
I NTRODUCTION TO N EURAL N ETWORK PROGRAMMING WITH PYTHON AND PYTORCH

LECTURER : VALERIO DE CARO

VALERIO. DECARO@ PHD.UNIP I . IT

I NTELLIGENT SYSTEMS FOR
PATTERN R ECOGNITION

APR 9 TH 2024

Key Features

• Tensor manipulation: library to manipulate tensors, with MATLAB/Numpy-like API.

• GPU support: seamless execution on GPU and CPU devices.

• Automatic Differentiation: custom layers only need to define the forward step, because functions is automatically
differentiated using the chain rule.

• High-level API: ready-to-use high-level API with neural networks layers, losses, and optimizers

10/04/2024 INTRODUCTION TO PYTORCH 2

Getting Started

• Python 3.x (or C++, good luck with that)

• Cross-platform

• Installation via pip or conda

• Installation available with both CPU-only and CUDA support (for GPU)

• To use GPU, you must check that the PyTorch version you’re installing matches the CUDA version on your
machine. Examples:
• PyTorch 2.2.2 requires CUDA 12.1 or CUDA 11.8;

• PyTorch 1.13.1 requires CUDA 11.6 or CUDA 11.7)…

• Check it by using the bash command nvidia-smi

• PyTorch: https://pytorch.org/get-started/locally/

• PyTorch previous versions: https://pytorch.org/get-started/previous-versions/

10/04/2024 INTRODUCTION TO PYTORCH 3

https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/previous-versions/

Tensors operations
and manipulation

S OME BASICS

Tensors
T HE BASIC BUILDING BLOCK OF ANY M L FRAMEWORK

• Tensors are the main data structure. They represent multidimensional arrays

• Equivalent of np.ndarray

• Support advanced indexing and broadcasting

Attributes:

• dtype: determine the type of the tensor elements (float{16, 32, 64}, int{8,
16, 32, 64}, uint8). Can be specified during the initialization.

• device: memory location (cpu or cuda)

• layout: dense tensors (strided) or sparse (sparse_coo)

10/04/2024 INTRODUCTION TO PYTORCH 5

Tensors
I NIT IAL IZATION

• torch.tensor
• takes any array-like argument and create a new tensor

• Zero or one initialization
• torch.zeros(*dims) – torch.ones(*dims)

• Random
• torch.randn(*dims)

• torch.rand(*dims)

• Linear range
• torch.linspace(start, end, steps=100)

• numpy bridge
• torch.from_numpy(x)

• You can also convert a tensor into a ndarray with the .numpy method

• Note: the numpy array and the resulting tensor share the memory

I n [1] : i m p o r t t o r c h

I n [1] : c u d a = t o r c h . d e v i c e (" c u d a ")

I n [2] : a = t o r c h . t e n s o r ([[1] , [2] , [3]] ,
d t y pe = t o r c h . h a l f , de v ic e = c u da)

I n [3] : p r i n t (a)

O u t [3] :

t e n s o r ([[1] ,

 [2] ,

 [3]] , d e v i c e = ' c u d a : 0 ')

10/04/2024 INTRODUCTION TO PYTORCH 6

Tensors in GPU
U SING P YTORCH FOR WHAT IT ’ S WORTH

• torch.cuda API for GPU management (check availability with torch.cuda.is_available)

Using GPU

1. Create or move to GPU: torch.tensor(…, device=”cuda”) or tensor.to(”cuda”)

2. All the tensor arguments of an operation must reside on the same device → result on the same device

• Can take the GPU id as an optional argument if you have multiple GPUs (e.g., tensor.to(“cuda:3”))

• You can move tensors back to the CPU with the cpu method

10/04/2024 INTRODUCTION TO PYTORCH 7

GPU Usage
S OME NOTES

• On a server you typically have access to multiple shared GPU and you must select one to run your code.
• Manual selection using the device argument (‘cuda:0’, ‘cuda:1’…)

• Using the context manager torch.cuda.device

• Changing the shell environment variable CUDA_VISIBLE_DEVICES to limit the visible GPUs

• export CUDA_VISIBLE_DEVICES=0

• Note that the indices of torch.device will always start from 0.

• E.g., CUDA_VISIBLE_DEVICES=3,4 will give you two gpus s.t. torch.device(cuda:0) will use gpu 3 and torch.device

• Always, always, ALWAYS REMEMBER TO DE-ALLOCATE STUFF FROM THE GPU IF YOU’RE NOT USING IT

... or a group of angry phd students
will come get you from home ☺

10/04/2024 INTRODUCTION TO PYTORCH 8

GPU Usage
E XAMPLE

cuda = torch.device(device('cuda’)) # Default CUDA device
cuda0 = torch.device(device('cuda:0’)
cuda2 = torch.device(device('cuda:2’)) # GPU 2

x = torch.tensor([1., 2.], device=cuda0)
x.device is device(type='cuda', index=0)
y = torch.tensor([1., 2.]).cuda()
y.device is device(type='cuda', index=0)

With torch.cuda.device(1):
allocates a tensor on GPU 1
a = torch.tensor([1., 2.], device=cuda)

transfers a tensor from CPU to GPU 1
b = torch.tensor([1., 2.]).cuda()
a.device and b.device are device(type='cuda', index=1)

You can also use ``Tensor.to`` to transfer a tensor:
b2 = torch.tensor([1., 2.]).to(device=cuda)
b.device and b2.device are device(type='cuda', index=1)

c = a + b # c.device is device(type='cuda', index=1)
z = x + y # z.device is device(type='cuda', index=0)

even within a context, you can specify the device
(or give a GPU index to the .cuda call)
d = torch.randn(2, device=cuda2)
e = torch.randn(2).to(cuda2)
f = torch.randn(2).cuda(cuda2)
d.device, e.device, and f.device are all device(type='cuda', index=2)

10/04/2024 INTRODUCTION TO PYTORCH 9

Tensor operations

• Some operators are overloaded
• +, - for addition and subtraction (support broadcasting)

• * is the elementwise multiplication (not the matrix product, supports broadcasting)

• @ for matrix multiplication (torch.matmul)

• In-place operations are defined with a suffix underscore
• add_, sub_, matmul_ are the in-place equivalent for the previous operators

• Check the documentation: http://pytorch.org/docs/stable/torch.html#tensors

10/04/2024 INTRODUCTION TO PYTORCH 10

http://pytorch.org/docs/stable/torch.html#tensors

Tensor indexing

• Basic tensor indexing is similar to list indexing,
but with multiple dimensions

• Boolean condition: boolean arrays can be used
to filter elements that satisfy some condition

• If the indices are less than the number of
dimensions the missing indices are considered
complete slices

first k elements

x = a[:k]

all but the first k

x = a[k:]

negative indexing

x = a[-k:]

mixed indexing

a[:t_max, b:b+k, :]

indexing with Boolean condition

def relu(x):
x[x < 0] = 0

return x

10/04/2024 INTRODUCTION TO PYTORCH 11

Tensor reshaping

• Reshaping is fundamental in many occasions to
achieve results efficiently

• We distinguish:
• tensor.squeeze() → removes all singleton

dimensions

• tensor.unsqueeze(dim) → add a singleton
dimension at the dim-th position

• tensor.transpose(dim1, dim2) → transposes the
two dimensions of the tensor

• tensor.permute(*dims) → re-arranges the
dimensions as in *dims

x = torch.randn(5,1,5)

squeeze

x.squeeze() → [5,5]

unsqueeze

x.unsqueeze(3) → [5,1,5,1]

transpose

x.transpose(1, 2) → [5,5,1]

indexing with Boolean condition

x.permute(1,0,2) → [1,5,5]

”→ “ indicates calling x.size()

10/04/2024 INTRODUCTION TO PYTORCH 12

Tensor reduce

• Torch allows to collapse dimensions of tensors
via reduce operations

• We distinguish:
• tensor.sum/prod(dim) → collapses the dim-th

dimension by element-wise summing or
multiplying tensors

• tensor.amin/amax(dim) → collapses the dim-th
dimension by getting the element-wise min or max

x = torch.randn(5,1,5)

You can do

x.sum(0) → [1,5]

or

x.amin(2) → [5,1]

”→ “ indicates calling x.size()

10/04/2024 INTRODUCTION TO PYTORCH 13

Tensor operations
B ROADCASTING 101

In [3]: a = torch.rand(3, 3)

In [4]: b = torch.rand(3, 1)

In [5]: s1 = a + b

In [6]: c = torch.rand(3, 1, 1)

In [7]: s2 = a + c

In [8]: d = torch.rand(3, 2)

In [9]: a + d

RuntimeError: inconsistent tensor size, expected r_ [3 x 3], t
[3 x 3] and src [3 x 2] to have the same number of elements,
but got 9, 9 and 6 elements respectively at
d:\projects\pytorch\torch\lib\th\generic/THTensorMath.c:887

ok, b is expanded
this is equivalent to a + b.expand(-1, 3)

ok, a and c are expanded
a.unsqueeze(2).expand(3,3,3) + c.expand(3,3,3)

error, a and d are not broadcastable

10/04/2024 INTRODUCTION TO PYTORCH 14

Autograd
A UTOMATIC D IFFERENTIATION IN P YTORCH

Autograd
A UTOMATIC DIFFERENTIATION FROM THE COMPUTATIONAL GRAPH

• torch.autograd is the package responsible for
the automatic differentiation

• Each computation creates a dynamic
computational graph. Each operation adds a
Function node, conncted to its Tensor
arguments

• The graph is used to compute the gradient by
calling the method backward.

10/04/2024 INTRODUCTION TO PYTORCH 16

Autograd
A UTOMATIC DIFFERENTIATION FROM THE COMPUTATIONAL GRAPH

• Tensor objects are the data nodes of the computational graph

• The main attributes related to the graph structure are:

• data: Tensor containing the Variable value

• grad: Tensor containing the gradient (initially set to None)

• grad_fn: the function used to compute the gradient

• Each Function implements two methods:

• forward: function application

• backward: gradient computation

10/04/2024 INTRODUCTION TO PYTORCH 17

Autograd
A UTOMATIC D IFFERENTIATION FROM THE COMPUTATIONAL GRAPH

• The requires_grad attribute is used to specify if the gradient computation should propagate into the Tensor or stop
• for model’s parameters requires_grad=True

• for input data or constant values requires_grad=False

• You can truncate the gradient using detach. The method removes the Tensor from the graph, making it a leaf.

• In-place modification is not allowed because it breaks the automatic differentiation.

• At inference time you can speed up the computation by using the context manager torch.no_grad, which disables
the graph construction required for the backward computation, saving space and time.

• Autograd documentation http://pytorch.org/docs/stable/autograd.html

10/04/2024 INTRODUCTION TO PYTORCH 18

http://pytorch.org/docs/stable/autograd.html

Autograd
B UILDING THE DYNAMIC GRAPH

forward
step and
dynamic
graph
creation

gradient computation

functions

graph leaves. Data and Parameters

10/04/2024 INTRODUCTION TO PYTORCH 19

Building models
and pipelines

TORCH . NN , LOSSES , OPTIMIZERS AND DATASETS

torch.nn
B ASIC INTERFACE FOR BUILDING MODELS

• torch.nn contains the basic components to define
your neural networks, loss functions, regularization
techniques and optimizers.

• We will see in the next few slides
• What is a nn.Module

• how to define a custom nn.Module

• how to set up a basic training loop

10/04/2024 INTRODUCTION TO PYTORCH 21

nn.Module
D EFINING A MODEL (OR PART OF IT) IN A SINGLE CLASS

• Module is the base class for all the neural network submodules
• Linear, convolutional, recurrent layers are all Module subclasses

• A nn.Module contains Parameters:
• These are typically the trainable parameters of your model

• Parameter is a wrapper of a tensor with a name and requires_grad=True

• You can iterate over all the parameters using the parameters() method

• You can compute the output of a network by using it like a function (e.g. y_pred = net(X))
• That is possible because __call__ is overriden

• The computation is performed by the forward method, but if you forward directly the module’s hooks are not activated

• It is possible to define forward and backward hooks
• e.g. you can check for NaN gradients after the backward pass

• You can register the hook with methods like register_forward_hook()

10/04/2024 INTRODUCTION TO PYTORCH 22

nn.Module
H OW TO SUBCLASS

• Override the forward method to define how the computation is performed. Backward is automatically
implemented with autograd

• Override the __init__ method, defining your parameters
• remember to call the constructor of the super class!

• When you add a Parameter as an attribute it is automatically registered for you. It also works for
submodules.

• If you want to add a list of parameters or modules use the ParameterList and ModuleList containers.
• If you use a regular list the parameter will not be registered and cannot be iterated with the parameters method

• You can print the network to see the registered parameters and submodules

10/04/2024 INTRODUCTION TO PYTORCH 23

nn.Module
E XAMPLE WITH A C USTOM MODULE

class Net(nn.Module):
 def __init__(self):
 super().__init__() <- remember to call the superclass
 # 1 input image channel, 6 output channels,
 #5x5 square convolution
 # kernel
 self.conv1 = nn.Conv2d(1, 6, 5)
 self.conv2 = nn.Conv2d(6, 16, 5)
 # an affine operation: y = Wx + b
 self.fc1 = nn.Linear(16 * 5 * 5, 120)
 self.fc2 = nn.Linear(120, 84)
 self.fc3 = nn.Linear(84, 10)

 def forward(self, x):
 # Max pooling over a (2, 2) window
 x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
 # If the size is a square you can only specify a
 # single number
 x = F.max_pool2d(F.relu(self.conv2(x)), 2)
 x = x.view(-1, self.num_flat_features(x))
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)
 return x

10/04/2024 INTRODUCTION TO PYTORCH 24

nn.Module
PARAMETERL I ST USAGE

model = MyModel(**kwargs)

Correct!

model.x = nn.ParameterList([

torch.randn((10, 10), requires_grad=True),

 torch.randn((10, 10), requires_grad=True)

]

Wrong!!!

model.x = [

torch.randn((10, 10), requires_grad=True),

 torch.randn((10, 10), requires_grad=True)

]

10/04/2024 INTRODUCTION TO PYTORCH 25

nn.Module
P RINT OUTPUT

• if we create a Net object and print it we obtain the following output:

• We can see the two convolutional layers and the three fully connected layers.

Net(

 (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))

 (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))

 (fc1): Linear(in_features=400, out_features=120, bias=True)

 (fc2): Linear(in_features=120, out_features=84, bias=True)

 (fc3): Linear(in_features=84, out_features=10, bias=True)

)

10/04/2024 INTRODUCTION TO PYTORCH 26

nn.Functional
C OMPUTING LOSSES

• To define a training loop we need a loss and an optimizer

• torch.nn defines many different loss functions
• nn.MSELoss, nn.CrossEntropyLoss, nn.NLLLoss, nn.BCELoss, …

• You can also use the functional version, defined in nn.functional. The only difference is that you don’t need to
create an object.

• Always check to documentation for the correct shape and input arguments (does the loss needs logits or
probabilities? Which dimension should be the last? Is the average for each element or for each sample?)

import nn.functional as F

net = Net()
out = net(X)
loss = F.MSELoss(out, target)

10/04/2024 INTRODUCTION TO PYTORCH 27

torch.optim
O PTIMIZ ING THE MODEL WITH OFF- THE- SHELF OPTIMIZERS

• Simple gradient descent:

• Note the call to the zero_grad method. It is needed to reset the gradient buffers

• You can also use other optimizers defined in torch.optim (next slide)
• Adam, RMSProp…

• they take as arguments the learning rate, momentum, l2 weight decay

sgd = torch.optim.SGD(model.parameters(), lr=0.01)
…
loss.backward()
sgd.step()
sgd.zero_grad()

10/04/2024 INTRODUCTION TO PYTORCH 28

Training loop

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

for epoch in range(100): # loop over the dataset multiple
times
 running_loss = 0.0

for i, data in enumerate(dataset):
inputs, labels = data # get the inputs

 optimizer.zero_grad() # zero the parameter gradients

 # forward + backward + optimize
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()

 # print statistics
 running_loss += loss.data[0]
 if i % 2000 == 1999: # print every 2000 mini-batches
 print('[%d, %5d] loss: %.3f' %
 (epoch + 1, i + 1, running_loss / 2000))
 running_loss = 0.0

print('Finished Training')

10/04/2024 INTRODUCTION TO PYTORCH 29

nn.Modules
S OME OFF- THE- SHELF STUFF

• Available Modules:
• Convolutional layers: Conv2D, MaxPool2D

• Recurrent layers: RNN, LSTM, GRU, {RNN, LSTM, GRU}Cell

• FeedForward: Linear

• activation functions defined in torch.nn.functional

Note: modules have train/eval mode

• This is useful for layers (e.g. Dropout, BatchNormalization) that define a different behaviour during train
and test

• Always set it during training with net.train(), and disable it during the test phase (net.eval()).

10/04/2024 INTRODUCTION TO PYTORCH 30

Feedforward
Network

import torch.nn as nn

model = nn.Sequential(

 nn.Linear(100, 50),

 nn.ReLU(),

 nn.Linear(50, 50),

 nn.ReLU(),

 nn.Linear(50, 10),

 nn.Softmax()

)

y_out = model(X)

Recurrent
Neural

Network
{LSTM, RNN, GRU}Cell
implement a recurrent layer.
Combining them we can build
a recurrent network.

The default input shape is

(time, batch, features)

You also need to keep track
of the hidden and cell states.

model = torch.nn.LSTMCell(input_size, hidden_size)

out = []

h_prev = torch.zeros((batch_size, hidden_size))

c_prev = torch.zeros((batch_size, hidden_size)))

for t in range(n_steps):

 X_t = X[t]

 h_prev, c_prev = model(X_t,(h_prev,c_prev))

 out.append(o_t)

out = torch.stack(out)

Datasets and loaders

• For small datasets, and mostly in cases you want to go batch, you can load
the data as a numpy array and convert it to a pytorch tensor (remember to
check the dimensions in case you need to transpose some dimension)

• Most of the times, use the tools in in torch.data.utils

• DataLoader is used to automatize mini-batching, shuffling of the dataset,
sampling techniques and any pre-processing. Allows parallel loading

• Sampler classes for sequential or random sampling from a dataset.

• Check the documentation: http://pytorch.org/docs/stable/data.html

10/04/2024 INTRODUCTION TO PYTORCH 33

http://pytorch.org/docs/stable/data.html

Model Serialization and Logging

• PyTorch provides some guidelines regarding serialization
http://pytorch.org/docs/stable/notes/serialization.html
• Save a model

torch.save(the_model.state_dict(), PATH)

• Load back the model

the_model = TheModelClass(*args, **kwargs)

the_model.load_state_dict(torch.load(PATH))

• You can also use Tensorboard to log training metrics
• https://pytorch.org/docs/stable/tensorboard.html

10/04/2024 INTRODUCTION TO PYTORCH 34

http://pytorch.org/docs/stable/notes/serialization.html
https://pytorch.org/docs/stable/tensorboard.html

Your turn!

• Implement and train a Convolutional Neural Network to perform image classification on MNIST. Some
guidelines:

• Use torchvision to download and use MNIST

• Note that it’s a multi-class classification problem, so loss and output layer must be initialized accordingly

• Bonuses:
• Monitor the performance with tensorboard

• Use batch_norm

10/04/2024 INTRODUCTION TO PYTORCH 35

	Diapositiva 1
	Diapositiva 2: Key Features
	Diapositiva 3: Getting Started
	Diapositiva 4: Tensors operations and manipulation
	Diapositiva 5: Tensors
	Diapositiva 6: Tensors
	Diapositiva 7: Tensors in GPU
	Diapositiva 8: GPU Usage
	Diapositiva 9: GPU Usage
	Diapositiva 10: Tensor operations
	Diapositiva 11: Tensor indexing
	Diapositiva 12: Tensor reshaping
	Diapositiva 13: Tensor reduce
	Diapositiva 14: Tensor operations
	Diapositiva 15: Autograd
	Diapositiva 16: Autograd
	Diapositiva 17: Autograd
	Diapositiva 18: Autograd
	Diapositiva 19: Autograd
	Diapositiva 20: Building models and pipelines
	Diapositiva 21: torch.nn
	Diapositiva 22: nn.Module
	Diapositiva 23: nn.Module
	Diapositiva 24: nn.Module
	Diapositiva 25: nn.Module
	Diapositiva 26: nn.Module
	Diapositiva 27: nn.Functional
	Diapositiva 28: torch.optim
	Diapositiva 29: Training loop
	Diapositiva 30: nn.Modules
	Diapositiva 31: Feedforward Network
	Diapositiva 32: Recurrent Neural Network
	Diapositiva 33: Datasets and loaders
	Diapositiva 34: Model Serialization and Logging
	Diapositiva 35: Your turn!

