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Lecture Outline

❖ Motivations

❖ Formalization of the learning task: graph prediction, induction, 

transduction and generation

❖ Historical perspective: contractive and contextual models

❖ A view on modern deep learning for graphs

❖ Applications & wrap-up
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Introduction
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Why Graphs?
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Context is 
fundamental for 
the correct 
interpretation of 
information

Why Graphs?
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Graph Structured Data

Vectorial node label

𝑥𝑣

Cycle

Oriented edge/arc 𝑒𝑣𝑢
possibly with label 𝑙𝑣𝑢

𝑣

𝑢Node/vertex 𝑢

Undirected edge Structures are useful 

because allow to represent 

relationships in the data
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A Nomenclature Nightmare

Deep learning for graphs

Graph neural networks

Neural networks for graphs

Graph CNN

CNN for/on graphs

Learning graph/node embedding

Geometric deep learning
Graph Convolutional Networks

Deep Graph Networks
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Deep Learning with graphs

Hierarchical
representation 
learning allows to 
efficiently diffuse 
information 
through graph 
structure

Node 
representation 
depends on its 
context (shorter 
first-longer later)
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Predictive Tasks

Network data Structure classification/regression
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Transductive tasks

Learn to generate a 

structured prediction

Given a 

vectorial

and/or 

structured 

input

𝒚

𝒙 𝒚~𝑃(𝒚|𝒙)
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An Hystorical (and Geographical) 
Perspective
Early neural network 

approaches to deal with cyclic 

graphs of varying topology date 

back to 2005-2009

(Sperduti & Starita, 

TNN 1997)

Scarselli et al, TNN 

2009 

A. Micheli, TNN 

2009 
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Contractive - Graph Neural Networks 
(GNN)

12

❖ Extend the Recurrent/Recursive 
Neural Network approach to cyclic
graphs

❖ Handle loops through fixed points

❖ Impose dynamic weight constraints to 
yield a contractive state mapping  

Scarselli et al, TNN 2009 

https://sailab.diism.unisi.it/gnn/

https://sailab.diism.unisi.it/gnn/


Contextual - Neural Networks for 
Graphs (NN4G)

13

A. Micheli, TNN 2009 

L=1

L=2

L=3
❖ A feedforward approach to process

graphs

❖ Handle loops through layering

❖ Uses context from frozen earlier

layers compute the state on the 

node at current layer

❖ Layerwise training



Deep Graph Networks

❖Encode vertices and the graph itself into a vector space by means 

of an adaptive (learnable) mapping

❖Use the learned encodings to solve predictive and explorative tasks
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A Survey of Recent Approaches

❖ Convolutional Neural Networks for Graphs

❖ Spectral  

❖ Spatial

❖ Contextual Graph Processing

❖ Contextual Graph Convolutions

❖ Node embeddings

❖ Generative approaches
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Convolutional Neural 
Networks for Graphs

16DAVIDE BACCIU - ISPR COURSE



How to Perform Convolutions on 
Graphs?

SPATIAL DOMAIN

What is the 
equivalent of 
sliding a 
kernel to 
aggregate 
local spatial 
information?

SPECTRAL DOMAIN

Exploit the Convolution Theorem 
and Fourier analysis to perform 
convolutions in the spectral domain

ℱ 𝑓 ∗ 𝑔 = ℱ 𝑓) × ℱ(𝑔

Decompose a function 𝑓 as a
combination of vectors 𝒆𝑘 from an
orthonormal basis
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The Spectral Scenario

❖ Single weighted undirected graph

❖ 𝑤𝑖𝑗 > 0 weight of the i-j edge

❖ Functions 𝑓𝑖 attaching values (i.e. 

labels/signals  𝑥𝑖) to nodes 𝑖

❖ Task: process the signals defined on 

the graph structure
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𝑤𝑖𝑗

𝑓𝑗𝑓𝑖



Spectral Graph Convolution in 1 Slide

○ Given a graph G, the eigendecomposition of its Laplacian provides 

an orthonormal basis 𝑈 which allow to compute the graph 

convolution of its node signals 𝒇 with a filter

19

𝒇 ∗𝐺 𝒈 = ℱ−1 ℱ 𝒇) ℱ(𝒈 = 𝑈𝐖(λ)𝑈𝑇𝒇

Convolutional filter g in spectral domain

Graph equivalent of the learnable 

CNN filter matrix W

Spectral convolution matrix W 

contains information on the 

graph Laplacian



A Graph View on (Image) Convolutions

20

Visual convolutions are 

graph convolutions on a 

regular grid

Plus some key assumptions which make it 

difficult to directly apply them to graphs 

❖ Regular neighborhood

❖ Existence of a total node ordering



Node Neighborhoods 

21

Example of 4-neighborhoods

…

convolutions

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

Neighborhoods depend on node ordering: 

how can I get coherent node ordering 

across multiple graphs?



PATCHY-SAN
Niepert, Ahmed, Kutzkov, ICML 2016
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Leverage graph labelling techniques (e.g. Weisfeiler-Lehman) to determine a coherent 

ordering within the graph and between the graphs

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

Neighborhood for k=5

Parametric convolutional 

filter of size k

Determining a coherent ordering to 

match nodes to filter parameters in 

NP complete (graph normalization)



Contextual Graph 
Processing
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Neighborhood Aggregation & Layering
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What is inside of the Box?

𝒉𝑖
𝑙−1

𝒉𝑗
𝑙−1

𝒉𝑘
𝑙−1

𝒉𝑣
𝑙

A learning model of course (e.g. a neural network) including an 

aggregation function to handle size-varying neighborhoods

A simple model

𝒉𝑣
l = 𝜎 𝑾𝑙𝐴𝐺𝐺 𝒉𝑖

𝑙−1: 𝑖 ∈ 𝑁 𝑣 , ෢𝑾𝑙𝒉𝑣
𝑙−1
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The graph convolutional layer

state perm. invariant 
function

MLP/LinearMLP/Linear

Variants/extensions:

Edge-aware convolution
Attention over neighbors
Laplacian-normalized
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A Message-Passing view on Deep Graph 
Networks
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Different kinds of message-passing 
updates

DAVIDE BACCIU - ISPR COURSE

Edge Node Graph



Graph Isomorphism Network (a.k.a. 
sum is better) Xu et al, ICLR 2019

❖ A study of GNN expressivity w.r.t. WL test of graph isomorphism

❖ Choice of aggregation functions influences what structures can 

be recognized

❖ Propose a simple aggregation and concatenation model
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Graph Attention

1

Learning to weight 

contribution of other 

nodes when 

aggregating to form 

the node embedding

multihead attention

Velickovic et al, ICLR 2018
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Using Node Embedding

𝒉𝐺 =෍

𝑖∈𝐺

𝒉𝑖
𝐿

Aggregate all node 

embeddings to compute 

graph level predictions

Typically 

embedding 

from top layer

Train node level predictors

Works also for 

inductive 

learning
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Deep Graph Networks - The Complete 
Picture
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What About Pooling?
❖ Standard aggregation operates of predefined node subsets 

❖ Ignore community/hierarchical structure in the graph

❖ Need graph coarsening (pooling) operators

❖ Differentiable

❖ Graph theoretical

❖ Graph signature

DAVIDE BACCIU - ISPR COURSE

Rex Ying et al, NIPS 2018

Bacciu et al, AAAI 2023



K-MIS Graph Coarsening

DAVIDE BACCIU - - UNIVERSITY OF PISA

A proper extension of image-

pooling to graphs with 

theoretical guarantees and 

scalability

Bacciu et al, AAAI 2023
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Training the Embedding

Backpropagate

from the (graph or 

node level) error 

computed from 

the top layer 

embeddings to the 

early layers

DAVIDE BACCIU - ISPR COURSE

graph

node



Generative Approaches
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Graph Generation

Adjacency-based

Structure-based

Generate a prediction that is itself a graph
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Graph Variational Autoencoder

GraphVAE generates 

adjacency matrix up to k 

vertices along with the 

relevant edge/node features 

(for molecular data)

Simonovsky, Komodakis, ICLR-WS 2018

DAVIDE BACCIU - ISPR COURSE

Argmax a.k.a. sampling ⟹
non-differentiable



Language-Based Graph Generation

Generate a graph 

node-by-node and 

edge-by-edge 

through a 

sequential 

approach

Bacciu, Micheli, Podda, 
Neurocomputing 2020

Start token

Sample 
output dist.

Initialize 2nd net 
with state of 1st
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Generate Molecules by Fragmentation

✓ Molecule is scanned in 
SMILES order

✓ Find first breakable 
bond

✓ Break the molecule at 
that bond, set aside 
leftmost fragment

✓ Proceed recursively on 
rightmost fragment

Starting
point

✓Order is deterministic and the molecule can be reconstructed

✓Keep a vocabulary of all possible fragments found in a 
dataset

✓Graphs are transformed into fragment sequences

Podda et al, AISTATS 2020
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Diffusion Models for Graphs

DAVIDE BACCIU - ISPR COURSE

Forward noising

Backward de-

noising

Conditioning 

information 

(classifier free)

Node/edge transition 

matrices

Ninniri, Podda, Bacciu AAAI-WS 2024



Applications
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Predicting Properties of Chemical 
Compounds

Duvenaud, Maclaurin et al, NIPS 
2015

Toxicity

Quantum 

mechanical 

properties

Solubility

∼ 10−2 seconds

∼ 103 seconds

Simulation 

methodsGilmer et al, ICML 2017

Micheli et al, JCICS 2001
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Generating Molecules
Fragment-based  

deep molecule 

generation

Podda, Bacciu, Micheli, AISTATS 
2020
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Knowledge graphs

45

A natural way of 

representing 

known entities 

and relationships 

in a domain

Node/link 

embeddings are 

numerical 

encodings of 

entities and 

relationships

Davide Bacciu - Università di Pisa



Side Effects of Drug Combinations

Analyzing a multimodal 

graph of interactions

• Drug-drug

• Drug-protein

• Protein-protein

Zitnik, Agrawal, Leskovec,  Bioinformatics  2018
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Recommendation 

Systems
…and other kinds of social 
network analyses



Relational Stock 
Learning



Point Clouds – Semantic Segmentation

Build point cloud graphs

and train semantic class 

predictors based on vertex 

embeddings

Landrieu, Simonovsky, CVPR 2018
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Analysis of ICT 
systems/Blockchains
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Advanced Topics
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Unsupervised Graph Embeddings
❖ Learn unsupervised node and graph embeddings

❖ Requiring less supervised labelling

❖ Reusing embeddings across multiple tasks

❖ Mix supervised and unsupervised modules 

Fixed-size

graph

representation

Contextual Graph 
Markov Model 

(CGMM)

Probabilistic     Unsupervised      Deep
Bacciu, Errica, Micheli , ICML 2018

Supervised



Contextual Graph Markov Model 
(CGMM)

P(Q|set of neighbors)

NODE FEATURES

TRAINING ONE LAYER  AT 
A TIME!

CATEGORICAL DISTRIBUTION (C STATES)



Incremental Construction

1. Map the graph to the 

model (base case)

2. Perform inference

and freeze states

3. Add a new layer

and use frozen states

as observed variables

in the graphical model

Go back to step 2
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Computing embedding

55

✓Finding the most likely state assignment

✓The inferred latent states are used as

observable variables in subsequent layers

✓A fixed-size vector of states frequencies 

as graph encoding

# Hidden states = 4

Inferred states
(as colors)

Frequency vector
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CGMM Layer Training

56

A maximum likelihood approach to learning

Trained by Expectation-Maximization

Assumption: i.i.d. graphs

Emission distrib.

Switching Parents distrib.

Transition distrib.

Split by layer

and by arc 

=ෑ

𝑔∈𝐺

ෑ

𝑢∈g

෍

𝑖

𝐶

𝑃𝑙(𝑦𝑢|𝑄𝑢 = 𝑖)෍
ҧ𝑙∈ത𝐿

𝑃(𝐿𝑢 = ҧ𝑙)෍

𝑎=1

𝐴

𝑃
ҧ𝑙(𝑆𝑢 = 𝑎) 1

|𝒩 ҧ𝑙𝑎(𝑢)|
෍

𝑗

𝐶

𝑃
ҧ𝑙𝑎(𝑄𝑢 = 𝑖|𝑄∗

ҧ𝑙𝑎 = 𝑗) ෍

𝑣∈𝒩 ҧ𝑙𝑎(𝑢)

𝑞𝑣
ҧ𝑙 (𝑗)

DAVIDE BACCIU - ISPR COURSE



CGMM – Depth Matters…

57

…possibly more 

than width

Bacciu, Errica, Micheli , JMLR 2020
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To infinity and beyond

58

The Infinite CGMM

✓ Hierarchical Dirichlet process to sample 
(potentially) infinitely many hidden states

✓ Automatically learn the size of node 
embedding space from data

✓Choice of observations’ groups 
determined by neighbors’ states

✓Batch version for larger datasets

Castellana, Errica, Bacciu, Micheli , ICML 2022
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ICGMM – Finer grained control on 
hidden space

59

CHOSEN STATES PER LAYER CUMULATIVE GRAPH EMBEDDING SIZE
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Graph embedding by learning-free neurons 

○ Each vertex in an input graph is encoded by the hidden layer𝑣

embedding (state)
of vertex 𝑣 input feature

of vertex 𝑣
embedding (state)

of neighbors of vertex 𝑣

input weight matrix hidden weight matrix

𝐡(𝑣) = tanh(𝐕 𝐱 𝑣 + ෍

𝑣′∈𝑁(𝑣)

𝐖 𝐡(𝑣′))

𝒉(𝑣)

𝒙(𝑣) 𝒉(𝑣1) 𝒉(𝑣𝑘)…

…

𝑣1

𝑣2

𝑣𝑘

Need this to be contractive to 
ensure convergence of 

embedding
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Deep Reservoirs for Graphs

Trained in closed-form 

(e.g., pseudo-inversion, 

ridge regression)

𝒚 𝒈 = 𝐖𝐨 ෍

𝑣∈𝑉𝒈

𝒉(𝑣)

Deep reservoir 

embedding

𝒙(𝑣5)

𝒙(𝑣4)

𝒙(𝑣1)

𝒙(𝑣2)

𝒙(𝑣3)

𝒙(𝑣4)

𝒉 𝐿 (𝑣5)

𝒉 𝑳 (𝑣1)

𝒉 𝐿 (𝑣2)

𝒉 𝑳 (𝑣3)

𝒉 𝐿 (𝑣4)

𝒉 𝑳 (𝑣4)

∑
𝐖𝐨

readout layer

𝒉 𝟏 (𝑣5)

𝒉 𝟏 (𝑣1)

𝒉 𝟏 (𝑣2)

𝒉 𝟏 (𝑣3)

𝒉 1 (𝑣4)

𝒉 𝟏 (𝑣4)

first layer last layer

Gallicchio & Micheli. 

AAAI 2020.
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A Dynamical Systems View on Deep 
Graph Networks

62

o Node message passing 
can also be seen as a 
discretization of a 
continuous dynamical 
process 
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A Dynamical Systems View on Deep 
Graph Networks

63

o Node message passing 
can also be seen as a 
discretization of a 
continuous dynamical 
process 

o The graph neural 
network has as many 
layers as the length of 
the unfolded ODE

o Neural (Graph) ODE
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Non-Dissipative Propagation

❖ An intermediate step is fundamental before working with dynamic graphs to 
obtain a stable and non-dissipative message passing

❖ The primary challenge in the graph representation learning is capturing and 
encoding structural information in the learning model

❖ Exploiting local interactions between nodes might not be enough to learn 
representative embeddings

● A specific range of node interactions is required to effectively solve the 
problem

● The DGN requires a specific number (possibly large) of layers
● Over-squashing problem

DAVIDE BACCIU - UNIPI



Non-Dissipative Message Passing 

○ Many-layer networks are 

needed to capture long range 

node interactions into 

representative embeddings

○ Leverage the ODE formulation 

of DGNs to optimize forward 

and backward message 

propagation

Gravina, Bacciu, 
Gallicchio, ICLR 
2023

65

Dissipative 

effects of 

layering
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Step size

Monotonically non-decreasing 

activation function, e.g., tanh, relu

Neighborhood aggregator (any 

standard DGNs)

Anti-symmetric weight matrix allowing 

stable and non-dissipative behavior of the 

ODE (eigenvalues of the Jacobian are 

all imaginary)

Diffusion term that preserves 

the stability of the discretized 

system

Non-Dissipation by Anti-Symmetric 
Parameterization

DAVIDE BACCIU - UNIPI

Forward Euler  discretization of Graph ODE



Learning with Dynamic Graphs

Graphs evolve with time in 

feature, connectivity and 

topology

○ Spatio-temporal 

networks

○ Graph streams

Discrete time

Continuous 

time

R. Trivedi et al  ICRL 2019

67

Gravina & Bacciu, TNNLS 2024
(Survey)
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❖ DGNs cannot be directly applied to all 
real-life graphs

● Most real-life graphs are dynamic
● Majority of DGN approaches assume that the 

input graph is static

❖ Ignoring temporal information can make 
the problem impossible to solve

❖ Objective: develop methods that are 
able to exploit both spatial and 
temporal information

Dynamic Graphs Vs Static DGNs
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5

Common Tasks with Dynamic Graphs

❖ Future link/node prediction
● Predict at time t + k

❖ Path classification
● E.g. predict path congestion

❖ Event time prediction
● When an event will occur?

❖ Imputation ?
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Irregular Graph Streams Gravina et al, IJCAI 2024

70

● Graphs occur in the stream as 

irregular events

● Can be treated naturally by a neural 

ODE that propagates node signals 

between even occurrences

Observed snapshot of 𝑢 at time 𝑡𝑖−1

MessageUpdate Aggregate

Can again be solved by forward Euler
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Neural Algorithmic Reasoning - Combining 
algorithms and neural networks

- Sensitive to task variation

- Input must match pre-conditions

+ Inherent generalisation

+ Interpretable

+ Theoretical guarantees

+ Reusable across tasks

+ Executing on noisy conditions

- Sensitive to shift-of-distribution

- No interpretable operations

- Requires lots of data

Can we get the best of both worlds?

71

Veličković el al, 
ICRL 2020
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Learning Algorithmic Reasoning on 
Graphs

72

s
u
p
e
rv

is
e

step-wise supervision

Dual Algorithmic Reasoning

Use knowledge on the 

structure of the 

optimization problem

Recursive-type DGN

Numeroso, Bacciu, 
Velickovic, ICLR 2023
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Example: Ford-Fulkerson, Max-Flow & Min-
Cut
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Example: Ford-Fulkerson, Max-Flow & Min-
Cut

Learning min-cut is essential!

(Max-Flow/Min-Cut theorem)
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Scaling up way out of 
distribution

Train on 16 
nodes, predict on 
10 millions

75

Numeroso, Bacciu, 
Velickovic, ICLR 2023
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Wrap-Up

76DAVIDE BACCIU - ISPR COURSE



Software

You can find most of the foundational models in this 

lecture implemented here

Our Python library for Deep 
Graph Networks

github.com/diningphil/PyDGN

DAVIDE BACCIU - ISPR COURSE
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Data (Benchmarks)
❖ Pytorch Geometric and DGL integration

❖ Standardized splits and evaluators + leader-board

❖ Node, link and graph property prediction tasks

TUDataset

❖Standardise assessment of existing benchmarks 

rather than inventing new ones

❖ Chemical, social, vision, synthetic, bioinformatics 

(with leader-board)

❖ Pytorch Geometric and DGL integration
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Conclusions

79

❖ Deep learning for graphs is a now a consolidated research area

❖ DGNs as natural extensions of convolutional and recurrent architectures to graphs

❖ A candidate AI model for the integration of symbolic knowledge, numerical data and reasoning

❖ First wave of works (now almost over?) focusing mainly on 

❖ Different ways of implementing message passing and aggregation on static graphs

❖ Graph reductions and pooling

❖ Expressivity properties associated with different aggregation functions

❖ Efficiency and efficacy of context creation and propagation

❖ New wave of works focusing on

❖ Dynamic graphs

❖ DGNs as dynamical systems and their physical interpretation

❖ Learning and aligning with (graph) algorithms

❖ Oversmoothing, oversquashing and problems of the sort

❖ …in other words, plenty of opportunities for thesis work!



Next Lecture

80

Tomorrow 15/05 h.16.00

❖ Beyond accuracy: auditing LLMs based on exams designed for 

humans

❖ Guest Lecture by Wagner Meira
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