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Lecture Outline
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○ Introduction to the Generative DL module
● Motivations and taxonomy

○ Explicit generative learning (Part I of III)
● Learning distributions with fully visible information (RNN)

● Learning distributions with latent information (VAE)

○ VAE Application Examples



Generative DL Module



Why Generative?
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○ Focusing too much on discrimination 

rather than on characterizing data can 

cause issues

● Reduced interpretability

● Adversarial examples

○ Generative models (try to) characterize data distribution

● Understand the data ⟹ Understand the world

● Understand data variances ⟹ Learn to steer them 

● Understand normality ⟹ Detect anomalies



Generative Learning is Unsupervised 
Learning
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Labelled data is costly and difficult

to obtain

A sustainable future for deep learning

● Learning the latent structure of data

● Discover important features

● Learn task independent representations

● Introduce (if any) supervision only on few samples



Approaching the Problem from a DL Perspective
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Training data ~𝑃(𝑥) Generated data ~𝑃𝜃(𝑥)

𝜃

Given training data, learn a (deep) neural network that can generate 
new samples from (an approximation of) the data distribution



Approaching the Problem from a DL Perspective
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Two approaches

○ Explicit ⟹ Learn a model density 𝑃𝜃(𝑥)

○ Implicit ⟹ Learn a process that samples data from 𝑃𝜃(𝑥) ≈ 𝑃(𝑥)

Given training data, learn a (deep) neural network that can generate 
new samples from (an approximation of) the data distribution



A Taxonomy
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Adapted from I. Goodfellow, Tutorial on Generative Adversarial Networks, 2017

Generative DL

Explicit Implicit

Visible Latent

Variational Stochastic

Direct Stochastic

Sampling RNN
Flow-based

Variational AEs
Diffusion Model

Boltzmann 
Machines

Generative 
Adversarial 
Networks

Generative 
Stochastic 
Networks

Tractable 
densities

Intractable 
densities
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Density Learning with 
Full Observability



Learning with Fully Visible Information
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If all information is fully visible the joint distribution can be computed 

from the chain rule factorization

𝑃 𝒙 =ෑ

𝑖

𝑁

𝑃(𝑥𝑖|𝑥1, … , 𝑥𝑖−1)

Probability of a pixel having a certain 
intensity value, given the known intensity 
of its predecessor

Need to be able to define a 
sensible ordering for the chain rule

Conditional distribution 
difficult to compute

Bayesian 
Networks



Approximating the Conditional Probability
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If all information is fully visible the joint distribution can be computed 

from the chain rule factorization

Scan the image according to a schedule and encode the 

dependency from previous pixels in the states of an RNN
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Approximating the Conditional Probability
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Approximating the Conditional Probability
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If all information is fully visible the joint distribution can be computed 

from the chain rule factorization

Scan the image according to a schedule and encode the 

dependency from previous pixels in the states of an RNN



Generating Images Pixel by Pixel
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A. van der Oord et al., Pixel Recurrent Neural Networks, 2016

State

Input

PixelCNN Row LSTM Diagonal BiLSTM



Generating Images Pixel by Pixel - Results
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A. van der Oord et al., Pixel Recurrent Neural Networks, 2016

32x32 CIFAR-10 32x32 ImageNet



Variational 
Autoencoders



From Visible to Latent Information
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With only visible information, we try to learn the 𝜃 parameterized model 
distribution

𝑃𝜃 𝒙 =ෑ

𝑖

𝑁

𝑃𝜃(𝑥𝑖|𝑥1, … , 𝑥𝑖−1)

Now we introduce a latent process regulated by unobservable variables 𝒛

𝑃𝜃 𝒙 = න𝑃𝜃 𝒙 𝒛 𝑃𝜃 𝒛 𝑑𝒛

Typically, intractable for nontrivial models 
(cannot be computed for all 𝒛 assignments)



A Neural Network with Latent Variables?
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𝒛

𝒙

𝒙

Encoder

Decoder

𝑃𝑒(𝒛|𝒙)

𝒙

𝒛

𝒙

𝑃𝑑(𝒙|𝒛)

Autoencoder (AE) 
neural networks

We have already 
introduced a 
probabilistic twist on AE



A Deeper Probabilistic Push
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As an additional push in the probabilistic interpretation, we assume 
to be able to generate the reconstruction from a sampled latent 
representation

𝒛

𝒙
Sample from the true 
conditional 𝑃(𝒙|𝒛)

Sample latent variables from the 
true prior 𝑃(𝒛)

Of course we don’t have access to the true distributions, so how do 
we approximate them?



Variational Autoencoders (VAE) – The Catch
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𝒛

𝒙
Represent the 𝑃(𝒙|𝒛) distribution 
through a neural network g
(remember the denoising autoencoder)

Decoder g

Sample 𝒛 from a simple distribution 
such as a Gaussian

At training time sample z conditioned 
on data x and train the decoder g to 
reconstruct x itself from z

𝑧~𝒩(𝜇 𝒙 , 𝜎(𝒙))



VAE Training
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𝐿 𝐷 =ෑ

𝑖=1

𝑁

𝑃 𝒙𝒊

=ෑ

𝑖=1

𝑁

න𝑃 𝒙𝒊 𝒛 𝑃 𝒛 𝑑𝒛

Ideally, one would like to train maximizing



VAE Training – Is it all this easy?
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𝐿 𝐷 =ෑ

𝑖=1

𝑁

𝑃 𝒙𝒊

=ෑ

𝑖=1

𝑁

න𝑃 𝒙𝒊 𝒛 𝑃 𝒛 𝑑𝒛

Ideally, one would like to train maximizing

Unfortunately for you: 
no!

Intractable

Variational approximation



Variational Approximation
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The revenge of the ELBO (Evidence Lower BOund)

log 𝑃 𝑥|𝜃 ≥ 𝔼𝑄 log 𝑃(𝑥, 𝑧) − 𝔼𝑄 log 𝑄 𝑧 = ℒ(𝑥, 𝜃, 𝜙)

Maximizing the ELBO allows approximating from below the 

intractable log-likelihood log 𝑃 𝑥

ℒ 𝑥, 𝜃, 𝜙 = 𝔼𝑄 log 𝑃(𝑥|𝑧) + 𝔼𝑄 log 𝑃(𝑧) − 𝔼𝑄 log𝑄 𝑧

𝐾𝐿 𝑄 𝑧|𝜙 ||𝑃(𝑧|𝜃)Decoder estimate of the 
reconstruction (based on a sampled z)

Need a Q(z) function to 
approximate P(z)(It is not differentiable!)



Reparameterization Trick
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𝒛

𝒙

Sample
𝑧~𝒩(𝜇 𝒙 , 𝜎(𝒙))

𝜇 𝒙 𝜎(𝒙)

Non-differentiable 
operation

𝒛

𝒙

Sample
𝜖~𝒩(0,1)𝜇 𝒙 𝜎(𝒙)

Sampling is limited to non differentiated 
variable 𝜖 ⟹ Can backpropagate



Variational Autoencoder – The Full Picture
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Decoder g

𝒛

𝒙

Sample
𝜖~𝒩(0,1)

𝜇 𝒙 𝜎(𝒙)

Decoder network 
𝑃(𝒙|𝒛, 𝜃) with 
parameters 𝜃

×+

Encoder Q

𝒙

Encoder network 
𝑄 𝒛|𝒙, 𝜙 with 
parameters 𝜙

Training time architecture
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VAE Training
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Training is performed by backpropagation on 𝜃, 𝜙 to optimize the ELBO

ℒ 𝑥, 𝜃, 𝜙 = 𝔼𝑄 log 𝑃(𝑥|𝑧 = 𝜇 𝑥 + 𝜎 Τ1 2 𝑥 ∗ 𝜖, 𝜃)

−𝐾𝐿 𝑄 𝑧|𝑥, 𝜙 ||𝑃(𝑧|𝜃)

reconstruction

regularization

Can be computed in closed form when 
both Q(z) and P(z) are Gaussians

𝐾𝐿 𝒩(𝜇(𝑥), 𝜎(𝑥)) ||𝒩(0,1)
Train the encoder to behave like a 
Gaussian prior with zero-mean 
and unit-variance
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VAE Loss – Another view on 
differentiability
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𝔼𝑋~𝐷[𝔼𝜖~𝒩(0,1) log 𝑃(𝑥|𝑧 = 𝜇 𝑥 + 𝜎 Τ1 2 𝑥 ∗ 𝜖, 𝜃) - 𝐾𝐿 𝑄 𝑧|𝑥, 𝜙 ||𝑃(𝑧) ]

No expectation is w.r.t distributions that depend on model parameters

⇒ We can move gradients into them
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which can be rearranged following the reparametrization trick

𝔼𝑋~𝐷[𝔼𝑧~𝑄 log 𝑃(𝑥|𝑧) - 𝐾𝐿 𝑄 𝑧|𝑥, 𝜙 ||𝑃(𝑧) ]

In principle we would like to optimize the following loss by SGD



Information Theoretic Interpretation
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Number of bits required to convert an 
uninformative sample from 𝑃 𝑧 into a 
sample from 𝑄 𝑧|𝑥

Information gain - Amount of extra 
information that we get about X when z 
comes from 𝑄 𝑧|𝑥 instead of from 
𝑃 𝑧
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𝔼𝑋~𝐷[𝔼𝑧~𝑄 log 𝑃(𝑥|𝑧) - 𝐾𝐿 𝑄 𝑧|𝑥, 𝜙 ||𝑃(𝑧) ]

Number of bits required to 
reconstruct 𝑥 from 𝑧 under 
the ideal encoding (i.e.
𝑄 𝑧|𝑥 is generally 
suboptimal)



Sampling the VAE (a.k.a. testing)
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At test time detach the encoder, sample a 

random encoding and generate the 

sample as the corresponding 

reconstructionDecoder g

𝒙

Sample
𝒛~𝒩(0,1)



VAE vs Denoising/Contractive AE
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x
x

x
x

x
x

x

x noisy samples x original sampleContractive AE

Variational AE
x

x



VAE Examples - Digits
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Image credits @ fastfowardlabs.com

Organization of data in the 
latent space

Reconstruction of points sampled 
from latent space



VAE Examples - Faces
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Latent space 
interpolation

Hou et al, Deep Feature Consistent Variational Autoencoder, 2017



Conditional Generation (CVAE)
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Decoder g

𝒙

Sample
𝒛~𝒩(0,1)

𝒚

Decoder g

𝒛

𝒙

Sample
𝜖~𝒩(0,1)

Encoder Q

𝒙

Training

Learns the conditional distribution 𝑃(𝑥|𝑦)
(this is the simplest possible form of CVAE)

Inference



Take Home Messages 
○ PixelRNN/ PixelCNN – Learn explicit distributions by 

optimizing exact likelihood
● Yields good samples and excellent likelihood estimates

● Inefficient sequential generation

○ VAE – Learn complex distributions over latent variables 
through a variational approximation using neural 
networks

● Learns a latent representation useful for inference

● Can lead to poor generated sample quality
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Next Lecture
○ Learning a sampling process

○ Generative adversarial networks

○ Hybrid Variational-Adversarial approaches
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