
Reservoir Computing

Andrea Ceni
University of Pisa, Italy



Contact Information

Research interests:
Learning long-term dependencies with RNNs

Reservoir computing – Randomised NNs

Convolutional neural networks

Modular composition of NNs

Linking cognitive features to attractor’s geometries

State space models for sequence learning

Graph Neural Networks

Criticality in complex systems

Dynamical recurrent neural models (bio-inspired)

Do you like these topics? Email me!

email: andrea.ceni@di.unipi.it

Andrea Ceni, Ph.D.

Research Fellow, 

University of Pisa

mailto:gallicch@di.unipi.it


My path



Reservoir Computing
= 

Extremely efficient way of 
designing and training RNNs



Recurrent Neural Networks

● State update:

𝒉𝑡 = 𝑡𝑎𝑛ℎ 𝒙𝑡 𝑾𝑥ℎ + 𝒉𝑡−1𝑾ℎℎ

● Output function:

𝒚𝑡 = 𝒉𝒕 𝑾ℎ𝑦
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Forward Computation

Fading/Exploding memory:

● the influence of inputs 
far in the past 
vanishes/explodes in 
the current state

● many (non-linear) 
transformations



Backpropagation Through Time (BPTT)

Gradient Propagation

● gradient might 
vanish/explode through 
many non-linear 
transformations

● difficult to train on long-
term dependencies

Bengio et al, “Learning long-term dependencies 
with gradient descent is difficult”, IEEE 
Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training 
recurrent neural networks”, ICML 2013 

Ceni, A. (2022). Random orthogonal additive filters: a solution 

to the vanishing/exploding gradient of deep neural 

networks. arXiv preprint arXiv:2210.01245.



Approaches

● Gated architectures
○ create a pathway for uninterrupted gradient propagation

○ LSTM, GRU

○ training is slow

● Smart initialization
○ Reservoir Computing

○ training is limited



LSTM cell

𝑥𝑡

𝑐𝑡−1
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ℎ𝑡−1 ℎ𝑡

𝑐𝑡
forget

gate input gate
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standard RNN layer



Long-term dependencies

gradient computation flow without interruptions



LSTM equations

● 𝑔𝑡 = 𝑡𝑎𝑛ℎ(ℎ𝑡−1𝑊ℎ𝑔 + 𝑥𝑡 𝑊𝑥𝑔 + 𝑏𝑔)

● 𝑓𝑡 = 𝜎 ℎ𝑡−1𝑊ℎ𝑓 + 𝑥𝑡 𝑊𝑥𝑓 + 𝑏𝑓
● 𝑖𝑡 = 𝜎 ℎ𝑡−1𝑊ℎ𝑖 + 𝑥𝑡 𝑊𝑥𝑖 + 𝑏𝑖
● 𝑐𝑡 = 𝑓𝑡 ⨂ 𝑐𝑡−1+ 𝑖𝑡⨂𝑔𝑡
● 𝑜𝑡 = 𝜎 ℎ𝑡−1𝑊ℎ𝑜 + 𝑥𝑡 𝑊𝑥𝑜 + 𝑏𝑜
● ℎ𝑡 = 𝑜𝑡 ⨂ tanh(𝑐𝑡)

vanilla RNN

training is slow

(computationally intensive)

extra computation
extra parameters



The Philosophy

“Randomization is 

computationally cheaper than 

optimization”
Rahimi, A. and Recht, B., 2008. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning.

Advances in neural information processing systems, 21, pp.1313-1320.

Rahimi, A. and Recht, B., 2007. Random features for large-scale kernel machines. Advances in neural information processing systems,

20, pp. 1177-1184.



Energy consumption matters!

https://openai.com/blog/ai-and-compute/

Dario Amodei and Danny Hernandez. AI 

and compute, 2018. Blog post. 

● 2012-2017: 300000x

● 3.4-month doubling time 

Gholami, Amir, et al. "Ai and memory wall." IEEE Micro (2024).



Geen AI

Schwartz, Roy, et al.

"Green ai." arXiv preprint

arXiv:1907.10597 (2019).



Quantifying the carbon emissions of ML

Lacoste, Alexandre, et al.

"Quantifying the carbon

emissions of machine

learning." arXiv preprint

arXiv:1910.09700 (2019).

https://mlco2.github.io/impact/



Energy consumption matters!



vs the Brain…

≈30 PFlops

10 MW vs 20 W

memory and computing are co-located

1011 neurons, 1015 synapses

10000 synapses/neuron

…Neuromorphic Computing



Deep Learning

Deep Learning models achieved tremendous success over the

years. This comes at very high cost in terms of

● Time

● Parameters

Do we really need this all the time?



Example: embedded applications

Source: https://bitalino.com/en/freestyle-kit-bt

Source: https://www.eenewsembedded.com/news/
raspberry-pi-3-now-compute-module-format

https://bitalino.com/en/freestyle-kit-bt
https://www.eenewsembedded.com/news/raspberry-pi-3-now-compute-module-format
https://www.eenewsembedded.com/news/raspberry-pi-3-now-compute-module-format


Deep Neural Networks

Powerful representations by applying multiple non-linear 

levels of transformation

Deep Learning = Architectural Biases + Learning Algorithms



Complexity / Accuracy Tradeoff
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Randomized Recurrent Neural Networks

input layer

hidden 
representation 
recurrent layer

readout 
layer
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𝒉𝑡 = fR(𝒙𝑡, 𝒉𝑡−1)

𝒚𝑡 = g ∘ fR(𝒙𝑡 , 𝒉𝑡−1)



Randomization = Efficiency

● Training algorithms are cheaper and simpler

● Model transfer: don’t need to transmit all the weights

● Amenable to neuromorphic implementations



Historical note: the cortico-striatal model

● Structured projections from
cortex to striatum is a major
architectural property of primate
brains

● Recurrent cortico-cortical
connections

● Dopamine-regulated plasticity in
cortico-striatal connections

Dominey, P.F., 2013. Recurrent temporal networks and
language acquisition—from corticostriatal
neurophysiology to reservoir computing. Frontiers in
psychology, 4, p.500.



Historical note: the cortico-striatal model

● Fixed recurrent connections 

in the PFC

● Modifiable connections 

between PFC and neurons in 

the striatum (CD)

Dominey, P.F., 2013. Recurrent temporal networks and
language acquisition—from corticostriatal
neurophysiology to reservoir computing. Frontiers in
psychology, 4, p.500.



Reservoir 
Computing



Reservoir Computing: focus on the dynamical system

input layer

reservoir

readout 

fixed

trainable

Randomly initialized under stability 

conditions on the dynamical system

Stable dynamics - Echo State Property

Verstraeten, David, et al. Neural networks 20.3 (2007).

Lukoševičius, Mantas, and Herbert Jaeger. Computer

Science Review 3.3 (2009).

𝒉𝑡 = tanh(𝒙𝑡𝑾𝑥ℎ + 𝒉𝑡−1𝑾ℎℎ)



Echo State Network

Jaeger, Herbert, and Harald Haas.
Science 304.5667 (2004): 78-80.



Liquid State Machine

Maass, Wolfgang, Thomas Natschläger, and
Henry Markram. Neural computation 14.11
(2002): 2531-2560.



Fractal Prediction Machine

Tino, Peter, and Georg Dorffner. Machine
Learning 45.2 (2001): 187-217.



Echo State Networks (ESNs)

Reservoir

𝒉𝑡 = tanh(𝒙𝑡𝑾𝑥ℎ + 𝒉𝑡−1𝑾ℎℎ)

● large layer of recurrent units

● sparsely connected

● randomly initialized under the ESP

● untrained
input layer

reservoir

readout 



Echo State Networks (ESNs)

Readout

𝒚𝑡 = 𝒉𝑡𝑾ℎ𝑦

● linear combination of the reservoir 

state variables

● can be trained in closed form

𝑾ℎ𝑦 = 𝑯𝑇𝑯 −1𝑯𝑇𝑫

input layer

reservoir

readout 



ESNs in a nutshell

● Architecture of the Echo State Network:
○ Reservoir: untrained non-linear recurrent hidden layer

○ Readout: (linear) output layer

● Setup of the Neural Network:
○ Initialize 𝑊𝑥ℎ and 𝑊ℎℎ randomly

○ Scale 𝑊ℎℎ to meet the contractive/stability property

● Training of the Neural Network
○ Drive the network with the input signal

○ Discard an initial transient

○ Train the readout 



Reservoir

● Non-linearly embed the input into a higher dimensional 

feature space where the original problem is more likely to 

be solved linearly (Cover’s Th.)

● Randomized basis expansion computed by a pool of 

randomized filters

● Provides a “rich” set of input-driven dynamics



Readout

● Use the features in the reservoir state space for the 

output computation

● Typically implemented by using linear models

● Learning involves convex optimization



Reservoir: State Transition Function

Reservoir = discrete-time input-driven dyn. system
● Dynamics are driven by the state transition function

𝐹:ℝ𝑁𝑋 × ℝ𝑁𝐻 → ℝ𝑁𝐻

𝐡𝑡 = F 𝐱𝑡, 𝐡𝑡−1
= tanh(𝐱𝑡𝐖xh + 𝐡𝑡−1𝐖hh)



Reservoir: State Transition Function

Iterated version of state transition function
● given an input sequence 𝒔 = 𝒙1, 𝒙2, … , 𝒙𝑡
● return the final state 𝒉𝑡

𝐹: ℝ𝑁𝑋 ∗ × ℝ𝑁𝐻 → ℝ𝑁𝐻

input sequence

𝒔
initial state

𝒉0

final state

𝒉𝑡



Reservoir: State Transition Function

Iterated version of state transition function

𝐹 𝒔, 𝐡0 =

𝒉0 𝑖𝑓 𝒔 = [ ]

𝐹(𝒙𝑡, 𝐹 𝒙1, … , 𝒙𝑡−1 , 𝒉0 ) 𝑖𝑓 𝒔 = [𝒙1, … , 𝒙𝑡]

iterated application:

the state after seeing all but 1 input



Echo State Property (ESP)

A valid ESN should satisfy the “Echo State Property”

● (DEF) An ESN satisfies the ESP whenever:

∀𝒔 ∈ ℝ𝑁𝑋 𝑁, ∀𝒉𝟎, 𝒛0 ∈ ℝ
𝑁𝐻 :

𝐹 𝒔, 𝐡0 − 𝐹 𝒔, 𝐳0 → 0, 𝑎𝑠 𝑁 → ∞

input sequence of length N couple of initial states

the distance between the final states goes to 0

Yildiz, Izzet B., Herbert 
Jaeger, and Stefan J. Kiebel. 
"Re-visiting the echo state 
property." Neural networks 35 
(2012): 1-9.



Echo State Property

● The state of the network asymptotically

depends only on the driving input signal

● Dependencies on the initial conditions are

progressively lost

● Fading memory



Conditions for the ESP

● Sufficient Condition, involving the 
control of the maximum singular 
value of 𝐖hh

● Necessary Condition, involving 
the control of the maximum 
eigenvalue in modulus of 𝐖hh

● Active area of intense mathematical research:
link it to the input



Sufficient Condition for the ESP

● Theorem. If the maximum singular value of 
𝐖hh is < 1 then (under mild assumptions) the 
ESN satisfies the ESP for any possible input.

Sufficient condition for the ESP 
○ contractive dynamics for every input
𝜎𝑚𝑎𝑥 𝐖hh = 𝐖hh 2 < 1



Necessary Condition for the ESP

● Theorem. If the spectral radius of 𝐖hh is not 
smaller than 1 then (under mild assumptions) 
the ESN does not satisfy the ESP.

Necessary condition for the ESP
○ globally asymptotically stable dynamics 

around the 0 state

𝜌 𝐖hh = max(𝑎𝑏𝑠 𝑒𝑖𝑔 𝐖hh ) < 1



Relation between the ESP conditions

● Known linear algebra fact: 𝜌 𝐖hh ≤ 𝐖hh 𝑛

● Applying the sufficient condition is OK in theory, 

but often impractical: it is too strong!

● Often, the necessary condition is used as an easy 

way for initialization of the reservoir



Reservoir Initialization

Initialization of 𝐖hh:
1) Generate a random matrix 𝑾

e.g. from a uniform distribution on [-1,1]

2) Scale by the desired spectral radius 

𝐖hh ← 𝜌𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝐖

𝜌(𝐖)

● Note that now 𝜌 𝐖hh = 𝜌𝑑𝑒𝑠𝑖𝑟𝑒𝑑 (choose a value < 1)

● The spectral radius is a key hyper-parameter of the reservoir



Reservoir Initialization

Initialization of 𝑾𝑥ℎ:
1) Generate a random matrix 𝑾𝑥ℎ, whose elements are 

drawn e.g. from a uniform distribution on [-1,1]

2) Scale by an input scaling parameter 𝜔𝑖𝑛

○ by range:𝑾𝑥ℎ ← 𝜔𝑖𝑛𝑾𝑥ℎ(now weights are in [−𝜔𝑖𝑛, 𝜔𝑖𝑛]

○ by norm:𝑾𝑥ℎ ← 𝜔𝑖𝑛
𝑾𝑥ℎ

𝐖𝑥ℎ 𝟐
(now the 2-norm of 𝑾𝑥ℎequals 𝜔𝑖𝑛)

● The input scaling is a key hyper-parameter of the reservoir



Dynamical Transient

● If the system is globally asymptotically stable, then all

possible (input-driven) trajectories will synchronize after a

transient

● Washout: initial part of the time-series in which the state

could be still affected by initialization condition (i.e. here

the ESP could still not hold)
○ the washout states of the reservoir should be discarded



Stability in Practice

ℎ0

𝑧0

𝑣0

Stable dynamics
● orbits synchronize

after a transient

Unstable dynamics
● orbits are sensitive

to initial conditions

transient

Gallicchio, Claudio. "Chasing the
echo state property." ESANN 2019



ESN Training

Given a training set { 𝒙𝑡, 𝒅𝑡) 𝑡=1
𝑁

1. Run the reservoir on the input sequence & collect the states

𝐻 = [𝐡1, … , 𝐡𝑁]

2. Washout the initial transient. 𝐇 ← 𝐇 𝑁𝑤: 𝑁, :

3. Collect the target data similarly into a matrix

𝐃 = 𝐝𝑁𝑤 , … , 𝐝𝑁
4. Solve the linear regression problem for the readout

min
𝐖hy

𝐇𝐖hy −𝐃
2

2



Readout Training

● Typically training performed off-line in closed-form
○ pseudo-inverse 𝑾ℎ𝑦 = 𝑯𝑇𝑯 −1𝑯𝑇𝑫

○ ridge-regression 𝑾ℎ𝑦 = 𝑯𝑇𝑯+ 𝜆 𝑰 −1𝑯𝑇𝑫

● Online learning by Least Mean Squares has problems
○ high eigenvalue spread of H

○ alternatives: Recursive Least Squares

○ … use any other modern optimizer for training the readout layer, 

use deep readouts

Tikhonov regularizer



Hyper-parameters tuning by model selection

Like for any other ML/NN model, hyp-params tuning is 

important in applications

● reservoir dimension 𝑁𝐻
● spectral radius 𝜌

● input scaling 𝜔𝑖𝑛

● readout  regularization 𝜆
● …



Practical tips

● Using sparse reservoir matrices to boost computing times

● Using 𝜌 < 1 gives the ESP in practice in most situations
○ in fine-tuning explore also values >1 (e.g., 𝜌 ∈ (0.1, 1.5))

● Use larger values of 𝜌 when more memory is needed

● In case of time-series regression:
○ For long sequences discard an initial transient

● In case of time-series classification:
○ Use the last state as representative for the whole input sequence



Architectural variants: Multiple readouts

● The reservoir is operating 

in unsupervised mode

● The same reservoir can 

serve to tackle multiple 

learning problems 



Architectural variants: Input-Readout connections

Direct input-readout connections

𝐡𝑡 = tanh 𝒙𝑡𝐖xh + 𝒉𝑡−1𝑾ℎℎ

𝒚𝒕 = 𝒉𝑡; 𝒙𝑡 𝑾ℎ𝑦

useful, e.g., when instantaneous (i.e., 

non-temporal) I/O transformations 

can be useful

trainable



Architectural Variants: Output feedback

Feedback connections from the readout

𝒚𝒕 = 𝒉𝒕𝑾ℎ𝑦

𝐡𝑡 = tanh 𝒙𝑡𝐖xh + 𝒉𝑡−1𝑾ℎℎ + 𝒚𝑡−1𝑾𝑦ℎ

Might impact on the stability of the reservoir 
dynamics.
Note: in this case the reservoir dynamics are 
adapted…

𝐡𝑡 = tanh 𝒙𝑡𝐖xh + 𝒉𝑡−1(𝑾ℎℎ +𝑾ℎ𝑦𝑾𝑦ℎ)



Leaky Integrator ESN (LI-ESN)

Use leaky integrators reservoir neurons:

𝒉𝑡 = 1 − 𝛼 𝒉𝑡−1 + 𝛼 tanh(𝒙𝑡𝑾𝑥ℎ + 𝒉𝑡−1𝑾ℎℎ)

Jaeger, Herbert, et al. Neural
networks20.3 (2007): 335-352.

leaking rate hyper-parameter

𝛼 ∈ 0,1



A few examples of 
RC applications



Reservoir Computing in practice
Lukoševičius, M., 2012. A

practical guide to applying echo

state networks. In Neural

networks: Tricks of the trade (pp.

659-686). Springer, Berlin,

Heidelberg.



Distributed Intelligence Applications

Dragone, Mauro, et al. "A cognitive
robotic ecology approach to self-
configuring and evolving AAL systems."
Engineering Applications of Artificial
Intelligence 45 (2015): 269-280.



Human Activity Monitoring

Forecasting 

human indoor 

mobility

Bacciu, Davide, et al.
Neural Computing and
Applications 24.6 (2014):
1451-1464.

https://archive.ics.uci.edu/ml/datasets/Indoor+User+Movement+Prediction+from+RSS+data

Dataset is available online on the UCI repository



Robot localization in critical environments

Dragone, Mauro, et 
al. ESANN. 2016.



Human Activity Recognition

● Classification of human daily

activities from RSS data generated by

sensors worn by the user

http://archive.ics.uci.edu/ml/datasets/Activity+Recognition+system+based+on+Multisensor+data+fusion+%28AReM%29

Dataset is available online on the UCI repository



Clinical applications

● Automatic assessment of balance skills

● Predict the outcome of the Berg Balance Scale (BBS) clinical test

from time-series of pressure sensors

Bacciu, Davide, et al.
Engineering Applications of
Artificial Intelligence 66
(2017): 60-74.

oremi

Wii 
Balance 
Board

BBS



Brugada Syndrome

Dimitri, Giovanna Maria, et al. "A 
preliminary evaluation of Echo 
State Networks for Brugada
syndrome classification." SSCI, 
IEEE, 2021.

ECG leads in input processed by ESNs Brugada Type 1 

syndrome diagnosis

≈ 80% accurate



https://www.linkedin.com/company/teaching-horizon-2020/https://twitter.com/TEACHING_H2020

https://www.teaching-h2020.eu



RC in Autonomous Vehicles

● Automatic detection of physiological, emotional, cognitive 

state of the human → Human-centric personalization

● Good performance in human state monitoring + efficiency

D. Bacciu, D. Di Sarli, C. Gallicchio, A. Micheli, N.

Puccinelli, “Benchmarking Reservoir and Recurrent Neural

Networks for Human State and Activity Recognition”, IWANN 2021



Distributed, embeddable and federated learning

Bacciu, Davide, et al. COINS,
IEEE, 2021.



Driving-Style Personalization Based on Driver Stress

.

.

Stress Recognition (LM)

Driving-style Personalization (LM)

.

.

.

.
Stress prediction

Driving profile
.

.

EDA sensing

https://www.youtube.com/watch?v=QrGsqlhjSRA

De Caro, Valerio, et al. "AI-as-a-
Service Toolkit for Human-Centered
Intelligence in Autonomous
Driving." arXiv preprint
arXiv:2202.01645, PERCOM 2022

https://www.youtube.com/watch?v=QrGsqlhjSRA


MyBreathingHeart

Sviluppo ed implementazione 

di un'applicazione per 

smartphone per il 

monitoraggio remoto di 

problemi cardio-respiratori 

durante crisi pandemica



EMERGE

https://eic-emerge.eu

https://eic-emerge.eu


Reservoir 
Computing:
Research



Quality of Reservoir dynamics

● Entropy of recurrent units activations 
○ Unsupervised adaptation of reservoirs using Intrinsic Plasticity

● Study the short-term memory ability of the system
○ Memory Capacity and relations to linearity

● Edge of stability/chaos: reservoir at the border of stability
○ Recurrent systems close to instability show optimal performances 

whenever the task at hand requires long short-term memory



Intrinsic Plasticity

Schrauwen, B., Wardermann, M., Verstraeten, D., Steil,

J.J. and Stroobandt, D., 2008. Improving reservoirs using

intrinsic plasticity. Neurocomputing, 71(7-9), pp.1159-

1171.

● Adapt gain and bias of the act. function

● Tune the probability density of 

reservoir neurons to maximum entropy



Edge of chaos

Improved dynamics near the transition between ordered and chaotic 

Boedecker, J., Obst, O., Lizier, J.T., Mayer,

N.M. and Asada, M., 2012. Information

processing in echo state networks at the

edge of chaos. Theory in Biosciences,

131(3), pp.205-213.



Simple Cycle Reservoir (SCR)

Rodan, A. and Tino, P., 2010. Minimum
complexity echo state network. IEEE
transactions on neural networks, 22(1),
pp.131-144.

𝑾

The reservoir layer has an easy-to-build orthogonal structure



Approximation Capabilities

● Echo State Networks can approximate any fading memory filter

● non-linear reservoir + linear readout

● trigonometric state affine reservoir systems + linear readout

● linear reservoir systems + non-linear readout (e.g., MLP)

Lyudmila Grigoryeva and Juan-Pablo
Ortega. Echo state networks are
universal. Neural Networks, 108:495–508,
2018.

Lukas Gonon and Juan-Pablo Ortega.
Reservoir computing universality with
stochastic inputs. IEEE transactions on
neural networks and learning systems,
2019



Physical Reservoir Computing

Tanaka, G., Yamane, T., Héroux, J.B., Nakane,
R., Kanazawa, N., Takeda, S., Numata, H.,
Nakano, D. and Hirose, A., 2019. Recent
advances in physical reservoir computing: A
review. Neural Networks, 115, pp.100-123.



Depth in RNNs

shallow deep 
input

deep 
readout

deep 
reservoir

Pascanu, R., Gulcehre, C., Cho, K. and Bengio,

Y., 2013. How to construct deep recurrent neural

networks. arXiv preprint arXiv:1312.6026.



Deep Echo State Networks

input layer

reservoir 
layer 1

reservoir 
layer L

fixed
readout 

Gallicchio, Claudio, Alessio Micheli, and

Luca Pedrelli. "Deep reservoir

computing: A critical experimental

analysis." Neurocomputing 268 (2017):

87-99

reservoir 
layer 2 trainable



Deep Echo State Networks

Gallicchio, Claudio, Alessio Micheli, and Luca Pedrelli. "Deep

reservoir computing: A critical experimental analysis."

Neurocomputing 268 (2017): 87-99

Deep reservoir = nested set of dynamical systems

.. .



Multiple time-scales

● Effects of input perturbations last 
longer in the higher reservoir layers

● Multiple time-scales representation is 
intrinsic

Gallicchio, Claudio, Alessio Micheli, and Luca Pedrelli.

"Deep reservoir computing: A critical experimental

analysis." Neurocomputing 268 (2017): 87-99

Gallicchio, C. and Micheli, A., 2018, July. Why Layering in

Recurrent Neural Networks? A DeepESN Survey. In 2018

International Joint Conference on Neural Networks

(IJCNN)(pp. 1-8). IEEE.



Richer dynamics: short-term memory

Gallicchio, C. and Micheli, A., 2018, July. Why Layering in

Recurrent Neural Networks? A DeepESN Survey. In 2018

International Joint Conference on Neural Networks

(IJCNN)(pp. 1-8). IEEE.



Richer dynamics: stability regime

Gallicchio, C., Micheli, A. and Silvestri, L., 2018.

Local lyapunov exponents of deep echo state

networks. Neurocomputing, 298, pp.34-45.

deep grouped shallow



Neural networks for graphs

,{ }



Vertex-wise graph encoding

● time-step → vertex 
● previous time step → neighborhood

v1

v2
v3

v4

v
embedding (state)

input features
embeddings of 

neighbors



Reservoir Computing for graphs

● Basic idea: encode the input graph as the fixed point of a 

dynamical system

● Impose stability of the iterated map - Graph Embedding 

Stability (GES)
○ E.g., 



Reservoir Layer for graphs

● Initialize randomly under the GES condition

● For each graph in your dataset:

1. Initialize H[0] (e.g., to 0)

2. Iterate the above equation until convergence

Gallicchio, C. and

Micheli, A., 2020.

Fast and Deep

Graph Neural

Networks. In AAAI

(pp. 3898-3905).



Fast and Deep Graph Neural Networks (FDGNN)

...

Gallicchio, C. and Micheli, A.,

2020. Fast and Deep Graph

Neural Networks. In AAAI (pp.

3898-3905).



It’s accurate

Gallicchio, C. and Micheli, A.,

2020. Fast and Deep Graph

Neural Networks. In AAAI (pp.

3898-3905).



It’s accurate

Gallicchio, C. and Micheli, A.,

2020. Fast and Deep Graph

Neural Networks. In AAAI (pp.

3898-3905).



It’s fast

Gallicchio, C. and Micheli, A.,

2020. Fast and Deep Graph

Neural Networks. In AAAI (pp.

3898-3905).



Reservoir Computing by discretizing ODEs

● Euler State Networks (EuSN)
○ stable dynamics + non-dissipation of the input over time

1. impose antisymmetric recurrent weight 

matrix to enforce critical dynamics

2. discretize the ODE

Gallicchio, C., Reservoir

Computing by discretizing

ODEs. ESANN 2021



The input signal is 
preserved without 

exploding nor dying

Gallicchio, Claudio. "Euler State

Networks." arXiv preprint

arXiv:2203.09382 (2022).



High accuracy vs
state-of-the-art
fully trainable
models & ESNs



Extremely more
efficient (up to
100x) than fully
trainable models



Edge of Stability Reservoir Computing

Put a random 

orthogonal matrix here

transforming the 

hidden state 𝒉𝑡 = 1 − 𝛼 𝒉𝑡−1 + 𝛼 tanh(𝒙𝑡𝑾𝑥ℎ + 𝒉𝑡−1𝑾ℎℎ) Leaky ESN

𝒉𝑡 = 1 − 𝛽 𝑶 𝒉𝑡−1+ 𝛽 tanh 𝒙𝑡𝑾𝑥ℎ + 𝒉𝑡−1𝑾ℎℎ 𝑬𝑺𝟐𝑵

Ceni, Andrea, and 

Claudio Gallicchio. "Edge 

of stability echo state 

networks." arXiv preprint 

arXiv:2308.02902 (2023).



RoaRNN: fully trained ESESN

The identity in place of 

a random orthogonal

matrix doesn't give

same results!

A simple solution to the 
V/E gradient issue!

Ceni, Andrea. "Random orthogonal 

additive filters: a solution to the 

vanishing/exploding gradient of deep 

neural networks." arXiv preprint 

arXiv:2210.01245 (2022).



STATE SPACE MODELS

discretisation

Unfold 

in time

Convolutional representation

S4 layer

S4 layer

S4 layer

nonlinearity

nonlinearity

Input sequence

Output sequence

Gu, Albert, Karan Goel, and Christopher Ré. 

"Efficiently modeling long sequences with structured 

state spaces." arXiv preprint arXiv:2111.00396 (2021).



ROCKET

Reservoir of random 1d convolutions

Linear readout

Some pooling

Dempster, Angus, François Petitjean, and Geoffrey I. Webb. "ROCKET: exceptionally fast and accurate time 

series classification using random convolutional kernels." Data Mining and Knowledge Discovery 34.5 (2020): 

1454-1495.

10000 

filters



MODULAR COMPOSITION of RNNs

stable

stable

stable

Kozachkov, Leo, Michaela Ennis, and Jean-

Jacques Slotine. "RNNs of RNNs: Recursive 

construction of stable assemblies of recurrent 

neural networks." Advances in Neural Information 

Processing Systems 35 (2022): 30512-30527.



RANDOM OSCILLATORS NETWORK

Reservoir of oscillators equation

Linear readout:

Ceni, Andrea, et al. "Random Oscillators Network for 

Time Series Processing." International Conference on 

Artificial Intelligence and Statistics. PMLR, 2024.



ATTRACTORS & AWARENESS

Meta-cognition awareness attractor Spatial awareness attractor

Can we map dimensions of awareness into attractor’s geometrical properties?



Resources



Deep Randomized Neural Networks

Gallicchio, C. and Scardapane, S., 2020. Deep Randomized Neural

Networks. In Recent Trends in Learning From Data (pp. 43-68).

Springer, Cham.

https://arxiv.org/pdf/2002.12287.pdf

AAAI-21 tutorial website:

https://sites.google.com/site/cgallicch/resources/tutorial_DRNN

https://arxiv.org/pdf/2002.12287.pdf
https://sites.google.com/site/cgallicch/resources/tutorial_DRNN


Reservoir Computing NNs

https://www.youtube.com/

watch?v=XJg7VdN7g-0

IJCNN 2021 Tutorial: Reservoir Computing: 
Randomized Recurrent Neural Networks

https://www.youtube.com/

watch?v=1K7oJCtTzKQ

SSIE Summer PhD School of Information 

Engineering: Reservoir Recurrent Neural 

Networks

https://www.youtube.com/watch?v=XJg7VdN7g-0
https://www.youtube.com/watch?v=XJg7VdN7g-0
https://www.youtube.com/watch?v=1K7oJCtTzKQ
https://www.youtube.com/watch?v=1K7oJCtTzKQ


IEEE Task Force on Reservoir Computing

Promote and stimulate the development of

Reservoir Computing research under both

theoretical and application perspectives.

https://sites.google.com/view/reservoir-computing-tf/

https://sites.google.com/view/reservoir-computing-tf/


Summary

● Reservoir Computing: paradigm for designing and training RNNs
○ the dynamical reservoir is initialized to be stable (ESP) and left untrained

○ the readout is trained to solve the learning task 

● Fast (& simple) training compared to standard RNNs

● The intrinsic state space organization explains the good results on 

tasks featured by Markovian characterizations
○ Good for sensor data

● Very active area of research…
○ Deep Reservoir Computing

○ Embedded applications

○ Neuromorphic AI

○ Stable RNN architectures

○ Graph Neural Networks



Some arguments for thesis

● Oscillators-like networks

● CNNs for sequential processing (ROCKET-like)

● Attractors and Awareness

● Modular compositions of RNNs

● Structured State Space Models

● Improve Edge of Stability RNNs



Reservoir Computing

Andrea Ceni
andrea.ceni@di.unipi.it

mailto:andrea.ceni@di.unipi.it
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