INTRODUCTION TO NEURAL NETWORK PROGRAMMING WITH PYTHON AND PYTORCH

LECTURER: VALERIO DE CARO

VALERIO.DECARO@PHD.UNIPI.IT

INTELLIGENT SYSTEMS FOR =
PATTERN RECOGNITION : 'i*""-
A 2l UNIVERSITA DI P1SA

* Tensor manipulation: library to manipulate tensors, with MATLAB/Numpy-like API.

* GPU support: seamless execution on GPU and CPU devices.

* Automatic Differentiation: custom layers only need to define the forward step, because functions is automatically
differentiated using the chain rule.

* High-level API: ready-to-use high-level APl with neural networks layers, losses, and optimizers

Key Features

* Python 3.X (orces sood iuckwith that)

* Cross-platform

* |Installation via pip or conda

* Installation available with both CPU-only and CUDA support (for GPU)

* To use GPU, you must check that the PyTorch version you’re installing matches the CUDA version on your
machine. Examples:

* PyTorch 2.2.2 requires CUDA 12.1 or CUDA 11.8;
* PyTorch 1.13.1 requires CUDA 11.6 or CUDA 11.7)...
* Check it by using the bash command

e PyTorch: https://pytorch.org/get-started/locally/

* PyTorch previous versions: https://pytorch.org/get-started/previous-versions/

Getting Started

https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/previous-versions/

Tensors operations
and manipulation

SOME BASICS

* Tensors are the main data structure. They represent multidimensional arrays
* Equivalent of np.ndarray

* Support advanced indexing and broadcasting

Attributes:

 dtype: determine the type of the tensor elements (float{16, 32, 64}, int{8,
16, 32, 64}, uint8). Can be specified during the initialization.

* device: memory location (cpu or cuda)

* layout: dense tensors (strided) or sparse (sparse_coo)

THE BASIC BUILDING BLOCK OF ANY ML FRAMEWORK

Tensors

024

INTRODUCTION TO PYTORCH

* torch.tensor
* takes any array-like argument and create a new tensor

Zero or one initialization
* torch.zeros(*dims) — torch.ones(*dims)

import torch

cuda = torch.device("cuda")

Random a = torch.tensor([[1], [2], [3]],
dtype=torch.half, device=cuda)

* torch.randn(*dims)

) print(a)
* torch.rand(*dims)

Linearrange tensor([[17,

* torch.linspace(start, end, steps=100) [2],

numpy bridge [3]1], device='cuda:0"')
* torch.from_numpy(x)

* You can also convert a tensor into a ndarray with the .numpy method
* Note: the numpy array and the resulting tensor share the memory

INITIALIZATION

Tensors

INTRODUCTION TO PYTORCH

* torch.cuda APIfor GPU management (check availability with torch.cuda.is available)
Using GPU
1. Create or move to GPU: torch.tensor(.., device="cuda”) ortensor.to(”cuda”)

2. All the tensor arguments of an operation must reside on the same device - result on the same device

* Can take the GPU id as an optional argument if you have multiple GPUs (e.g., tensor.to(“cuda: 3”))

* You can move tensors back to the CPU with the cpu method

USING PYTORCH FOR WHAT IT'S WORTH

Tensors in GPU

INTRODUCTION TO PYTORCH

* On a server you typically have access to multiple shared GPU and you must select one to run your code.
* Manual selection using the device argument (‘cuda:0’, ‘cuda:1’..)
* Using the context manager torch.cuda.device

* Changing the shell environment variable CUDA_VISIBLE_DEVICES to limit the visible GPUs

* export CUDA_VISIBLE_DEVICES=0
* Note that the indices of torch.device will always start from 0.
° E.g., CUDA VISIBLE DEVICES=3,4 will give you two gpus s.t. torch.device(cuda:9) will use gpu 3 and torch.device

* Always, always, ALWAYS REMEMBER TO DE-ALLOCATE STUFF FROM THE GPU IF YOU’RE NOT USING IT

... or a group of angry phd students
will come get you from home ©

SOME NOTES

GPU Usage

INTRODUCTION TO PYTORCH

cuda = torch.device(device()) # Default CUDA device
cuda® = torch.device(device()
cuda2 = torch.device(device()) # GPU 2

x = torch.tensor([1., 2.], device=cuda@)

y = torch.tensor([1., 2.]).cuda()

With torch.cuda.device(1):

a = torch.tensor([1., 2.], device=cuda)

torch.tensor([1., 2.]).cuda()

= torch.tensor([1., 2.]).to(device=cuda)

a+b
X +y

torch.randn(2, device=cuda2)
torch.randn(2).to(cuda2)

EXAMPLE torch.randn(2).cuda(cuda2)

GPU Usage

* Some operators are overloaded
* +, - for addition and subtraction (support broadcasting)

* *is the elementwise multiplication (not the matrix product, supports broadcasting)
* @ for matrix multiplication (torch.matmul)

* In-place operations are defined with a suffix underscore
* add_, sub_, matmul_are the in-place equivalent for the previous operators

* Check the documentation: http://pytorch.org/docs/stable/torch.html#tensors

Tensor operations

http://pytorch.org/docs/stable/torch.html#tensors

. N) first k elements
* Basic tensor indexing is similar to list indexing,

but with multiple dimensions = a[:k]

all but the first k
= a[k:]

* Boolean condition: boolean arrays can be used negative indexing

to filter elements that satisfy some condition - a[-k:]

mixed indexing

al[:t_max, b:b+k, :]

* If the indices are less than the number of
dimensions the missing indices are considered # indexing with Boolean condition
complete slices =)
x[x < 0] = ©
X

Tensor indexing

INTRODUCTION TO PYTORCH

* Reshaping is fundamental in many occasions to
achieve results efficiently - torch.randn(5,1,5)
squeeze

* We distinguish: .squeeze() > [5,5]

* tensor.squeeze() = removes all singleton unsqueeze
dimensions .unsqueeze(3) 2> [5,1,5,1]
* tensor.unsqueeze(dim) = add a singleton
dimension at the dim-th position transpose
* tensor.transpose(dim1, dim2) = transposes the .transpose(1, 2) > [5,5,1]
two dimensions of the tensor indexing with Boolean condition

* tensor.permute(*dims) = re-arranges the
dimensions as in *dims

.permute(1,0,2) > [1,5,5]

”—> “indicates calling x.size()

Tensor reshaping

INTRODUCTION TO PYTORCH

* Torch allows to collapse dimensions of tensors
via reduce operations

* We distinguish: = torch.randn(5,1,5)

* tensor.sum/prod(dim) = collapses the dim-th
dimension by element-wise summing or
multiplying tensors .sum(@) > [1,5]

* tensor.amin/amax(dim) = collapses the dim-th or
dimension by getting the element-wise min or max

You can do

.amin(2) 2> [5,1]

”=> “indicates calling x.size()

Tensor reduce

[3]: a = torch.rand(3,

[4]: b = torch.rand(3,
[5]: sl =a+b ok, b is expanded

this is equivalent to a + b.expand(-1, 3)

[6]: ¢ = torch.rand(3, 1, 1)

[7]: s2 = a + C ok, a and c are expanded

a.unsqueeze(2).expand(3,3,3) + c.expand(3,3,3)

[8]: d = torch.rand(3, 2)
[9]: a+d

: inconsistent tensor size, expected r_ [3 x 3], t
3 x 3] and src [3 x_2] to have the same number of elements,
ut got 9, 9 and 6 elements respectively at

d:\projects\pytorch\torch\lib\th\generic/THTensorMath.c:887

BROADCASTING 101

Tensor operations

INTRODUCTION TO PYTORCH

Autograd

AUTOMATIC DIFFERENTIATION IN PYTORCH

* torch.autograd is the package responsible for
the automatic differentiation

* Each computation creates a dynamic
computational graph. Each operation adds a
Function node, conncted to its Tensor
arguments

o020

* The graph is used to compute the gradient by
calling the method backward.

AUTOMATIC DIFFERENTIATION FROM THE COMPUTATIONAL GRAPH

Autograd

* Tensor objects are the data nodes of the computational graph

* The main attributes related to the graph structure are:
* data: Tensor containing the Variable value

* grad: Tensor containing the gradient (initially set to None)
* grad_fn: the function used to compute the gradient

* Each Function implements two methods:
* forward: function application

* backward: gradient computation

AUTOMATIC DIFFERENTIATION FROM THE COMPUTATIONAL GRAPH

Autograd

The requires_grad attribute is used to specify if the gradient computation should propagate into the Tensor or stop
* for model’s parameters requires_grad=True

* for input data or constant values requires_grad=False

You can truncate the gradient using detach. The method removes the Tensor from the graph, making it a leaf.

In-place modification is not allowed because it breaks the automatic differentiation.

At inference time you can speed up the computation by using the context manager torch.no_grad, which disables
the graph construction required for the backward computation, saving space and time.

Autograd documentation http://pytorch.org/docs/stable/autograd.html|

AUTOMATIC DIFFERENTIATION FROM THE COMPUTATIONAL GRAPH

Autograd

http://pytorch.org/docs/stable/autograd.html

groph leaves. Data and Parameters

Back-propagation
uses the dynamically built graph

from torch.autograd import Variable

x = Variable(torch.randn(1l, 10))
{OVWD(Vd prev_h = Variable(torch.randn(1l, 20))
_gtgp a[/\,d W_h = Variable(torch.randn (20, 20))
0{ , W_x = Variable(torch.randn(20, 10))

namaLe
5 i2h = torch.mm(W_x, x.t())

oraph h2h = torch.mm(W h, prev h.t())
GV&QtLOV\J next h = i2h + h2h

next h = next_h.tanh() {[/([/\,Ctl/,() ns

next h.backward(torch.ones (1, 20))

1

oradient co mpmtat’ww

BUILDING THE DYNAMIC GRAPH

Autograd

0/04/2024 INTRODUCTION TO PYTORCH

A%
F‘“

Building models
and pipelines

TORCH.NN, LOSSES, OPTIMIZERS AND DATASETS

* torch.nn contains the basic components to define

your neural networks, loss functions, regularization

techniques and optimizers.

* We will see in the next few slides
* What is a nn.Module
* how to define a custom nn.Module

* how to set up a basic training loop

BASIC INTERFACE FOR BUILDING MODELS

A mostly complete chart of

o Neural Networks ...

: Input Call ‘©2016 Fjodor van Veen - asimovinstitute.org -
& Naisy Input Cell Parceptron (F) Feed Forward (FF) Radial Basis Network (REF)
@ ridden cel o o -
© rrobablistic Hidden Cell : o o
@ spiking Hidden Cell Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
@ outputcen 68 -6 6 6
A TR A
@ match input output cell AR W A
P pu DEEAAS AN B ot o4

@ Recurrentceul

@ remoryceu Auto Encoder (AE) Variational AE (VAE) Denaising AE (DAE) Sparse AE (SAE)
@ oifferent Memary Cell - -
0 Kemel

Q Convolution or Pool

Markov Chain (MC) Hopfield Metwork (HN) Boltzmann Machine (BM) Restricted BM (RBIM) Deep Belief Netwark (DBN)

b,

!'AM wAi‘. 0.
L ORISR I

Deep Convolutional Metwork (DCN) Deconvolutional Netwark (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
T . P N
X e 0 o o O
XD 0ol X el 0T

& = b G ANSD AT
%,\- -/v_d/\ %,\6/\ -
P -4\6/ ar &) ~/~»\b =
W T LW o NP
XX ol X0

Generative Adversarial Netwark (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM)

o)
oW,
Yeininiein
‘«r,;«»“,\w;m;«f;

Deep Residual Netwark (DRN) Kohonen Network (KN) Support Viector Machine (SVM) Neural Turing Machine (NTM)

: %

)

torch.nn

INTRODUCTION TO PYTORCH

Module is the base class for all the neural network submodules

* Linear, convolutional, recurrent layers are all Module subclasses

A nn.Module contains Parameters:

* These are typically the trainable parameters of your model

* Parameter is a wrapper of a tensor with a name and requires_grad=True
* You can iterate over all the parameters using the parameters() method

You can compute the output of a network by using it like a function (e.g. y_pred = net(X))
* That is possible because __call__is overriden
* The computation is performed by the forward method, but if you forward directly the module’s hooks are not activated

It is possible to define forward and backward hooks
* e.g.you can check for NaN gradients after the backward pass
* You can register the hook with methods like register_forward_hook()

DEFINING A MODEL (OR PART OF IT) IN A SINGLE CLASS

nn.Module
2024 INTRODUCTION TO PYTORCH

* Override the forward method to define how the computation is performed. Backward is automatically
implemented with autograd

* Override the __init__ method, defining your parameters
* remember to call the constructor of the super class!

* When you add a Parameter as an attribute it is automatically registered for you. It also works for
submodaules.

* |If you want to add a list of parameters or modules use the ParameterList and ModuleList containers.
* If you use a regular list the parameter will not be registered and cannot be iterated with the parameters method

* You can print the network to see the registered parameters and submodules

HOw TO SUBCLASS

nn.Module

024 INTRODUCTION TO PYTORCH

class Net(nn.Module):
def init_ (self):
super(). __init_ ()

self.convl nn.Conv2d(1
self.conv2 nn.Conv2d(6

5
» $8,°2)
self.fcl nn.LineaP§16 *)

, 120)

6
1
5
8

*
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

forward(self, x):
x = F.max_pool2d(F.relu(self.convl(x)), (2, 2))

F.max_pool2d(F.relu(self.conv2(x)), 2)
x.view(-1, self.num _flat features(x))
F.relu(self.fcl(x
F.relu(self.fc2(x
self.fc3(x)

urn X

T X XX XX

(ool [| I T I T |

e

EXAMPLE WITH A CUSTOM MODULE

nn.Module

model = MyModel(**kwargs)

model.x = nn.ParameterList([
torch.randn((10, 10), requires_grad=True),
torch.randn((10, 10), requires_grad=True)

model.x = [
torch.randn((10, 10), requires_grad=True),
torch.randn((10, 10), requires_grad=True)

PARAMETERLIST USAGE

nn.Module

* if we create a Net object and print it we obtain the following output:

Net (

(convl): Conv2d(l, 6, kernel size=(5, 5), stride=(1, 1))
conv2): Conv2d(6, 16, kernel size=(5, 5), stride=(1, 1))
fcl): Linear(in features=400, out features=120, bias=True)
fc2): Linear (in features=120, out features=84, bias=True)

(
(
(
(

fc3): Linear (in features=84, out features=10, bias=True)

* We can see the two convolutional layers and the three fully connected layers.

PRINT OUTPUT

nn.Module

INTRODUCTION TO PYTORCH

* To define a training loop we need a loss and an optimizer

* torch.nn defines many different loss functions
°* nn.MSELoss, nn.CrossEntropyLoss, nn.NLLLoss, nn.BCELoss, ...

* You can also use the functional version, defined in nn.functional. The only difference is that you don’t need to
create an object.

* Always check to documentation for the correct shape and input arguments (does the loss needs logits or
probabilities? Which dimension should be the last? Is the average for each element or for each sample?)

nn.functional

net Net %
out net

loss = F. SELoss(out, target)

COMPUTING LOSSES

nn.Functional

* Simple gradient descent:

loss.backward()

* Note the call to the zero_grad method. It is needed to reset the gradient buffers

* You can also use other optimizers defined in torch.optim (next slide)
* Adam, RMSProp...

* they take as arguments the learning rate, momentum, 12 weight decay

OPTIMIZING THE MODEL WITH OFF-THE-SHELF OPTIMIZERS

torch.optim

criterion = nn.CrossEntropylLoss()
optimizer = optim.SGD(net.parameters(), 1lr=0.001, momentum=0.9)

epoch range(100) :

running loss = 0.0
i, data enumerate(dataset):
inputs, labels = data
optimizer.zero grad()

outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizer.step()

running loss += loss.data[9]
i % 2000 == 1999:
print(%
(epoch + 1, i + 1, running_loss / 2000))
running loss = 0.0

)

Training loop

INTRODUCTION TO PYTORCH

* Available Modules:
* Convolutional layers: Conv2D, MaxPool2D
* Recurrent layers: RNN, LSTM, GRU, {RNN, LSTM, GRU}Cell
* FeedForward: Linear
* activation functions defined in torch.nn.functional

Note: modules have train/eval mode

* This is useful for layers (e.g. Dropout, BatchNormalization) that define a different behaviour during train
and test

* Always set it during training with net.train(), and disable it during the test phase (net.eval()).

SOME OFF-THE-SHELF STUFF

nn.Modules

torch.nn

model = nn.Sequential(

Feedforward T)
nn.ReLU(),

Network
nn.ReLU(),

nn.Linear(50, 10),

nn.Softmax()

y out = model(X)

Recurrent
Neural
Network

{LSTM, RNN, GRU}Cell

implement a recurrent layer.
Combining them we can build range(n_steps):
a recurrent network.

torch.nn.LSTMCell(input_size, hidden_size)

torch.zeros((batch_size, hidden _size))

torch.zeros((batch _size, hidden _size)))

The default input shape is h_prev, c_prev = (X_t, (h_prev,c_prev))

(time, batch, features) out.append(o_t)

out = torch.stack(out)
You also need to keep track

of the hidden and cell states.

For small datasets, and mostly in cases you want to go batch, you can load
the data as a numpy array and convert it to a pytorch tensor (remember to
check the dimensions in case you need to transpose some dimension)

Most of the times, use the tools in in torch.data.utils

Dataloader is used to automatize mini-batching, shuffling of the dataset,
sampling techniques and any pre-processing. Allows parallel loading

Sampler classes for sequential or random sampling from a dataset.

Check the documentation: http://pytorch.org/docs/stable/data.htm]

Datasets and loaders

24

INTRODUCTION TO PYTORCH

http://pytorch.org/docs/stable/data.html

* PyTorch provides some guidelines regarding serialization
http://pytorch.org/docs/stable/notes/serialization.html

* Save a model

torch.save(the _model.state dict(), PATH)

* Load back the model

the_model = TheModelClass(*args, **kwargs)

the_model.load_state_dict(torch.load(PATH))

* You can also use Tensorboard to log training metrics
* https://pytorch.org/docs/stable/tensorboard.html

Model Serialization and Logging

24

INTRODUCTION TO PYTORCH

http://pytorch.org/docs/stable/notes/serialization.html
https://pytorch.org/docs/stable/tensorboard.html

* Implement and train a Convolutional Neural Network to perform image classification on MNIST. Some
guidelines:

* Use torchvision to download and use MINIST
* Note that it’s a multi-class classification problem, so loss and output layer must be initialized accordingly

* Bonuses:
* Monitor the performance with tensorboard
* Use batch_norm

|
Your turn!

	Diapositiva 1
	Diapositiva 2: Key Features
	Diapositiva 3: Getting Started
	Diapositiva 4: Tensors operations and manipulation
	Diapositiva 5: Tensors
	Diapositiva 6: Tensors
	Diapositiva 7: Tensors in GPU
	Diapositiva 8: GPU Usage
	Diapositiva 9: GPU Usage
	Diapositiva 10: Tensor operations
	Diapositiva 11: Tensor indexing
	Diapositiva 12: Tensor reshaping
	Diapositiva 13: Tensor reduce
	Diapositiva 14: Tensor operations
	Diapositiva 15: Autograd
	Diapositiva 16: Autograd
	Diapositiva 17: Autograd
	Diapositiva 18: Autograd
	Diapositiva 19: Autograd
	Diapositiva 20: Building models and pipelines
	Diapositiva 21: torch.nn
	Diapositiva 22: nn.Module
	Diapositiva 23: nn.Module
	Diapositiva 24: nn.Module
	Diapositiva 25: nn.Module
	Diapositiva 26: nn.Module
	Diapositiva 27: nn.Functional
	Diapositiva 28: torch.optim
	Diapositiva 29: Training loop
	Diapositiva 30: nn.Modules
	Diapositiva 31: Feedforward Network
	Diapositiva 32: Recurrent Neural Network
	Diapositiva 33: Datasets and loaders
	Diapositiva 34: Model Serialization and Logging
	Diapositiva 35: Your turn!

