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Reservoir Computing

Extremely efficient way of
designing and training RNNs



Recurrent Neural Networks

e State update:

inpUi previous state
v
h, = tanh(x; Wy, + he_y Why)
' /
recurrent state recurrent
layer/cell input weight matrix

weight matrix
e Output function:

Y: =h Wy

S oY

output

state output weight
matrix




Forward Computation

Fading/Exploding memory:

® the influence of inputs
far in the past
vanishes/explodes in
the current state

® many (non-linear)
transformations



Backpropagation Through Time (BPTT)

Gradient Propagation

® gradient might
vanish/explode through
many non-linear
transformations

@ difficult to train on long-
term dependencies

Bengio et al, “Learning long-term dependencies

with gradient descent is difficult”, IEEE Ceni, A. (2022). Random orthogonal additive filters: a solution
Transactions on Neural Networks, 1994 . to the vanishing/exploding gradient of deep neural
Pascanu et al, “On the difficulty of training networks. arXiv preprint arXiv:2210.01245.

recurrent neural networks”, ICML 2013



Approaches

e Gated architectures

o create a pathway for uninterrupted gradient propagation
o LSTM, GRU
o training is slow

e Smart initialization

o Reservoir Computing
o training is limited
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Long-term dependencies

gradient computation flow without interruptions
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vanilla RNN

extra computation

LSTM equations

g = tanh(ht—lwhg + 3, Wiy + bg)
fe = U(ht—l% + x; I/lﬁ +ﬁ)

Iy = U(ht—1£hi + X I/&+b_l)

Ct = [t ® cr1+1i: Qg extra parameters

Ot
hy

O'(ht—1% + xt% +ﬁ)

training Is slow
(computationally intensive)




The Philosophy

“Randomization is
computationally cheaper than
optimization”

Rahimi, A. and Recht, B., 2008. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning.
Advances in neural information processing systems, 21, pp.1313-1320.

Rahimi, A. and Recht, B., 2007. Random features for large-scale kernel machines. Advances in neural information processing systems,
20, pp. 1177-1184.




Training FLOPs Scaling for SOTA Models
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Green Al

Roy Schwartz*¢  Jesse Dodge*“* Noah A. Smith®”  Oren Etzioni¢

© Allen Institute for Al Seattle, Washington, USA
* Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
© University of Washington, Seattle, Washington, USA

July 2019

Abstract

The computations required for deep learning research have been doubling every few months, resulting in an
estimated 300,000x increase from 2012 to 2018 [2]. These computations have a surprisingly large carbon footprint
[40]. Tronically, deep learning was inspired by the human brain, which is remarkably energy efficient. Moreover, the
financial cost of the computations can make it difficult for academics, students, and researchers, in particular those
from emerging economies, to engage in deep learning research.

This position paper advocates a practical solution by making efficiency an evaluation criterion for research along-
side accuracy and related measures. In addition, we propose reporting the financial cost or “price tag” of developing,
training, and running models to provide baselines for the investigation of increasingly efficient methods. Our goal is
to make Al both greener and more inclusive—enabling any inspired undergraduate with a laptop to write high-quality
research papers. Green Al is an emerging focus at the Allen Institute for Al

Schwartz, Roy, et al.
"Green ai." arXiv preprint
arXiv:1907.10597 (2019).



Quantifying the carbon emissions of ML

Compute Publish

Machine Learning Emissions Calculator  https:/mico2.github.io/impact/

Choose your hardware, runtime and cloud provider to estimate the carbon impact of your research.

This calculator will give you 2 numbers: the raw carbon emissions produced and the approximate offset . . )
carbon emissions. The latter number depends on the grid used by the cloud provider and we are open to 2268 kg Of Cozeq' IS eqL“Valent to:

update our estimates if anything looks inaccurate or outdated.

Also, keep in mind that the estimate provided below does not take datacenter PUE (Power Usage
Effectiveness) into account. To do so, you need to find your datacenter's PUE (by asking your computer
provider or consulting their documentation) and multiply the quantity of carbon emitted provided below by
that number.

Kgs of coal burned =

Hardware type Hours Used Provider Region of Compute

Lacoste, Alexandre, et al.

"Quantifying the carbon

emissions of machine
COMPUTE . . .

learning." arXiv preprint

arXiv:1910.09700 (2019).



Energy consumption matters!

Artificial intelligence / Machine learning

Training a S|ng|e Al mode| 'mageNet Training in 24 Minutes
can emit as much carbon Yaﬁg You. Zhao Zhang, James Demmel, Kurt Keutzer, Cho-Jui Hsieh

(Submitted on 14 Sep 2017)

- L} -
as flve ca rs In th el r Finishing 90-epoch ImageNet-1k training with ResNet-50 on a NVIDIA M40 GPU takes 14 days.

- - This training requires 1018 single precision operations in total. On the other hand, the world's

Ilfetl mes current fastest supercomputer can finish 2 * 10%17 single precision operations per second
{Dongarra et al 2017). If we can make full use of the supercomputer for DNN training. we should

Deep learning has a terrible carbon footprint. be able to finish the 90-epoch ResNet-50 training in five seconds. However, the current bottleneck

for fast DNN training is in the algorithm level. Specifically, the current batch size (e.g. 512) is too

small to make efficient use of many processors

For large-scale DNN training, we focus on using large-batch data-parallelism synchronous SGD

by KarenHao June:6, 2013 without losing accuracy in the fixed epochs. The LARS algorithm (You, Gitman, Ginsburg, 2017)
enables us to scale the batch size to extremely large case (e.g. 32K). We finish the 100-epoch
ImageNet tramlng with AIexNet in 24 minutes, which is the v»orld record Same as Facebooks
The artificial-intelligence industry is often compared to the oil industry: once However, our hardware budget is only 1.2 million USD. which is 3.4 times lower than Facebook's
mined and refined, data, like oil, can be a highly lucrative commaodity. 4.1 million USD.

Now it seems the metaphor may extend even further. Like its fossil-fuel

counterpart, the process of deep learning has an outsize environmental

impact. Yet another accelerated sgd: Resnet-50 training on imagenet in 74.7 seconds
M Yamazaki, A Kasagi, A Tabuchi, T Honda... - arXiv preprint arXiv ..., 2019 - arxiv.org

. on ImageNet using 81,920 mini-batch size in 74 7 seconds. ... -50 training on ImageNet
in 74.7 seconds with 75.08% ... 2, the dotted line denotes the ideal throughput of images-per-second, .



vs the Brain...

...Neuromorphic Computing

memory and computing are co-located
~30 PFlops 10 neurons, 105 synapses

10 MW vs 20 W 10000 synapses/neuron




Deep Learning

Deep Learning models achieved tremendous success over the
years. This comes at very high cost in terms of

® Time
® Parameters

Do we really need this all the time?




?

Example: embedded applications

Source: https://www.eenewsembedded.com/news/
raspberry-pi-3-now-compute-module-format

Source: https://bitalino.com/en/freestyle-kit-bt



https://bitalino.com/en/freestyle-kit-bt
https://www.eenewsembedded.com/news/raspberry-pi-3-now-compute-module-format
https://www.eenewsembedded.com/news/raspberry-pi-3-now-compute-module-format

Deep Neural Networks

Powerful representations by applying multiple non-linear
levels of transformation

Deep Learning = lArchitecturaI Biases|+ Learn@lgorithms




Accuracy

Complexity / Accuracy Tradeoff

Deep
Randomized
NNs

Linear
models

SVMs-like

Deep NNs

_
>

Complexity



trainable

fixed

Randomized Recurrent Neural Networks

/
readout Ve = gofr(xs, he_q)
layer
o
/ hidden

representation
recurrent layer

h, = fr(x¢, he_y)

input layer




Randomization = Efficiency

e Training algorithms are cheaper and simpler
e Model transfer: don’t need to transmit all the weights
e Amenable to neuromorphic implementations




Historical note: the cortico-striatal model
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Dominey, P.F., 2013. Recurrent temporal networks and

language

psychology, 4, p.500.

acquisition—from
neurophysiology to reservoir computing.

corticostriatal

Frontiers in

Structured projections  from
cortex to striatum is a major
architectural property of primate
brains
Recurrent
connections
Dopamine-regulated plasticity in
cortico-striatal connections

cortico-cortical




Historical note: the cortico-striatal model

e Fixed recurrent connections
in the PFC

e Modifiable connections
between PFC and neurons in
the striatum (CD)

Dominey, P.F., 2013. Recurrent temporal networks and
language acquisition—from corticostriatal
neurophysiology to reservoir computing. Frontiers in
psychology, 4, p.500.




Reservoir
Computing



Reservoir Computing: focus on the dynamical system

readout
ht = tanh(xt W xn + ht 1Whh)
trainable
~ Randomly initialized under stability
) conditions on the dynamical system
reservoir

Stable dynamics - Echo State Property

fixed <

\input layer o000

Verstraeten, David, et al. Neural networks 20.3 (2007).
LukoSevic¢ius, Mantas, and Herbert Jaeger. Computer
Science Review 3.3 (2009).




Jaeger, Herbert, and Harald Haas.
Science 304.5667 (2004): 78-80.

Echo State Network

REPORTS

Harnessing Nonlinearity: Predicting
Chaotic Systems and Saving Energy
in Wireless Communication

Herbert Jaeger* and Harald Haas

We present a method for learning nonlinear systems, echo state networks
(ESNs). ESNs employ artificial recurrent neural networks in a way that has
recently been proposed independently as a learning mechanism in biological
brains. The learning method is computationally efficient and easy to use. On
a benchmark task of predicting a chaotic time series, accuracy is improved by
a factor of 2400 over previous techniques. The potential for engineering ap-
plications is illustrated by equalizing a communication channel, where the signal
error rate is improved by two orders of magnitude.



Maass, Wolfgang, Thomas Natschlager, and
Henry Markram. Neural computation 14.11
(2002): 2531-2560.

Liquid State Machine

ARTICLE Communicated by Rodney Douglas

Real-Time Computing Without Stable States: A New
Framework for Neural Computation Based on Perturbations

Wolfgang Maass

maass@igi.tu-graz.ac.at

Thomas Natschldger

tnatschl@igi.tu-graz.ac.at

Institute for Theoretical Computer Science, Technische Universitit Graz;
A-8010 Graz, Austria

Henry Markram

henry.markram@epfl.ch

Brain Mind Institute, Ecole Polytechnique Federale de Lausanne,
CH-1015 Lausanne, Switzerland



Tino, Peter, and Georg Dorffner. Machine
Learning 45.2 (2001): 187-217.

Fractal Prediction Machine

Predicting the Future of Discrete Sequences
from Fractal Representations of the Past

PETER TINO petert @ai.univie.ac.at
Austrian Research Institute for Arsificial Intelligence, Schonengasse 3, A-1010 Vienng, Austria; Department of
Computer Science and Engineering, Slovak University of Technology, Hkovicova 3. 812 19 Bratislava, Slovakia

GEORG DORFFNER georg & alunivie.ac.al
Austrian Research Institute for Artificial Intelligence, Schotengasse 3, A-1010 Vienng, Austria; Department of
Medical Cvbernetics and Artificial Intelligence, University of Vienna, Frevung 6/2, A-1010 Vienng, Austria

Editor: Michael Jordan

Abstract.  'We propose a novel approach for building finite memory predictive models similar in spirit to variable
memaory length Markov models (VLMMs). The models are constructed by first transforming the n-block structure
of the training sequence into a geometric structure of points in a unit hypercube, such that the longer is the common
suffix shared by any two n-blocks, the closer lie their poinl representations. Such a transformation embodies a
Markov assumption—-blocks with long commeaon suffixes are likely 1o produce similar continuations, Prediction
contexts are found by detecting clusters in the geometric s-block representation of the iraining sequence via vector
quantization, We compare our model with both the classical (fixed order) and variable memory length Markov
models on five data sets with different memory and stochastic components. Fixed order Markov models (MMs)
fail on three large data sets on which the advantage of allowing variable memory length can be exploited. On
these data sets, our predictive models have a superiorn, or comparable performance to that of VLMMz, vet, their
construction 15 fully automatic, which, is shown to be problematic in the case of VLMMs. On one data set, VLMMs
are outperformed by the classical MMs. On this set, our models perform significantly better than MMs. On the
remaining data se1, classical MMs outperform the vanable context length strategies.



readout ‘

reservoir

input layer

Echo State Networks (ESNSs)

Reservoir

ht — tanh(xthh + ht_lwhh)

large layer of recurrent units
sparsely connected
randomly initialized under the ESP

untrained @?




readout

reservoir

input layer

Echo State Networks (ESNs)

@
I

Readout
Y = hWp,,
e linear combination of the reservoir
state variables
e can be trained in closed form

Wy, = (H'H)""H"D




ESNSs in a nutshell

e Architecture of the Echo State Network:
o Reservoir: untrained non-linear recurrent hidden layer
o Readout: (linear) output layer
e Setup of the Neural Network:
o Initialize W, and W,;, randomly
o Scale Wy, to meet the contractive/stability property
e Training of the Neural Network
o Drive the network with the input signal
o Discard an initial transient
o Train the readout



Reservoir

e Non-linearly embed the input into a higher dimensional
feature space where the original problem is more likely to
be solved linearly (Cover’s Th.)

e Randomized basis expansion computed by a pool of
randomized filters

e Provides a “rich” set of input-driven dynamics




Readout

e Use the features in the reservoir state space for the

output computation
e Typically implemented by using linear models
e Learning involves convex optimization




Reservoir: State Transition Function

Reservoir = discrete-time input-driven dyn. system
e Dynamics are driven by the state transition function

F:RYx x RV# — R"H
ht — F(th ht—l)
— tanh(xthh Bl ht—lwhh)




Reservoir: State Transition Function

Iterated version of state transition function
e given an input sequence s = [x{, X5, ..., X¢]
e return the final state h;

F: (RVx)* x RNH — RNH

/‘ X ™~
_ final state
Input sequence initial state h,

S hO




Reservoir: State Transition Function

Ilterated version of state transition function

( h, if s=1]
F(thO) — <

LF(x,:,lf"([xl, v X1 hg))  if 8 = [Xq, e, X¢]

iterated application:
the state after seeing all but 1 input




Yildiz, Izzet B., Herbert
Jaeger, and Stefan J. Kiebel.

Echo State Property (ESP) "Re-visiting the echo state

property." Neural networks 35
(2012): 1-9.

A valid ESN should satisfy the “Echo State Property”

e (DEF) An ESN satisfies the ESP whenever:
vs € (RN)N vhy,z, € RVA:

input sequence of length N couple of initial states

|F(s,hg) — F(s,zo)|| = O, as N - oo

the distance between the final states goes to 0




Echo State Property

e The state of the network asymptotically
depends only on the driving input signal

e Dependencies on the initial conditions are
progressively lost

e Fading memory



Conditions for the ESP

e Sufficient Condition, involving the
control of the maximum singular
value of Whh

e Necessary Condition, involving
the control of the maximum
eigenvalue in modulus of W}y,

® Active area of intense mathematical research:
link it to the input




Sufficient Condition for the ESP

e Theorem. If the maximum singular value of
W, 4, is <1 then (under mild assumptions) the
ESN satisfies the ESP for any possible input.

Sufficient condition for the ESP
- contractive dynamics for every input

Omax Whn) = [[Whp!l, <1




Necessary Condition for the ESP

e Theorem. If the spectral radius of Wy, is not
smaller than 1 then (under mild assumptions)
the ESN does not satisfy the ESP.

Necessary condition for the ESP
- globally asymptotically stable dynamics
around the O state

p(Whp) = max(abs(eig(Wpp))) <1




Relation between the ESP conditions

e Known linear algebra fact: p(Wyp) < [|[Whnlln

e Applying the sufficient condition is OK in theory,
but often impractical: it is too strong!

e Often, the necessary condition is used as an easy
way for initialization of the reservoir




Reservoir Initialization

Initialization of Wy ;:

) Generate a random matrix W
e.g. from a uniform distribution on [-1,1]

2) Scale by the desired spectral radius

\"%
Whh < Pdesired m

e Note that now p(W},) = Pgesireq (Cchoose a value < 1)
e The spectral radius is a key hyper-parameter of the reservoir




Reservoir Initialization

Initialization of W, ,:
7 Generate a random matrix W,,;, whose elements are
drawn e.g. from a uniform distribution on [-1,1]
2) Scale by an input scaling parameter w;,
o byrange:W,, < w;,W,,(now weights are in [—w;;;, w;;,]

o by norm:W,, < (now the 2-norm of W, equals w;;)

wm—
IWinll2
e The input scaling is a key hyper-parameter of the reservoir



Dynamical Transient

e If the system is globally asymptotically stable, then all
possible (input-driven) trajectories will synchronize after a
transient

e Washout: initial part of the time-series in which the state
could be still affected by initialization condition (i.e. here
the ESP could still not hold)

o the washout states of the reservoir should be discarded




Gallicchio, Claudio. "Chasing the
echo state property." ESANN 2019

Stability in Practice

Stable dynamics

% ® orbits synchronize
ho A . after a transient
transient
- -
zo. T = Unstable dynamics

= I - e



ESN Training

Given a training set {(x;, d,)}{-,

1. Run the reservoir on the input sequence & collect the states
H = [hl' S hN]

2. Washout the initial transient. H « H(N,,: N, :)

3. Collect the target data similarly into a matrix
D = [dNW' “ee dN]

4. Solve the linear regression problem for the readout

: 2
min||HW, — DI,




Readout Training

e Typically training performed off-line in closed-form
o pseudo-inverse Wy, = (H'H)"*H"D
o ridge-regression Wy, = (H'H+ AI1)"'H"D
Tikhonov regularizer
e Online learning by Least Mean Squares has problems
o high eigenvalue spread of H
o alternatives: Recursive Least Squares

o ... use any other modern optimizer for training the readout layer,
use deep readouts




Hyper-parameters tuning by model selection

Like for any other ML/NN model, hyp-params tuning is
important in applications

e reservoir dimension Ny

e spectral radius p

input scaling w;,

readout regularization A



Practical tips

Using sparse reservoir matrices to boost computing times
Using p < 1 gives the ESP in practice in most situations
o in fine-tuning explore also values >1 (e.g., p € (0.1, 1.5))
Use larger values of p when more memory is needed
In case of time-series regression:
o Forlong sequences discard an initial transient

In case of time-series classification:
o Use the last state as representative for the whole input sequence



Architectural variants: Multiple readouts

e The reservoir is operating
in unsupervised mode

e The same reservoir can
serve to tackle multiple
learning problems




trainable

Architectural variants: Input-Readout connections

Direct input-readout connections

ht — tanh(xthh + ht_lwhh )
Yt = [htixt]why

useful, e.g., when instantaneous (i.e.,
non-temporal) I/O transformations
can be useful




Architectural Variants: Output feedback

Feedback connections from the readout
Y = hWy,
h, = tanh(x, Wy, + he i Whp + ¥ W)

Might impact on the stability of the reservoir

dynamics.
Note: in this case the reservoir dynamics are

adapted...
h, = tanh(x, Wy, + by (Wi, + Wi, W)




Jaeger, Herbert, et al. Neural
networks20.3 (2007): 335-352.

Leaky Integrator ESN (LI-ESN)

Use leaky integrators reservoir neurons:
h; = (1—a)h;_; + atanh(x; Wy, + hy_ W)

leaking rate hyper-parameter
a € (0,1]



A few examples of
RC applications



LukoSevicius, M., 2012. A

Reservoir Computing in practice practical guide to applying echo

state  networks. In  Neural
networks: Tricks of the trade (pp.
659-686). Springer, Berlin,
Heidelberg.

A Practical Guide to Applying
Echo State Networks

Mantas Lukosevi¢ius

Jacobs University Bremen, Campus Ring 1,
28759 Bremen, Germany
m.lukosevicius@jacobs—university.de

Abstract. Reservoir computing has emerged in the last decade as an alternative to gradient
descent methods for training recurrent neural networks. Echo State Network (ESN) is one of
the key reservoir computing “flavors”. While being practical, conceptually simple, and easy to
implement, ESNs require some experience and insight to achieve the hailed good performance
in many tasks. Here we present practical techniques and recommendations for successfully
applying ESNs, as well as some more advanced application-specific modifications.



Distributed Intelligence Applications
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Dragone, Mauro, et al. "A cognitive
robotic ecology approach to self-
configuring and evolving AAL systems."
Engineering Applications of Artificial
Intelligence 45 (2015): 269-280.
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Bacciu, Davide, et al.

Neural Computing and
Human Activity Monitoring fpplications 2.6 (2014
A3 | Room 1 Room 2 |
e © | Forecasting
3 Ve
1/ human indoor
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https://archive.ics.uci.edu/ml/datasets/Indoor+User+Movement+Prediction+from+RSS+dat




Dragone, Mauro, et
al. ESANN. 2016.

Robot localization in critical environments
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Human Activity Recognition

e Classification of human  daily
@ activities from RSS data generated by
sensors worn by the user

:
;
:
:
£
g

@ e g d@EVvAAL

system

|@@U ChIS |
Dataset is available online on the UCI repository

http://archive.ics.uci.edu/ml/datasets/Activity+Recoagnition+system+based+on+Multisensor+data+fusion+%28 AReM %29




Clinical applications

® Automatic assessment of balance skills
® Predict the outcome of the Berg Balance Scale (BBS) clinical test
from time-series of pressure sensors

Wii

Balance
Board

Bacciu, Davide, et al.
Engineering Applications of
Artificial Intelligence 66
(2017): 60-74.




Dimitri, Giovanna Maria, et al. "A

preliminary evaluation of Echo

State Networks for Brugada
Brugada Syndrome syndrome classification." SSCI,

IEEE, 2021.
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ECG leads in input processed by ESNs Brugada Type 1
syndrome diagnosis
~ 80% accurate




PROJECT CONSORTIUM RESULTS v NEWS & EVENTS

@EACHWG

TEACHING

A computing Toolkit for building Efficient Autonomous appliCations leveraging Humanistic INtelliGence
is an EU-funded project that designs a computing platform and the associated software toolkit supporting
the development and deployment of autonomous, adaptive and dependable CPSoS applications, allowing
them to exploit a sustainable human feedback to drive, optimize and personalize the provisioning of their

services.

https://www.teaching-h2020.eu

,. https://twitter.com/TEACHING _H2020 m https://www.linkedin.com/company/teaching-horizon-2020/




%TEACH'NG. RC in Autonomous Vehicles

e Automatic detection of physiological, emotional, cognitive
state of the human = Human-centric personalization
e Good performance in human state monitoring + efficiency

WESAD HHAR PAMAP2 OPPORTUN. ASCERTAIN
Avg Std Avg Std Avg Std Avg Std Avg Std

RNN 9462 2.84 7854 2.04 96.00 3.39 96.84 258 94.77 0.78
ESN 9496 2.60 89.79 3.81 97.50 2.74 94.74 577 96.54 0.77
LSTM 9548 1.17 92.71 2.72 96.50 1.22 93.08 288 94.63 0.00
GRU 98.13 1.16 9854 0.83 98,50 2.00 96.84 2.58 94.63 0.00

D. Bacciu, D. Di Sarli, C. Gallicchio, A. Micheli, N.
Puccinelli, “Benchmarking Reservoir and Recurrent Neural
Networks for Human State and Activity Recognition”, IWANN 2021



Bacciu, Davide, et al. COINS,
IEEE, 2021.

%TEACH'NG. Distributed, embeddable and federated learning
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@TEACH'NG. Driving-Style Personalization Based on Driver Stress

De Caro, Valerio, et al. "AI-as-a-

Service Toolkit for Human-Centered

Intelligence in Autonomous

Driving." arXiv preprint
Driving profile arXiv:2202.01645, PERCOM 2022

Driving-style Personalization (LM)\

ecognltlon (LM)
/ ;) W, 5

.,,>//'5\<\ Stress prediction %

YoullM  https://mwww.youtube.com/watch?v=0QrGsglhjSRA



https://www.youtube.com/watch?v=QrGsqlhjSRA
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Sviluppo ed implementazione
di un'applicazione per
smartphone per il
monitoraggio remoto di
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EMERGE

https://eic-emerge.eu

Emergent Awareness from
Minimal Collectives

How do robots in a collective know what the group as a whole is doing? How can
connected devices make sense of the world around them with so many interconnections?
How can a robotic arm composed of many independent parts understand how its body is

behaving as it reaches for an object?



https://eic-emerge.eu

Reservoir
Computing:
Research



Quality of Reservoir dynamics

e Entropy of recurrent units activations
o Unsupervised adaptation of reservoirs using Intrinsic Plasticity
e Study the short-term memory ability of the system
o Memory Capacity and relations to linearity
e Edge of stability/chaos: reservoir at the border of stability

o Recurrent systems close to instability show optimal performances
whenever the task at hand requires long short-term memory



30

20

MC

08

NRMSE

0.6

0.4

0.15

01

0.05

Fig. 4. Results for all three benchmarks for tanh with spectral radius ranging (left column), exponential IP for fermi nodes (middle column), and Gaussian

Intrinsic Plasticity
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IP for tanh nodes (right column).

® Adapt gain and bias of the act. function
® Tune the probability density of
reservoir neurons to maximum entropy

J gen(¥) = f(ax + b)

Ab = —n(—u

o2
Aa= T4 Abx.
a

+%(202+ 1 —y2+uy)),

Schrauwen, B., Wardermann, M., Verstraeten, D., Steil,
J.J. and Stroobandt, D., 2008. Improving reservoirs using
intrinsic plasticity. Neurocomputing, 71(7-9), pp.1159-
1171.




Boedecker, J., Obst, O., Lizier, J.T., Mayer,
N.M. and Asada, M., 2012. Information
processing in echo state networks at the

Edge Of ChaOS edge of chaos. Theory in Biosciences,
131(3), pp.205-213.

Improved dynamics near the transition between ordered and chaotic
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Fig. 3 Left Memory capacity versus estimated Lyapunov exponent. Right Normalized root mean squared error (NRMSE) versus estimated
Lyapunov exponent
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Simple Cycle Reservoir (SCR)

The reservoir layer has an easy-to-build orthogonal structure

OO0 O

y(®

Rodan, A. and Tino, P., 2010. Minimum
complexity echo state network. IEEE
transactions on neural networks, 22(1),
pp.131-144.




Approximation Capabilities

Echo State Networks can approximate any fading memory filter
non-linear reservoir + linear readout

trigonometric state affine reservoir systems + linear readout
linear reservoir systems + non-linear readout (e.g., MLP)

Lukas Gonon and Juan-Pablo Ortega.

Lyudmila Grigoryeva and Juan-Pablo . ; ) . ;
Reservoir computing universality with

Ortega. Echo state networks are

universal. Neural Networks, 108:495-508, stochastic inputs. IEEE transactlons on
2018. neural networks and 1learning systems,

2019



Tanaka,

Physical Reservoir Computing

Reservoir

Physical

systems / devices

G., Yamane, T., Héroux, J.B., N

R., Kanazawa, N., Takeda, S., Numata

Nakano,
advances

D. and Hirose, A., 2019.

akane,
3 H’J
Recent

in physical reservoir computing: A
review. Neural Networks, 115, pp.100-123.
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Pascanu, R., Gulcehre, C., Cho, K. and Bengio,
Y., 2013. How to construct deep recurrent neural
networks. arXiv preprint arXiv:1312.6026.

Depth in RNNs
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Deep Echo State Networks

reservoir
layer L

reservoir
layer 2

reservoir
layer 1

input layer

Gallicchio, Claudio, Alessio Micheli, and
Luca Pedrelli. "Deep reservoir
computing: A critical experimental
analysis." Neurocomputing 268 (2017):
87-99

~

readout > trainable




Deep Echo State Networks

Deep reservoir = nested set of dynamical systems

h'Y () = tanh (W ERE—Y () - wr B R (¢ — 1))
_.'/ .
/
h? ()= tanh( WP hV 1y - Wr @ hP (¢t — 1))

/

h Y () = tanh( WP x(t) + Wr P h™ (¢t — 1))

Gallicchio, Claudio, Alessio Micheli, and Luca Pedrelli. "Deep
reservoir computing: A critical experimental analysis."
Neurocomputing 268 (2017): 87-99




Multiple time-scales

——Deep - layer 10

w ——Deep - layer 7
% —=—Deep - layer 4
& 10 —+—Deep - layer 1
c = =Shallow
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Time Steps

Effects of input perturbations last
longer in the higher reservoir layers
Multiple time-scales representation is
intrinsic

Gallicchio, Claudio, Alessio Micheli, and Luca Pedrelli.
"Deep reservoir computing: A critical experimental
analysis." Neurocomputing 268 (2017): 87-99

Gallicchio, C. and Micheli, A., 2018, July. Why Layering in
Recurrent Neural Networks? A DeepESN Survey. In 2018
International Joint Conference on Neural Networks
(IICNN)(pp. 1-8). IEEE.



Richer dynamics: short-term memory

150

Memory Capacity

0.2 0.4 0.6 0.8 1 1.2 14
Spectral Radius

Fig. 7. Averaged Memory Capacity of individual layers of DeepESN, shown
for increasing values of the spectral radius, as computed in [49]. Results
correspond to a DeepESN setting in which each layer comprises a number of
100 recurrent reservoir units. Differently from the results in Figure 6, Memory
Capacity in this plot refers to reservoir-readout connections that are trained
separately for each layer. Further details and results can be found in [49].

Gallicchio, C. and Micheli, A., 2018, July. Why Layering in
Recurrent Neural Networks? A DeepESN Survey. In 2018
International Joint Conference on Neural Networks
(IJCNN)(pp. 1-8). IEEE.



Richer dynamics: stability regime
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Fig. 4. Averaged wvalues of Ang: obtained by DeepESN for increasing number
of reservoir units, organized in layers of 10 units each. The considered hyper-
parameterization corresponds to p =1, a=1, scale;, =1 and scale; = 0.5. Results
achieved by a shallow ESN and groupedESN with the same hyper-parameterization
and the same number of reservoir units are reported as well for the sake of com-
parison.
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Gallicchio, C., Micheli, A. and Silvestri, L., 2018.
Local lyapunov exponents of deep echo state
networks. Neurocomputing, 298, pp.34-45.




Neural networks for graphs




Vertex-wise graph encoding
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Reservoir Computing for graphs

H = tanh (WX + WRHA)

e Basic idea: encode the input graph as the fixed point of a
dynamical system
e Impose stability of the iterated map - Graph Embedding

Stability (GES)
o E.g., p(WR) <1




Reservoir Layer for graphs

H[t] = tanh(WX + WRH[t — 1]A)

e Initialize randomly under the GES condition

e For each graph in your dataset:

1. Initialize H[O] (e.g., to 0)

2. lterate the above equation until convergence

Gallicchio, C. and
Micheli, A., 2020.
Fast and Deep
Graph Neural
Networks. In AAAI
(pp. 3898-3905).



Fast and Deep Graph Neural Networks (FDGNN)

L)+
T
HY[¢] = tanh(WEHED* L W BOHEP) [E —1]A)
1
H LD+

)%

#% (X X))

H?[t] = tanh(WHHD* t Wg @HP [t — 1]A)

(1)*
H Gallicchio, C. and Micheli, A.,
f 2020. Fast and Deep Graph
- Neural Networks. In AAAl (pp.

H(l)[t] _ tanh(w(l)x + WR(I)H(l)[t —1]A) 3898-3905).
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It’s accurate

Gallicchio, C. and Micheli, A.,
2020. Fast and Deep Graph
Neural Networks. In AAAIl (pp.
3898-3905).

FDGNN/;,—;

GNN (Uwents et al. 2011)
ReINN (Uwents et al. 2011)

DGCNN (Zhang et al. 2018)

PGC-DGCNN (Tran, Navarin, and Sperduti 2018)
DCNN (Tran, Navarin, and Sperduti 2018)

PSCN (Tran, Navarin, and Sperduti 2018)

GK (Zhang et al. 2018)
DGK (Yanardag and Vishwanathan 2015)
RW (Zhang et al. 2018)
PK (Zhang et al. 2018)
WL (Zhang et al. 2018)

KCNN (Nikolentzos et al. 2018)
CGMM (Bacciu, Errica, and Micheli 2018)

80.49.0.51
87.77+2.48
85.83+1.66

81.394+1.74
82.66+1.45
79.17 12,07
76.00+5 69
84.1141.91

85.30

98.5942.47

55.6510.46
57.3241.13
99.91+0.32
59.5042 44
57.9742.49

62.94+1 69

PROTEINS

75.5410.94

T4.44 10 47
76.4541 00  76.134+0.73
61.294160 96.6147 .04
75.004251  76.34+1.68
7139405 62494027
71.6840.50 62.4840.25
59.5T+0.09 -
73.68+068 82.544047
74.6810.49 84.46.10.45

75.76i0_23 T7.2140.09




Gallicchio, C. and Micheli, A.,
2020. Fast and Deep Graph

’ Neural Networks. In AAAI (pp.
It’s accurate 3596.3905)

FDGNN 1 . ' . , . , . ,

DGCNN (Zhang et al. 2018) 70.03+0.86 47.83+0.85 - 73.764+0.49
PGC-DGCNN (Tran, Navarin, and Sperduti 2018) 71.624122 47.254144 - 75.0040 55
PSCN (Tran, Navarin, and Sperduti 2018) 71.004209 45.234084 - 72.6045 15
GK (Yanardag and Vishwanathan 2015) 65.8710.98 43.891038 77.341018 72.84.1056
DGK (Yanardag and Vishwanathan 2015) 66.961056 44.551052 78.041039 73.0910.25
KCNN (Nikolentzos et al. 2018) 71454015 47.464021 81.8540.12 74.9340.14




It’s fast

Gallicchio, C. and Micheli, A.,
2020. Fast and Deep Graph
Neural Networks. In AAAI (pp.
3898-3905).

Table 3: Running times required by FDGNN (in single core
mode, without GPU acceleration). Results are averaged (and
std are computed) on the outer 10 folds.

Task Training Test
y Table 4: Comparison of training times required on MUTAG

MUTAG 0.5 ?::0.33 0.0 %0.04 by FDGNN, GNN, GIN and WL. Results are averaged (and
I(D:TO()Z(2 (1).;2?’:0_03 8-(1)5#)_00 are computed) on the outer 10 folds.

9V 40,42 19+0.05 GNN GIN L
PROTEINS 2.16;’:0 A7 0.241 o4 il

' ' 202.28" 499.24" 1.16”

NCIl 2.00;:045 13.3 1302 +166.87 +2.25 +0.03
IMDB-b 7.46] 0.83%
IMDB-m 868775  0.987y 0

U173 900,22
REDDIT 2'47i10'01 16.4, 10.28
COLLAB 22.86% 479 2.54 (59




Gallicchio, C., Reservoir
Computing by discretizing
ODEs. ESANN 2021

Reservoir Computing by discretizing ODEs

e Euler State Networks (EuSN)
o stable dynamics + non-dissipation of the input over time

hr — tanh(Wx x + Whh + b) 1. impose antisymmetric recurrent weight

matrix to enforce critical dynamics
2. discretize the ODE

he = he_y Hekanh(W, x + Wy, =W, —()) he—y + b)

step size diffusion coefficient




The input signal is
preserved without
exploding nor dying

Gallicchio, Claudio. "Euler State
Networks." arxiv preprint
arXiv:2203.09382 (2022).
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Extremely more
efficient (up to
100x) than fully
trainable models




Put a random
orthogonal matrix here
transforming the
hidden state

Ceni, Andrea, and
Claudio Gallicchio. "Edge
of stability echo state
networks." arXiv preprint
arXiv:2308.02902 (2023).
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RoaRNN: fully trained ESESN

A simple solution to the
V/E gradient issue!

Ceni, Andrea. "Random orthogonal
additive filters: a solution to the
vanishing/exploding gradient of deep
neural networks." arXiv preprint

arXiv:2210.01245 (2022).

The identity in place of

a random orthogonal
matrix doesn't give
same results!

—>
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S
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STATE SPACE MODELS

%

U — U A _ A D
Input sequence x'(t) = Ax(t) + Bu(t) (k2) x, = Axp_1 + Buy

y(t) = Cx(t) + Du(t)  giscretisation Yk = Cuy,

Gu, Albert, Karan Goel, and Christopher Ré. Unfold
nonlinearity "Efficiently modeling long sequences with structured in time
state spaces." arXiv preprint arXiv:2111.00396 (2021).

nonlinearity

Y = mkﬁuo + ﬁk_lﬁul + ...+ CABuj,_, + CBu
y=K *u. Convolutional representation

KcRl =K. (4,B,C) = (WE) = (CB.TAB. .. TA B

Output sequence




ROCKET

Reservoir of random 1d convolutions

—
ies ’ -/\_/ ’\A /_\[\
Time Series

M Single Layer == -/\,- —\/\_ /_\f\
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Linear readout

Some pooling

Dempster, Angus, Francois Petitjean, and Geoffrey I. Webb. "ROCKET: exceptionally fast and accurate time
series classification using random convolutional kernels." Data Mining and Knowledge Discovery 34.5 (2020):

1454-1495.




MODULAR COMPOSITION of RNNs

Kozachkov, Leo, Michaela Ennis, and Jean-

V Jacques Slotine. "RNNs of RNNs: Recursive

Stable construction of stable assemblies of recurrent m O RING
A [F neural networks." Advances in Neural Information B

Processing Systems 35 (2022): 30512-30527. [ ]
.l
.l
% stable o
RING of RINGs




Ceni, Andrea, et al. "Random Oscillators Network for
Time Series Processing." International Conference on
Artificial Intelligence and Statistics. PMLR, 2024.

RANDOM OSCILLATORS NETWORK

Reservoir of heterogeneous oscillators Linear readout

Excitation Forced mechanical

layer oscillators

Reservoir of oscillators equation

y =tanh(Wy + Vu(t) + b)—vy 0y —eQ@y

pub- i) y(t) m Output
O )
Linear readout:
r=W oy + bo
Untrained Trained
Model Fully-trained Randomised
LSTM coRNN hecoRNN (our) Leaky ESN RON (our)
sMNIST T 0.9860 0.0017 0.9921 0.0002 0.9871 0.0011 0.9211 0.0020 0.9780 0.0006
pSMNIST T 0.8761 0.0390 0.9435 0.0224 0.9635 0.0048 0.8503 0.0150 0.9301 0.0054
npCIFAR-10 1 0.1000 q.0o00 0.5841 g o033 0.5548 .0031 0.2060 g.0016 0.4158 o101
Ford A T 0.5803 0.0432 0.7003 0.1535 0.7944 0.0859 0.5461 0.0320 0.6885 0.0385
Adiac T 0.4793 0.0187 0.4517 0.0252 0.5586 0.0706 0.6928 0.0116 0.7313 0.0050
- - - - T
Lorenz96 | 24 %1055 02 21x10.5 02 26x1051 20 20x10,5 150 1.6x10,5 .
Mackey-Glass | 3.4 x 10,2 oo 6.2x 1072 0> 54 x 10,5, 0-aff 30x 1072 oos 1.8 x10 7 .




ATTRACTORS & AWARENESS

Meta-cognition awareness attractor Spatial awareness attractor

Can we map dimensions of awareness into attractor’'s geometrical properties?



Resources



Deep Randomized Neural Networks

Gallicchio, C. and Scardapane, S., 2020. Deep Randomized Neural

n
l Alessandro Sperduti

ot s Networks. In Recent Trends in Learning From Data (pp. 43-68).
Recent Trends

‘in Learning

Springer, Cham.
https://arxiv.org/pdf/2002.12287.pdf

From Data
| Tutorials from the INNS BigData
nce

| and Deep Learning Confert
| (INNSBDDL2019)

4 Springer

AAAI-21 tutorial website:

e https://sites.google.com/site/cgallicch/resources/tutorial DRNN
35th AAAI Conference on Artificial Intelligence
A Virtual Conference //A

February 2-9, 2021



https://arxiv.org/pdf/2002.12287.pdf
https://sites.google.com/site/cgallicch/resources/tutorial_DRNN

Reservoir Computing NNs

IJCNN 2021 Tutorial: Reservoir Computing:
IJCNN2021 Randomized Recurrent Neural Networks
VIRTUAL EVENT

18-22 JULY 2021

N\ Y T h‘ https://www.youtube.com/
\ ({1 1upe oy -
\\\\ watch?v=XJg7VdN7g-0

SSIE Summer PhD School of Information
Engineering: Reservoir Recurrent Neural
Networks

SUMMER
PHD SCHOOL Yﬂll Tllh 6 https://www.youtube.com/

watch?v=1K70JCtTzKO

Solk



https://www.youtube.com/watch?v=XJg7VdN7g-0
https://www.youtube.com/watch?v=XJg7VdN7g-0
https://www.youtube.com/watch?v=1K7oJCtTzKQ
https://www.youtube.com/watch?v=1K7oJCtTzKQ

IEEE Task Force on Reservoir Computing

https://sites.gooqgle.com/view/reservoir-computing-tf/

Promote and stimulate the development of
Reservoir Computing research under both
theoretical and application perspectives.

SCAN ME



https://sites.google.com/view/reservoir-computing-tf/

Summary

Reservoir Computing: paradigm for designing and training RNNs

o

(@]

the dynamical reservoir is initialized to be stable (ESP) and left untrained
the readout is trained to solve the learning task

Fast (& simple) training compared to standard RNNs
The intrinsic state space organization explains the good results on
tasks featured by Markovian characterizations

(@]

Good for sensor data

Very active area of research...

o

o

(@]
(@]

O

Deep Reservoir Computing
Embedded applications
Neuromorphic Al

Stable RNN architectures
Graph Neural Networks



Some arguments for thesis

Oscillators-like networks

CNNs for sequential processing (ROCKET-like)

Attractors and Awareness
Modular compositions of RNNs
Structured State Space Models

Improve Edge of Stability RNNs



Reservoir Computing

Andrea Ceni


mailto:andrea.ceni@di.unipi.it
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