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Course Organization

> 1 course (9 CFU/ECTS)
» 1 program

> 1 exam

> 2 related but # areas of computational mathematics = 2 lecturers:

Federico Poloni (Numerical methods)

Dipartimento di Informatica, room 343

050 2213143, mailto:federico.poloni@unipi.it
https://www.di.unipi.it/~fpoloni

Office hours (ricevimento): upon request

Antonio Frangioni (Optimization)
Dipartimento di Informatica, room 327

050 2212789, mailto:frangio@di.unipi.it
https://www.di.unipi.it/~frangio

Office hours (ricevimento): Tuesday 9:00 — 11:00


mailto:federico.poloni@unipi.it
https://www.di.unipi.it/~fpoloni
mailto:frangio@di.unipi.it
https://www.di.unipi.it/~frangio

Basic information 2

» Course Schedule
> Wed 16:00 — 18:00 (Fib. C1)
> Thu 11:00 — 13:00 (Fib. C)
> Fri 11:00 — 13:00 (Fib. M1)

» Web page: https://elearning.di.unipi.it/course/view.php?id=990

» Team for lectures: https://teams.microsoft.com/1/team/19%
3AXKHW23QFLHIctHJIWgDjeYPQVhmgbXwhkVG_jRiwl9601%40thread.tacv2/
conversations?groupld=cb04d09e-0aae-419a-a3d2-9be2e9afelcb&
tenantId=c7456b31-a220-47£5-beb52-473828670aal

> Exam: project (groups of 2) + oral exam

Projects either "ML" or “no-ML", but no difference in work and grading


https://elearning.di.unipi.it/course/view.php?id=990
https://teams.microsoft.com/l/team/19%3AXKHW23QFLHIctHJWqDjeYPQVhmqbXwhkVG_jRiwl96o1%40thread.tacv2/conversations?groupId=cb04d09e-0aae-419a-a3d2-9be2e9afe1c5&tenantId=c7456b31-a220-47f5-be52-473828670aa1
https://teams.microsoft.com/l/team/19%3AXKHW23QFLHIctHJWqDjeYPQVhmqbXwhkVG_jRiwl96o1%40thread.tacv2/conversations?groupId=cb04d09e-0aae-419a-a3d2-9be2e9afe1c5&tenantId=c7456b31-a220-47f5-be52-473828670aa1
https://teams.microsoft.com/l/team/19%3AXKHW23QFLHIctHJWqDjeYPQVhmqbXwhkVG_jRiwl96o1%40thread.tacv2/conversations?groupId=cb04d09e-0aae-419a-a3d2-9be2e9afe1c5&tenantId=c7456b31-a220-47f5-be52-473828670aa1
https://teams.microsoft.com/l/team/19%3AXKHW23QFLHIctHJWqDjeYPQVhmqbXwhkVG_jRiwl96o1%40thread.tacv2/conversations?groupId=cb04d09e-0aae-419a-a3d2-9be2e9afe1c5&tenantId=c7456b31-a220-47f5-be52-473828670aa1
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Why this course 3

>

>

Huge amounts of data is generated and collected, but one has to
make sense of it in order to use it: that's what learning is

Take something big (data) and therefore unwieldy and produce
something small and nimble that can be used in its stead ( “actionable”)

That's a (mathematical) model

Word comes from “modulus”’, diminutive from “modus’ = “measure”:
“small measure”, “measure in the small” (small is good)

Known uses in architecture: proving beforehand that the real building won't
collapse (e.g., Filippo Brunelleschi for the Cupola of the Cathedral of Florence)

Countless many physical models afterwards (planes, cars, ...), but
mathematics is cheaper than bricks / wood / iron ...

Yet, mathematical problems can be difficult, too, for various reasons
(and, of course, only truly viable after computers)

Most of them will (likely) remain difficult for quantum computers
https://www.smbc-comics.com/comic/the-talk-3


https://www.smbc-comics.com/comic/the-talk-3
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Choosing a mathematical model 4
» How a mathematical model should be:

1. accurate (describes well the process at hand)

2. computationally inexpensive (gives answers rapidly)

3. general (can be applied to many different processes)

Typically impossible to have all three = choice crucial!

» Two fundamentally different model building approaches:

1. analytic: model each component of the system separately + their interactions,

(m)accurate but hard to construct (need system access + technical knowledge)

2. data-driven / synthetic: don't expect the model to closely match the underlying
system, just to be simple and to (=2)accurately reproduce its observed behaviour
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How a mathematical model should be:

1. accurate (describes well the process at hand)

2. computationally inexpensive (gives answers rapidly)

3. general (can be applied to many different processes)
Typically impossible to have all three = choice crucial!
Two fundamentally different model building approaches:

1. analytic: model each component of the system separately + their interactions,
(~)accurate but hard to construct (need system access + technical knowledge)

2. data-driven / synthetic: don't expect the model to closely match the underlying
system, just to be simple and to (=2)accurately reproduce its observed behaviour

All models are approximate (the map is not the world), but for different reasons
Analytic models: flexible shape, (relatively) few “hand-chosen” parameters
Synthetic models: rigid shape, (very) many automatically chosen parameters

Fitting: find the parameters of the model that best represents the phenomenon,
clearly some sort of optimization problem (often a computational bottleneck)

However, ML > fitting: fitting minimizes training error = empirical risk,
but ML aims at minimizing test error = risk = generalization error!



Example 1: Linear Estimation 5

» A phenomenon measured by one number y is believed to depend on a

vector x = [x1, ..., X, | of other numbers
» Available (hopefully, large) set of observations (y!, x1), ..., (y™, x™)

» Horribly optimistic assumption: the dependence is linear, i.e.,
y =20 wixi + wo = wx + wy
for fixed n + 1 real parameters w = [ wp, wy = [wy, ..., w,]]

» But y" =w,x"+wpforall h=1,..., m is not really true for any w and wy

» Find the w for which it is less untrue (Linear Least Squares):

yl 1 X1
y = : , X=1| 1 , minL(w)=|ly—Xwl||
> Minimize loss function £(w) = ||y — Xw || = empirical risk = how much

the model fails the predict the phenomenon on the available observations

» Simple closed formula: X" Xw = XTy = w = (XTX)"'XTy
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» In Matlab, thisisjustc =y / X

» Trade-off: very simple fitting for exceedingly crude model = high risk

» Then, of course Nonlinear Estimation ...



Example 2: Low-rank approximation 7

> A (large, sparse) matrix M € R"*"™ describes a phenomenon

depending on pairs (e.g., objects chosen from customers)

> Find “tall and thin" A € R™* and “fat and large’ B € R<*™ (k < n, m)

s.t. M ~ AB = find a few features that describe most of users’ choices
z- . min£(A, B) = ||M - AB||
> Minimize loss L(A, B) = || M — AB|| = “amount of unexplained choices”

> Many applications (neural networks, community analysis, .. .)

» A, B can be obtained from eigenvectors of MT M and MMT ..
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> A (large, sparse) matrix M € R"*"™ describes a phenomenon

depending on pairs (e.g., objects chosen from customers)

> Find “tall and thin" A € R™* and “fat and large’ B € R<*™ (k < n, m)

s.t. M ~ AB = find a few features that describe most of users’ choices
z- . min£(A, B) = ||M - AB||
> Minimize loss L(A, B) = || M — AB|| = “amount of unexplained choices”

> Many applications (neural networks, community analysis, .. .)

» A, B can be obtained from eigenvectors of MT M and MMT ..
... but that's a huge, possibly dense matrix

» Efficiently solving this problem requires:

1. low-complexity computation (of course)

2. avoiding ever explicitly forming M™ M and MM (too much memory)
3. exploiting structure of M (sparsity, similar columns, ...)
4

. ensuring the solution is numerically stable



Low-rank approximation for image compression

Black/white image = M with color intensities € [0, 1]

Original (512 x 512) k=1

>
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Example 3: Support Vector Machines
» Same setting as Example 1 but y" € {1, —1} (have cancer or not)
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> \Want to linearly separate the two sets (diagnose the next patient)

» Countless many applications (medical diagnosis, OCR, spam filtering, fraud
detection, marketing, image processing .. .)

» But which hyperplane do we choose?
> Intuitively, the margin is important (and theory supports the intuition)

» Larger margin = more "robust” classification



Support Vector Machines (cont.d) 10

v

Distance of // hyperplanes (w, , wo) and (wy, wi) is | wo — wi| /|| wy ||
» Can always take the hyperplane in “the middle” + scale w
= wyx"—wy>1ifyh =1, wyx" —wy < -1ifyr=-1
» The maximum margin separating hyperplane is the solution of
ming { [[we [? 0 y"(wex" —wo)>1 h=1,...,m}

(margin =2/ [ wy ||, *2"

because | say so), assuming any exists
» What if it does not? Support Vector Machine

(SYM-P) min,, { | wy [|?+ CL(w) =7 max{1— y"(wyx" —wp),0}}

v

|| wi || & model complexity, the less the more chances it generalises well
= C weighs L() = loss (of separation) on current data w.r.t. (hopefully)
on future data: bias/variance dilemma (not really our business)
> L convex but nondifferentiable: reformulation with (many linear) constraints
(SVM-P)  ming,c || wy |2+ C 0, &

Y (wix" —wo) >1 =&, €420 h=1,....m



SVM: the problem, and the solution
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> (Approximate) linear separability rare, (approximate) linear regression weak

» Idea: embed in larger space nonlinearly, then
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> Idea: embed in larger space nonlinearly, then linear function may work
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> (Approximate) linear separability rare, (approximate) linear regression weak
> Idea: embed in larger space nonlinearly, then linear function may work

» Doing this effectivey (how to embed) and efficiently nontrivial



Support Vector Machines: the magic of duality 12
» Equivalently, one can solve the dual problem (777 what ?77)
(SVM-D) max Soho1@h — 3 iy Dy an( X" X
i ytan=0
0<a,<C h=1

geeey

a convex constrained quadratic program, but with “simple constraints”

» Solve one problem by solving an apparently different one:
o* optimal for (SVM-D) = w* = >"}", ajy"x" optimal for (SVM-P)

» Dual formulation = kernel trick: input space ~~ (larger) feature space

(x", X))~ (o(x"), 6(x"))

where points are hopefully “more linearly separable”

» Feature space can be infinite-dimensional, provided that

scalar product can be (efficiently) computed

> Efficient algorithms: (SVM-P) or (SVM-D) (or both), complexity, . ..



Example 4: clustering 13

> X =[x" € R"];¢; inputs, no outputs available = each x’ “looks the same”
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> Given ke N (K ={1, k}), find X = ,cx XP = partition of X
in clusters s.t. X' that are homogeneous (??) and well separated (?7?)
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each x' “looks the same”

Many # possible variants

Simplest: define k centroids c?
“archetypes” of each x' € XP

closer to cP than
to any other c9}

XP={x":

Clusters (may) depend on the
chosen norm = topology of R"

Clusters in Ly # in Ly # in Ly

Upex XP = partition of X

in clusters s.t. X that are homogeneous (??) and well separated (??)

» Crucial problem in unsupervisioned ML: automatically figure out the labels
from the data, ill-defined by definition (many # ways to label the same stuff)



Optimization models for (L;) clustering 14
» ¢ =[cP]pek € R, nonconvex and nonsmooth unconstrained model

min{ £(c) = Y  minper [|c® X1 [3 : ¢ € RA)
P> Reformulation |: nonconvex, smooth, combinatorial, constrained model

min . ZpEKZipn e —x"3
ZpeKsz:]- iel
zZpe N [= {0, 1}] peK,icl

zjp "logical” variables: 1 if x' “assigned” to cluster p, 0 otherwise

» Two sources of nonconvexity: products zc in objective, integrality constraints

» But perfect structure for alternating minimization approaches:
convex (= easy) in z if ¢ fixed, convex in ¢ if z fixed

> zfixed, I(z,p)={iel:z=1} = (cP)* = Ziel(zm)x"/#l(z, p)
optimal centroid = mean of the points in the cluster



Immediately ~~ the k-means algorithm 15

procedure ¢ = k-means (X, c,e) // note: k implicit from size of ¢
for(v<oo ; ;)do
foreach( p€ K ) do I(p) + 0;
foreach( i€ /) do p+« argmin{||cP—x"|3: peK}; I(p)+ I(p)U{i};
foreach( p € K ) do c? < 3, X'/ #I(p); // note: I(p) =0 happens
VD ek 2iei(py Il € —x'|
if(v—v <e) then break; else v« v;

2.
21

> Special case of (block) Gauss-Seidel approach: f(x!, x2,..., x¥),

)
iteratively optimize over each individual (group of) variable(s) x?
keeping the other variables fixed = can work in parallel
» Convenient if f convex over each x” individually but not jointly on all x

> Can be proven to “work” (converge), ends in finitely many iterations

» Local approach to nonconvex problem = no guarantee of global optimality
= initial centroids relevant issue in practice (attraction basin)
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Welcome to the course

» ...of Computational Mathematics for Learning and Data Analysis
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Welcome to the course

> ...of Computatlonal Magic for Learning and Data Analysis




Main quests and side quests 17

» There are two main quests in the course:

1. get a general understanding of several different classes of

numerical algorithms and their underlying mathematical principles

2. be able to actually implement, debug, and tune a few of them

» Algorithms are mathematical objects —

reasoning about algorithms often is proving theorems (+ some hand-waving)
» All the more when the algorithms deal with nontrivial mathematical objects
» This is (mostly) done in the optional “Mathematically speaking” slides

» Learning theorems’ proofs by heart is not a subject of the exam,

not even the few (very simple) ones we'll actually see in details during lectures
» But you will have a lot more fun if you face side quests seriously

» Exercises are there for the same reason



Syllabus 18

>

>

Linear algebra and calculus background

Unconstrained optimization and systems of equations

Direct and iterative methods for linear systems and least-squares
Numerical methods for unconstrained optimization

Iterative methods for computing eigenvalues

Constrained optimization and systems of equations

Duality (Lagrangian, linear, quadratic, conic, ...)

Numerical methods for constrained optimization

Software tools for numerical computations (Matlab, Octave, . ..)

Sparse hints to Al/ML applications



Course material 19

>

>

Slides prepared by the lecturers + recording of lectures
Matlab programs + data

L.N. Trefethen, D. Bau Numerical Linear Algebra, SIAM, 1997
J. Demmel Applied Numerical Linear Algebra, SIAM, 1996

S. Boyd, L. Vandenberghe Convex optimization, Cambridge Un. Press, 2008
(http://web.stanford.edu/~boyd/cvxbook/)

L. Eldén Matrix Methods in Data Mining and Pattern Recognition, SIAM, 2007

M.S. Bazaraa, H.D. Sherali, C.M. Shetty Nonlinear programming: theory and
algorithms, Wiley & Sons, 2006

D.G. Luenberger, Y. Ye Linear and Nonlinear Programming, Springer
International Series in Operations Research & Management Science, 2008

J. Nocedal, S. Wright Numerical Optimization, Springer Series in Operations
Research and Financial Engineering, 2006

Lecture notes for the optimization forthcoming, at least partly available soon


http://web.stanford.edu/~boyd/cvxbook/
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Wrap up: what’s this course about 20

>

>

Learning as a computational, hence mathematical, process

Mathematical foundations of many important learning processes

= nonlinear optimization and numerical analysis techniques

Easy problems (linear, quadratic, conic, convex) or local optima,

because size is huge (hard because large, not hard because hard)

Besides, in ML the global optimal solution can be bad!

Emphasis on what can be done by linear algebra

Focus on methods and software tools, theory only as needed to understand

Applications to be seen in “Machine Learning” and/or “Data Mining”

(in parallel, you can/are supposed to do it, we talk to each other)
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