Fundamentals of (Deep)
Reinforcement Learning
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Lecture Outline

o RL Fundamentals
o Model based RL
o Model free RL

o Hints of deep reinforcement learning
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Introduction & Formal
Model




What characterizes Reinforcement
Learning (vs other ML tasks)?

o No supervisor: only a reward signal

o Delayed asynchronous feedback

o Time matters (sequential data, continual learning)

o Agent’s actions affect the subsequent data it receives (inherent
non-stationarity)




(Some) RL Tasks
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Rewards

o Areward R; is a scalar feedback signal

o Indicates how well agent is doing at step ¢t
o The agent’s job is to maximise cumulative reward
o Reinforcement learning is based on the reward hypothesis

o All goals can be described by the maximisation of expected
cumulative reward

I ———————————————————
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Agents and Environments

o S{ is the environment e private PAahiny
. . observation 4~ » [ S, action
representation at time ¢t — (L)) —
R '3 A iy o oo '

o S{* the internal representation ==

owned by agent a

reward R,

o Full observability = Agent directly T

observes the environment state

0, =S =S5/

o Formally this is a Markov Decision
Process (MDP)

environment state sg
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Markov Decision Process

A Markov Decision Process (MDP) is a Markov chain with rewards
and actions. Itis an environment in which all states are Markov

Definition (Markov Decision Process)

A Markov Decision Process is a tuple (S, A, P, R,y)

o &S is afinite set of states

o A is afinite set of actions a

o P is a state transition matrix, s.t. P..r = P(S¢y1 = S'| S = 5,4; = a)
o Risareward function, s.t. R? = E[R;41|S; = 5,4; = a]

o 7y is adiscount factor, y € [0,1]
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A Forever Classic - The Maze Example

o Rewards: -1 per time-step
o Actions: N, E, S, W
o States: Agent location

Start

Goal




RL Goal - Return Maximization

The return G; is the total discounted reward from time-step ¢t

Ge = Ripq1 T VYRiyp +00 = 2 Vth+k+1
k=0

o The value of receiving reward R after k + 1 timesteps is y*R

o 7Y valuesimmediate reward Vs delayed reward
* y = 0 leads to "myopic" evaluation
* y = 1leads to "far-sighted" evaluation
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Policy — At the core of an RL agent

- A policy T is the agent’s behaviour

- It is a map from state s to action a
* Deterministic policy: a = ()
* Stochastic policy: m(a|s) = P(A; = a|S; = s)

- A policy T is a distribution over actions a given states
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Maze Example
(Policy)

Arrows represent policy
m(s) for each state s

Start




Model

o A model predicts what the environment will do next
o Predict next state s’ following an action a
Por =P(Sp41 = 5'|S = 5,4 = a)
o Predict next reward
Rs = E[Rt41|S¢ = 5,4 = a




Maze Example

i (Mode)

o Agent may have an internal
(imperfect) model of the
environment

°* How actions change the
state

* How much reward from each
state

o Grid Layout: transition
model P,

o Numbers: immediate
reward model R¥
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Value Function

o The state-value function v, (s) of a Markov Decision Process is the

expected return starting from state and following policy
U (S) = E5[G¢|Se = 5]

o The value function v, (S;) can be decomposed into two parts
* Immediate reward R;,
* Discounted value of successor state y v, (S¢41) The expected state-

/ value of being in any
vn(s) =R, + yz Pss’vTC(S,) state reachable from s
S/
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Maze Example
(Value Function)

Numbers denote the value
v.(s) foreach s

Expected time to reach
the goal




Action-Value Function

The action-value function g, (s, a) is the expected return starting from state s,
taking action a, and then following policy

Ar(s,a) = E[G|S; = 5,4, =a] = RS +y z ng'vn(sl)

s'eS
Also the value function can be written in terms of the action-value function

vn(S) — ]ET[[Rt+1 + yvn(5t+1)|5t — S] — z n(als)qn(s, a)
a€eA
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Bellman Expectation

The expected return of

Un(s) — 2 n(als) Rg‘ + vy 2 P;’Un(sl) being in a state reachable

from s through action a and
a€A s'es then continue following

policy

g.(s,a) =R +y 2 P;‘g, 2 n(a'|s')q,(s',a")
s’'es areA

The expected return of any action a’ taken
from states reachable from s through
action a (and then follow policy)




Finding an Optimal Policy

An optimal policy can be found by maximising over q..(s, a)

if a = argemaxq.(s,a
n*(a|5)={1 gmaxq,(s, a)
0 otherwise

o There is always a deterministic optimal policy for any MDP

o If we know q,(s,a) , we straightforwardly find the optimal policy
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Bellman Optimality Equations

Optimal value functions are recursively related Bellman-style

v, (s) = maxq*(s a) = maxRa +y 2 U (8")

s'es

q.(s,a) = R +y 2 Pliv.(s)=RE+y z P max q.(s’,a")

s'eS s'esS
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RL approaches




A Taxonomy

Value Function
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Model Based - Iterative Policy
Evaluation

o Problem: evaluate a given policy

$ P Vppq(S)

o Solution: iterative application of Bellman expectation backup
Vi D Uy = > Uy
o Using synchronous backups
1. Ateachiterationk + 1
2. Forallstatess € $

3.  Update vy41(s) from v, (s) where s’ is a successor state of s

Vie41(S) = z n(als) (R? +y Z PS“Srvk(S’)>

ac€A s'eS
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Model Based — Policy Iteration

o Given policy T

* Evaluate the policy
Ur(s) = Eg [Reg1 + VRpyo + - |Sp = 5]

* Improve the policy by acting greedily with respect to v,;
n' = greedy(m) = n'(s) = arg max q-(s,a)
a

o In general, need more iterations of improvement / evaluation

o But this process of policy iteration always converges to the
optimal policy m,
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Policy Iteration Example (I)

<— random policy

Uk Greedy policy on vy
00|00]|00]|00 ><—:—><_‘_>
k=0 00|l00|00]|00 Llbl bl
00|l00|00]|00 ol
00|l00|00]|00 bl
00|-1.0[-1.0]-1.0 — +
k=1 -1.0|-1.0[-1.0-1.0 Heblb b
10/|-1.0[-1.0/-1.0 JRINMEIN LN
10|-10/-10| 0.0 ol -
00|-1.7[-2.0[-2.0 — | [
e = 2 1.7|-2.0[-2.0[-2.0 Hid b
o 20|20[20]-17 Hb -
20|-20]-17| 0.0 + = -

DAVIDE BACCIU - ISPR COURSE




Policy Iteration Example (I1)

k=3
k=10
k = oo
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Policy Iteration

evaluation
m
starting v JU V
Vom ot n—>greedy(V)
improvement
% = .
v'Policy evaluation - Estimate v, *
v'Iterative policy evaluation .

v'Policy improvement - Generate n’ >« . .
v Greedy policy improvement T = el V4
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Model Based - Value Iteration

Using Bellman optimality in place of Bellman

expectation
§ P Vipp1(S) P

Vier1(s) = max| Rg +y z P vk (s")
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Model-Free Reinforcement Learning

o So far: solve a known MDP (states, transition, rewards, actions)

o Model free
* No environment model
* No knowledge of MDP transition/rewards

Using sample rewards and sample
o Solution is to use sample updates transitions (S, 4, R, S')
S P V() O
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Q-Learning — Off-policy RL

.5, A Greedy policy improvement on O(S.A) is model-free
Q(S,A) « Q(S,A) + af R + maxyQ(S',a") Q(S,A))
R a

Temporal difference error

o The target policy i is greedy w.r.t. Q(S,A)
m(S) = argmax Q(S',a’)

o Off policy - We choose which action A to execute
based on an e-greedy policy

m'(als) = Umt (=€) ifa’=argmax Qs o)
€/m otherwise
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Q-Learning Algorithm
for Off-policy Control

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(S',a) — Q(S, A)]
S« 5

until S is terminal
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Value Function Approximation

SofarV(s)/Q(s,a) =lookup table
o An entry for every state s or state-action pair s, a
o Large MDPs = too many states and/or actions to store in memory
o Too slow to learn the value of each state individually
o Generalization issues
The new approach
o Estimate value function with function approximation
D(s;w) = v (s)
Q(s,a; w) = Qr(s,a)
o Generalise from seen states to unseen states
o Update parameters w using Q-learning
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Value Function Approximation Approaches

o(s; w) Q(s,a;w)  Q(s,a;;w) Q(s,am;w)

t ottt
I




Learning with Value Function
Approximation

o Policy evaluation -
Approximate policy evaluation,

Q(':'; w) = Qr ()
w~a O Policy improvement - e-greedy
policy improvement

Starting w
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Supervised Learning of Action-Value

Given a dataset of states and target temporal-difference targets
D ={(S1, R + rr(lla}ny(Sl, a’)), (S2, Rz + rrzla,lny(Sz, a’)), s (ST, Ry + rrzla}ny(ST, a’))}
Given a differentiable approximator Q (s, a; w) train it by SGD
following
1.  Sample state, value from experience
(s,Q")~D
2. Apply stochastic gradient descent update
Aw = a(Q™ — Q(s,a; w))V,,Q(s,a; w)
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Deep Q-Networks (DQN)

o DQN uses experience replay and fixed Q-targets

o Take action a; according to e-greedy policy

o Store transition (s;, s, 7441, S¢+1) in replay memory D

o Sample random mini-batch of transitions (s, a,r,s’) from D

o Compute Q-learning targets with respect to old fixed parameters w™
o Optimise MSE between Q-network and Q-learning targets

Li(w;) = Eggrgp, [(r +ymaxQ(s',a’;w) — Q(s, @ Wi))Z]

o Using variant of stochastic gradient descent
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Atari-DQN

Pttt
)

o End-to-end learning of values Q(s, a) from pixels s
o Input state s is stack of raw pixels from last 4 frames
o Outputis Q(s, a) for 18 joystick/button positions

w
T o Reward is change in score for that step
32 4x4 filters 256 hidden units Fully-connected linear
S output layer
|6 8x8 filters
4x84x84
Network architecture
and hyperparameters
fixed across all games !
Stack of 4 previous ] Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units

of rectified linear units of rectified linear units
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Policy-Based Reinforcement Learning

Previously
o Approximate value or action-value function using parameters 6
Vo(s) = V™ (s)
Qo(s,a) = Q" (s, a)

o Generate policy from the value function (e.g. using e-greedy)

Now
o Parametrise the policy
mo(s,a) = P(als,0)
o Focus again on model-free reinforcement learning
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Policy-Based RL — Pros and Cons

o Advantages
* Better convergence properties

* Effective in high-dimensional or
continuous action spaces

® (Can learn stochastic policies

o Disadvantages

* Typically converge to a local rather
than global optimum

* Evaluating a policy is typically
inefficient and high variance
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Deep Policy Networks

o Represent policy by deep network with weights u
a=m,(als) or m,(s)

o Define objective function as total discounted reward
J) = E[ry +yry +y°r3 ... |ul

o Optimise objective end-to-end by stochastic gradient descent

o Adjust policy parameters u to achieve more reward
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Policy Gradient

How to make high-value actions more likely

o The gradient of a stochastic policy m(als, u) is given by
ViJ (W) = Ex[V, logm,(als) Q" (s, a)]
o The gradient of a deterministic policy a = (s) is given by
V. J(u) = En[ann(s» a)vua]

o Assuming a continuous and Q differentiable




(Deep) Actor-Critic Architectures

o Estimate value function
Qw (s,a) = Q" (s,a)
o Update policy parameters u by
stochastic gradient ascent — Y =
0J(u) 0dlogm,(als) ““”" BE
= Qw(s, a) i
ou ou

o Two separate CNNs are used for
Qandm

o Policy T is adjusted in direction
that most improves
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Wrap Up
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Useful Libraries

Stable
Baselines

& Gymnasium

A toolkit for developing and
comparing reinforcement learning

algorithms . . .
g | | | Reliable implementations of
v' Implementation of the interaction reinforcement learning
environment algorithms in PyTorch
v Plug-in your agent with v Integration with Weights &
iIntegration of main DL Biases, Hugging Face and

frameworks Gymnasium
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A classic book if you want to know
more

Richard S. Sutton and Andrew G. Barto,
Reinforcement Learning: An Introduction, Second
Edition, MIT Press (available online)

DAVIDE BACCIU - ISPR COURSE 45



http://incompleteideas.net/book/RLbook2020.pdf

Take home messages

o Reinforcement learning is a general-purpose framework for decision-making

o MDP are a formalism to describe a fully-observable environment for RL
o Can be relaxed to infinite and continuous actions/state and partially observable environments

o Model based - Solve a known MDP

o Policy iteration - Re-define the policy at each step and compute the value according to
this new policy until the policy converges

o Value iteration - Computes the optimal state value function by iteratively improving the
estimate of V(s)

o Model free - Optimise the value/policy of an unknown MDP
* Value-based — Smoother learning task with deterministic policy
* Policy-based — Faster convergence and stochastic policies
* Actor-critic — Learn the value function to reduce variance of policy gradient

* ...and much more (including planning with learned model (AlphaX))
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Next Lecture

v Final lecture
v With full exam information
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