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Lecture Outline
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○ Introduction and historical perspective

○ Dissecting the components of a CNN

● Convolution, stride, pooling

○ CNN architectures for machine vision

● Putting components back together

● From LeNet to ResNet

○ Advanced topics

● Interpreting convolutions

● Advanced models and applications
Split in two 

lectures



CNN Lecture – Part I



Introduction
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Convolutional Neural Networks



Introduction
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Convolutional Neural Networks

Destroying Machine Vision research since 2012



Neocognitron
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○ Hubel-Wiesel (‘59) model of brain 
visual processing

● Simple cells responding to localized 
features

● Complex cells pooling responses of 
simple cells for invariance

○ Fukushima (‘80) built the first 
hierarchical image processing 
architecture exploiting this model

Trained by unsupervised learning



CNN for Sequences
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○ Apply a bank of 16 convolution kernels 

to sequences (windows of 15 elements) 

○ Trained by backpropagation with 

parameter sharing 

○ Guess who introduced it?

…yeah, HIM!

Time delay neural network 

(Waibel & Hinton, 1987)



CNN for Images
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First convolutional neural network for images dates back to 1989 (LeCun)



Dense Vector Multiplication
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Processing images: the dense way
32x32x3 image

Reshape it into 
a vector

3072

𝒙

100x3072

𝑾

𝑾𝒙𝑻

An input-sized weight vector 
for each hidden neuron

100
Each element contains 
the activation of 1 neuron



About invariances

MLPs are positional

• If we unfold the two images into two vectors, the features 
identifying the cat will be in different positions

• But this still remains a picture of a cat, which we would like to 
classify as such irrespectively of its position in the image

We (most likely) need 

translation 

invariance!
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An inductive bias to keep in mind
Nearby pixels are 

more correlated 

than far away 

ones

The input 

representation 

should not 

destroy pixel 

relationships (like 

vectorization 

does)
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Convolution (Refresher)
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32x32

Matrix input preserving 
spatial structure

5x5
filter

sum 25 multiplications + bias



Adaptive Convolution
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1 0 1

2 3 4

1 0 1

1 0 1

0 2 0

1 0 1

𝑤1 𝑤2 𝑤3

𝑤4 𝑤5 𝑤6

𝑤7 𝑤8 𝑤9

𝒘𝑇𝒙2,2

𝑐1

𝑐2

𝑐2 = 𝑤1+ 𝑤3 + 2𝑤5 + 𝑤7 + 𝑤9

Convolutional filter (kernel) with 
(adaptive) weights 𝑤𝑖

𝑐1 = 𝑤1+ 𝑤3 + 2𝑤4 + 3𝑤5 +4𝑤6 + 𝑤7 + 𝑤9

𝒘𝑇𝒙9,7



Convolutional Features
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32x32

Slide the filter on the image computing 
elementwise products and summing up

28x28

Convolution 
features



Multi-Channel Convolution
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32x32x3

5x5x3

Convolution filter 
has a number of
slices equal to 
the number of 
image channels



Multi-Channel Convolution
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28x28

All channels are typically convolved together
o They are summed-up in the convolution
o The convolution map stays bi-dimensional



Stride
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○ Basic convolution slides the filter

on the image one pixel at a time

● Stride = 1



Stride
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○ Basic convolution slides the filter

on the image one pixel at a time

● Stride = 1

stride = 1



Stride
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Stride
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stride = 1



Stride
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○ Basic convolution slides the filter

on the image one pixel at a time

● Stride = 1

○ Can define a different stride
● Hyperparameter

stride = 2stride = 2



Stride
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Stride
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Stride
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○ Basic convolution slides the filter

on the image one pixel at a time

● Stride = 1

○ Can define a different stride
● Hyperparameter

stride = 2
Works in both directions!



Stride
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○ Basic convolution slides the filter

on the image one pixel at a time

● Stride = 1

○ Can define a different stride
● Hyperparameter

○ Stride reduces the number of 

multiplications

● Subsamples the image

stride = 3



Stride
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stride = 3

○ Basic convolution slides the filter

on the image one pixel at a time

● Stride = 1

○ Can define a different stride
● Hyperparameter

○ Stride reduces the number of 

multiplications

● Subsamples the image



Stride
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stride = 3

○ Basic convolution slides the filter

on the image one pixel at a time

● Stride = 1

○ Can define a different stride
● Hyperparameter

○ Stride reduces the number of 

multiplications

● Subsamples the image



Activation Map Size
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What is the size of the image after application of a filter with a given 
size and stride?

H=7

W=7

Take a 3x3 filter with stride 1

K=3, S=1

Output image is: 5x5



Activation Map Size
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What is the size of the image after application of a filter with a given 
size and stride?

H=7

W=7

Take a 3x3 filter with stride 2

K=3, S=2

Output image is: 3x3



Activation Map Size
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What is the size of the image after application of a filter with a given 
size and stride?

H=7

W=7

General rule

𝑊′ =
𝑊 −𝐾

𝑆
+ 1

𝐻′ =
𝐻 − 𝐾

𝑆
+ 1



Activation Map Size
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What is the size of the image after application of a filter with a given 
size and stride?

H=7

W=7

Take a 3x3 filter with stride 3

K=3, S=3

Output image is: not really and 
image!



Zero Padding
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Add columns and rows of zeros to the border of the image

0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

H=7

W=7



Zero Padding
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Add columns and rows of zeros to the border of the image

0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

H=7

(P=1)

W=7 (P=1)

K=3, S=1

Output image is?

𝑊′ =
𝑊 −𝐾 + 2𝑃

𝑆
+ 1

7x7



Zero Padding
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Add columns and rows of zeros to the border of the image

0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

H=7

(P=1)

W=7 (P=1)

Zero padding serves to retain 
the original size of image

𝑃 =
𝐾 − 1

2

Pad as necessary to perform 
convolutions with a given 
stride S



Feature Map Transformation
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○ Convolution is a linear operator

○ Apply an element-wise nonlinearity to obtain a transformed feature map

32x32x3 32x32 32x32

𝒘𝑇𝒙𝑖,𝑗 + 𝑏 𝒎𝒂𝒙(𝟎,𝒘𝑇𝒙𝑖,𝑗 + 𝑏)



Pooling
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○ Operates on the feature map to make the representation

● Smaller (subsampling)

● Robust to (some) transformations

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4

Max pooling

2x2 filters
stride = 2

feature map

pooled map

W=4

H=4

W’=2

H’=2



Pooling Facts
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○ Max pooling is the one used more frequently, but other forms are 
possible

● Average pooling

● L2-norm pooling

● Random pooling

○ It is uncommon to use zero padding with pooling

𝑊′ =
𝑊 −𝐾

𝑆
+ 1



The Convolutional Architecture
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○ An architecture made by a 
hierarchical composition of the 
basic elements

○ Convolution layer is an 
abstraction for the composition 
of the 3 basic operations

○ Network parameters are in the 
convolutional component

Convolutional Filters
(Strided adaptive conv)

Nonlinearity
(ReLu)

Pooling
(max)

Input

Convolutional layer

To next layer



A Bigger Picture
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Input

CL 1 

CL 2

CL 3 
CL 4 

FCL 1

FCL 2

Sparse connectivity

Dense
connectivity

CL -> Convolutional Layer
FCL -> Fully Connected Layer

Output

Contains several convolutional filters 
with different size and stride



Convolutional Filter Banks
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𝐾 × 𝐾 × 𝐷𝐼 × 𝐷𝐾

𝐻 ×𝑊 × 𝐷𝐼

𝐷𝐾 convolutional 
filters of size 𝐾 × 𝐾

𝐻′ ×𝑊′ × 𝐷𝐾

Feature map 
+ nonlinearity

𝐻′′ ×𝑊′′ × 𝐷𝐾

Number of model parameters due 
to this convolution element (add 
𝐷𝐾 bias terms)

Pooling is often (not always) 
applied independently on the 𝐷𝐾
convolutions

Pooling



Specifying CNN in Code (Keras)
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model = Sequential()

model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1),

activation='relu',

input_shape=input_shape))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

model.add(Conv2D(64, (5, 5))

model.add(Activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(1000, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

Number of convolution filters 𝐷𝑘 Define input size (only first hidden layer)

Does for you all the calculations to determine the final size to the 
dense layer



A (Final?) Note on Convolution
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○ We know that discrete convolution between an image 𝐼 and a 
filter/kernel 𝐾 is

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = σ𝑚σ𝑛 𝐼 𝑖 − 𝑚, 𝑗 − 𝑛 𝐾(𝑚, 𝑛)

and it is commutative.

○ In practice, convolution implementation in DL libraries does not 
flip the kernel

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = σ𝑚σ𝑛 𝐼 𝑖 + 𝑚, 𝑖 + 𝑛 𝐾(𝑚, 𝑛)

Which is cross-correlation and it is not commutative.



CNN as a Sparse Neural Network
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Let us take a 1-D input (sequence) to ease graphics

Convolution amounts to sparse connectivity (reduce parameters) 
with parameter sharing (enforces invariance)

b
c

b
ca b

ca
b

ca
b

a

Convolution

Input



Dense Network
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The dense counterpart would look like this



Strided Convolution
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Make connectivity sparser



Max-Pooling and Spatial Invariance
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A feature is detected even if it is spatially translated 

Pooling

Feature map

Pooling

Feature map



Cross Channel Pooling and Spatial Invariance
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Input

Feature 
map 1

Feature 
map 3

Input

Feature 
map 1

Feature 
map 3



Hierarchical Feature Organization
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The deeper the larger the receptive field of a unit



Zero-Padding Effect
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Assuming 
no pooling



CNN Lecture – Part II



CNN Training
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Variants of the standard backpropagation that account for the fact that 

connections share weights (convolution parameters)

Backpropagating gradients from convolutional layer N to N-1  is not as simple 

as transposing the weight matrix (need deconvolution with zero padding)

The gradient ∆𝑤𝑖 is obtained by 

summing the contributions from all 

connections sharing the weight

𝑤1 𝑤2𝑤3

𝑤1

𝑤2

𝑤3

𝑤1

𝑤2

𝑤3

𝑎1 𝑎2 𝑎3



Backpropagating on Convolution
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K=3, S=1
Convolution

Input is a 4x4 image
Output is a 2x2 image

Backpropagation step requires 
going back from the 2x2 to the 
4x4 representation

Can write convolution as dense multiplication with shared weights

Backpropagation is performed by multiplying the 4x1 representation to the 
transpose of this matrix



Deconvolution (Transposed Convolution)
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We can obtain the transposed convolution using the same logic of the forward 

convolution

If you had no padding in the forward convolution, you need to pad much 

when performing transposed convolution

K=3, S=1, P=0



Deconvolution (Transposed Convolution)
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If you have striding, you need to fill in the convolution map with zeroes to 

obtain a correctly sized deconvolution

K=3, S=2, P=1

https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic


LeNet-5 (1989)
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○ Grayscale images

○ Filters are 5x5 with stride 1 (sigmoid nonlinearity)

○ Pooling is 2x2 with stride 2

○ No zero padding



AlexNet (2012) - Architecture
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○ RGB images 227x227x3

○ 5 convolutional layers + 3 fully connected layers

○ Split into two parts (top/bottom) each on 1 GPU 

ImageNet Top-5 : 15.4%



Data Augmentation

Key intuition - If I 
have an image 
with a given label, 
I can transform it 
(by flipping, 
rotation, etc) and 
the resulting 
image will still 
have the same 
label
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AlexNet - Innovations
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○ Use heavy data augmentation (rotations, random crops, etc.)

○ Introduced the use of ReLu

○ Dense layers regularized by dropout



ReLU Nonlinearity
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○ ReLu help counteract gradient vanish
● Sigmod first derivative vanishes as we increase or decrease z
● ReLu first derivative is 1 when unit is active and 0 elsewhere
● ReLu second derivative is 0 (no second order effects)

○ Easy to compute (zero thresholding)
○ Favors sparsity

Saturation
Non zero-
centered

Dead Units!!!



AlexNet - Parameters
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○ 62.3 millions of parameters (6% in convolutions)

○ 5-6 days to train on two GTX 580 GPUs (95% time in convolutions)



VGGNet – VGG16 (2014)
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○ Standardized convolutional layer
● 3x3 convolutions with stride 1
● 2x2 max pooling with stride 2 (not after every convolution)

○ Various configuration analysed, but best has
● 16 Convolutional + 3 Fully Connected layers
● About 140 millions parameters (85% in FC)

ImageNet Top-5 : 7.3% 



GoogLeNet (2015)
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• Kernels of different size to 
capture details at varied 
scale

• Aggregated before sending to 
next layer

• Average pooling

• No fully connected layers

Why 1x1 

convolutions?

ImageNet Top-5 : 6.7% 

Inception Module



1x1 Convolutions are Helpful
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By placing 1x1 convolutions before larger kernels in the Inception module, the 
number of input channels is reduced, saving computations and parameters

56x56x64

Take 5 kernels

1x1x64

56x56x5



Back on GoogLeNet
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○ Only 5 millions of parameters

○ 12X less parameters than AlexNet

○ Followed by v2, v3 and v4 of the Inception module
● More filter factorization

● Introduce heavy use of Batch Normalization

Auxiliary outputs 
to inject gradients 
at deeper layers



Batch Normalization
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○ Very deep neural network are subject to internal covariate shift
● Distribution of inputs to a layer N might vary (shift) with different minibatches (due to 

adjustments of layer N-1)

● Layer N can get confused by this

● Solution is to normalize for mean and variance in each minibatch (bit more articulated 

than this actually) 

𝜇𝑏 =
1

𝑁𝑏


𝑖=1

𝑁𝑏

𝑥𝑖

𝜎𝑏
2 =

1

𝑁𝑏


𝑖=1

𝑁𝑏

𝑥𝑖 − 𝜇𝑏
2

ො𝑥𝑖 =
𝑥𝑖 − 𝜇𝑏

𝜎𝑏
2 + 𝜖

𝑦 = 𝛾ො𝑥𝑖 + 𝛽

Trainable linear transform potentially 
allowing to cancel unwanted zero-
centering effects (e.g. sigmoid) 

Normalization

Scale and shift

Need to backpropagate through this!



ResNet (2015)
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ImageNet Top-5 : 3.57% Begin of the Ultra-Deep Network Era (152 Layers)

Why wasn’t this working 
before?

Gradient vanishes when backpropagating too deep!



ResNet Trick
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3x3 
convolution

3x3 
convolution

ReLu

+

𝑋

𝐹(𝑋)

𝐹(𝑋) + 𝑋

Residual 
block

The input to the block 𝑋 bypasses the 
convolution and is then combined with its 
residual 𝐹(𝑋) resulting from the convolutions

When backpropagating the gradient flows in full
through these bypass connections

ReLu

𝑋



ResNet & Batch Norm

DAVIDE BACCIU - ISPR COURSE 70

When connecting several Residual Blocks in series, one need to be 
careful about amplification/compounding of variance due to the 
residual connectivity
• Batch norm can alleviate this effect



MobileNets
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Making CNNs efficient to run on mobile 
devices by depthwise separable 
convolutions

Basically run channel-independent 
convolutions followed by 1x1 
convolutions for cross-channel mixing

arxiv.org/pdf/1704.04861.pdf

arxiv.org/pdf/1704.04861.pdf


CNN Architecture Evolution
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Transfer learning

Use (part of) a model 

trained (pretrained) by 

someone on large dataset 

as a “feature-extractor” 

on problems with fewer 

data, fine tuning only the 

predictor part



Understanding CNN Embedding
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tSNE projection of AlexNet last 

hidden dense layer

https://cs.stanford.edu/people/karpathy/cnnembed/

https://cs.stanford.edu/people/karpathy/cnnembed/


Interpreting Intermediate Levels
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○ What about the information captured in convolutional layers?

○ Visualize kernel weights (filters)

● Naïve approach

● Works only for early convolutional layers

○ Map the activation of the convolutional kernel back in pixel space

● Requires to reverse convolution

● Deconvolution

Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013



Deconvolutional Network (DeConvNet)
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○ Attach a DeConvNet to a target layer

○ Plug an input and forward propagate activations until layer

○ Zero activations of target neuron

○ Backpropagate on the DeConvNet and see what parts of the reconstructed 
image are affected



Inspect Deconvolution Layers
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Deconv 14x14 Pooling Deconv 28x28 ….



Filters & Patches – Layer 1
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Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013

Reconstructed filters in pixel space

Corresponding top-9 image patches 



Filters & Patches – Layer 2
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Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013



Filters & Patches – Layer 3
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Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013



Filters & Patches – Layer 4
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Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013



Filters & Patches – Layer 5
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Zeiler&Fergus, Visualizing and Understanding 
Convolutional Networks, ICML 2013



Occlusions
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o Measure what happens to feature maps and object classification if we 
occlude part of the image

o Slide a grey mask on the image and project back the response of the best 
filters using deconvolution



Occlusions
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Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013



Dense CNN
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Huang et al, Densely Connected Convolutional Networks, CVPR 2017

batch normalization + ReLU + 3x3 conv

o Gradient flows well in bypass connections
o Each layer in the dense block has access to 

all information from previous layers

Transition layers 
batch normalization + 1×1 convolutional + 
2×2 average pooling layer



Causal Convolutions
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Preventing a convolution from allowing to see into the future…

time

Problem is the context size grows slow with depth



Causal & Dilated Convolutions
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(𝐼 ∗ 𝐾)(𝑖, 𝑗) = σ𝑚σ𝑛 𝐼 𝑖 − 𝑙𝑚, 𝑖 − 𝑙𝑛 𝐾(𝑚, 𝑛)

Similar to striding, but size is preserved

Oord et al, WaveNet: A Generative Model for Raw Audio, ICLR 2016



Semantic Segmentation
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Traditional CNN cannot be used for this task due to the 
downsampling of the striding and pooling operations



Fully Convolutional Networks (FCN)
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Convolutional part to extract 
interesting features at various 
scales

Fuse information from feature maps of different scale

Learn an upsampling function of the fused 
map to generate the semantic 
segmentation map

Shelhamer et at, Fully Convolutional Networks for Semantic Segmentation, PAMI 2016



Deconvolution Architecture
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Maxpooling indices transferred to decoder to improve the segmentation 
resolution.

Badrinarayanan et al, SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, PAMI 2017



SegNet Segmentation 
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Demo here: http://mi.eng.cam.ac.uk/projects/segnet/

http://mi.eng.cam.ac.uk/projects/segnet/


U-Nets (Big on Biomedical Images)
Pixel mask in output 

(a bit smaller than 

original image)Few convolutional 

layers at different 

resolutions

Pooling layers

High level 

visual features

Upconvolution

(Deconvolution)

Low level information transfer by 

concatenation of early feature 

maps



Use Dilated Convolutions
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Always perform 3x3 convolutions with no pooling at each level 

Context increases without
o Pooling (changes map size)
o Increasing computational complexity

Yu et al, Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016

Level 1 Level 2 Level 3



Segmentation by Dilated CNN
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Yu et al, Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016

Dilated CNN GT Dilated CNN GT



Object Detection



Object Detection: Faster R-CNN

Any CNN of your 

choice that can 

produce a feature 

map

Generate bounding boxes 

proposals

• x,y position

• size

• confidence

Crop, fuse and 

polish bounding 

boxes proposals

Source: S. Yeung, BIODS 220



Software
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○ CNN are supported by any deep learning framework (Keras-TF, 
Pytorch, MS Cognitive TK, Intel OpenVino, …) 

○ Caffe was one of the initiators and basically built around CNN
● Introduced protobuffer network specification 

● ModelZoo of pretrained models (LeNet, AlexNet, …)

● Support for GPU

● Project converged into PyTorch now



Caffe Protobuffer
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name: "LeNet"
layer {
name: "data"
type: "Input"
…
input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }

}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
…
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {

type: "xavier"
}



Other Software
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○ Matlab distributes its Neural Network Toolbox which allows 

importing pretrained models from Keras-TF

○ Want to have a CNN in your browser?
● Try ConvNetJS (https://cs.stanford.edu/people/karpathy/convnetjs/)

https://cs.stanford.edu/people/karpathy/convnetjs/


GUIs
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Major hardware producers have GUI and toolkits wrapping Caffe, 

Keras-TF to play with CNNs
NVIDIA Digits

Intel OpenVino

Plus
others…

Barista



Take Home Messages 
o Key things

• Convolutions in place of dense multiplications allow sparse connectivity and weight 
sharing

• Pooling enforces invariance and allows to change resolution but shrinks data size
• Full connectivity compress information from all convolutions but accounts for 90% of 

model complexity

o Lessons learned
• ReLU are efficient and counteract gradient vanish
• 1x1 convolutions are useful
• Need batch normalization
• Bypass connections allow to go deeper

o Dilated (à trous) convolutions
o You can use CNN outside of machine vision
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Next Lecture
Gated Recurrent Networks

○ Learning with sequential data

○ Gradient issues 

○ Gated RNN

● Long-Short Term Memories (LSTM)

● Gated Recurrent Units (GRU)

○ Advanced topics

● Understanding and exploiting memory encoding

● Applications
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PART I

PART II
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