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Lectures Outline
❖ Generative graph learning

❖ Probabilistic models on graphs

❖ Graph VAE, graph language models and graph diffusion models

❖ Issues with information propagation on graphs

❖ Oversmoothing, oversquashing and undereaching

❖ Topological approaches

❖ Dynamical systems approaches

❖ Spatio-temporal and dynamic graphs

❖ Neural Algorithmic Reasoning

❖ Applications
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Probabilistic Graph 
Models
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Unsupervised Graph Embeddings
❖ Learn unsupervised node and graph embeddings

❖ Requiring less supervised labelling

❖ Reusing embeddings across multiple tasks

❖ Mix supervised and unsupervised modules 

Fixed-size

graph

representation

Contextual Graph 
Markov Model 

(CGMM)

Probabilistic     Unsupervised      Deep
Bacciu, Errica, Micheli , ICML 2018

Supervised
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Contextual Graph Markov Model 
(CGMM)

P(Q|set of neighbors)

NODE FEATURES

TRAINING ONE LAYER  AT 
A TIME!

CATEGORICAL DISTRIBUTION (C STATES)
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Incremental Construction

1. Map the graph to the 

model (base case)

2. Perform inference

and freeze states

3. Add a new layer

and use frozen states

as observed variables

in the graphical model

Go back to step 2
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Computing embedding

✓Finding the most likely state assignment

✓The inferred latent states are used as

observable variables in subsequent layers

✓A fixed-size vector of states frequencies 

as graph encoding

# Hidden states = 4

Inferred states
(as colors)

Frequency vector
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CGMM Layer Training

8

A maximum likelihood approach to learning

Trained by Expectation-Maximization

Assumption: i.i.d. graphs

Emission distrib.

Switching Parents distrib.

Transition distrib.

Split by layer

and by arc 

=ෑ

𝑔∈𝐺

ෑ

𝑢∈g

෍

𝑖

𝐶

𝑃𝑙(𝑦𝑢|𝑄𝑢 = 𝑖)෍
ҧ𝑙∈ത𝐿

𝑃(𝐿𝑢 = ҧ𝑙)෍

𝑎=1

𝐴

𝑃
ҧ𝑙(𝑆𝑢 = 𝑎) 1

|𝒩 ҧ𝑙𝑎(𝑢)|
෍

𝑗

𝐶

𝑃
ҧ𝑙𝑎(𝑄𝑢 = 𝑖|𝑄∗

ҧ𝑙𝑎 = 𝑗) ෍

𝑣∈𝒩 ҧ𝑙𝑎(𝑢)

𝑞𝑣
ҧ𝑙 (𝑗)

DAVIDE BACCIU - ISPR COURSE 8



CGMM – Depth Matters…

…possibly more 

than width

Bacciu, Errica, Micheli , JMLR 2020
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Interpreting CGMM

Thanks to 

the 

probabilistic 

approach

Bacciu, Errica, Micheli , JMLR 2020
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To infinity and beyond
The Infinite CGMM

✓ Hierarchical Dirichlet process to sample 
(potentially) infinitely many hidden states

✓ Automatically learn the size of node 
embedding space from data

✓Choice of observations’ groups 
determined by neighbors’ states

✓Batch version for larger datasets

Castellana, Errica, Bacciu, Micheli , ICML 2022
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ICGMM – Finer grained control on 
hidden space

CHOSEN STATES PER LAYER CUMULATIVE GRAPH EMBEDDING SIZE
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Dealing with Multimodal Graph 
Distributions

Graph Mixture Density Networks and their 

application to epidemiology

Errica, Bacciu, Micheli, 

ICML 2021

DAVIDE BACCIU - ISPR COURSE 13



Deep Generative 
Models for Graphs
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Graph Generation

Adjacency-based

Structure-based

Generate a prediction that is itself a graph
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Graph Variational Autoencoder

GraphVAE generates 

adjacency matrix up to k 

vertices along with the 

relevant edge/node features 

(for molecular data)

Simonovsky, Komodakis, ICLR-WS 2018
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Argmax a.k.a. sampling ⟹
non-differentiable



Language-Based Graph Generation

Generate a graph 

node-by-node and 

edge-by-edge 

through a 

sequential 

approach

Bacciu, Micheli, Podda, 
Neurocomputing 2020

Start token

Sample 
output dist.

Initialize 2nd net 
with state of 1st
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Generate Molecules by Fragmentation

✓ Molecule is scanned in 
SMILES order

✓ Find first breakable 
bond

✓ Break the molecule at 
that bond, set aside 
leftmost fragment

✓ Proceed recursively on 
rightmost fragment

Starting
point

✓Order is deterministic and the molecule can be reconstructed

✓Keep a vocabulary of all possible fragments found in a 
dataset

✓Graphs are transformed into fragment sequences

Podda et al, AISTATS 2020

DAVIDE BACCIU - ISPR COURSEDAVIDE BACCIU - ISPR COURSE 18



Diffusion Models for Graphs
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Forward noising

Backward de-

noising

Conditioning 

information 

(classifier free)

Node/edge transition 

matrices

Ninniri, Podda, Bacciu ECML-PKDD 2024
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Information 
Propagation in Graphs
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(Catastrophic) Issues when learning
node/graph embeddings

That is where our 
troubles begin

○ Under-reaching

○ Over-smoothing

○ Over-squashing

Many-layer networks are needed to capture long range node 
interactions into representative embeddings passing through 
topological bottlenecks
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Oversquashing

Occurs when an 

exponentially-

growing amount of 

information is 

squashed into a 

fixed-size vector

Img: J. Balla, ICLR blog 2021
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Oversmoothing

Occurs when irrespectively of the propagation length required, the 

model cannot learn distinctive embeddings to solve the task

Img: J. Balla, ICLR blog 2021
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Rewiring Approaches

Topping et al, ICLR 2022

Analysing graph message passing as 

a diffusion process
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Rewiring Approaches

Topping et al, ICLR 2022

Reduce the bottleneck (e.g. by a targeted

increase in connectivity) to solve over-

squashing
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A Topological Perspective

Connecting message-
passing issues with the 
topological properties 
(curvature) of graphs

○ Negative curvature R 
maybe one of the 
causes of 
oversquashing

Topping et al, ICLR 2022
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A Dynamical Systems View on Deep 
Graph Networks

27

o Node message passing 
can also be seen as a 
discretization of a 
continuous dynamical 
process 
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A Dynamical Systems View on Deep 
Graph Networks

28

o Node message passing 
can also be seen as a 
discretization of a 
continuous dynamical 
process 

o The graph neural 
network has as many 
layers as the length of 
the unfolded ODE

o Neural (Graph) ODE



Non-Dissipative Propagation – Addressing 
the Problem through the Dynamical System 
Leverage the ODE formulation of DGNs to optimize forward and 
backward message propagation
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Haber & Ruthotto, 2017

Gravina et al, ICLR 2023
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Neighborhood aggregator 

(any standard MPNN)
Node-wise propagation

Chase optimal propagation by enforcing a stable dynamics + non-
dissipation of the input over time by looking into the properties of 

Jacobian 𝐉⟹ ∀𝑖: 𝑅𝑒 𝜆𝑖 𝑱 𝑡 ≈ 0



Non-Dissipative Propagation by Anti-
Symmetry
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Gravina et al, ICLR 2023
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Anti-symmetric weight matrix allowing stable and 

non-dissipative behavior of the ODE 

(eigenvalues of the Jacobian are all imaginary)

Forward Euler  

discretization of 

Graph ODE

Dissipative 

effects of 

layering

Anti-symmetric weight matrix with a Euler discretization of the Neural 

ODE

Non-

dissipative & 

rewiring



Local Vs Global Non-Dissipation
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𝜕𝒙𝑢(𝑡)

𝜕𝒙𝑢(0)
≈ 𝑐

So far we have achieved local conservation

Gravina et al, ICLR 2023



Local Vs Global Non-Dissipation
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𝜕𝑣𝑒𝑐(𝑿 𝑡 )

𝜕𝑣𝑒𝑐(𝑿 0 )
≈ 𝑐

But we want to achieve it globally

Gravina et al, Arxiv 2024



SWAN – Space and Weight 
Antisymmetry Network
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Gravina et al, AAAI 2025
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Node-wise Antisymmetric

propagation

(any) Neighbourhood 

aggregation

Antisymmetric 

neighbourhood 

aggregation

pre-defined/learned neighbourhood 

aggregation matrices

learnable weights



One Further Push 
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Can we allow to the model to trade between dissipative and non-

dissipative behaviors, adaptively and in a principled way?

Non-Dissipative 

Core

Property 

1

Property 

n



One Further Push 
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Can we allow to the model to trade between dissipative and non-

dissipative behaviors, adaptively and in a principled way?

Port-Hamiltonian 

Deep Graph 

Network (PH-DGN)

Heilig et al, ICLR 2025

Hamiltonian core evolves

global state 𝒚 preserving

energy



Dynamic Graphs

36DAVIDE BACCIU - ISPR COURSE 36



Learning with Dynamic Graphs

Graphs evolve with time in 

feature, connectivity and 

topology

○ Spatio-temporal 

networks

○ Graph streams

Discrete time

Continuous 

time

R. Trivedi et al  ICRL 2019

37

Gravina & Bacciu, TNNLS 2024 
(Survey)
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❖ DGNs cannot be directly applied to all 
real-life graphs

● Most real-life graphs are dynamic
● Majority of DGN approaches assume that the 

input graph is static

❖ Ignoring temporal information can make 
the problem impossible to solve

❖ Objective: develop methods that are 
able to exploit both spatial and 
temporal information

Dynamic Graphs Vs Static DGNs

DAVIDE BACCIU - ISPR COURSE
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5

Common Tasks with Dynamic Graphs

❖ Future link/node prediction
● Predict at time t + k

❖ Path classification
● E.g. predict path congestion

❖ Event time prediction
● When an event will occur?

❖ Imputation ?
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A Taxonomy of Approaches

Can again be tackled as a diffusion process using Graph ODEs

○ Spatial and temporal diffusion

○ Can be made non-dissipative

○ Can naturally handle irregular sampling

Gravina & Bacciu, 
TNNLS 2024
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A Graph ODE on Continuous Time 

Gravina et al, IJCAI 2024

A neural ODE that propagates node signals between event occurrences

Observed snapshot of 𝑢 at time 𝑡𝑖−1

MessageUpdate Aggregate

Can again be solved by forward Euler
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Integrating Algorithmic 
Knowledge
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Neural Algorithmic Reasoning - Combining 
algorithms and neural networks

- Sensitive to task variation

- Input must match pre-conditions

+ Inherent generalisation

+ Interpretable

+ Theoretical guarantees

+ Reusable across tasks

+ Executing on noisy conditions

- Sensitive to shift-of-distribution

- No interpretable operations

- Requires lots of data

Can we get the best of both worlds?

43

Veličković el al, 
ICRL 2020
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Learning Algorithmic Reasoning on 
Graphs

44

s
u
p
e
rv

is
e

step-wise supervision

Dual Algorithmic Reasoning

Use knowledge on the 

structure of the 

optimization problem

Recursive-type DGN

Numeroso, Bacciu, 
Velickovic, ICLR 2023
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Example: Ford-Fulkerson, Max-Flow & Min-
Cut
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Scaling up way out of 
distribution

Train on 16 
nodes, predict on 
10 millions

46

Numeroso, Bacciu, 
Velickovic, ICLR 2023
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Example: Ford-Fulkerson, Max-Flow & Min-
Cut

Learning min-cut is essential!

(Max-Flow/Min-Cut theorem)
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Applications
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Predicting Properties of Chemical 
Compounds

Duvenaud, Maclaurin et al, NIPS 
2015

Toxicity

Quantum 

mechanical 

properties

Solubility

∼ 10−2 seconds

∼ 103 seconds

Simulation 

methodsGilmer et al, ICML 2017

Micheli et al, JCICS 2001
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Generating Molecules
Fragment-based  

deep molecule 

generation

Podda, Bacciu, Micheli, AISTATS 
2020
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Floorplans Generation

Shabani et al, CVPR 2023
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Knowledge graphs

A natural way of 

representing 

known entities 

and relationships 

in a domain

Node/link 

embeddings are 

numerical 

encodings of 

entities and 

relationships

DAVIDE BACCIU - ISPR COURSE 52



Side Effects of Drug Combinations

Analyzing a multimodal 

graph of interactions

• Drug-drug

• Drug-protein

• Protein-protein

Zitnik, Agrawal, Leskovec,  Bioinformatics  2018
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Recommendation 

Systems
…and other kinds of social 
network analyses
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Relational Stock 
Learning

55



Point Clouds – Semantic Segmentation

Build point cloud graphs

and train semantic class 

predictors based on vertex 

embeddings

Landrieu, Simonovsky, CVPR 2018
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Analysis of ICT 
systems/Blockchains
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Spatio-Temporal Transportation 
Networks

○ Forecasting 

arrival times

○ Identifying 

anomalies

○ Route 

replanning
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Wrap-Up
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Conclusions
❖ Generative learning for graphs is receiving growing attention, 

especially in connection with bio-chemical applications

❖ Defining continuous processes over combinatorial data is non-trivial

❖ Need careful thinking about differentiability

❖ Current research is heavily focusing on

❖ Dynamic graphs and spatio-temporal networks processing

❖ DGNs as dynamical systems and their physical interpretation

❖ Learning and aligning with (graph) algorithms

❖ Oversmoothing, oversquashing and problems of the sort

❖ …in other words, plenty of opportunities for thesis work!
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Advertisement time
Learning on Graph course

❖ Coming up on Semester 1, Year 2027

❖ 6 CFU Elective of the AI curriculum

❖ From foundations of learning on graphs to edge-of-research models
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Next Lecture
No lecture on May 20th (Giro d’Italia)

A super-compressed introduction to reinforcement learning (May 21st)

 RL Fundamentals

 Model based RL

 Model free RL

 Hints of deep reinforcement learning
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