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Motivation Bayesian Networks

Probabilistic models, such as

Bayesian Networks, enable the

decomposition of joint probabilities
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Causal ordering is not necessary.
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Motivation Causal Bayesian Networks
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In a Causal Bayesian Network,

edges represent causal relations.

Given causal ordering, we can

represent external interventions

on the model.
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Motivation What’s a causal variable?

Independent Mechanism Principle (Peters et al. 2017)

The causal generative process of a system’s variables is composed

of autonomousmodules that donot informor influence eachother.

3



Motivation Causal Models

(a) Probabilistic Model (b) Causal Model

Figure 1: A probabilistic model represents a distribution PX on a set of random
variables X. For each intervention i, a causal model represents a distinct
distribution Pi

X on the same variables, where the observational distribution
corresponds to the empty intervention. Illustration from Schölkopf et al. (2021).
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Structural Causal Models



Structural Causal Models Definition

A Structural Causal Model

M = (X,E, f ,PE),

specifies the deterministic

mechanisms f between a set of

endogenous variables X and a

set of exogenous variables E
with distribution PE .
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Endogenous
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Structural Causal Models Definition

To each endogenous variable

X ∈ X, we assign an exogenous

variable EX ∈ E.
The endogenous mechanism fX

of X is then defined as a function

fX : D(Pa(X) ∪ EX)→ D(X).

Due to acyclicity, we can define

the model reduction

M : D(E)→ D(X).
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E3 X3

E2 X2

E4

X4

P(E1)

P(E2)

P(E3)

P(E4)

Exogenous
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Linear Gaussian SCMs

Given the exogenous distribution PE , the deterministic mechanisms f
induce a distribution on the endogenous variables PX .

X1 X2 X3

Structural Causal Model

X1 = E1

X2 = a ·X1 + E2

X3 = b ·X1 + c ·X2 + E3

E1,E2,E3 ∼ N (0, I)

Causal Bayesian Network

X1 ∼ N (0, 1)

X2 | X1 ∼ N (a ·X1, 1)

X3 | X1,X2 ∼ N (b ·X1 + c ·X2, 1)
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Linear Gaussian SCMs

Given the exogenous distribution PE , the deterministic mechanisms f
induce a distribution on the endogenous variables PX .

X1 X2 X3

Structural Causal Model

X1 = 2 · E1

X2 = a ·X1 + 2 · E2

X3 = b ·X1 + c ·X2 + 2 · E3

E1,E2,E3 ∼ N (0, I · 1/2)

Causal Bayesian Network

X1 ∼ N (0, 1)

X2 | X1 ∼ N (a ·X1, 1)

X3 | X1,X2 ∼ N (b ·X1 + c ·X2, 1)
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Intervened Models How to intervene on an SCM?

Hard Intervention

Given an SCM

M = (X,E, f ,PE),

a subset of variables V ⊂ X and a setting v ∈ D(V), an hard inter-

vention i = (V ← v) results in a SCMMi = (X,E, f i,PE), where

f i
X =

vX X ∈ V
fX X 6∈ V ,

for each endogenous variable X ∈ X.

Interventions can be: soft, stochastic, perfect, imperfect, …
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Causal Reasoning



Causal Queries Pearl’s Ladder of Causation

Layer Query Model

Association P(Y | X = x) BN

Intervention P(Y | do(X ← x)) CBN

Counterfactual P(Y = y′ | Y = y,X = x, do(X ← x′)), x 6= x′ SCM

9



Causal Queries Pearl’s Ladder of Causation

Layer Query Model

Association P(Y | X = x) BN

Intervention P(Y | do(X ← x)) CBN

Counterfactual P(Y = y′ | Y = y,X = x, do(X ← x′)), x 6= x′ SCM

9



Causal Queries Pearl’s Ladder of Causation

Layer Query Model

Association P(Y | X = x) BN

Intervention P(Y | do(X ← x)) CBN

Counterfactual P(Y = y′ | Y = y,X = x, do(X ← x′)), x 6= x′ SCM

9



Average Treatment Effect

Suppose that we have a binary treatment variable X and an outcome

variable Y . Then, we can compute the Average Treatment Effect as

ATE(X ,Y ) = Ey∼Y |do(X←1) [y]− Ey∼Y |do(X←0) [y]

=
∑

y∈D(Y)

y · pdo(X←1)
Y (y)−

∑
y∈D(Y)

y · pdo(X←0)
Y (y).
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Causal Identifiability

To compute ATE(X ,Y ) or any other causal estimate, we need to

compute the interventional distribution pdo(X←x)
Y .

The distribution is causally identifiable if it can be computed from the

observational distribution.

In general, this is not possible, but we can use the do-calculus to identify

the conditions under which it is possible.

The do-calculus is a complete set of rules that can be easily applied to

any causal graph.
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Backdoor Criterion

Z

T R

An hospital offers two distinct surgeries (T )

for kidney stones which they assign

depending on the whether the stones are

large (Z = 1) or small (Z = 0). Depending
on the size of the stones and the treatment,

the success rate (R) varies.
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Backdoor Criterion

Z

T R

Z = 0 Z = 1

T = a 0.93 (81/87) 0.73 (192/263)

T = b 0.87 (234/270) 0.69 (55/80)
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Backdoor Criterion

Z

T R

We can define the best treatment by

computing the interventional success rate.

P(R = 1 | do(T ← a)) =

P(R = 1 | T = a,Z = 0)P(Z = 0)

+P(R = 1 | T = a,Z = 1)P(Z = 1)

= 0.93 · 0.51 + 0.73 · 0.49 = 0.832,

P(R = 1 | do(T ← b)) =

P(R = 1 | T = b,Z = 0)P(Z = 0)

+P(R = 1 | T = b,Z = 1)P(Z = 1)

= 0.87 · 0.51 + 0.69 · 0.49 = 0.782.
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Backdoor Criterion

By computing the conditional probabilities, we can easily see how

conditioning differs from intervening.

P(R = 1 | T = a) = 0.780,

P(R = 1 | T = b) = 0.830.

P(R = 1 | do(T ← a)) = 0.832,

P(R = 1 | do(T ← b)) = 0.782.

Given the probability of success when observing the treatments, we would

have, arguably incorrectly, chosen treatment b.
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Causal Queries Pearl’s Ladder of Causation

Layer Query Model

Association P(Y | X = x) BN

Intervention P(Y | do(X ← x)) CBN

Counterfactual P(Y = y′ | Y = y,X = x, do(X ← x′)), x 6= x′ SCM
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Counterfactuals
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Causal Discovery



Causal Discovery Problem Definition

Causal Discovery, or causal learning,

consists of determining causal

relations between variables X from

their observational distribution PX .

X1

X2

X3

X4

X5

X6
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Structure Identifiability Can we even learn a causal model?

Graph Identifiability

Given a set of assumptions A, we say that the graph G of a causal

modelM is identifiable from the distribution PX whenever there

does not exist another causal modelM′ satysfying A with a differ-

ent graph G′ but the same observational distribution PX .

Lachapelle et al. 2019

A = ∅ =⇒ No identifiability.
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Common Assumptions A = {Sufficiency}

E

E1 E2

X1 X2

Causally Sufficient Model

E1 ⊥⊥ E2

A model is causally sufficient

whenever there are no unobserved

confounders. This equates to

assuming that there is no selection

bias and the exonous terms E are

marginally independent, i.e.,

∀i 6= j. Ei ⊥⊥ Ej.
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Common Assumptions A = {Faithfulness}

X1

X2

X3

X4

a b
c

d

Faithful Model,

c 6= −ab

A model is causally faithfull

whenever all conditional

independences in the distribution

PX imply d-separations in the graph

G, i.e.,

A ⊥⊥ B | C =⇒ A ⊥⊥G B | C.
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Common Assumptions A = {Faithfulness}

X1

X2

X3

X4

a b
−ab

d

Faithfulness Violation,

X1 ⊥⊥ X4 but X1 6⊥⊥GX4.

A model is causally faithfull

whenever all conditional

independences in the distribution

PX imply d-separations in the graph

G, i.e.,
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Peter-Clark (PC) Algorithm A = {Sufficiency, Faithfulness}

X1

X2

X4

X3

The PC algorithm is a

constraint-based discovery method

that iteratively removes and orients

edges.

The algorithm returns the Markov

equivalence class of the true causal

graph, which can contain multiple

graphs.
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Model Class A = {Sufficiency,Model Class}

Description Mechanism f Id.

General SCM X := fX(Pa(X),EX) — 7

ANM X := fX(Pa(X)) + EX Nonlinear 3

CAM X :=
∑

X′∈Pa(X) f (X ′) + EX Nonlinear 3

Gaussian ANM X := 〈w,Pa(X)〉+ EX Linear 7

Non-Gaussian ANM X := fX(Pa(X)) + EX Linear 3

Gaussian Eq. Var X := 〈w,Pa(X)〉+ EX Linear 3
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Continuous Optimization Score-Based Methods

Continuous Causal Discovery (CCD) approaches try to recast

combinatorial discovery algorithms as optimization problems.

min
G
S(G,DX)

s.t. G is acyclic.

There are two main open problems:

• How to efficiently enforce acyclicity on the solution G?

• How to encode assumptions in the score function S?
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Causal Abstraction



Causal Abstraction Motivation

Traditional causal discovery algorithms require a

large number of samples and are computationally

expensive.

Can we represent a system with a simpler model at

an higher-level of abstraction?
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Causal Abstraction Main Intuition

e xL

u yH

τ τ

Given an abstraction function τ , an SCMH
is an abstraction of L if the diagram

commutes, i.e.,
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Causal Abstraction Main Intuition

e xLi

u yHj

τ τ

Given an abstraction function τ , an SCMH
is an abstraction of L if the diagram

commutes, i.e.,

τ ◦ Li = Hj ◦ τ,

for any intervention i.

24



T-Abstraction Linear Abstraction

In the linear case, we can use

abstraction to cluster larger

causal graphs.

This improves the complexity

of causal reasoning and

allows for more interpretable

models.
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Abs-LiNGAM Mixing Abstraction and Causal Discovery
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(b) Execution Time (s) over Graph Size |X|

Introducing abstract information in the LiNGAM pipeline, we gain

significant speedup (2x) in execution time (b, right) without performance

loss (a, left).
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Causal Representation Learning



Causal Representation Learning Context

In many contexts, we can

assume that

high-dimensional

observations x are generated

through a decoder function

f : D(Z)→ D(X)

from a set of latent causal

variables Z.
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Causal Representation Learning “Causal” Disentanglement

Disentanglement

Factors are statistically independent.

Altering a factor should only affect a

single dimension of the data.

Causal Representation

Factors are causally independent.

Altering a factor might affect other

factors, but we can independently

manipulate them.
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Causal Representation Learning CITRIS (Lippe et al. 2022)

We need interventional samples

to learn causal representations

such as TempoRal Intervened

Sequences (TRIS),

D = {(xt, i, xt+1)} ,

where we can observe the state

of the model before and after an

intervention i.
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Conclusion



Main References Elements of Causal Inference
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Conclusion

• Causal Graphical Models are a powerful

tool to represent causal relationships

between variables.

• Efficient causal discovery from

observational data is a challenging

problem.

• Causal Abstraction and Causal

Representation Learning are promising

research directions for future

applications.
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