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○ Bayesian Networks (Tuesday 4th)

○ Bayesian Networks (Thursday 6th)

○ Graphical Causal Models (Tuesday 11th, today!)
● Causation and Correlation

● Causal Bayesian Networks

● Causal Inference

● Structural Causal Models

○ Structure Learning and Causal Discovery (Wednesday 12th)

Probabilistic and Causal Learning
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○ A random variable is "causing" another random variable if a 

"manipulation" on the former alters the distribution of the latter.

○ Correlation alone does not imply direct causation.

○ In fact, completely different causal structures can entail the same 

set of conditional independences and dependences.

Correlation, Dependence and Causation
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Reichenbach's Principle

Reichenbach's Common Cause Principle

Let X and Y be two variables such that X and Y are statistically 
dependent, then it holds:
i. X is indirectly causing Y, or
ii. Y is indirectly causing X, or
iii. There is a possibly unobserved common cause Z that 

indirectly causes both X and Y.
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tylervigen.com/spurious/correlation/13099

https://tylervigen.com/spurious/correlation/13099
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○ The principle assumes that we can perfectly identify statistical 

dependence from data.

○ In general, we need particular care:
● Selection Bias

● Small Size Datasets (Sampling Bias)

● Common Trends

● Data Manipulations

● Measurement Errors

○ PS: Everything breaks apart in the quantum realm! (checkout here, here, or here)

Reichenbach's Principle

https://plato.stanford.edu/entries/physics-Rpcc/
https://plato.stanford.edu/entries/qm-action-distance/#SupCau1
https://plato.stanford.edu/entries/causation-physics/#CausQuanMech
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○ A Causal Bayesian Network is a 

Bayesian Network where each 

edge Y1 → Y2 represents that Y1

directly causes a variable Y2.

○ The two models G1 and G2

denote equivalent Bayesian 

Networks but distinct Causal 

Bayesian Networks.

Causal Bayesian Networks

G1

G2
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○ Interventions are the main 
operations on causal models.

○ While different probabilistic 
models can express the same 
conditional distributions, different 
causal models entail different 
interventional distributions.

Intervening on Causal Models
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○ Given a variable Y and a value k, we 
denote an ideal intervention, also 
known as hard or perfect, as 

do(Y ≔ k)

○ The intervention replaces the variable 
of the model with the constant value.

○ In general,
P(Y2 | Y1 = k) ≠ P(Y2 | do(Y1 ≔ k))

Ideal Interventions
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○ Let V be a set of variables and k a set of values.

○ Then, the intervention do(V ≔ k) assigns a value kj to each Yj∈ V.

○ Then, the joint interventional distribution factorizes as follows

Truncated Factorization
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○ Interventions are fundamental to study causal effects.
● Does smoking causes cancer?

● Will the vaccine avoid long-term infection?

● How does the education level influence the average salary?

○ Given a binary treatment variable Y1 and an outcome variable Y2, 

the average treatment effect of Y1 on Y2 is

Average Treatment Effect
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○ To estimate the ATE of a treatment of 

an outcome is fundamental to 

distinguish between conditioning and 

intervening on random variables.

○ Conditioning is not a measure of 

causal effect.

Conditioning ≠ Intervening

P(R) = 0.4
P(V | R = 1) = 0.2
P(V | R = 0) = 0.8
P(I | R = 0, V = 0) = 0.6
P(I | R = 0, V = 1) = 0.55
P(I | R = 1, V = 0) = 0.42
P(I | R = 1, V = 1) = 0.38
P(A | V = 0) = 0.1
P(A | V = 1) = 0.9
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○ Does observing a painful arm increase the probability of 

observing an infection? Yes!

Conditioning ≠ Intervening

○ Does punching an arm increase the probability of infection? No! 
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○ Does observing a vaccine increase the probability of observing an 

infection? Yes!

Conditioning ≠ Intervening

○ Does taking a vaccine increase the probability of being infected?

○ To answer, we need to identify the causal effect.
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○ The causal effect of a treatment Y1 on an outcome Y2 is 

identifiable whenever there exists an adjustment set Z such that

P(Y2 | do(Y1)) = P(Y2 | Y1, Z)

○ The do-calculus is a complete system to find an adjustment set.

○ From do-calculus, we can derive two fundamental adjustments:
● The back-door criterion to handle observable confounders, and

● The front-door adjustment to handle latent confounders.

Causal Effect Identifiability
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○ A set of variables Z satisfies the 

back-door criterion for the 

causal effect of Y1 on Y2 if:
● No node in Z descends from Y1, and

● Z blocks every path between Y1 and 

Y2 that contains an edge entering Y1.

○ Then, it holds

Back-Door Adjustment

Z Z
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○ A set of variables Z satisfies the 
front-door criterion for the causal 
effect of Y1 on Y2 if:

● Z intercepts all directed paths from Y1 to 
Y2, and

● there is no unblocked back-door path 
from Y1 to Z, and

● all back-door paths from Z to Y2 are 
blocked by Y1.

○ Then, it holds

Front-Door Adjustment

Z
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○ Counterfactual queries naturally occurs when we retrospectively 

reason on alternative outcomes after an intervention.
● If the patient had received a placebo instead, would their recovery have been 

the same?

● If the student had not studied the night before, would they still have passed the 

exam?

○ Causal Bayesian Networks cannot answer counterfactual queries.

Counterfactual Reasoning



DAVIDE BACCIU - ISPR COURSE 19

A Structural Causal Model (SCM)

M=(Y, U, f, P(U))

specifies the deterministic mechanisms

f of a set of endogenous variables Y

given a set of exogenous variables U

with distribution P(U).

Formally,

Structural Causal Models
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A Linear Additive Noise Model (ANM) is 

a structural causal model where the 

functional mechanisms are linear.

Formally, given a matrix W ∈ ℝn×n,

Linear Additive Noise Model
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Given a fully specified SCM, we can directly compute 

counterfactuals using the following three-step procedure:

1. Abduction. Update the exogenous distribution P(U|Y) given the 

evidence Y.

2. Action. Intervene on the treatment applying do(Y1) on the SCM.

3. Prediction. Infer the probability of the outcome given the new 

treatment as in P(Y2|do(Y1), U) · P(U|Y).

Computing Counterfactuals in SCMs



DAVIDE BACCIU - ISPR COURSE 22

○ The “ladder of causation” determines the relation between models 
and queries on a system:

● Probabilistic Queries P(Y2|Y1) → Bayesian Networks

● Interventional Queries P(Y2|do(Y1)) → Causal Bayesian Networks

● Counterfactual Queries P(Y2|do(Y1), Y) → Structural Causal Models

○ When they are identifiable, different causal models provides a solution 
to answer causal queries.

○ How to learn Bayesian Networks, Causal Bayesian Networks and 
Structural Causal Models from data? Tomorrow!

Wrap-Up
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