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A 2 Lectures Outline
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○ L22 - Neural attention for structured/compound data

● Sequence-to-sequence 

● Attention models

○ L23 - Dealing with very long-term dependencies

● Multiscale networks

● Neural memories (more attention)

● Differentiable memory read, write, indexing

Extra Lecture

Tomorrow 12/04/2024 
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Gated RNN Refresher
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Graphical Notation for Compositionality
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LSTM CELL

CELL

LSTM 
CELL

LSTM 
CELL

LSTM 
CELL

Use a simplified (and overloaded) 
graphical notation to represent 
GRNN layers and stacks of GRNN



Dealining with Compound Data
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○ GRNN are excellent to handle size/topology varying data in input

● How can we handle size/topology varying outputs?

● Sequence-to-sequence

○ Structured data is compound information

● Efficient processing needs the ability to focus on certain parts of such 
information 

● Attention mechanism



Sequence-to-sequence



Sequence Transduction

○ Input and output are both sequences

○ They may have different lengths

○ Example: machine translation

How do we model the context here?

The cat is on the table Il gatto è sul tavolo

8



Learning to Output Variable Length Sequences
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𝑥1 𝑥2 𝑥3 𝑥𝑛

…

𝑦1 𝑦2 𝑦3

…

𝑦𝑚

Input sequence

Output sequence

The idea of an unfolded RNN with blank 
inputs-outputs does not really work well

∎ ∎ ∎ ∎

∎ ∎ ∎ ∎

The approach is based on an 
encoder-decoder scheme



Encoder
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𝑥1 𝑥2 𝑥3 𝑥𝑛

…

Produce a compressed and fixed length representation 𝑐 of 
all the input sequence 𝑥1, … , 𝑥𝑛

𝑊𝑖𝑛 𝑊𝑖𝑛 𝑊𝑖𝑛𝑊𝑖𝑛

𝑊ℎ 𝑊ℎ 𝑊ℎ
ℎ1 ℎ2 ℎ3 ℎ𝑛

𝑐

Originally 𝑐 = ℎ𝑛

Activations of an 
LSTM/GRU layer of K 
cells



Decoder
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𝑐

…
𝑊ℎ

′ 𝑊ℎ
′ 𝑊ℎ

′
𝑠1 𝑠2 𝑠3 𝑠𝑛

𝑦1 𝑦2 𝑦3 𝑦𝑚
𝑊𝑜𝑢𝑡 𝑊𝑜𝑢𝑡 𝑊𝑜𝑢𝑡 𝑊𝑜𝑢𝑡

A LSTM/GRU layer of K 
cells seeded by the 
context vector 𝑐

Different approaches to 
realize this in practice



Decoder
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𝑐

…
𝑊ℎ 𝑊ℎ 𝑊ℎ

𝑠1 𝑠2 𝑠3 𝑠𝑛

𝑦1 𝑦2 𝑦3 𝑦𝑚
𝑊𝑜𝑢𝑡 𝑊𝑜𝑢𝑡 𝑊𝑜𝑢𝑡 𝑊𝑜𝑢𝑡

If we share the parameters between 
encoder and decoder we can take 𝑠1 = 𝑐

Or, at least, assume 𝑐 and  𝑠1 have compatible size

We risk to lose 
memory of 𝑐 soon



Decoder
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𝑐

…
𝑊ℎ

′ 𝑊ℎ
′ 𝑊ℎ

′
𝑠1 𝑠2 𝑠3 𝑠𝑛

𝑦1 𝑦2 𝑦3 𝑦𝑚
𝑊𝑜𝑢𝑡 𝑊𝑜𝑢𝑡 𝑊𝑜𝑢𝑡 𝑊𝑜𝑢𝑡

𝑐 is contextual information kept throughout 
output generation 

𝑊𝑐



Decoder
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𝑐

…
𝑊ℎ 𝑊ℎ 𝑊ℎ

𝑠1 𝑠2 𝑠3 𝑠𝑛

𝑦1 𝑦2 𝑦3 𝑦𝑚
𝑊𝑜𝑢𝑡 𝑊𝑜𝑢𝑡 𝑊𝑜𝑢𝑡 𝑊𝑜𝑢𝑡

It is better to work on a one-step-ahead scheme

𝑦1
𝑊𝑖𝑛

𝑦2
𝑊𝑖𝑛

𝑦𝑚−1

𝑊𝑖𝑛

𝑊𝑐

Remember teacher forcing (only) at training time 

𝑠𝑖 = 𝑓(𝑐, 𝑠𝑖−1, 𝑦𝑖−1)



Sequence-To-Sequence Learning 
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𝑐

…𝑠1 𝑠2 𝑠3 𝑠𝑛

𝑦1 𝑦2 𝑦3 𝑦𝑚

𝑦1 𝑦2 𝑦𝑚−1

𝑥1 𝑥2 𝑥3 𝑥𝑛

…ℎ1 ℎ2 ℎ3 ℎ𝑛

Encoder-Decoder can share
parameters (but it is uncommon)

Encoder-Decoder can be trained 
end-to-end or independently

Reversing the input sequence in 
encoding typically resulted in 
increased performance (?!)



A Motivating Example

The   cat is on   the   table

Il   gatto   è   sul   tavolo

16



Attention



On the Need of Paying Attention
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○ Encoder-Decoder scheme assumes the hidden activation of the last input 
element summarizes sufficient information to generate the output

● Bias toward most recent past

○ Other parts of the input sequence might be very informative for the task
● Possibly elements appearing very far from sequence end

𝑐
𝑥1 𝑥2 𝑥3 𝑥𝑛

…ℎ1 ℎ2 ℎ3 ℎ𝑛



On the Need of Paying Attention
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○ Attention mechanisms select which part of the sequence to focus 
on to obtain a good 𝑐

𝑥1 𝑥2 𝑥3

…ℎ1 ℎ2 ℎ3

𝑐

Attention module

𝑥𝑛

ℎ𝑛



Attention Mechanisms – Blackbox View
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Attention Module

ℎ1 ℎ2 ℎ3 ℎ𝑛…

𝑠

𝑐
Aggregated seed

Encodings

What’s inside of the box?

Context info



What’s inside of the box?
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The Revenge of the Gates!



Opening the Box
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ℎ1 ℎ2 ℎ3 ℎ𝑛
…

𝑠

𝑐
+ + + +

× × × ×

+

𝑒1 𝑒2 𝑒3 𝑒𝑛

𝛼1 𝛼2 𝛼3
𝛼𝑛

SOFTMAX



Opening the Box – Relevance
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ℎ1 ℎ2 ℎ3 ℎ𝑛
…

𝑠

𝑐
+ + + +

× × × ×

+

𝑒1 𝑒2 𝑒3 𝑒𝑛

𝛼1 𝛼2 𝛼3
𝛼𝑛

Tanh layer fusing each encoding with 
current context 𝑠

𝑒𝑖 = a(𝑠, ℎ𝑖)

SOFTMAX



𝛼𝑖 =
exp(𝑒𝑖)

σ𝑗 exp(𝑒𝑗)

Opening the Box – Softmax
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ℎ1 ℎ2 ℎ3 ℎ𝑛
…

𝑠

𝑐
+ + + +

× × × ×

+

𝑒1 𝑒2 𝑒3 𝑒𝑛

𝛼1 𝛼2

A differentiable max selector 
operator 

𝛼3
𝛼𝑛𝛼1 𝛼2

SOFTMAX



Opening the Box – Voting
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ℎ1 ℎ2 ℎ3 ℎ𝑛
…

𝑠

𝑐
+ + + +

× × × ×

+

𝑒1 𝑒2 𝑒3 𝑒𝑛

𝛼1 𝛼2

Aggregated seed by  (soft) attention 
voting

𝛼3
𝛼𝑛

SOFTMAX

𝑐 =

𝑖

𝛼𝑖ℎ𝑖



Attention - Equations

○ Relevance: 𝑒𝑖 = a 𝑠, ℎ𝑖

○ Normalization: 𝛼𝑖 =
exp(𝑒𝑖)

σ𝑗 exp(𝑒𝑗)

○ Aggregation: 𝑐 = σ𝑖 𝛼𝑖ℎ𝑖

𝑥1 𝑥2 𝑥3

…ℎ1 ℎ2 ℎ3

𝑐

Attention module

𝑥𝑛

ℎ𝑛

𝑠



Attention in Seq2Seq

DAVIDE BACCIU - ISPR COURSE 27

…𝑠1 𝑠2 𝑠3 𝑠𝑛

𝑦1 𝑦2 𝑦3 𝑦𝑚

𝑥1 𝑥2 𝑥3 𝑥𝑛

…ℎ1 ℎ2 ℎ3 ℎ𝑛

𝑒1 𝑒2 𝑒3 𝑒𝑛

SOFTMAX

Context is past output state

Seed considers (subset of) the 
input states

𝑐

𝛼1

𝛼3

𝛼𝑛

×

𝛼2
×

×

×

×

×

×

×



Learning to Translate with Attention
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Bahdanau et al, Show, Neural machine translation by jointly learning to align and translate, ICLR 2015



Advanced Attention – Generalize Relevance

DAVIDE BACCIU - ISPR COURSE 29

ℎ1 ℎ2 ℎ3 ℎ𝑛
…

𝑠

𝑁𝑒𝑡1

× × × ×

+

𝑒1 𝑒2 𝑒3 𝑒𝑛

𝛼1 𝛼2 𝛼3
𝛼𝑛

SOFTMAX

This component determines how much each h is correlated/associated with 
current context s

𝑁𝑒𝑡2 𝑁𝑒𝑡3 𝑁𝑒𝑡𝑛



Advanced Attention – Hard Attention
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ℎ1 ℎ2 ℎ3 ℎ𝑛
…

𝑠

𝑁𝑒𝑡1

× × × ×

𝑒1 𝑒2 𝑒3 𝑒𝑛

𝛼1 𝛼2 𝛼3
𝛼𝑛

SOFTMAX

Sample a single encoding using probability 𝛼𝑖

𝑁𝑒𝑡2 𝑁𝑒𝑡3 𝑁𝑒𝑡𝑛

Random Sample



Transformers

○ First pure attention-based

model

○ Self-attention

○ No recurrence

○ Encoder-decoder architecture

Attention Is All You Need, 

https://arxiv.org/pdf/1706.03762.pdf

31



Self Attention
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Each element of an input 

sequence 𝑋𝑖 projects into 

3 vectors: query, key and 

value

Scaled self-attention



𝑗

𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗
𝑄𝑖 ⋅ 𝑲

𝑇

𝑑𝑘
𝑉𝑗



Self Attention – K,V,Q Generation
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Figure credit to this article

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a


Self Attention – Compute Attention Score
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Self Attention – Produce Output
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Self Attention – MultiHead
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Strubell et al, Linguistically-Informed Self-Attention for Semantic Role Labeling,  EMNLP 2018

concat



Is self-attention a good mechanism to model 

temporal dependencies?

What happens if I randomly shuffle some 

tokens?

38



(Absolute) Positional Encoding

○ Self-attention is order-

independent

○ But in sequences we need 

ordering information

○ word embedding + 

positional embedding

39

𝑃𝐸 𝑝, 2𝑖 = sin(𝑝/100002𝑖/𝑑)
𝑃𝐸 𝑝, 2𝑖 + 1 = c𝑜𝑠(𝑝/100002𝑖/𝑑)

frequency

P
o

s
it
io

n
s
 p

embedding dimensions 𝑖 ∈ {1, 𝑑}

Attention Is All You Need, 

https://arxiv.org/pdf/1706.03762.pdf



Attention in Vision



Attention-Based Captioning – Focus Shifting

DAVIDE BACCIU - ISPR COURSE 42

Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

Soft Attention

Hard Attention



Attention-Based Captioning - Generation
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Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

Learns to correlate textual and visual concepts

Helps understanding why the model fails



Attention-Based Captioning – The Model
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Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

Encodings associated 
to n image regions

From convolutional 
layers rather than 
from fully connected



The Vision Transformer (ViT)
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A. Dosovitskiy et al, ICLR 
2021



Take Home Messages 
○ Attention.. Attention.. and, again, attention

● Soft attention is nice because makes everything fully differentiable
● Hard attention is stochastic hence cannot Backprop

● Empirical evidences of them being sensitive to different things

○ Encoder-Decoder scheme
● A general architecture to compose heterogeneous models and data

● Decoding allows sampling complex predictions from an encoding conditioned 
distribution

○ Transformers as low-inductive bias architectures
● Need huge amounts of data to generalize
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