Attention-based architectures

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

DAVIDE.BACCIU@UNIPI.IT

A 2 Lectures Outline

- L22 Neural attention for structured/compound data
 - Sequence-to-sequence
 - Attention models
- L23 Dealing with very long-term dependencies
 - Multiscale networks
 - Neural memories (more attention)
 - Differentiable memory read, write, indexing

Extra Lecture
Tomorrow 12/04/2024
- h16 - Aula E

Gated RNN Refresher

Graphical Notation for Compositionality

Dealining with Compound Data

- GRNN are excellent to handle size/topology varying data in input
 - How can we handle size/topology varying outputs?
 - Sequence-to-sequence
- Structured data is compound information
 - Efficient processing needs the ability to focus on certain parts of such information
 - Attention mechanism

Sequence-to-sequence

Sequence Transduction

- Input and output are both sequences
- They may have different lengths
- Example: machine translation

The cat is on the table

Il gatto è sul tavolo

How do we model the context here?

Learning to Output Variable Length Sequences

The idea of an unfolded RNN with blank inputs-outputs does not really work well

Output sequence

Encoder

Produce a compressed and fixed length representation c of all the input sequence x_1, \dots, x_n

A LSTM/GRU layer of K cells seeded by the context vector c

Different approaches to realize this in practice

We risk to lose memory of *c* soon

If we share the parameters between encoder and decoder we can take $s_1=c$

Or, at least, assume c and s_1 have compatible size

Remember teacher forcing (only) at training time

Università di Pisa

Sequence-To-Sequence Learning

Encoder-Decoder can share parameters (but it is uncommon)

Encoder-Decoder can be trained end-to-end or independently

Reversing the input sequence in encoding typically resulted in increased performance (?!)

A Motivating Example

The cat is on the table

Il gatto è sul tavolo

On the Need of Paying Attention

- Encoder-Decoder scheme assumes the hidden activation of the last input element summarizes sufficient information to generate the output
 - Bias toward most recent past
- Other parts of the input sequence might be very informative for the task
 - Possibly elements appearing very far from sequence end

On the Need of Paying Attention

o Attention mechanisms select which part of the sequence to focus on to obtain a good \boldsymbol{c}

Università di Pis

Attention Mechanisms – Blackbox View

What's inside of the box?

The Revenge of the Gates!

Opening the Box

Opening the Box – Relevance

Opening the Box – Softmax

Opening the Box – Voting

Attention - Equations

- Relevance: $e_i = a(s, h_i)$
- Normalization: $\alpha_i = \frac{\exp(e_i)}{\sum_j \exp(e_j)}$
- Aggregation: $c = \sum_i \alpha_i h_i$

Attention module

Attention in Seq2Seq

Context is past output state

Seed considers (subset of) the input states

Learning to Translate with Attention

Bahdanau et al, Show, Neural machine translation by jointly learning to align and translate, ICLR 2015

Advanced Attention – Generalize Relevance

This component determines how much each h is correlated/associated with

Advanced Attention – Hard Attention

Sample a single encoding using probability α_i

Transformers

- First pure attention-based model
- Self-attention
- No recurrence
- Encoder-decoder architecture

Self Attention

Each element of an input sequence X_i projects into 3 vectors: **query**, **key** and **value**

Scaled self-attention

$$\sum_{j} softmax_{j} \left(\frac{Q_{i} \cdot \mathbf{K}^{T}}{\sqrt{d_{k}}} \right) V_{j}$$

Self Attention – K,V,Q Generation

Figure credit to this <u>article</u>

Self Attention – Compute Attention Score

Self Attention – Produce Output

Self-attention multiplication 0.0 0.0 multiplication 1.0 4.0 0.0 multiplication 1.0 3.0 0.5 2 6 3

Self Attention - MultiHead

Is self-attention a good mechanism to model temporal dependencies?

What happens if I randomly shuffle some tokens?

(Absolute) Positional Encoding

- Self-attention is orderindependent
- But in sequences we need ordering information
- word embedding + positional embedding

Attention in Vision

Attention-Based Captioning – Focus Shifting

Soft Attention

Attention-Based Captioning - Generation

Learns to correlate textual and visual concepts

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

Helps understanding why the model fails

A large white bird standing in a forest.

A woman holding a clock in her hand.

Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

Attention-Based Captioning – The Model

Encodings associated to *n* image regions

From convolutional layers rather than from fully connected

Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

The Vision Transformer (ViT)

A. Dosovitskiy et al, ICLR 2021

Transformer Encoder Lx **MLP** Norm Multi-Head Attention Norm Embedded **Patches**

Take Home Messages

- Attention.. Attention.. and, again, attention
 - Soft attention is nice because makes everything fully differentiable
 - Hard attention is stochastic hence cannot Backprop
 - Empirical evidences of them being sensitive to different things
- Encoder-Decoder scheme
 - A general architecture to compose heterogeneous models and data
 - Decoding allows sampling complex predictions from an encoding conditioned distribution
- Transformers as low-inductive bias architectures
 - Need huge amounts of data to generalize

