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A 2 Lectures Outline

o L22 - Neural attention for structured/compound data

e Seqguence-to-sequence
e Attention models

T

o L23 - Dealing with very long-term dependencies

e Multiscale networks Extra Lecture
) ] = Tomorrow 12/04/2024
e Neural memories (more attention) —h16 — AulaE

e Differentiable memory read, write, indexing
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Gated RNN Refresher
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Graphical Notation for Compositionality
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N Use a simplified (and overloaded)
\k CELL > graphical notation to represent
\k GRNN layers and stacks of GRNN
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Dealining with Compound Data

o GRNN are excellent to handle size/topology varying data in input
e How can we handle size/topology varying outputs?
e Sequence-to-sequence

o Structured data is compound information

o Efficient processing needs the ability to focus on certain parts of such
information

e Attention mechanism
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Sequence-to-seguence




Sequence Transduction

o Input and output are both sequences
o They may have different lengths

o Example: machine translation

The cat is on the table » |l gatto e sul tavolo

How do we model the context here?




Learning to Output Variable Length Sequences

The idea of an unfolded RNN with blank
inputs-outputs does not really work well

Output sequence

4 A A\
- = = u Yi Y2 Y3 Ym
\§ J
Y The approach is based on an

Input sequence encoder-decoder scheme
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Encoder

Produce a compressed and fixed length representation ¢ of
all the input sequence x4, ..., X,
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Decoder
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Different approaches to
realize this in practice
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Decoder

Y1 Y2 Y3 Ym
Wt We risk to lose
memory of ¢ soon
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Or, at least, assume ¢ and s; have compatible size
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Decoder
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c is contextual information kept throughout
output generation
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Decoder

S1 S Sz| -+ si = f(¢,Si—1,Yi-1)
Wh 2 W ' Wi
IWin IWi IWi
A "Y1 " Y2 Ym-1

' It is better to work on a one-step-ahead scheme
C Remember teacher forcing (only) at training time
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Sequence-To-Sequence Learning

Encoder-Decoder can share
parameters (but it is uncommon)

Encoder-Decoder can be trained
end-to-end or independently

hy " h, - - - — l Reversjlng thg input sequenFe in
¢ encoding typically resulted in
increased performance (?!)
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A Motivating Example

The cat I1s on the table

Il gatto e sul tavolo

I ———————————————————




Attention




On the Need of Paying Attention

o Encoder-Decoder scheme assumes the hidden activation of the last input
element summarizes sufficient information to generate the output
e Bias toward most recent past

o Other parts of the input sequence might be very informative for the task
e Possibly elements appearing very far from sequence end
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On the Need of Paying Attention

~._ Attention module

o Attention mechanisms select which part of the sequence to focus
on to obtain a good ¢
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Attention Mechanisms — Blackbox View
Aggregated seed[c

4 N

What’s inside of the box?

Context info

T © Y

Encodings




What’s inside of the box?
The Revenge of the Gates!
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Opening the Box




Opening the Box — Relevance

Tanh layer fusing each encoding with I C e; = a(s, h;)

current context s / | \




Opening the Box — Softmax

A differentiable max selector I C exp(e;)

operator / | \cx Zj exp(e;)
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Opening the Box — Voting

Aggregated seed by (soft) attention 1t ¢ z o h
"™l

voting //’
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Attention - Equations

o Relevance: e; = a(s, h;)

exp(e;)
Zj exp(ej)

o Normalization: a; =

o Aggregation: c = ),; a;h;

Attention module




Attention in Seg2Seq

Context is past output state

Seed considers (subset of) the
iInput states
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Learning to Translate with Attention
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Bahdanau et al, Show, Neural machine translation by jointly learning to align and translate, ICLR 2015
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Advanced Attention — Generalize Relevance

This component determines how much each h is correlated/associated with

current context s / \




Advanced Attention — Hard Attention

Sample a single encoding using probability «;

/[ Random Sample }\




Attention Is All You Need,
https://arxiv.org/pdf/1706.03762.pdf
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Self Attention

a i Self—attentiorm
Each element of an input ’
sequence X; projects into Q=pAT 1 0,X Nit
3 vectors: query, key and “ Bt St
value
Input, Keys,
X K=3,17+ ;X
Scaled self-attention T
Q- K" D
softmax; | —— |V} Values,
\/d_k \_  V=8,17+2,X

J
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Self Attention — K,V,Q Generation

|||||||

Figure credit to this article



https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Self Attention — Compute Attention Score
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Self Attention — Produce Output

Self-attention

multiplication mmm - multiplication nm - multiplication mnm -—

query score score score
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Self Attention — MultiHead
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Nobel committee awards Strickland who advanced optics
Strubell et al, Linguistically-Informed Self-Attention for Semantic Role Labeling, EMNLP 2018
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|s self-attention a good mechanism to model
temporal dependencies?

What happens if | randomly shuffle some
tokens?




Attention Is All You Need,
https://arxiv.org/pdf/1706.03762.pdf

(Absolute) Positional Encoding

. . frequency
o Self-attention is order- Y
independent PE(p, 2i) = sin(p/10000%"/%)

PE(p,2i + 1) = cos(p/10000%/%)
o Butin sequences we need
ordering information

embedding dimensions i € {1, d}

o word embedding +
positional embedding

Positions p




Attention in Vision




Attention-Based Captioning — Focus Shifting

Soft Attention

il BEF
PEFEEREERR

bird flying over body water

Hard Attention

Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015
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Attention-Based Captioning - Generation

Learns to correlate textual and visual concepts

» \n

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
m— mountain in the background.

Helps understandlng why the model fails

A Iarge wh|te bird standing in a forest. A woman holding a clock in her hand.

Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015
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Attention-Based Captioning — The Model
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Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015
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The Vision Transformer (ViT)

Transformer Encoder

A

Vision Transformer (ViT)
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Take Home Messages

o Attention.. Attention.. and, again, attention
e Soft attention is nice because makes everything fully differentiable
e Hard attention is stochastic hence cannot Backprop
e Empirical evidences of them being sensitive to different things

o Encoder-Decoder scheme

e A general architecture to compose heterogeneous models and data

e Decoding allows sampling complex predictions from an encoding conditioned
distribution

o Transformers as low-inductive bias architectures
e Need huge amounts of data to generalize
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