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Lecture Outline

o Neural attention for structured/compound data
e Sequence-to-sequence paradigm
e Cross-attention
e Self-attention and transformers
e Attention in vision tasks
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Gated RNN Refresher
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Graphical Notation for Compositionality
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\ CELL > graphical notation to represent
\\ GRNN layers and stacks of GRNN
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Dealining with Compound Data

o GRNN are excellent to handle size/topology varying data in input
e How can we handle size/topology varying outputs?
e Sequence-to-sequence

o Structured data is compound information

o Efficient processing needs the ability to focus on certain parts of such
information

e Attention mechanism
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Segquence-to-sequence




Sequence Transduction

o Input and output are both sequences
o They may have different lengths

o Example: machine translation

The cat is on the table » || gatto é sul tavolo

How do we model the context here?

I ———————————————————




Learning to Output Variable Length Sequences

The idea of an unfolded RNN with blank
inputs-outputs does not really work well

Output sequence
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e The approach is based on an

Input sequence encoder-decoder scheme
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Encoder

Produce a compressed and fixed length representation ¢ of
all the input sequence x4, ..., X,

-------------------------- >' Originally ¢ = h,,

C
Wh[_] h Activations of an
] @ D \ LSTM/GRU layer of K
-

I ———————————————————
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Decoder

Y1 Y2 Y3 Ym
Wour | Wout | Wour]  Woue A LSTM/GRU layer of K
m l cells seeded by the
Sl > SZ > S3 cee S‘n
W [_J W W context vector ¢
\ J
~

Different approaches to
realize this in practice
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Decoder

Y3 Ym
W, We risk to lose
memory of ¢ soon
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If we share the parameters between
encoder and decoder we can take s; = ¢

C . .
Or, at least, assume ¢ and s; have compatible size
11
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Decoder
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c is contextual information kept throughout
output generation
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Decoder

Yi~ Y2 Y3 | Ym
Wour | Wour| Woue| — Woue |

S; = f(C, Si—llyi—l)

" IWm y IWin *y IWL-
2 m-1
W, Y1 y

' It is better to work on a one-step-ahead scheme
C Remember teacher forcing (only) at training time
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Sequence-To-Sequence Learning

Encoder-Decoder can share
parameters (but it is uncommon)

Encoder-Decoder can be trained
end-to-end or independently

hq 1 h, s hal--. h,|~ >l Revers.lng thg Input sequenFe IN
¢ encoding typically resulted in
increased performance (?!)
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A Motivating Example

The cat I1s on the table

Il gatto e sul tavolo

I ———————————————————




Attention




On the Need of Paying Attention

o Encoder-Decoder scheme assumes the hidden activation of the last input
element summarizes sufficient information to generate the output
e Bias toward most recent past

o Other parts of the input sequence might be very informative for the task
e Possibly elements appearing very far from sequence end
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On the Need of Paying Attention

™. Attention module

o Attention mechanisms select which part of the sequence to focus
on to obtain a good ¢
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Attention Mechanisms — Blackbox View
Aggregated seed IC

4 N

What’s inside of the box?

Context info

T © Y

Encodings




What’s inside of the box?
The Revenge of the Gates!
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Opening the Box




Opening the Box — Relevance

Tanh layer fusing each encoding with I C e; = a(s, h;)

current context s / | \




Opening the Box — Softmax

A differentiable max selector

operator

a
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Opening the Box — Voting

Aggregated seed by (soft) attention 1t ¢ z o h
"™l

voting / “ et “ :
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Attention - Equations

o Relevance: e; = a(s, h;)

exp(e;)
Zj exp(e;)

o Normalization: a; =

o Aggregation: ¢ = ),; a;h;

Attention module




Attention in Seqg2Seq

Context is past output state

Seed considers (subset of) the
iInput states
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Learning to Translate with Attention
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on
European
Economic
Area

was
signed

in
August
1992
<end>

<]
=
[

the
environment

should
be
noted
that
the
marine
is

the
least
known
of
environments
<end>

LI
accord
sur

=

Il

convient

de

noter

que

I
environnement
marin

est

le

moins

connu

de

II
environnement

la

zone
économique
européenne
a

été

signé

en

aolt

1992

<end> <end>

Bahdanau et al, Show, Neural machine translation by jointly learning to align and translate, ICLR 2015
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Advanced Attention — Generalize Relevance

This component determines how much each h is correlated/associated with

current context s / \




Advanced Attention — Hard Attention

Sample a single encoding using probability «;

/[ Random Sample J\
—




Attention Is All You Need,
https://arxiv.org/pdf/1706.03762.pdf

Qutput
Transformers
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Self Attention

Each element of an input
sequence X; projects into
3 vectors: query, key and
value

32
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Self Attention — K,V,Q Generation

|||||||

Figure credit to this article



https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Self Attention — Compute Attention Score
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Self Attention — Produce Output

Self-attention

multiplication mmm - multiplication nm - multiplication mnm P
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Self Attention

Output,
V - Softmax [KIQ]

g il Self-attentioh
Each element of an input g
sequence X; projects into S Nt
3 vectors: query, key and “ it S
value
Input, Keys,
X K=38,1"+ ;X
Scaled (multiplicative) self-attention )
Values,
/)
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Self Attention — MultiHead
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Nobel committee awards Strickland who advanced optics
Strubell et al, Linguistically-Informed Self-Attention for Semantic Role Labeling, EMNLP 2018
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|s self-attention a good mechanism to model
temporal dependencies?

What happens if | randomly shuffle some
tokens?




Attention Is All You Need,
https://arxiv.org/pdf/1706.03762.pdf

(Absolute) Positional Encoding

. . frequency
o Self-attention is order- Y
independent PE(p, 2i) = sin(p/10000%/%)

PE(p,2i + 1) = cos(p/10000%/%)
o Butin sequences we need
ordering information

embedding dimensions i € {1, d}

o Word embedding +
positional embedding

Positions p




Attention in Vision




Attention-Based Captioning — Focus Shifting

Soft Attention

ool BEF
PEFEERCERR

bird flying over body water

Hard Attention

Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015




Attention-Based Captioning - Generation

Learns to correlate textual and visual concepts

AL 'f’\.‘
A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
—— R mountain in the background.

Helps understandmg why the model fails

A Iarge whlte blrd standing in a forest. A woman holding a clock in her hand.

Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015
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Attention-Based Captioning — The Model
E
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Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015
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The Vision Transformer (ViT)

Vision Transformer (ViT) Transformer Encoder
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Take Home Messages

o Attention.. Attention.. and, again, attention
e Soft attention is nice because makes everything fully differentiable
e Hard attention is stochastic hence cannot Backprop
e Empirical evidences of them being sensitive to different things

o Encoder-Decoder scheme

e A general architecture to compose heterogeneous models and data

e Decoding allows sampling complex predictions from an encoding conditioned
distribution

o Transformers as low-inductive bias architectures
e Need huge amounts of data to generalize
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Upcoming lectures

o Wed 16/04 - Coding | (Pytorch)
o Thu 17/04 — Coding Il (Keras/TF)
o Apr. 18 — Apr 28 — Spring Break (no lectures)

o Bonus track
e Al Meets Psychiatry: fMRI-Based Multi-Disorder Diagnosis
e Lecture by Elisa Ferrari at the Al for Health course
e Today 15/04/2025 h. 16.15-17.30 — Reem=tE Room C

46
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