
DCAML . Pant I

We are going to learn a new language
What bes that mean ?

Five Aspects of Learning a PL

Syntax .
Programs are pes written is an erallanguage
-

Languages are made of symes that are combined
-

according to grammatical rules

Syntax defines the grammatically well-written phrases
of a language

Ex. let x = let in x
not well writer

-

·
rot x = Iinleng/5 well-written but meaningless

·
/ x = 5inx+ x well-writter and meaning fur

Semantics . Among well written pleases / programs) What are

De meanin ful ores ?
I

finite combinations of symbols

well-written Phrases

breaking fur
phrases

·
What is he meaning of a program ?

· Denotational semantics

Programs = syntax foralobjects
11

denotations

1 let plusx =
x +x = deuble function is ma

symfax ma
I.

let twice x =

x + x

let twise 1 x = 2Ax
-
-> f(x) = 2 . x

let twice 2 x =
x x ent

· OPERATIONAL SEMANTICS

Programs = syntax + computational content

meaning ·decis
Op . semantics explains how computers understand programs

Dynamic Semantics :

how programs are evaluated

-->e <0: - 12!y

Static Semantics : syntax also catties a meaning

-
a function that has an is put

with a motion of addition

-> statis semantics usually given via type systems

In this course
: ⑰ Syntax ex

. Dr Des expressions - Ron

if-ken-elseder en es1 expression

② Statics e : boo 22 : 2 23 : 2

if - en-else/er
,
e
, 15)

:

2

③Dynamics if- Rer-else/true - ena) - De

if -er-erse/false , era) - es

b-xb

if Renee (b
-
eare- :-Renterserbier

me All of that tells us what needed to implement a language

syntax us
if-Ren-else syntax-free labstract syntax
↑ ! Yes 3 - -

er lexet
- parset....

static
-x Type-checking ↳x-infer/if-on-elerexer - es((semantics

type - inference
- lot tya=ty-inferre

ty =
ty- imfet /eit

tys : Y _ infet rest
i

if tra =
=
boo/2

tyz = = +y 3
Rar ty3

dynamic
-3 interpreter evar/if-ene/e(er)) =

Semantics
let =

eval re

in if b =

=
true Mer evarrest ele evarlest

from What we the pers that people fluent in the language

use to solve problems ?

Ex
.

Use Java-style expressions in Dcaml does not work

well
- although yew can do that

read good code

↳ learning by doing look for beautiful code
-

experience

LBRES
- 3 -> not covered in this course

-es

Building blocks

Expressions
-

2
.

What is a par in FP ? lof. paradigm

11 imperative programin - programs are built out of
statements

instructions -
- commands 3 -> many syntactic categories
&expressions

:

- leaves state recharged : justwhile /I= & nexpression
at : Practic

Xi= x + 1

- a command us determines a change in Re
state of Re emachine
-

Le FP
- programs are expressions we is command

,
to statement ...

-> ↳o state (?-

us Programming as advanced algebraSaptationas station-

Any expression has a

syntax verten :A Ronverse deren est lot =e
. in es

semantis , e
static - meaning of an expression "af reast irhout

wher non-executed

↳ dramnic= -
· wher exerted

What bes if mean to execute an expression ?

computation = calculation

Ex High-school
Calculate +2 = Simplify /z to simplet expressions
n vert: he simplest is achieved
expression ne

value

11 +2) - 3

-3 computation
-> 31 3

computation - reduce an expression until a value is reached
,
if as

Value = as expression
that cannot be freet reduced

Exp
Va

2 - Cr - C + ... + e - v
evarreo = ~
e

evaluation

Ocame interpreter Step is a generalized calculator

expe
> OCAMC

evarre
>

DCAML EXPESSIONS
-

values : 0
.

1
_ 2-1-2 ...

- integer,- exp : e+ x -
2 , Alz - ---

-

I typing : int

evaluation :...

value : true
, false

- beebears
- exp : if e . Her ey else 2-e- 2 & 2
-

& typiry : bee

evaluation : e . = True 2 = ~
-

if e. in es ele es = ~

↳ to evaluate "if e . Domes else es
~value :

3 .3. ..
· evaluate er to a value &

-float - exp Cra. 12
_
9
.
+ . G ...

↑ typing
: float · if is true

,
Ren evaluate es and return by

avaluation :... result
· eherwise

,
evaluate es and estren Re result

What des exami as when we give
if as expression e ?

① Massage syntax of e : see we

2

② Ipe-inference ~typeof e-

· Ne need for the programmer
to write the type

~but better if
you do Raff

Java bes te same: Type inference is done by the compiler
-

Px Mor infer types
X

~> before program execution / static
at dynamis time

· find lots of bugs without wasting resources

Relation between statics and dynamics

"well-typed programs do
not go wrong" / . Mirror

+e : 2c - e -eiz = either e is a value wo error

re : 2 D during
1e- e
- 3 computation
computation ca progress

Definitions

Armony expressions , We have definitions

let x = 12
↑

variable

evaluating let x = 12 gives
~

val x : int = /2 we have the value d of type
int

,
which is bound to the

name x

If we know evaluate x
,
we just get 12

Stax : let x=↑ expression
~

identifier
Pratrabre

Dynamics · We need first to introduce the motion of an environment
-

y
= stores of variables/identifiers with associated values

e . g . y = fxxe3, x 1- 2)

· We evaluate expressions within environments

y(e = w

· to evaluate let x = e in environment a do

evaluate in environment y - obtaining value w

·
bird or te xin -i . e . build Dexte /

Corniments
-

Are definitions expressions ? Not really1
.

· Definitions do not evaluate to a value
- -

~ just update te environment

· Definitions do Lot have static semantics

· We cannot use definitions as expressions (efx = (2) + 3

Exp Dof

Va

2. Are definitions expressions
? Yes actually

Definitions are yesugge for let in expressions

12 x = 12in3 + x
-

continuation

A definition is a lettin exp.
" Without continuation die wi

trivial continuation

tax e :. = ... /(e) x = ein 2

statics .
Mt e : 2. ~xin - resize

Gree of hat later↑ + let x = e
.
in e : 22

Dmics alter ~ fxewe = V

& It let =er in en wa

VARABLES and ImmutabicrT

variables in uP are immutable
:
They are name/placeholders for values
as in mar

ret x = 12 :
-> citor

: x already defined
let x = 1 :

Amimutability makes code much safier

- REFERENTIAL TRANSPARENCY :

an expression and te value if computes

·requires absence of are equivalent

side effects 21e1 = efr) whereve e = w

counter example : 2 fe) = e/x

e = x: = 0 ! /2

R or efe)> extor

2(12) = 12/12

↳ Equational Reasona
: reason about code using systems of

equations

↑ if a not a variable·

=
= e

in 21

-

dead-code optimisation
not valid if variables are mutable

· er + 22
= e + e

not valid if variables are mutable

suppose we start wik x + 1 .

↑ (xi = 0 : 3) + 1/x = 1/x + (x:=0 :3)
· Easy to parallelise code

Iimimutability cometimes difficult to digest :

in FP "objects" do if change

soft (f13 . 21 creates a enlist f(213)

suppose we have a structure "person

Pippe=/age : e name : "Pippo"3

want is update the age of Pippe to res

next year /Pippel dees not change Pippo .

A new structure is created
,
exactly like Dippe , but with age 100

