃 𝑌𝑡
𝑛 𝑆𝑡 = 𝑖 𝑧𝑡𝑖

𝑛

= 

𝑛=1

𝑁



𝑖=1

𝐶

𝑧1𝑖
𝑛 log 𝜋𝑖 +

𝑡=2

𝑇𝑛



𝑖,𝑗=1

𝐶

𝑧𝑡𝑖
𝑛𝑧 𝑡−1 𝑗

𝑛 log 𝐴𝑖𝑗 +

𝑡=1

𝑇𝑛



𝑖=1

𝐶

𝑧𝑡𝑖
𝑛 log 𝑏𝑖(𝑦𝑡

𝑛)



Expectation-Maximization
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A 2-step iterative algorithm for the maximization of complete likelihood ℒ𝑐(𝜃)
w.r.t. model parameters 𝜃

Given the current estimate of the model parameters 𝜃(𝑡), 
compute 

𝑄 𝑘+1 𝜃 𝜃 𝑘 = 𝐸𝒵|𝒳,𝜃 𝑡 log 𝑃 𝒳,𝒵 𝜃

Find the new estimate of the model parameters 

𝜃(𝑘+1) = arg max
𝜃

𝑄 𝑘+1 (𝜃|𝜃(𝑘))

E-Step:

M-Step:

Iterate 2 steps until ℒ𝑐 𝜃 𝑘+1 − ℒ𝑐 𝜃 𝑘 < 𝜖 (or stop if maximum number of 

iterations is reached) 



EM Graphically
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E-Step (I) 
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Compute the expectation of the complete log-likelihood w.r.t indicator variables 𝑧𝑡𝑖
𝑛

assuming (estimated) parameters 𝜃𝑘 = (𝜋𝑘 , 𝐴𝑘 , 𝐵𝑘) fixed at iteration k (i.e. constants) 

𝑄 𝑘+1 𝜃 𝜃 𝑘 = 𝐸𝒵|𝒳,𝜃 𝑘 log 𝑃 𝒳,𝒵 𝜃

Expectation w.r.t a (discrete) random variable 𝑧 is

𝐸𝑧 𝑍 =

𝑧

𝑧 ∙ 𝑃(𝑍 = 𝑧)

To compute the conditional expectation 𝑄 𝑡+1 𝜃 𝜃 𝑡 for the complete HMM log-

likelihood we need to estimate

𝐸𝒵|𝒀,𝜃 𝑘 𝑧𝑡𝑖 = 𝑃(𝑆𝑡 = 𝑖|𝒚)

𝐸𝒵|𝒀,𝜃 𝑘 𝑧𝑡𝑖𝑧 𝑡−1 𝑗 = 𝑃(𝑆𝑡 = 𝑖, 𝑆𝑡−1 = 𝑗|𝒀)



E-Step (II) 

DAVIDE BACCIU - ISPR COURSE 22

We know how to compute the posteriors by the forward-backward algorithm!

𝛾𝑡 𝑖 = 𝑃 𝑆𝑡 = 𝑖 𝒀 =
𝛼𝑡 𝑖 𝛽𝑡(𝑖)

σ𝑗=1
𝐶 𝛼𝑡 𝑗 𝛽𝑡(𝑗)

𝛾𝑡,𝑡−1 𝑖, 𝑗 = 𝑃 𝑆𝑡 = 𝑖, 𝑆𝑡−1 = 𝑗 𝒀 =
𝛼𝑡−1 𝑗 𝐴𝑖𝑗𝑏𝑖 𝑦𝑡 𝛽𝑡(𝑖)

σ𝑚,𝑙=1
𝐶 𝛼𝑡−1 𝑚 𝐴𝑙𝑚𝑏𝑙 𝑦𝑡 𝛽𝑡(𝑙)



M-Step (I) 
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Solve the optimization problem

𝜃(𝑘+1) = arg max
𝜃

𝑄 𝑘+1 (𝜃|𝜃(𝑘))

using the information computed at the E-Step (the posteriors).

How?

As usual

𝜕𝑄 𝑘+1 (𝜃|𝜃(𝑘))

𝜕𝜃
where 𝜃 = (𝜋, 𝐴, 𝐵) are now variables.

Attention

Parameters can be distributions ⇒ need to preserve sum-to-one constraints 

(Lagrange Multipliers)



M-Step (II) 
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State distributions

𝐴𝑖𝑗 =
σ𝑛=1
𝑁 σ𝑡=2

𝑇𝑛 𝛾𝑡,𝑡−1
𝑛 (𝑖, 𝑗)

σ𝑛=1
𝑁 σ𝑡=2

𝑇𝑛 𝛾𝑡−1
𝑛 (𝑗)

and 𝜋𝑖 =
σ𝑛=1
𝑁 𝛾1

𝑛(𝑖)

𝑁

Emission distribution (multinomial)

𝐵𝑘𝑖 =
σ𝑛=1
𝑁 σ𝑡=1

𝑇𝑛 𝛾𝑡
𝑛 𝑖 𝛿(𝑦𝑡 = ℎ)

σ𝑛=1
𝑁 σ

𝑡=1
𝑇𝑛 𝛾𝑡

𝑛 𝑖

where 𝛿(·) is the indicator function for emission symbols ℎ



HMM in PR - Regime Detection
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HMM in PR - Regime Detection
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HMM in PR - Regime Detection
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○ Find the optimal hidden state assignment 𝒔 = 𝑠1
∗, . . . , 𝑠𝑇

∗ for an observed 
sequence 𝒚 given a trained HMM 

○ No unique interpretation of the problem 

● Identify the single hidden states 𝑠𝑡 that maximize the posterior 

𝑠𝑡
∗ = arg max

𝑖=1,…,𝐶
𝑃(𝑆𝑡 = 𝑖|𝑌)

● Find the most likely joint hidden state assignment 

𝒔∗ = argmax
𝒔

𝑃(𝒀, 𝑺 = 𝒔)

○ The last problem is addressed by the Viterbi algorithm 

Decoding Problem
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An efficient dynamic programming algorithm based on a backward-forward recursion 

Viterbi Algorithm
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An example of a max-product message passing algorithm 

Recursive backward term 

𝜖(𝑠𝑡−1) = max
𝑠𝑡

𝑃 𝑌𝑡 𝑆𝑡 = 𝑠𝑡 𝑃 𝑆𝑡 = 𝑠𝑡 𝑆𝑡−1 = 𝑠𝑡−1 𝜖(𝑠𝑡), 

Root optimal state 

𝑠1
∗ = argmax

𝑠
𝑃 𝑌𝑡 𝑆1 = 𝑠 𝑃 𝑆1 = 𝑠 𝜖(𝑠). 

Recursive forward optimal state 

𝑠𝑡
∗ = argmax

𝑠
𝑃 𝑌𝑡 𝑆𝑡 = 𝑠 𝑃 𝑆𝑡 = 𝑠 𝑆𝑡−1 = 𝑠𝑡−1

∗ 𝜖(𝑠).



Input-Output Hidden Markov Models
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○ Translate an input sequence into an output sequence (transduction) 

○ State transition and emissions depend on input observations (input-driven) 

○ Recursive model highlights analogy with recurrent neural networks 



Bidirectional Input-driven Models

○ Structure and function of a region of DNA and 
protein sequences may depend on upstream and 
downstream information 

○ Hidden state transition distribution changes with 
the amino-acid sequence being fed in input 
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Remove causality assumption that current observation does not depend on the 
future and homogeneity assumption that an state transition is not dependent on 
the position in the sequence



Coupled HMM
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Describing interacting processes whose observations follow different dynamics 
while the underlying generative processes are interlaced



Dynamic Bayesian Networks
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HMMs are a specific case of a class of directed models that represent dynamic 
processes and data with changing connectivity template

Dynamic Bayesian Networks (DBN)

Graphical models whose structure changes to represent evolution across time and/or 
between different samples

Hierarchical HMM Structure changing information



HMM in Matlab
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An official implementation by Mathworks available as a set of inference and 
learning functions

Estimate distributions (based on initial guess) 
%Initial distribution guess 
tg = rand (N,N); %Random init
tg = tg . /repmat (sum( tg , 2 ) ,[ 1 N] ); %Normalize
… %Similarly for eg
[ test , eest ] = hmmtrain ( seq , tg , eg ); 

Estimate posterior states
pstates = hmmdecode( seq , test , eest ) 

Estimate Viterbi states 
vstates = hmmviterbi ( seq , test , eest ) 

Sample a sequence from the model 
[ seq , st at e s ] = hmmgenerate ( len , t e st , ee st ) 



HMM in Python
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○ hmmlearn - The official scikit-like implementation of HMM
● 3 classes depending on emission type: MultinomialHMM, GaussianHMM, and GMMHMM

○ hmms 0.1 - A scalable implementation for both discrete and continuous-time 
HMMs

from hmmlearn . hmm import GaussianHMM

. . .

# Create an HMM and fit it to data X 

model = GaussianHMM ( n_components = 4 , covariance_type = "diag" , n_iter = 1000 ) . fit (X) 

# Decode the optimal sequence of internal hidden state ( Viterbi ) 

hidden_states = model . predict ( X ) 

# Generate new samples ( visible, hidden ) 

X1 , Z1 = model . sample ( 500 )



Take Home Messages 
○ Hidden Markov Models 

● Hidden states used to realize an unobserved generative process for sequential data 

● A mixture model where selection of the next component is regulated by the transition distribution 

● Hidden states summarize (cluster) information on subsequences in the data 

○ Inference in HMMS 
● Forward-backward - Hidden state posterior estimation 

● Expectation-Maximization - HMM parameter learning 

● Viterbi - Most likely hidden state sequence 

○ Dynamic Bayesian Networks 
● A graphical model whose structure changes to reflect information with variable size and 

connectivity patterns 

● Suitable for modeling structured data (sequences, tree, ...) 
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Next Lecture/Lectures

Markov Random Fields 

○ Learning in undirected graphical models 

○ Introduction to message passing algorithms 

○ Conditional random fields 

○ Pattern recognition applications
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