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Lecture Outline

o Introduction to the Generative DL module

e Motivations and taxonomy

o Explicit generative learning (Part | of Ill)

e Learning distributions with fully visible information (RNN)

e Learning distributions with latent information (VAE)

o VAE Application Examples
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Generative DL Module




Why Generative?

o Focusing too much on discrimination "
. b ! »,z PY o
rather than on characterizing data can Wr .,\ .q‘#-
cause issues . ".b} o 3
. N T L v ]
e Reduced interpretability - , W
e Adversarial examples ‘, -

o Generative models (try to) characterize data distribution
e Understand the data = Understand the world
e Understand data variances = Learn to steer them
e Understand normality = Detect anomalies
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Approaching the Problem from a DL Perspective

Given training data, learn a (deep) neural network that can generate
new samples from (an approximation of) the data distribution

Training data ~P(x) Generated data ~Pg(x)
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Approaching the Problem from a DL Perspective

Given training data, learn a (deep) neural network that can generate
new samples from (an approximation of) the data distribution

Two approaches

o Explicit = Learn a model density Pg(x)

o Implicit = Learn a process that samples data from Py (x) = P(x)




A Taxonomy

Generative DL

Explicit Implicit
Tractable Intractable
densities densities
Visible Latent Direct Stochastic
sampling RNN Generative Generative
Flow-based Adversarial Stochastic
Networks Networks
Variational Stochastic
Variational AEs Boltzmann
Diffusion Model Machines

Adapted from |. Goodfellow, Tutorial on Generative Adversarial Networks, 2017
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Density Learning with
Full Observability




Learning with Fully Visible Information

If all information is fully visible the joint distribution can be computed
from the chain rule factorization

N
Bayesian .
Networks P(x) _ ‘ ‘ P(xilxl' ""xi—l)
i )
Probability of a pixel having a certain

intensity value, given the known intensity
of its predecessor

Need to be able to define a / \ Conditional distribution
sensible ordering for the chain rule difficult to compute
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Approximating the Conditional Probability

If all information is fully visible the joint distribution can be computed
from the chain rule factorization

o 00 0

O OO OO

@

Scan the image according to a schedule and encode the
dependency from previous pixels in the states of an RNN
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Approximating the Conditional Probability

If all information is fully visible the joint distribution can be computed
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Approximating the Conditional Probability

If all information is fully visible the joint distribution can be computed
from the chain rule factorization

O OO OO

Scan the image according to a schedule and encode the
dependency from previous pixels in the states of an RNN
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Generating Images Pixel by Pixel
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PixelCNN Row LSTM Diagonal BiLSTM

Input

A. van der Oord et al., Pixel Recurrent Neural Networks, 2016
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Generating Images Pixel by Pixel - Results
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A. van der Oord et al., Pixel Recurrent Neural Networks, 2016




Variational
Autoencoders




From Visible to Latent Information

With only visible information, we try to learn the 6 parameterized model
distribution

N
PH(x) — I_IPQ(xilxl' ""xi—l)
i
Now we introduce a latent process regulated by unobservable variables z

Po(x) = j Po(x12)Py(2)dz

\

Typically, intractable for nontrivial models
(cannot be computed for all Z assignments)
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A Neural Network with Latent Variables?

5 _ It is not difficult to cast a

probabilistic twist on AE (by making
[ I Decoder  encoder-decoder maps probabilistic)

Encoder

X

Autoencoder (AE)
neural networks
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A Deeper Probabilistic Push

As an additional push in the probabilistic interpretation, we assume
to be able to generate the reconstruction from a sampled latent
representation

Sample from the true
conditional P(X|z)

"~~~/

X

Sample latent variables from the
true prior P(z)

VA

Of course we don’t have access to the true distributions, so how do
we approximate them?
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Variational Autoencoders (VAE) — The Catch

» £12) distribut
Represent the P(X|z) distribution

Decoder g I I ——— through a neural network g
7 (remember the denoising autoencoder)
Sample z from a simple distribution At training time sample z conditioned
such as a Gaussian on data x and train the decoder g to

reconstruct x itself from z
z~N (u(x), o(x)) —
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VAE Training

ldeally, one would like to train maximizing

L(D) = ﬂp(xa
H j P(x;|2)P(z)dz
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VAE Training — Is it all this easy?

Ideally, one would like to train maximizing \

L(D) = 1_[ P(x;) Unfortunately for you
l_Up(x 2)P(2)dz ~
— Intractable

e

Variational approximation




Variational Approximation
The revenge of the ELBO (Evidence Lower BOund)
log P(x|6) > Eq[log P(x,2)] — Eqllog Q(2)] = L(x,6, )

Maximizing the ELBO allows approximating from below the
intractable log-likelihood log P (x)

L(x,0,¢) = EQ[lOg P(x|z)] +‘IEQ llog P(2)] — EQ[lOg Q(Z)],

| |
Decoder estimate of the / —KL(Q(z|®)||P(z|8))

reconstruction (based on a sampled z)

_» Need a Q(z) function to

(It is not differentiable!) approximate P(z)




Reparameterization Trick

P —— -

Z Z
Non-differentiable |
operation I \
Sample | ___/_ ___ --1 | Sample
z~N (u(x), o (x)) : |
I ) I : ,I.l(X) O'(.X')‘ : ENN(O,l)
o e e e o |
pu(x) aj(x) Sampling is limited to non differentiated

variable e = Can backpropagate




Variational Autoencoder — The Full Picture

~~

Encoder network ¥ _ Decoder network
0(z|x, ) with [ [ P(¥|z, 6) with
parameters ¢ Decoder g parameters 6
:
Z

SR

G(x)‘ Sample
¥ e~N(0,1)

Encoder Q

Training time architecture




VAE Training

Training is performed by backpropagation on 8, ¢ to optimize the ELBO

reconstruction
A

L(x,0,¢) =IIEQ[log P(x|z = u(x) + o2 (x) * ¢, 9)]\
—KL(Q(z|x, d)]| |p(z|e))} regularization

~

Can be computed in closed form when
both Q(z) and P(z) are Gaussians

Train the encoder to behave like a
KLV (u(x),0(x)) [[V(0,1))  Gaussian prior with zero-mean

and unit-variance
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VAE Loss — Another view on
differentiability

In principle we would like to optimize the following loss by SGD

Ey-p [[Ez~Q[108 P(x|z)] - KL(Q(z|x, 9)||P(2))]

which can be rearranged following the reparametrization trick

Ex-p[Ee~n(o|log P(x|z = u(x) + a/2(x) * €,6)| - KL(Q(z|x, $)||P(2))]

No expectation is w.r.t distributions that depend on model parameters

= We can move gradients into them
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Information Theoretic Interpretation

Ex.plE; [logP(x|Z)] KL(Q(z|x,®)||P(2))]

P &

Number of bits required to Number of bits required to convert an
reconstruct x from z under uninformative sample from P(z) into a
the ideal encoding (i.e. sample from Q(z|x)

Q(z|x). is generally Information gain - Amount of extra
suboptimal) information that we get about X when z

comes from Q(z|x) instead of from
P(2)
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Sampling the VAE (a.k.a. testing)

At test time detach the encoder, sample a

W random encoding and generate the
sample as the corresponding

Decoder g

reconstruction

Sample
z~N(0,1)




VAE vs Denoising/Contractive AE

Contractive AE X noisy samples x original sample
A A
//z’ \\\\A
X X
X
X XX y 4
X _-
~~~~~~~ - - _._._,_._.---:?
A A
Variational AE | _-----"TTTTTo-d L
3
—

k4
e
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VAE Examples

latent space

n

train i

round 1
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Reconstruction of points sampled

Organization of data in the

from latent space

latent space

Image credits @ fastfowardlabs.com
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Looking Right

VAE Examples - Faces
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Hou et al, Deep Feature Consistent Variational Autoencoder, 2017

Looking Left




Conditional Generation (CVAE)

* I

|

|

Decoder g
. Z \
Training Sample
e~N(0,1)
Encoder Q "’///////////

F

Decoder g

-

Sample
z~N(0,1)

Inference

Learns the conditional distribution P(x|y)
(this is the simplest possible form of CVAE)




Take Home Messages

o PixelRNN/ PixelCNN — Learn explicit distributions by

optimizing exact likelihood
o Yields good samples and excellent likelihood estimates
o Inefficient sequential generation

o VAE — Learn complex distributions over latent variables
through a variational approximation using neural

networks
o Learns a latent representation useful for inference
o Canlead to poor generated sample quality
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Next Lecture

o Learning a sampling process
o Generative adversarial networks
o Hybrid Variational-Adversarial approaches
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