Convolutional Neural Networks

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

DAVIDE.BACCIU@UNIPI.IT

Lecture Outline

- Introduction and historical perspective
- Dissecting the components of a CNN
 - Convolution, stride, pooling
- CNN architectures for machine vision
 - Putting components back together
 - From LeNet to ResNet
- Advanced topics
 - Interpreting convolutions
 - Advanced models and applications

CNN Lecture – Part I

Introduction

Convolutional Neural Networks

DAVIDE BACCIU - ISPR COURSE

Introduction

Convolutional Neural Networks

Destroying Machine Vision research since 2012

DAVIDE BACCIU - ISPR COURSE

Neocognitron

Hubel-Wiesel ('59) model of brain
 visual processing

- Simple cells responding to localized features
- Complex cells pooling responses of simple cells for invariance
- Fukushima ('80) built the first hierarchical image processing architecture exploiting this model

Trained by unsupervised learning

CNN for Sequences

- Apply a bank of 16 convolution kernels to sequences (windows of 15 elements)
- Trained by backpropagation with parameter sharing
- Guess who introduced it?

...yeah, HIM!

First convolutional neural network for images dates back to 1989 (LeCun)

DAVIDE BACCIU - ISPR COURSE

Dense Vector Multiplication

Processing images: the dense way

32x32x3 image

About invariances

- If we unfold the two images into two vectors, the features identifying the cat will be in different positions
- But this still remains a picture of a cat, which we would like to classify as such irrespectively of its position in the image

An inductive bias to keep in mind

Nearby pixels are more correlated than far away ones

The input representation should not destroy pixel relationships (like vectorization does)

Convolution (Refresher)

Matrix input preserving spatial structure

DAVIDE BACCIU - ISPR COURSE

Convolutional Features

Slide the filter on the image computing elementwise products and summing up

DAVIDE BACCIU - ISPR COURSE

Multi-Channel Convolution

Multi-Channel Convolution

All channels are typically convolved together

- They are summed-up in the convolution
- The convolution map stays bi-dimensional

- Basic convolution slides the filter on the image one pixel at a time
 - Stride = 1

stride =
$$1$$

- Basic convolution slides the filter on the image one pixel at a time
 - Stride = 1

- Basic convolution slides the filter on the image one pixel at a time
 - Stride = 1

- Basic convolution slides the filter on the image one pixel at a time
 - Stride = 1

stride =
$$2$$

- Basic convolution slides the filter on the image one pixel at a time
 - Stride = 1
- Can define a different stride
 - Hyperparameter

stride =
$$2$$

- Basic convolution slides the filter on the image one pixel at a time
 - Stride = 1
- Can define a different stride
 - Hyperparameter

stride =
$$2$$

- Basic convolution slides the filter on the image one pixel at a time
 - Stride = 1
- Can define a different stride
 - Hyperparameter

- Basic convolution slides the filter on the image one pixel at a time
 - Stride = 1
- Can define a different stride
 - Hyperparameter

Works in both directions!

- Basic convolution slides the filter on the image one pixel at a time
 - Stride = 1
- Can define a different stride
 - Hyperparameter

stride = 3

- Basic convolution slides the filter on the image one pixel at a time
 - Stride = 1
- Can define a different stride
 - Hyperparameter
- Stride reduces the number of multiplications
 - Subsamples the image

stride = 3

- Basic convolution slides the filter on the image one pixel at a time
 - Stride = 1
- Can define a different stride
 - Hyperparameter
- Stride reduces the number of multiplications
 - Subsamples the image

- Basic convolution slides the filter on the image one pixel at a time
 - Stride = 1
- Can define a different stride
 - Hyperparameter
- Stride reduces the number of multiplications
 - Subsamples the image

What is the size of the image after application of a filter with a given size and stride?

What is the size of the image after application of a filter with a given size and stride?

What is the size of the image after application of a filter with a given size and stride?

General rule

DAVIDE BACCIU - ISPR COURSE

What is the size of the image after application of a filter with a given size and stride?

Università di Pisa

Add columns and rows of zeros to the border of the image

W=7

Zero Padding

Add columns and rows of zeros to the border of the image

Zero Padding

Add columns and rows of zeros to the border of the image

Zero padding serves to retain the original size of image

$$P = \frac{K-1}{2}$$

Pad as necessary to perform convolutions with a given stride S

Feature Map Transformation

- Convolution is a linear operator
- Apply an element-wise nonlinearity to obtain a transformed feature map

Pooling

- Operates on the feature map to make the representation
 - Smaller (subsampling)
 - Robust to (some) transformations

Pooling Facts

- Max pooling is the one used more frequently, but other forms are possible
 - Average pooling
 - L2-norm pooling
 - Random pooling
- It is uncommon to use zero padding with pooling

$$W' = \frac{W - K}{S} + 1$$

The Convolutional Architecture

- An architecture made by a hierarchical composition of the basic elements
- Convolution layer is an abstraction for the composition of the 3 basic operations
- Network parameters are in the convolutional component

A Bigger Picture

Convolutional Filter Banks

UNIVERSITÀ DI PISA

Specifying CNN in Code (Keras)

A (Final?) Note on Convolution

• We know that discrete convolution between an image *I* and a filter/kernel *K* is

$$(I * K)(i,j) = \sum_{m} \sum_{n} I(i-m,j-n)K(m,n)$$

and it is commutative.

• In practice, convolution implementation in DL libraries does not flip the kernel

$$(I * K)(i,j) = \sum_{m} \sum_{n} I(i+m,i+n)K(m,n)$$

Which is cross-correlation and it is not commutative.

CNN as a Sparse Neural Network

Let us take a 1-D input (sequence) to ease graphics

Convolution amounts to sparse connectivity (reduce parameters) with parameter sharing (enforces invariance)

Dense Network

The dense counterpart would look like this

DAVIDE BACCIU - ISPR COURSE

Strided Convolution

Make connectivity sparser

Max-Pooling and Spatial Invariance

A feature is detected even if it is spatially translated

Cross Channel Pooling and Spatial Invariance

Hierarchical Feature Organization

The deeper the larger the receptive field of a unit

Zero-Padding Effect

DAVIDE BACCIU - ISPR COURSE

CNN Lecture – Part II

CNN Training

Variants of the standard backpropagation that account for the fact that connections share weights (convolution parameters)

The gradient Δw_i is obtained by summing the contributions from all connections sharing the weight

Backpropagating gradients from convolutional layer N to N-1 is not as simple as transposing the weight matrix (need deconvolution with zero padding)

Backpropagating on Convolution

Input is a 4x4 image Output is a 2x2 image

Backpropagation step requires going back from the 2x2 to the 4x4 representation

Can write convolution as dense multiplication with shared weights

0 $w_{1,2}$ 0 0 0 $w_{0.0}$ $w_{0.1}$ $w_{0,2}$ 0 $w_{1.0}$ $w_{1.1}$ $w_{2,0}$ $w_{2.1}$ $w_{2,2}$ 0 0 0 0 0 0 0 $w_{1,0}$ $w_{1,1}$ $w_{1,2}$ $w_{2.0}$ $w_{0,0}$ $w_{0,1}$ $w_{0,2}$ $w_{2,1}$ $w_{2,2}$ 0 0 0 0 0 0 0 $w_{0,0}$ $w_{0,2}$ $w_{1,2}$ $w_{0,1}$ $w_{1,0}$ $w_{1,1}$ $w_{2,0}$ $w_{2,1}$ $w_{2,2}$ 0 0 0 0 0 $w_{2,2}$ $w_{1,0}$ $w_{1,1}$ $w_{0.0}$ $w_{0,1}$ $w_{0,2}$ $w_{1.2}$ $w_{2,0}$ $w_{2,1}$ Backpropagation is performed by multiplying the 4x1 representation to the transpose of this matrix UNIVERSITÀ DI PISA

Deconvolution (Transposed Convolution)

We can obtain the transposed convolution using the same logic of the forward convolution

If you had no padding in the forward convolution, you need to pad much when performing transposed convolution

Deconvolution (Transposed Convolution)

If you have striding, you need to fill in the convolution map with zeroes to obtain a correctly sized deconvolution

LeNet-5 (1989)

- Grayscale images
- Filters are 5x5 with stride 1 (sigmoid nonlinearity)
- Pooling is 2x2 with stride 2
- No zero padding

AlexNet (2012) - Architecture

- RGB images 227x227x3
- 5 convolutional layers + 3 fully connected layers
- Split into two parts (top/bottom) each on 1 GPU

Data Augmentation

(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(b) Crop and resize

(g) Cutout

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(i) Gaussian blur

(j) Sobel filtering

Key intuition - If I have an image with a given label, I can transform it (by flipping, rotation, etc) and the resulting image will still have the same label

DAVIDE BACCIU - ISPR COURSE

AlexNet - Innovations

- Use heavy data augmentation (rotations, random crops, etc.)
- Introduced the use of ReLu
- Dense layers regularized by dropout

ReLU Nonlinearity

- ReLu help counteract gradient vanish
 - Sigmod first derivative vanishes as we increase or decrease z
 - ReLu first derivative is 1 when unit is active and 0 elsewhere
 - ReLu second derivative is 0 (no second order effects)
- Easy to compute (zero thresholding)
- Favors sparsity

AlexNet - Parameters

- 62.3 millions of parameters (6% in convolutions)
- 5-6 days to train on two GTX 580 GPUs (95% time in convolutions)

VGGNet – VGG16 (2014)

- Standardized convolutional layer
 - 3x3 convolutions with stride 1
 - 2x2 max pooling with stride 2 (not after every convolution)
- Various configuration analysed, but best has
 - 16 Convolutional + 3 Fully Connected layers
 - About 140 millions parameters (85% in FC)

GoogLeNet (2015)

1x1 Convolutions are Helpful

By placing 1x1 convolutions before larger kernels in the Inception module, the number of input channels is reduced, saving computations and parameters

Back on GoogLeNet

- Only 5 millions of parameters
- 12X less parameters than AlexNet

Auxiliary outputs to inject gradients at deeper layers

- Followed by v2, v3 and v4 of the Inception module
 - More filter factorization
 - Introduce heavy use of Batch Normalization

Batch Normalization

- Very deep neural network are subject to internal covariate shift
 - Distribution of inputs to a layer N might vary (shift) with different minibatches (due to adjustments of layer N-1)
 - Layer N can get confused by this
 - Solution is to normalize for mean and variance in each minibatch (bit more articulated than this actually)

 $y = \gamma \hat{x}_i + \beta$ Scale and shift

Trainable linear transform potentially allowing to cancel unwanted zerocentering effects (e.g. sigmoid)

Need to backpropagate through this!

ResNet (2015)

before?

Gradient vanishes when backpropagating too deep!

DAVIDE BACCIU - ISPR COURSE

ResNet Trick

The input to the block X bypasses the convolution and is then combined with its residual F(X) resulting from the convolutions

When backpropagating the gradient flows in full shough these bypass connections

ResNet & Batch Norm

When connecting several Residual Blocks in series, one need to be careful about amplification/compounding of variance due to the residual connectivity

• Batch norm can alleviate this effect

MobileNets

Making CNNs efficient to run on mobile devices by depthwise separable convolutions

Basically run channel-independent convolutions followed by 1x1 convolutions for cross-channel mixing

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

arxiv.org/pdf/1704.04861.pdf

CNN Architecture Evolution

Transfer learning

Use (part of) a model trained (pretrained) by someone on large dataset as a "feature-extractor" on problems with fewer data, fine tuning only the predictor part

output

Understanding CNN Embedding

tSNE projection of AlexNet last hidden dense layer

https://cs.stanford.edu/people/karpathy/cnnembed/

Interpreting Intermediate Levels

- What about the information captured in convolutional layers?
- Visualize kernel weights (filters)
 - Naïve approach
 - Works only for early convolutional layers
- Map the activation of the convolutional kernel back in pixel space
 - Requires to reverse convolution
 - Deconvolution

Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013

Deconvolutional Network (DeConvNet)

- Attach a DeConvNet to a target layer
- Plug an input and forward propagate activations until layer
- Zero activations of target neuron
- Backpropagate on the DeConvNet and see what parts of the reconstructed image are affected

Inspect Deconvolution Layers

Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013

Università di Pisa

Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013

NÆ

Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013

Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013

Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013

Occlusions

- Measure what happens to feature maps and object classification if we occlude part of the image
- Slide a grey mask on the image and project back the response of the best filters using deconvolution

Occlusions

Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013

Dense CNN

Causal Convolutions

Preventing a convolution from allowing to see into the future...

Causal & Dilated Convolutions

$(I * K)(i,j) = \sum_{m} \sum_{n} I(i - lm, i - ln) K(m, n)$

Similar to striding, but size is preserved

Oord et al, WaveNet: A Generative Model for Raw Audio, ICLR 2016

Semantic Segmentation

Traditional CNN cannot be used for this task due to the downsampling of the striding and pooling operations

Fully Convolutional Networks (FCN)

convolution H/16 × W/16 $H \times W$ $H/4 \times W/4$ $H/8 \times W/8$ $H/32 \times W/32$ $H \times W$ Convolutional part to extract Learn an upsampling function of the fused interesting features at various map to generate the semantic scales segmentation map Fuse information from feature maps of different scale

Shelhamer et at, Fully Convolutional Networks for Semantic Segmentation, PAMI 2016

Deconvolution Architecture

Badrinarayanan et al, SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, PAMI 2017

SegNet Segmentation

Demo here: http://mi.eng.cam.ac.uk/projects/segnet/

U-Nets (Big on Biomedical Images)

Use Dilated Convolutions

Always perform 3x3 convolutions with no pooling at each level

Context increases without

- Pooling (changes map size)
- Increasing computational complexity

Yu et al, Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016

Segmentation by Dilated CNN

Yu et al, Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016 UNIVERSITÀ DI PISA

Object Detection

Object Detection: Faster R-CNN

Software

- CNN are supported by any deep learning framework (Keras-TF, Pytorch, MS Cognitive TK, Intel OpenVino, ...)
- Caffe was one of the initiators and basically built around CNN
 - Introduced protobuffer network specification
 - ModelZoo of pretrained models (LeNet, AlexNet, ...)
 - Support for GPU
 - Project converged into PyTorch now

Caffe Protobuffer

```
name: "LeNet"
layer {
name: "data"
type: "Input"
 • • •
input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }
layer {
name: "conv1"
 type: "Convolution"
 bottom: "data"
 • • •
 convolution_param {
  num_output: 20
  kernel_size: 5
  stride: 1
  weight_filler {
   type: "xavier"
```


Other Software

- Matlab distributes its Neural Network Toolbox which allows importing pretrained models from Keras-TF
- Want to have a CNN in your browser?
 - Try ConvNetJS (<u>https://cs.stanford.edu/people/karpathy/convnetjs/</u>)

GUIs

Major hardware producers have GUI and toolkits wrapping Caffe,

Intel OpenVino

Keras-TF to play with CNNs

NVIDIA Digits

Plus

Take Home Messages

- Key things
 - Convolutions in place of dense multiplications allow sparse connectivity and weight sharing
 - Pooling enforces invariance and allows to change resolution but shrinks data size
 - Full connectivity compress information from all convolutions but accounts for 90% of model complexity
- Lessons learned
 - ReLU are efficient and counteract gradient vanish
 - 1x1 convolutions are useful
 - Need batch normalization
 - Bypass connections allow to go deeper
- Dilated (à trous) convolutions
- You can use CNN outside of machine vision

Next Lecture

Gated Recurrent Networks

- Learning with sequential data
- Gradient issues
- Gated RNN
 - Long-Short Term Memories (LSTM)
 - Gated Recurrent Units (GRU)
- Advanced topics
 - Understanding and exploiting memory encoding
 - Applications

PART II

PARTI