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Course Organization 1

▶ 1 course (9 CFU/ECTS)

▶ 1 program

▶ 1 exam

▶ 2 related but ̸= areas of computational mathematics =⇒ 2 lecturers:

Federico Poloni (Numerical methods)
Dipartimento di Informatica, room 343
050 2213143, mailto:federico.poloni@unipi.it
https://www.di.unipi.it/~fpoloni

Office hours (ricevimento): upon request

Antonio Frangioni (Optimization)
Dipartimento di Informatica, room 327
050 2212789, mailto:frangio@di.unipi.it
https://www.di.unipi.it/~frangio

Office hours (ricevimento): Tuesday 9:00 – 11:00

mailto:federico.poloni@unipi.it
https://www.di.unipi.it/~fpoloni
mailto:frangio@di.unipi.it
https://www.di.unipi.it/~frangio


Basic information 2

▶ Course Schedule

▶ Wed 16:00 – 18:00 (Fib. C1)

▶ Thu 11:00 – 13:00 (Fib. C)

▶ Fri 11:00 – 13:00 (Fib. M1)

▶ Web page: https://elearning.di.unipi.it/course/view.php?id=990

▶ Team for lectures: https://teams.microsoft.com/l/team/19%
3AXKHW23QFLHIctHJWqDjeYPQVhmqbXwhkVG_jRiwl96o1%40thread.tacv2/

conversations?groupId=cb04d09e-0aae-419a-a3d2-9be2e9afe1c5&

tenantId=c7456b31-a220-47f5-be52-473828670aa1

▶ Exam: project (groups of 2) + oral exam

Projects either “ML” or “no-ML”, but no difference in work and grading

https://elearning.di.unipi.it/course/view.php?id=990
https://teams.microsoft.com/l/team/19%3AXKHW23QFLHIctHJWqDjeYPQVhmqbXwhkVG_jRiwl96o1%40thread.tacv2/conversations?groupId=cb04d09e-0aae-419a-a3d2-9be2e9afe1c5&tenantId=c7456b31-a220-47f5-be52-473828670aa1
https://teams.microsoft.com/l/team/19%3AXKHW23QFLHIctHJWqDjeYPQVhmqbXwhkVG_jRiwl96o1%40thread.tacv2/conversations?groupId=cb04d09e-0aae-419a-a3d2-9be2e9afe1c5&tenantId=c7456b31-a220-47f5-be52-473828670aa1
https://teams.microsoft.com/l/team/19%3AXKHW23QFLHIctHJWqDjeYPQVhmqbXwhkVG_jRiwl96o1%40thread.tacv2/conversations?groupId=cb04d09e-0aae-419a-a3d2-9be2e9afe1c5&tenantId=c7456b31-a220-47f5-be52-473828670aa1
https://teams.microsoft.com/l/team/19%3AXKHW23QFLHIctHJWqDjeYPQVhmqbXwhkVG_jRiwl96o1%40thread.tacv2/conversations?groupId=cb04d09e-0aae-419a-a3d2-9be2e9afe1c5&tenantId=c7456b31-a220-47f5-be52-473828670aa1
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Why this course 3

▶ Huge amounts of data is generated and collected, but one has to
make sense of it in order to use it: that’s what learning is

▶ Take something big (data) and therefore unwieldy and produce
something small and nimble that can be used in its stead (“actionable”)

▶ That’s a (mathematical) model

▶ Word comes from “modulus”, diminutive from “modus” = “measure”:
“small measure”, “measure in the small” (small is good)

▶ Known uses in architecture: proving beforehand that the real building won’t
collapse (e.g., Filippo Brunelleschi for the Cupola of the Cathedral of Florence)

▶ Countless many physical models afterwards (planes, cars, . . . ), but
mathematics is cheaper than bricks / wood / iron . . .

▶ Yet, mathematical problems can be difficult, too, for various reasons
(and, of course, only truly viable after computers)

▶ Most of them will (likely) remain difficult for quantum computers
https://www.smbc-comics.com/comic/the-talk-3

https://www.smbc-comics.com/comic/the-talk-3


Choosing a mathematical model 4

▶ How a mathematical model should be:

1. accurate (describes well the process at hand)

2. computationally inexpensive (gives answers rapidly)

3. general (can be applied to many different processes)

Typically impossible to have all three =⇒ choice crucial!

▶ Two fundamentally different model building approaches:

1. analytic: model each component of the system separately + their interactions,
(≈)accurate but hard to construct (need system access + technical knowledge)

2. data-driven / synthetic: don’t expect the model to closely match the underlying
system, just to be simple and to (≈)accurately reproduce its observed behaviour

▶ All models are approximate (the map is not the world), but for different reasons

▶ Analytic models: flexible shape, (relatively) few “hand-chosen” parameters

▶ Synthetic models: rigid shape, (very) many automatically chosen parameters

▶ Fitting: find the parameters of the model that best represents the phenomenon,
clearly some sort of optimization problem (often a computational bottleneck)

▶ However, ML ≫ fitting: fitting minimizes training error ≡ empirical risk,
but ML aims at minimizing test error ≡ risk ≡ generalization error!
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Example 1: Linear Estimation 5

▶ A phenomenon measured by one number y is believed to depend on a

vector x = [ x1 , . . . , xn ] of other numbers

▶ Available (hopefully, large) set of observations ( y1 , x1 ), . . . , ( ym , xm )

▶ Horribly optimistic assumption: the dependence is linear, i.e.,

y =
∑n

i=1 wixi + w0 = wx + w0

for fixed n + 1 real parameters w = [ w0 , w+ = [w1 , . . . , wn ] ]

▶ But yh = w+x
h + w0 for all h = 1, . . . ,m is not really true for any w and w0

▶ Find the w for which it is less untrue (Linear Least Squares):

y =

 y1

...
ym

 , X =

 1 x1

...
...

1 xm

 , min
w
L(w ) =

∣∣∣∣ y − Xw
∣∣∣∣

▶ Minimize loss function L(w ) =
∣∣∣∣ y − Xw

∣∣∣∣ ≡ empirical risk ≡ how much

the model fails the predict the phenomenon on the available observations

▶ Simple closed formula: XTXw = XT y =⇒ w = (XTX )−1XT y



Linear Estimation (cont.d) 6
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▶ In Matlab, this is just c = y / X

▶ Trade-off: very simple fitting for exceedingly crude model =⇒ high risk

▶ Then, of course Nonlinear Estimation . . .
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Example 2: Low-rank approximation 7

▶ A (large, sparse) matrix M ∈ Rn×m describes a phenomenon

depending on pairs (e.g., objects chosen from customers)

▶ Find “tall and thin” A ∈ Rn×k and “fat and large” B ∈ Rk×m (k ≪ n,m)

s.t. M ≈ AB ≡ find a few features that describe most of users’ choices

M ≈ A · B , min
A,B
L(A , B ) =

∣∣∣∣M − AB
∣∣∣∣

▶ Minimize loss L(A , B ) =
∣∣∣∣M − AB

∣∣∣∣ ≡ “amount of unexplained choices”

▶ Many applications (neural networks, community analysis, . . . )

▶ A, B can be obtained from eigenvectors of MTM and MMT . . .

. . . but that’s a huge, possibly dense matrix

▶ Efficiently solving this problem requires:

1. low-complexity computation (of course)

2. avoiding ever explicitly forming MTM and MMT (too much memory)

3. exploiting structure of M (sparsity, similar columns, . . . )

4. ensuring the solution is numerically stable
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Low-rank approximation for image compression 8

Black/white image ≡ M with color intensities ∈ [ 0 , 1 ]

Original (512× 512) k = 1 k = 10

k = 25 k = 50 k = 100
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Example 3: Support Vector Machines 9

▶ Same setting as Example 1 but yh ∈ { 1 , −1 } (have cancer or not)

▶ Want to linearly separate the two sets (diagnose the next patient)

▶ Countless many applications (medical diagnosis, OCR, spam filtering, fraud
detection, marketing, image processing . . . )

▶ But which hyperplane do we choose?

▶ Intuitively, the margin is important (and theory supports the intuition)

▶ Larger margin =⇒ more “robust” classification
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Support Vector Machines (cont.d) 10

▶ Distance of // hyperplanes (w+ , w0 ) and (w+ , w ′
0 ) is |w0 − w ′

0 | / ∥w+ ∥

▶ Can always take the hyperplane in “the middle” + scale w

=⇒ w+x
h − w0 ≥ 1 if yh = 1 , w+x

h − w0 ≤ −1 if yh = −1

▶ The maximum margin separating hyperplane is the solution of

minw
{
∥w+ ∥2 : yh(w+x

h − w0) ≥ 1 h = 1, . . . ,m
}

(margin = 2 / ∥w+ ∥, “2” because I say so), assuming any exists

▶ What if it does not? Support Vector Machine

(SVM-P) minw
{
∥w+ ∥2 + CL(w ) =

∑m
h=1 max{ 1− yh(w+x

h − w0) , 0 }
}

▶ ∥w+ ∥ ≈ model complexity, the less the more chances it generalises well

=⇒ C weighs L() = loss (of separation) on current data w.r.t. (hopefully)

on future data: bias/variance dilemma (not really our business)

▶ L convex but nondifferentiable: reformulation with (many linear) constraints

(SVM-P) minw ,ξ ||w+ ||2 + C
∑m

h=1 ξh

yh(w+x
h − w0) ≥ 1− ξh , ξh ≥ 0 h = 1, . . . ,m



SVM: the problem, and the solution 11

▶ (Approximate) linear separability

rare, (approximate) linear regression weak

▶ Idea: embed in larger space nonlinearly, then linear function may work

▶ Doing this effectivey (how to embed) and efficiently nontrivial
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Support Vector Machines: the magic of duality 12

▶ Equivalently, one can solve the dual problem (??? what ???)

(SVM-D) max
α

∑m
h=1 αh − 1

2

∑m
h=1

∑m
k=1 αh⟨ xh , xk ⟩αk∑m

i=1 y
hαh = 0

0 ≤ αh ≤ C h = 1, . . . ,m

a convex constrained quadratic program, but with “simple constraints”

▶ Solve one problem by solving an apparently different one:

α∗ optimal for (SVM-D) =⇒ w∗
+ =

∑m
h=1 α

∗
hy

hxh optimal for (SVM-P)

▶ Dual formulation =⇒ kernel trick: input space ⇝ (larger) feature space

⟨ xh , xk ⟩ ⇝ ⟨ϕ(xh) , ϕ(xk) ⟩

where points are hopefully “more linearly separable”

▶ Feature space can be infinite-dimensional, provided that

scalar product can be (efficiently) computed

▶ Efficient algorithms: (SVM-P) or (SVM-D) (or both), complexity, . . .



Example 4: clustering 13

▶ X = [ x i ∈ Rh ]i∈I inputs, no outputs available ≡ each x i “looks the same”

▶ Many ̸= possible variants

▶ Simplest:

▶ X p = { x i : closer to cp than
to any other cq }

▶ Clusters (may) depend on the
chosen norm ≡ topology of Rh

▶ Clusters in L2

▶ Given k ∈ N (K = { 1 , . . . , k }), find X =
⋃

p∈K X p ≡ partition of X

in clusters s.t. X i that are homogeneous (??) and well separated (??)

▶ Crucial problem in unsupervisioned ML: automatically figure out the labels

from the data, ill-defined by definition (many ̸= ways to label the same stuff)
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▶ Crucial problem in unsupervisioned ML: automatically figure out the labels

from the data, ill-defined by definition (many ̸= ways to label the same stuff)
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Optimization models for (L2) clustering 14

▶ c = [ cp ]p∈K ∈ Rhk , nonconvex and nonsmooth unconstrained model

min{ f ( c ) =
∑

i∈I minp∈K ∥ cp − x i ∥22 : c ∈ Rhk}

▶ Reformulation I: nonconvex, smooth, combinatorial, constrained model

min
∑

i∈I

∑
p∈K zip∥ cp − x i ∥22∑

p∈K zip = 1 i ∈ I

zip ∈ N [≡ { 0 , 1 } ] p ∈ K , i ∈ I

zip “logical” variables: 1 if x i “assigned” to cluster p, 0 otherwise

▶ Two sources of nonconvexity: products zc in objective, integrality constraints

▶ But perfect structure for alternating minimization approaches:

convex (≡ easy) in z if c fixed, convex in c if z fixed

▶ z fixed, I ( z , p ) = { i ∈ I : zpi = 1 } =⇒ (cp)∗ =
∑

i∈I ( z , p ) x
i /#I ( z , p )

optimal centroid ≡ mean of the points in the cluster



Immediately ⇝ the k-means algorithm 15

procedure c = k-means (X , c , ε ) // note: k implicit from size of c
for( v ←∞ ; ; ) do
foreach( p ∈ K ) do I ( p )← ∅;
foreach( i ∈ I ) do p̄ ← argmin{ ∥ cp − x i ∥22 : p ∈ K }; I ( p̄ )← I ( p̄ ) ∪ { i };
foreach( p ∈ K ) do cp ←

∑
i∈I ( p ) x

i /#I ( p ); // note: I ( p ) = ∅ happens
v̄ ←

∑
p∈K

∑
i∈I ( p ) ∥ cp − x i ∥22;

if( v − v̄ ≤ ε ) then break; else v ← v̄ ;

▶ Special case of (block) Gauss-Seidel approach: f ( x1 , x2 , . . . , xk ),

iteratively optimize over each individual (group of) variable(s) xp

keeping the other variables fixed =⇒ can work in parallel

▶ Convenient if f convex over each xp individually but not jointly on all x

▶ Can be proven to “work” (converge), ends in finitely many iterations

▶ Local approach to nonconvex problem =⇒ no guarantee of global optimality

=⇒ initial centroids relevant issue in practice (attraction basin)
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Welcome to the course 16

▶ . . . of Computational Mathematics for Learning and Data Analysis

Welcome to the
Magic Academy
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▶ . . . of Computational Magic for Learning and Data Analysis

Welcome to the
Magic Academy



Main quests and side quests 17

▶ There are two main quests in the course:

1. get a general understanding of several different classes of

numerical algorithms and their underlying mathematical principles

2. be able to actually implement, debug, and tune a few of them

▶ Algorithms are mathematical objects =⇒
reasoning about algorithms often is proving theorems (+ some hand-waving)

▶ All the more when the algorithms deal with nontrivial mathematical objects

▶ This is (mostly) done in the optional “Mathematically speaking” slides

▶ Learning theorems’ proofs by heart is not a subject of the exam,

not even the few (very simple) ones we’ll actually see in details during lectures

▶ But you will have a lot more fun if you face side quests seriously

▶ Exercises are there for the same reason



Syllabus 18

▶ Linear algebra and calculus background

▶ Unconstrained optimization and systems of equations

▶ Direct and iterative methods for linear systems and least-squares

▶ Numerical methods for unconstrained optimization

▶ Iterative methods for computing eigenvalues

▶ Constrained optimization and systems of equations

▶ Duality (Lagrangian, linear, quadratic, conic, . . . )

▶ Numerical methods for constrained optimization

▶ Software tools for numerical computations (Matlab, Octave, . . . )

▶ Sparse hints to AI/ML applications



Course material 19

▶ Slides prepared by the lecturers + recording of lectures

▶ Matlab programs + data

▶ L.N. Trefethen, D. Bau Numerical Linear Algebra, SIAM, 1997

▶ J. Demmel Applied Numerical Linear Algebra, SIAM, 1996

▶ S. Boyd, L. Vandenberghe Convex optimization, Cambridge Un. Press, 2008
(http://web.stanford.edu/~boyd/cvxbook/)

▶ L. Eldén Matrix Methods in Data Mining and Pattern Recognition, SIAM, 2007

▶ M.S. Bazaraa, H.D. Sherali, C.M. Shetty Nonlinear programming: theory and
algorithms, Wiley & Sons, 2006

▶ D.G. Luenberger, Y. Ye Linear and Nonlinear Programming, Springer
International Series in Operations Research & Management Science, 2008

▶ J. Nocedal, S. Wright Numerical Optimization, Springer Series in Operations
Research and Financial Engineering, 2006

▶ Lecture notes for the optimization forthcoming, at least partly available soon

http://web.stanford.edu/~boyd/cvxbook/
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Wrap up: what’s this course about 20

▶ Learning as a computational, hence mathematical, process

▶ Mathematical foundations of many important learning processes

≡ nonlinear optimization and numerical analysis techniques

▶ Easy problems (linear, quadratic, conic, convex) or local optima,

because size is huge (hard because large, not hard because hard)

▶ Besides, in ML the global optimal solution can be bad!

▶ Emphasis on what can be done by linear algebra

▶ Focus on methods and software tools, theory only as needed to understand

▶ Applications to be seen in “Machine Learning” and/or “Data Mining”

(in parallel, you can/are supposed to do it, we talk to each other)
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