Simple Optimization Problems

Antonio Frangioni

Department of Computer Science
University of Pisa
https://www.di.unipi.it/~frangio
mailto:frangio@di.unipi.it

Computational Mathematics for Learning and Data Analysis
Master in Computer Science — University of Pisa

A.Y. 202425

https://www.di.unipi.it/~frangio
mailto:frangio@di.unipi.it

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

Functions

P Let's start simple: x input space, y output space, both just R

xXv

Functions

y =f(x)

X

P Let's start simple: x input space, y output space, both just R

» Function f : R — R, f(x) =y = output with input x

Functions

f(x)

57 \ /\/
N ;

P Let's start simple: x input space, y output space, both just R

» Function f : R — R, f(x) =y = output with input x

» Graph of f: gr(f)={(f(x),x) : xeR}CR?

Functions

f(x)

\

P Let's start simple: x input space, y output space, both just R

im()

» Function f : R — R, f(x) =y = output with input x
» Graph of f: gr(f)={(f(x),x) : xeR}CR?

> Imageof f: im(f)={y : IxeR st. y=f(x)}CR
i.e., projection of gr(f) on output space (a.k.a. co-domain)

Functions

v

vV vV

f(x)

N L(F, V)

Let’s start simple: x input space, y output space, both just R
Function f : R — R, f(x) = y = output with input x
Graph of f: gr(f)={(f(x),x) : xe R} C R?

Image of f: im(f)={y : 3IxeR st. y=7f(x)} CR
i.e., projection of gr(f) on output space (a.k.a. co-domain)

Level set at value v: L(f,v)={xeR : f(x)=v}CR

xXv

Functions

f(x)

WA

Let’s start simple: x input space, y output space, both just R

v

Function f : R — R, f(x) = y = output with input x

Graph of f: gr(f)={(f(x),x) : xe R} C R?

vV vV

Image of f: im(f)={y : 3IxeR st. y=7f(x)} CR
i.e., projection of gr(f) on output space (a.k.a. co-domain)

> Level set atvalue v: L(f,v)={xeR : f(x)=v}CR
(roots of f = L(f, 0) = level set at value 0)

(Univariate) Unconstrained optimization problem

f(x)

WA

> f objective (function) of (univariate, unconstrained) optimization problem
(P) fi=min{f(x):xeR}

» f. = v(P) optimal value (unique if 3, which it may not)

(Univariate) Unconstrained optimization problem

f(x)

f. ~ X
> f objective (function) of (univariate, unconstrained) optimization problem

fo=min{f(x): xeR}

im()

(P)
» f. = v(P) optimal value (unique if 3, which it may not)

> f. = smaller element of im(f)

(Univariate) Unconstrained optimization problem

fx)
f L(f £)

> f objective (function) of (univariate, unconstralned) optimization problem
(P) fi=min{f(x):xeR}

» f. = v(P) optimal value (unique if 3, which it may not)

> f. = smaller element of im(f) = smaller v sit. L(f, v)#(

(Univariate) Unconstrained optimization problem 2

fx)
f L(f %

> f objective (function) of (univariate, unconstralned) optimization problem
(P) fi=min{f(x):xeR}

» f. = v(P) optimal value (unique if 3, which it may not)
> f. = smaller element of im(f) = smaller v sit. L(f, v)#(
» In fact, the problemis (P) x. € argmin{f(x) : xeR}

> x.s.t. f, =f(x.) < f(x) Vx € R optimal solution (if 3, which it may not)

(Univariate) Unconstrained optimization problem 2

fx)
f — L(f £)

> f objective (function) of (univariate, unconstralned) optimization problem
(P) fi=min{f(x):xeR}

f. = v(P) optimal value (unique if 3, which it may not)
f. = smaller element of im(f) = smaller v s.t. L(f, v)#0
In fact, the problemis (P) x. € argmin{f(x) : xR}

Xe st o = f(x) < f(x) Vx € R optimal solution (if 3, which it may not)

vV v v vV

X, may not be unique: Ix’ # x, € L(f, f.) = X, set of optimal solutions, but
we don't care (mostly): all optimal solutions equivalent “in the eyes of f”

An aside, once and for all: simple reformulations 3

f(x)
f- R NThar S

» Sometimes changing f changes f, “in a simple way" but does not change X.:
the corresponding problem is equivalent, a reformulation of (P)

> “min” w.lo.g: min{f(x):xeR}=

An aside, once and for all: simple reformulations 3

-f(x)

/QW

» Sometimes changing f changes f, “in a simple way" but does not change X.:
the corresponding problem is equivalent, a reformulation of (P)

L(f 'f*

> “min” w.lo.g: min{f(x):xeR}=—max{—f(x): xeR}
ie., argmin {f(x) : x e R} =argmax { —f(x) : xeR}
(but min{ f(x) } # max{ f(x) }, often rather different problems)

An aside, once and for all: simple reformulations 3

f(x)
f- R NThar S

» Sometimes changing f changes f, “in a simple way" but does not change X.:
the corresponding problem is equivalent, a reformulation of (P)

> “min” w.lo.g: min{f(x):xeR}=—max{—f(x): xeR}
ie., argmin {f(x) : x e R} =argmax { —f(x) : xeR}
(but min{ f(x) } # max{ f(x) }, often rather different problems)

» Analogously, min{ f(x)+c : xeR} =

An aside, once and for all: simple reformulations 3
f x)+c

fs«+c

! }c .
fe L(f+c, f«+c) X

» Sometimes changing f changes f, “in a simple way" but does not change X.:
the corresponding problem is equivalent, a reformulation of (P)

> “min” w.lo.g: min{f(x):xeR}=—max{—f(x): xeR}
ie., argmin {f(x) : x e R} =argmax { —f(x) : xeR}
(but min{ f(x) } # max{ f(x) }, often rather different problems)

» Analogously, min{ f(x)+c : x e R} = c+min{f(x) : xeR}
ie., argmin {f(x)+c : xeR} =argmin {f(x): xeR} =X,

An aside, once and for all: simple reformulations 3

f(x)
f- R NThar S

» Sometimes changing f changes f, “in a simple way" but does not change X.:
the corresponding problem is equivalent, a reformulation of (P)

> “min” w.lo.g: min{f(x):xeR}=—max{—f(x): xeR}
ie., argmin {f(x) : x e R} =argmax { —f(x) : xeR}
(but min{ f(x) } # max{ f(x) }, often rather different problems)

» Analogously, min{cf(x) : xeR} =

An aside, once and for all: simple reformulations 3

J 2f(x)

L(2, 2f)

>

of. \/ | x

» Sometimes changing f changes f, “in a simple way" but does not change X.:
the corresponding problem is equivalent, a reformulation of (P)

> “min” w.lo.g: min{f(x):xeR}=—max{—f(x): xeR}
ie., argmin {f(x) : x e R} =argmax { —f(x) : xeR}
(but min{ f(x) } # max{ f(x) }, often rather different problems)

> Analogously, min{cf(x) : xe R} = cmin{f(x) : xeR} (if c>0)
ie., argmin {cf(x) : xR} =argmin {f(x) : xeR} =X,

(Univariate) Constrained optimization problem

f(x)

A

» More general: feasible region any set X (C R), objective f : X — R

X

(P) fi=min{f(x) : x€ X} constrained optimization problem

(Univariate) Constrained optimization problem

f(x)

A

» More general: feasible region any set X (C R), objective f : X — R

X feasible

(P) fi=min{f(x) : x€ X} constrained optimization problem

» x € X feasible solution;

(Univariate) Constrained optimization problem

f(x)

WA

unfeasible

X

» More general: feasible region any set X (C R), objective f : X — R
(P) fi=min{f(x) : x€ X} constrained optimization problem

> x € X feasible solution; x € R\ X unfeasible solution

(Univariate) Constrained optimization problem 4

f(x)

im(X,f)

/]

__/ .

X N)%

» More general: feasible region any set X (C R), objective f : X — R
(P) fi=min{f(x) : x€ X} constrained optimization problem
> x € X feasible solution; x € R\ X unfeasible solution

> f.=v(P)=min(im(X, f)) = smaller element of image of X through f

(Univariate) Constrained optimization problem 4

f(x)

v

: \/ N
X L(f,Ff)) X

» More general: feasible region any set X (C R), objective f : X — R
(P) fi=min{f(x) : x€ X} constrained optimization problem
> x € X feasible solution; x € R\ X unfeasible solution
> f.=v(P)=min(im(X, f)) = smaller element of image of X through f
> X, =L(f,F)

(Univariate) Constrained optimization problem 4

f(x)

\/ R
X X N x

» More general: feasible region any set X (C R), objective f : X — R
(P) fi=min{f(x) : x€ X} constrained optimization problem
> x € X feasible solution; x € R\ X unfeasible solution
> f.=v(P)=min(im(X, f)) = smaller element of image of X through f

> X, =L(f,f,) NX: set of best feasible solutions

(Univariate) Constrained optimization problem 4

fx)
f LT

» More general: feasible region any set X (C R), objective f : X — R
(P) fi=min{f(x) : x€ X} constrained optimization problem
> x € X feasible solution; x € R\ X unfeasible solution
> f.=v(P)=min(im(X, f)) = smaller element of image of X through f
> X, =L(f,f,) NX: set of best feasible solutions

> X can be “useless” (X, same)

(Univariate) Constrained optimization problem 4

fx)
f — [(F)

» More general: feasible region any set X (C R), objective f : X — R
(P) fi=min{f(x) : x€ X} constrained optimization problem
> x € X feasible solution; x € R\ X unfeasible solution
> f.=v(P)=min(im(X, f)) = smaller element of image of X through f
> X, =L(f,f,) NX: set of best feasible solutions

» X can be “useless” (X. same) or partly so (f, same) —

makes sense to study the unconstrained case X = R first

Anyhow, how is X specified? fx)

SV

> The “abstract constraint x € X" need be specified somehow

> Often useful to represent a set via (more than) one function(s)

Anyhow, how is X specified? fx)

N

xXv

L(f,v)
> The “abstract constraint x € X" need be specified somehow
> Often useful to represent a set via (more than) one function(s)

> Standard ways: equality constraint g(x)=v = X = level set L(g, v),

Anyhow, how is X specified? fx)

xXv

N~ S(f,v)

> The “abstract constraint x € X" need be specified somehow
> Often useful to represent a set via (more than) one function(s)

> Standard ways: equality constraint g(x)=v = X = level set L(g, v),

inequality constraint g(x)<v = sublevel set S(g,v)={x: g(x)<v}

Anyhow, how is X specified? flx)-v 5

/T _ .
\V/ \ /S(f—v,O) X

> The “abstract constraint x € X" need be specified somehow

4

> Often useful to represent a set via (more than) one function(s)

> Standard ways: equality constraint g(x)=v = X = level set L(g, v),
inequality constraint g(x)<v = sublevel set S(g,v)={x: g(x)<v}

> For convenience “v hidden in f" = f(x) <0, f(x)=0

» What if one rather wants g(x)>0? Simply —g(x) <0

Anyhow, how is X specified? flx)-v 5

/T _ .
\V/ \ /S(f—v,O) X

> The “abstract constraint x € X" need be specified somehow

Often useful to represent a set via (more than) one function(s)

> Standard ways: equality constraint g(x)=v = X = level set L(g, v),
inequality constraint g(x)<v = sublevel set S(g,v)={x: g(x)<v}

> For convenience “v hidden in f" = f(x) <0, f(x)=0
» What if one rather wants g(x)>0? Simply —g(x) <0

» Usually multiple constraints: “g1(x) <0 , g2(x) < 0" = logical conjunction
(“first condition and second condition”) = intersection of (sub)level sets

Anyhow, how is X specified? fx) 5

]

- g
X < X4 e X

xXv

> The “abstract constraint x € X" need be specified somehow
Often useful to represent a set via (more than) one function(s)

> Standard ways: equality constraint g(x)=v = X = level set L(g, v),
inequality constraint g(x)<v = sublevel set S(g,v)={x: g(x)<v}

> For convenience “v hidden in f" = f(x) <0, f(x)=0
» What if one rather wants g(x)>0? Simply —g(x) <0

» Usually multiple constraints: “g1(x) <0 , g2(x) < 0" = logical conjunction
(“first condition and second condition”) = intersection of (sub)level sets

» Simple and common: bounds x < x; (up)

Anyhow, how is X specified? fx) 5

> The “abstract constraint x € X" need be specified somehow
Often useful to represent a set via (more than) one function(s)

> Standard ways: equality constraint g(x)=v = X = level set L(g, v),
inequality constraint g(x)<v = sublevel set S(g,v)={x: g(x)<v}

> For convenience “v hidden in f" = f(x) <0, f(x)=0
» What if one rather wants g(x)>0? Simply —g(x) <0

» Usually multiple constraints: “g1(x) <0 , g2(x) < 0" = logical conjunction
(“first condition and second condition”) = intersection of (sub)level sets

» Simple and common: bounds x < x; (up) / x > x_ (dn),

Anyhow, how is X specified? fx) 5

L B C

—
X- X e Xy

xXv

> The “abstract constraint x € X" need be specified somehow
Often useful to represent a set via (more than) one function(s)

> Standard ways: equality constraint g(x)=v = X = level set L(g, v),
inequality constraint g(x)<v = sublevel set S(g,v)={x: g(x)<v}

> For convenience “v hidden in f" = f(x) <0, f(x)=0
» What if one rather wants g(x)>0? Simply —g(x) <0

» Usually multiple constraints: “g1(x) <0 , g2(x) < 0" = logical conjunction
(“first condition and second condition”) = intersection of (sub)level sets

» Simple and common: bounds x < x; (up) / x > x_ (dn), boxes x_ < x < x4

Outline

Optimization is difficult

What if £, #?

v

v

v

v

v

flx)=x

Xy

f has no minimum, (P) unbounded (below): f, = v(P) = —c0

Just a convenient shorthand for Vi € RIx € Rsit. f(x) <t

i.e., “there is no (finite) lower bound on im(f)"

Solving (P) actually (at least) two different things:
» finding x. and proving it is optimal (how??)
> constructively proving f unbounded below (how??)

Hardly ever happens in learning since L(w) >0

Nontrivial and important in optimization (tied with duality, nonemptiness, ...

)

What if . 3 but x, 1?
f(x)=¢e"

_//

» im(f) is bounded below but has no minimum

» Either “naturally”

xXv

What if . 3 but x, 1?

(

» im(f) is bounded below but has no minimum

» Either “naturally” or “forcibly”

> inf{f(x): x€R} 3 but min{f(x): xR}

» Arguably f, = inf{f(x) : x €R}, but #x, sit. f. = f(x.)

» im(f) is open, does not contain its boundary (will see)

xXv

Mathematically speaking: Infima, suprema and R [1, A.2.2] 8

> R totally ordered = V x,y € R, at least one among x < y, y < x holds

> SCR,s=infS <« s<sVseS A Vti>sdseSst.s<t
S=supS <= 5S>sVseS A Vi<sdseSst.s>t
> scS=—s=min5,5€S—35=max$

> Issues: i) inf S/sup S may not 3 in R, ii) inf S/sup S may not € S

» Should write “inf{ f(x)...", but we want (approximately) optimal solutions
> Set of extended reals: R = { —oco } UR U { +oc } (usually just R)

» Forall SCR,3sup/infScR

> inffS=-00 <= VteRIscSst.s<t
supS =400 <= VteRIseSst.s>t
just a convenient shorthand for “there is no (finite) inf / sup”

P inf() = oo, supf) = —co

Is this a real problem in practice?

>

>

Several ways to ensure this never happens (hypotheses on f, X)

On computers “x € R” typically is “x € Q" with up to 16 digits precision
= approximation errors unavoidable anyway

Exact algebraic computation may be possible (if 7 is algebraic, which it

may be not) but anyway usually too slow
In fact learning going the opposite way (float, half, FP8, ...)
Anyway, finding the exact x, impossible in general [4, p. 408]

For any fixed ¢ > 0, plenty of e-approximate solutions (e-optima):
xc €ERst. fi<f(x)<fi+e

“as close to the optimal solution (value) as you want”
Cost of solution algorithms typically depends on ¢ (sometimes very badly)

And ¢ can't really become very small anyway (see above)

Optimization need be approximate 10

> Absolute gap: A(x)=f(x)—Ff (=0)
> Relative gap: R(x)=(f(x)=Ff)/|f]|=A(x)/|f]|(=0)

> Why R(x)? Because Vaa >0 (P) = (P,) min{af(x) : xeR}
v(Py)=af, =av(P) = same R(x) (scale invariant), different A(x)

Exercise: R(x) ill-defined if f, = 0, propose solutions & justify them (change f,)

Optimization need be approximate 10

> Absolute gap: A(x)=f(x)—Ff (=0)
> Relative gap: R(x)=(f(x)=Ff)/|f]|=A(x)/|f]|(=0)

> Why R(x)? Because Vaa >0 (P) = (P,) min{af(x) : xeR}
v(Py)=af, =av(P) = same R(x) (scale invariant), different A(x)

Exercise: R(x) ill-defined if f, = 0, propose solutions & justify them (change f,)
> (Approximately) solve (P): fix &, find x s.t. either A(x) <eor R(x) <e
> Issue: computing A(x) or R(x) requires f, which is typically unkown

» Could argue this is “the issue” in optimization: compute (an estimate of) f,
> Sometimes & known in learning (f, = 0 in NN, but not in SVM)

> A real issue only if global optimum x, needed, hence not always

Even approximate, optimization is hard / impossible 11

f(x)

> Impossible because isolated minima can be anywhere [4, p. 408]

Even approximate, optimization is hard / impossible 11

f(x)

I 1
L]
X- X5 X

» Impossible because isolated minima can be anywhere [4, p. 408]
» Does it help restricting to x € X = [x_, x;] (—00 < x_ < x4 < +00)?

» No: still uncountably many points to try

Even approximate, optimization is hard / impossible 11

f(x)

I 1
L]
X- X5 X

» Impossible because isolated minima can be anywhere [4, p. 408]
» Does it help restricting to x € X = [x_, x;] (—00 < x_ < x4 < +00)?
» No: still uncountably many points to try

» s it because f “jumps’?

Even approximate, optimization is hard / impossible 11

f(x)

» Impossible because isolated minima can be anywhere [4, p. 408]
» Does it help restricting to x € X = [x_, x;] (—00 < x_ < x4 < +00)?
» No: still uncountably many points to try

» Is it because f “jumps’? No, f can have isolated | spikes anywhere

Even approximate, optimization is hard / impossible 11

f(x)

I 1
L]
X- X5 X

» Impossible because isolated minima can be anywhere [4, p. 408]
» Does it help restricting to x € X = [x_, x;] (—00 < x_ < x4 < +00)?
» No: still uncountably many points to try

» Is it because f “jumps’? No, f can have isolated | spikes anywhere

...even on X = [x_, x4] as spikes can be arbitrarily narrow

Even approximate, optimization is hard / impossible 11

vV v v v

f(x)

I 1

L 7

X- X5 X
Impossible because isolated minima can be anywhere [4, p. 408]
Does it help restricting to x € X = [x_, x| (—0o0 < x_ < x4 < +00)?
No: still uncountably many points to try

Is it because f “jumps”’? No, f can have isolated | spikes anywhere

...even on X = [x_, x4] as spikes can be arbitrarily narrow

> To make (even approximate) optimization even possible, f must be “nice”

> Let's start with the nicest possible ones where optimization is (=) trivial

Outline

Simple Functions, Univariate case

Linear univariate functions 12
b=10

> The simplest possible function: f(x) = bx (linear), fixed b € R
> As many different functions as real numbers (bijection)

» b>0 = increasing: x>z=f(x)>f(z)

Linear univariate functions 12
b=1

> The simplest possible function: f(x) = bx (linear), fixed b € R
> As many different functions as real numbers (bijection)

» b>0 = increasing: x>z=f(x)>f(z)

Linear univariate functions 12
b=0.1

> The simplest possible function: f(x) = bx (linear), fixed b € R
> As many different functions as real numbers (bijection)

» b>0 = increasing: x>z=f(x)>f(z)

Linear univariate functions 12
b = 0.01

> The simplest possible function: f(x) = bx (linear), fixed b € R
> As many different functions as real numbers (bijection)

» b>0 = increasing: x>z=f(x)>f(z)

Linear univariate functions 12
b=0

> The simplest possible function: f(x) = bx (linear), fixed b € R
> As many different functions as real numbers (bijection)

» b=0 = nondecreasing: x >z =>f(x)>f(z) and

Linear univariate functions 12
b=0

> The simplest possible function: f(x) = bx (linear), fixed b € R
> As many different functions as real numbers (bijection)

» b=0 = nonincreasing: x >z = f(x)<f(z)

Linear univariate functions 12
b=0

> The simplest possible function: f(x) = bx (linear), fixed b € R
> As many different functions as real numbers (bijection)

> b=0 = constant: x>z=f(x)="f(z)

Linear univariate functions 12
b = -0.01

> The simplest possible function: f(x) = bx (linear), fixed b € R
> As many different functions as real numbers (bijection)

» b <0 = decreasing: x>z=f(x)<f(z)

Linear univariate functions 12
b=-0.1

> The simplest possible function: f(x) = bx (linear), fixed b € R
> As many different functions as real numbers (bijection)

» b <0 = decreasing: x>z=f(x)<f(z)

Linear univariate functions 12
b=-1

> The simplest possible function: f(x) = bx (linear), fixed b € R
> As many different functions as real numbers (bijection)

» b <0 = decreasing: x>z=f(x)<f(z)

Linear univariate functions 12
b=-10

> The simplest possible function: f(x) = bx (linear), fixed b € R
> As many different functions as real numbers (bijection)
» b <0 = decreasing: x>z=f(x)<f(z)

Exercise: Formally prove the stated properties

Linear univariate functions
b=-10

12

> The simplest possible function: f(x) = bx (linear), fixed b € R
> As many different functions as real numbers (bijection)

» b <0 = decreasing: x>z=f(x)<f(z)

Exercise: Formally prove the stated properties

» b = linear coefficient = slope: the larger | b|, the steeper the line

Optimizing a linear function 13
» Too easy: min = —o0, max = +oo unless b=0 = min =max =0

» More interesting: box-constrained optimization
(P) min{f(x):xe[x_,x:]}

with —oo <x_ <xy < + 00 = X possibly (half-)infinite interval
> Constraints often useful, (finite) box constraints (very simple) especially so
» b>0 = argmin = x_, min = f(x_), argmax = x; , max = f(xy)

> “Works" even if x_ = —o0 and/or x4 = 400, as b+ (£o0) = £oo

Optimizing a linear function 13
» Too easy: min = —o0, max = +oo unless b=0 = min =max =0

» More interesting: box-constrained optimization
(P) min{f(x):xe[x_,x:]}

with —oo <x_ <xy < + 00 = X possibly (half-)infinite interval
> Constraints often useful, (finite) box constraints (very simple) especially so
» b>0 = argmin = x_, min = f(x_), argmax = x; , max = f(xy)
> “Works" even if x_ = —oco and/or x4 = +00, as b- (£o0) = o0

Exercise: Formally prove the result, state & prove cases b < 0 and b=0

Optimizing a linear function 13
» Too easy: min = —o0, max = +oo unless b=0 = min =max =0

» More interesting: box-constrained optimization
(P) min{f(x):xe[x_,x:]}

with —oo <x_ <xy < + 00 = X possibly (half-)infinite interval
> Constraints often useful, (finite) box constraints (very simple) especially so
» b>0 = argmin = x_, min = f(x_), argmax = x; , max = f(xy)
> “Works" even if x_ = —oco and/or x4 = +00, as b- (£o0) = o0
Exercise: Formally prove the result, state & prove cases b < 0 and b=0
» Closed formula O(1), don't get used to it

P Yet solving simple problems the basis of solving complicated ones

An aside (once and for all): optimising over an “open” box 14

» Could have used X = (x_, x3) ={x €R : x_ <x<x; } (open interval)?

An aside (once and for all): optimising over an “open” box 14

» Could have used X = (x_, x3) ={x €R : x_ <x<x; } (open interval)?

» Bad idea: again, inf 3 but min A, finite £, but x,

An aside (once and for all): optimising over an “open” box 14
» Could have used X = (x_, x3) ={x €R : x_ <x<x; } (open interval)?
» Bad idea: again, inf 3 but min A, finite £, but x,

» Would it make sense for applications? Hardly. x a physical quantity
= cannot be chosen/measured to oo precision

(Plank scale, Heisenberg's Uncertainty Principle, .. .)

An aside (once and for all): optimising over an “open” box 14
» Could have used X = (x_, x3) ={x €R : x_ <x<x; } (open interval)?
» Bad idea: again, inf 3 but min A, finite £, but x,

» Would it make sense for applications? Hardly. x a physical quantity
= cannot be chosen/measured to oo precision

(Plank scale, Heisenberg's Uncertainty Principle, .. .)

> |t is a problem for algorithms? In theory yes, in practice hardly:

again, plenty of e-optimal solutions however chosen € > 0

An aside (once and for all): optimising over an “open” box 14

v

Could have used X = (x_, x4) ={x € R : x_ <x<x; } (open interval)?
Bad idea: again, inf 3 but min A, finite £, but x,

Would it make sense for applications? Hardly. x a physical quantity
= cannot be chosen/measured to oo precision

(Plank scale, Heisenberg's Uncertainty Principle, .. .)

It is a problem for algorithms? In theory yes, in practice hardly:

again, plenty of e-optimal solutions however chosen € > 0

Does it make any sense at all? Hardly: if x_, x; “can’t be touched", use
X =[x +e_, x4 —e4] for appropriately chosen ¢4

All in all? Just use closed intervals and be done with it

Will generalise to “just use closed sets and be done with it"

Quadratic homogeneous univariate functions 15
A
a=100

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

» a2 >0 = decreasing for x < 0, increasing for x > 0

Quadratic homogeneous univariate functions 15
A
a=10

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

» a2 >0 = decreasing for x < 0, increasing for x > 0

Quadratic homogeneous univariate functions 15

a=1 h

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

» a2 >0 = decreasing for x < 0, increasing for x > 0

Quadratic homogeneous univariate functions 15
A
a=01

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

» a2 >0 = decreasing for x < 0, increasing for x > 0

Quadratic homogeneous univariate functions 15
A
a=0.01

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

» a2 >0 = decreasing for x < 0, increasing for x > 0

Quadratic homogeneous univariate functions 15
A
a=0

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

» a =0 = nonincreasing for x < 0, nondecreasing for x > 0 and

Quadratic homogeneous univariate functions 15
A
a=0

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

» a=0 = nondecreasing for x < 0, nonincreasing for x > 0 (constant)

Quadratic homogeneous univariate functions 15
A
a=-0.01

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

> a2 <0 = increasing for x < 0, decreasing for x > 0

Quadratic homogeneous univariate functions 15
A
a=-0.1

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

> a2 <0 = increasing for x < 0, decreasing for x > 0

Quadratic homogeneous univariate functions 15

a=-1 h

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

> a2 <0 = increasing for x < 0, decreasing for x > 0

Quadratic homogeneous univariate functions 15
A
a=-10

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

> a2 <0 = increasing for x < 0, decreasing for x > 0

Quadratic homogeneous univariate functions 15
A
a=-100

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

> a2 <0 = increasing for x < 0, decreasing for x > 0

Quadratic homogeneous univariate functions 15
A
a=-100

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)
> a2 <0 = increasing for x < 0, decreasing for x > 0

Exercise: Formally prove the stated properties

Quadratic homogeneous univariate functions 15
A
a=-100

» Next simplest function: f(x) = ax®> (homogeneous quadratic), fixed a € R
> As many different functions as real numbers (bijection)

» a <0 = increasing for x < 0, decreasing for x > 0

Exercise: Formally prove the stated properties

> a2 = quadratic coefficient = curvature: the larger | a|, the steeper the parabola

Optimizing a quadratic homogeneous function 16

» Clearly depends (and symmetric) on sign of a:
» a>0 = min = argmin = 0, max = 400, argmax = oo

» a <0 = max = argmax = 0, min = —oo, argmin = £oo
> Box-constrained optimization on (closed) X = [x_, x; | more interesting

> a>0 = three cases
> x; <0 = argmin = x;, argmax = x_
> x_ >0 = argmin = x_, argmax = x}

> x_ <0< x; = argmin =0, argmax = argmax{ f(x-), f(x;)}

> “Works" even if x_ = —oo and/or x; = +00, as a- (+00)? = +o00

Optimizing a quadratic homogeneous function 16

» Clearly depends (and symmetric) on sign of a:
» a>0 = min = argmin = 0, max = 400, argmax = oo

» a <0 = max = argmax = 0, min = —oo, argmin = £oo
> Box-constrained optimization on (closed) X = [x_, x; | more interesting

> a>0 = three cases
> x; <0 = argmin = x;, argmax = x_
> x_ >0 = argmin = x_, argmax = x}

> x_ <0< x; = argmin =0, argmax = argmax{ f(x-), f(x;)}
> “Works” even if x_ = —oc and/or x; = 400, as a- (£00)? = +o0

Exercise: Formally prove the result, state & prove cases a <0 and a=10

Optimizing a quadratic homogeneous function 16

» Clearly depends (and symmetric) on sign of a:
» a>0 = min = argmin = 0, max = 400, argmax = oo

» a <0 = max = argmax = 0, min = —oo, argmin = £oo
> Box-constrained optimization on (closed) X = [x_, x; | more interesting

> a>0 = three cases
> x; <0 = argmin = x;, argmax = x_
> x_ >0 = argmin = x_, argmax = x}

> x_ <0< x; = argmin =0, argmax = argmax{ f(x-), f(x;)}
> “Works” even if x_ = —oc and/or x; = 400, as a- (£00)? = +o0
Exercise: Formally prove the result, state & prove cases a <0 and a=10
> Again closed formula O(1), don't get used to it

> max{ f(x)} and min{ f(x)} somewhat # (cf. last case), will see much more

Quadratic non-homogeneous univariate functions 17

>

>

Next step: f(x) = ax?+ bx (non-homogeneous quadratic), fixed (a, b) € R?
As many different functions as pairs of real numbers (bijection)

Basically, a homogeneous quadratic + a linear

However, min{ ax? + bx } # min{ax?>} + min{ bx }

0 clearly always a root, but in general not the argmin / argmax

Powerful general concept: if f(x) is “too complicated”, make it “simpler”
Sometimes this can be done by changing the space of variables (reformulation)
In this case: change the input space so that it becomes homogeneous

Clearly only needed if both a # 0 and b # 0

Optimizing a quadratic non-homogeneous function 18

>

»

»

>

>

Fundamental trick: X = —b/2a (because | say s0), z=x—X = x=z+X
The z-space is the x-space where the origin is moved to x

Just algebra: f(x) = a(z + X)? + b(z + X) = az? + 2azx + ax? + bz + bx
= az?> + (2ax + b)z + [ax? + bx| = az? + f(X) =g(z) [2ax+b=0]

Translated by X horizontally (and by f(x) vertically), f(x) is homogeneous
Its argmin / argmax (depending on sign of a) isz=0 = x =X

Then, just for g(z)

Yet again, closed formula O(1), don't get used to it

Exercise: Flesh out the details: describe all cases in terms of f and x

Exercise: Discuss the position of X and the roots of f depending on a, b

Outline

Simple Functions, Multivariate case

Multivariate optimization 19

> Next crucial step: f:R" = R, i.e, f(x1, x2,..., X,) = f(x)

with x =[x], =[x, x2,..., x,] € R”
» n can be smallish (2, 3, 100), largish (10%, 10°) or heinously large (10°, 10%1)

> All previous stuff (f., X, constraints, ...) immediately generalises

Multivariate optimization 19

> Next crucial step: f:R" = R, i.e, f(x1, x2,..., X,) = f(x)

with x =[x], =[x, x2,..., x,] € R”
» n can be smallish (2, 3, 100), largish (10%, 10°) or heinously large (10°, 10%1)
> All previous stuff (f., X, constraints, ...) immediately generalises

> R"=R x R x...R, Cartesian product of R n times —
“exponentially larger than R” = finding stuff a lot harder

Multivariate optimization 19

> Next crucial step: f:R" = R, i.e, f(x1, x2,..., X,) = f(x)
with x =[x], =[x, x2,..., x,] € R”
» n can be smallish (2, 3, 100), largish (10%, 10°) or heinously large (10°, 10%1)
> All previous stuff (f., X, constraints, ...) immediately generalises
> R"=R x R x...R, Cartesian product of R n times —
“exponentially larger than R” = finding stuff a lot harder

“Space is big. Really big. You just won’t
believe how vastly, hugely, mind-bogglingly big it is.” [15]

Multivariate optimization 19

> Next crucial step: f:R" = R, i.e, f(x1, x2,..., X,) = f(x)
with x =[x], =[x, x2,..., x,] € R”
» n can be smallish (2, 3, 100), largish (10%, 10°) or heinously large (10°, 10%1)
> All previous stuff (f., X, constraints, ...) immediately generalises
> R"=R x R x...R, Cartesian product of R n times —
“exponentially larger than R” = finding stuff a lot harder

“The vector space R" is big. Really big. You just won't
believe how vastly, hugely, mind-bogglingly big it is.” [15]

Multivariate optimization 19

> Next crucial step: f:R" = R, i.e, f(x1, x2,..., X,) = f(x)
with x =[x], =[x, x2,..., x,] € R”
» n can be smallish (2, 3, 100), largish (10%, 10°) or heinously large (10°, 10%1)
> All previous stuff (f., X, constraints, ...) immediately generalises
> R"=R x R x...R, Cartesian product of R n times —
“exponentially larger than R” = finding stuff a lot harder
“The vector space R" is big. Really big. You just won't
believe how vastly, hugely, mind-bogglingly big it is.” [15]
» Assume we can even luckily restrict to a “small” x € X CR": a "box"

(hyperrectangle) X = {x € R" : x_ <x < x; }, xa € R" (with x_ < xy)

» Assume x_ =0, x; =u =1, ..., 1] and we can only look to integer values:

still have 2" points to look at (binary hypercube), grows too fast with n

Multivariate optimization 19

> Next crucial step: f:R" = R, i.e, f(x1, x2,..., X,) = f(x)

with x =[x], =[x, x2,..., x,] € R”
» n can be smallish (2, 3, 100), largish (10%, 10°) or heinously large (10°, 10%1)
> All previous stuff (f., X, constraints, ...) immediately generalises

> R"=R x R x...R, Cartesian product of R n times —
“exponentially larger than R” = finding stuff a lot harder
“The vector space R" is big. Really big. You just won't
believe how vastly, hugely, mind-bogglingly big it is.” [15]

» Assume we can even luckily restrict to a “small” x € X CR": a "box"
(hyperrectangle) X = {x € R" : x_ <x < x; }, xa € R" (with x_ < xy)

» Assume x_ =0, x; =u =1, ..., 1] and we can only look to integer values:

still have 2" points to look at (binary hypercube), grows too fast with n

» Even picturing things is more complex and requires appropriate tools

An aside, once and for all: how about f : R" — Rk? 20

> Already “f : X — R" a rather strong assumption:
can “express all the value of any x € X with a single number” —

given x” and x” | can always tell which one | like best (R has total order)

> Often there would be more than one objective:
(P) min{[fl(x),fz(x),...]:xeX}
with fi, fp, ... contrasting and/or with incomparable units (apples vs. oranges)
» car cost vs. flashiness vs. km/I vs. # seats vs. trunk space ...

» loss function £(w) vs. regularity R(w) in ML
> ...

> Vector-valued (a.k.a. multi-objective) optimization: f : X — R* with k > 1

> Textbook example: portfolio selection problem
> X = set of financial instruments portfolios available to buy
> fi(x) = expected return of portfolio x (€)
> f(x) = risk of portfolio x not achieving the expected return (%, CVAR, ...)

A Very Quick Glimpse to Multi-objective Optimization

21

A Very Quick Glimpse to Multi-objective Optimization

H it
-
XX
x x
*
****:*
ﬁ ****‘k *
ox ***:*
* *
* K oy ko w K X
L. SRl SR S x **
a kK KKK
* * return

> R¥ with k > 1 has no total order =
no “best” solution, only

A Very Quick Glimpse to Multi-objective Optimization

K i
—
el
* *
* ***
x *, % x
* * x K KT
*:*****2*
* *
SO IS RO & :* ”
*:******
*** return

> R¥ with k > 1 has no total order =
no “best” solution, only non-dominated ones on the

21

A Very Quick Glimpse to Multi-objective Optimization

l¥ A
=]
—
*
Yt returrl

> R¥ with k > 1 has no total order =
no “best” solution, only non-dominated ones on the Pareto frontier

> Two practical solutions:

21

A Very Quick Glimpse to Multi-objective Optimization 21
lé A * *
= * * % *

> R¥ with k > 1 has no total order =
no “best” solution, only non-dominated ones on the Pareto frontier

» Two practical solutions: maximize risk-adjusted return,

a.k.a. scalarization min{ fi(x)+ah(x) : x€ X} (which a??)

A Very Quick Glimpse to Multi-objective Optimization

H i
—
XX
x x
* * ***
____________________ r _':3_'?__b..L.‘.‘.-'.‘.Q..e..AtAM** *: Sop T P
* * * * * LA
* * *** *
* * *
* * &
*x * *
* * -
NI return

> R¥ with k > 1 has no total order =
no “best” solution, only non-dominated ones on the Pareto frontier

> Two practical solutions: maximize return with budget on maximum risk,
a.k.a. budgeting min{f(x) : H(x)< B>, x€ X} (which 3,77)

A Very Quick Glimpse to Multi-objective Optimization 21

31 5 . rl
— i
S *
O ***
g;** *x,
*x :*a:)* * x ¥ x
: * A
RO ROl eIttt
* K o kK KK
* *x K KX X * * &
* * return

> R¥ with k > 1 has no total order =
no “best” solution, only non-dominated ones on the Pareto frontier

> Two practical solutions: minimize risk with budget on minimum return,

a.k.a. budgeting min{f(x) : fi(x)>p1, x€X} (which 5,77)

A Very Quick Glimpse to Multi-objective Optimization 21

|21 B | *x ¥
- = ol
S *
O ***
g;** *x,
x :‘a:a * x ¥ x
*oxx o x X *:*
* ‘o W
* K L e
*x X Ky x x X x *F
o e | ——
* i return

> R* with k > 1 has no total order =
no “best” solution, only non-dominated ones on the Pareto frontier

» Two practical solutions: minimize risk with budget on minimum return,
a.k.a. budgeting min{f(x) : fi(x)>p1, x€X} (which 5,77)
» All a bit fuzzy, but it's the nature of the beast

» We always assume this done if necessary at modelling stage
(regularization, grid search used to divine hyperparameters «, 51, 52)

Scalar product, norm, distance, ball 22

» (Euclidean) scalar product of x € R" and z € R™

(x,z) =3 1%z =xz1+ "+ XnZn

» (Euclidean) norm: || x| := /x? + -+ x2 = /(x, x) (induced by (-, -))

Scalar product, norm, distance, ball 22

» (Euclidean) scalar product of x € R" and z € R™

<sz>:Z7Z1Xizi:X121+"'+XnZn

» (Euclidean) norm: || x| := /x? + -+ x2 = /(x, x) (induced by (-, -))

0=0 » Geometric interpretation: (x, z) = | x| - || z| - cos(8)

' Z’ > X (x,z)>0 = "x and z point in the same direction”

Scalar product, norm, distance, ball 22

» (Euclidean) scalar product of x € R" and z € R™

<sz>:Z7Z1Xizi:X121+"'+XnZn

» (Euclidean) norm: || x| := /x? + -+ x2 = /(x, x) (induced by (-, -))
Z

ie, » Geometric interpretation: (x, z) = | x| - || z| - cos(8)
; X (x,z)>0 = "x and z point in the same direction”

>0

Scalar product, norm, distance, ball 22

» (Euclidean) scalar product of x € R" and z € R™

<sz>:Z7Z1Xizi:X121+"'+XnZn

» (Euclidean) norm: || x| := /x? + -+ x2 = /(x, x) (induced by (-, -))

» Geometric interpretation: (x, z) = | x| - || z| - cos(8)
X

>0

(x,z)>0 = "x and z point in the same direction”

0

Scalar product, norm, distance, ball 22

» (Euclidean) scalar product of x € R" and z € R™

<sz>:Z7Z1Xizi:X121+"'+XnZn

» (Euclidean) norm: || x| := /x? + -+ x2 = /(x, x) (induced by (-, -))

» Geometric interpretation: (x, z) = | x| - || z| - cos(8)

(x,z)=0= x L z (orthogonal)

Scalar product, norm, distance, ball 22

» (Euclidean) scalar product of x € R" and z € R™

<sz>:Z7Z1Xizi:X121+"'+XnZn

» (Euclidean) norm: || x| := /x? + -+ x2 = /(x, x) (induced by (-, -))

» Geometric interpretation: (x, z) = | x| - || z| - cos(8)

] > X (x,z)<0 = "x and z point in the opposite direction”
9 < O

Scalar product, norm, distance, ball 22

» (Euclidean) scalar product of x € R" and z € R™

<sz>:Z7Z1Xizi:X121+"'+XnZn

I
|

» (Euclidean) norm: || x || : 4+ x2 =+/(x, x) (induced by (-, -))

> Geometric interpretation: (x, z) = | x||- ||z - cos(§)

] > X (x,z)<0 = "x and z point in the opposite direction”
6 < O

» Cauchy-Schwarz inequality: |(x, z)| < | x|l z|| ¥x, z

z

> (Euclidean) distance between x and z = norm of x when z is the origin:

d(x,2) = lx—zll=/(a—a Pt (X2)

> Ball, center x € R”, radius r > 0: B(x,r)={zeR": ||z—x|| <r}

Mathematically speaking: Vector space, scalar product [1, A.1.1] 23

> R” € vector space = closed under sum and scalar multiplication
xX+z=[x14+z1,. ..., xn+2zn] , ax=[ax, ..., ax,]
> Finite-dimensional vector space: { u’ }7_; finite base s.t. Vx € R" oy, ..., a,

st. x = aqu! + ...+ a,u" (canonical base: ul =1, uj =0 for h# i, a; = x;)
> Not all vector spaces are finite-dimensional (function spaces, ...)

» Properties = definition of scalar product:
1. (x,z)=(z,x) Vx,ze&R"(symmetry)
2. (x,x)>0 VXER", (x,x)=0 <= x=0
3. (ax z)y=a(x,z) VxeER", aeR
4. (x+w,z)=(x,z)+{(w,z) Vx,w,zeR"
» T other scalar products that make sense in other spaces
(matrices, integrable functions, random variables, . ..)

> Not just theoretical stuff (cf. kernel in SVM)

Mathematically speaking: Norm, distance [14][1, A.1.2][6, p. 600]

» Properties = definition of norm:
1. [[x||>0 ¥xeR" , ||x||=0 <= x=0
2. Jax||=]alllx]] VxeR", aeR
3. Ix+z| <Ix||+]z|l V¥x,z€R" (triangle inequality)

> [[x+z|2=[x|?+|z|*+2(x, z) (only Euclidean norm)
> 2 x|?+2)|z|>P=|x+z|?+ | x—z]||* (Parallelogram Law)

» Properties = definition of distance:
1. d(x,z)>0 Vx,zeR", d(x,z)=0 < x=1z
2. d(ax,0)=|ald(x,0) VxeR", a€eR

3. d(x,w)<d(x,z)+d(z,w) Vx,w,z¢e&R" (triangle inequality)

» || -|| defines B(-, -) = the topology of the vector space:
what is next to what (will be useful later on)

24

Picturing multivariate functions

» gr(f) € R", impossible if n > 3 (n = 3 hard already)

> L(f,)€ R", impossible if n >4 (n =4 hard already)

25

Picturing multivariate functions

>

>

gr(f) € R™"!, impossible if n > 3 (n = 3 hard already)
L(f,-)€R" impossible if n >4 (n =4 hard already)

General n, f : R" = R, x € R” (origin), d € R” (direction):
oxd(a)=f(x+ad): R — R tomography of f from x along

25

d

gr(x4) can always be pictured, but too many of them: which x, d?

|| d | only changes the scale: ¢, gq(@) = pxq(Ba) (check) =

often (but not always) convenient to use normalised direction (|| d || = 1)

Simplest case: restriction along i-th coordinate (|| u’ || = 1)

Flla) = F(X1, ey Xim1y Oy Xig1sevny Xn) = Lt oo Xie1 50, Xt
For small n can “look at all d"”
Otherwise, find the specific d that “shows what you want to see”

When x and d clear from context (will happen a lot), just ¢(«)

...,xn],u"(a)

The simplest multivariate functions: linear

» Linear function: f(x) = (b, x) =7, bix;, fixed b € R"

» Linear

26

i f(yx)=~f(x)ii. f(x+z)=Ff(x)+f(z) VYx,v,z
Exercise: Linear = i) + ii) trivial, prove <=; extends to affine (...4c)?

> (b, x)=> " [fi(x)=bix;], sum of n univariate linear functions

The simplest multivariate functions: linear

> Linear function: f(x)= (b, x) =", bix;, fixed b € R"

» Linear = i. f(yx)=~f(x),ii. f(x+z)=Ff(x)+f(z) Vx,v,z

26

Exercise: Linear = i) + ii) trivial, prove <=; extends to affine (...4c)?

> (b, x)=> " [fi(x)=bix;], sum of n univariate linear functions

» gr(f) = hyperplane in R"*! (plane in R3)

The simplest multivariate functions: linear 26
» Linear function: f(x) = (b, x) =7, bix;, fixed b € R"

» Linear = i. f(yx)=~f(x),ii. f(x+z)=Ff(x)+f(z) Vx,v,z
Exercise: Linear = i) + ii) trivial, prove <=; extends to affine (...4c)?

> (b, x)=> " [fi(x)=bix;], sum of n univariate linear functions

o b

DOXK

» gr(f) = hyperplane in R"*1 (plane in R3)

> Level sets are parallel hyperplanes in R” (lines in R?) L b:

The simplest multivariate functions: linear 26
» Linear function: f(x) = (b, x) =7, bix;, fixed b € R"

» Linear = i. f(yx)=~f(x),ii. f(x+z)=Ff(x)+f(z) Vx,v,z
Exercise: Linear = i) + ii) trivial, prove <=; extends to affine (...4c)?

> (b, x)=> " [fi(x)=bix;], sum of n univariate linear functions

» gr(f) = hyperplane in R"*1 (plane in R3)

> Level sets are parallel hyperplanes in R” (lines in R?) L b:
f(x)="f(z) =(b,x)=(b,z) = (b,z—x)=0=blz—x

Tomography & optimization of linear multivariate functions
> f(x)=(b,x), x=0,[d[| =1 p(a)=a(b, d) =«af b cos(6)

27

Tomography & optimization of linear multivariate functions
> f(x)=(b,x),x=0,|d||=1 p(a)=a(b,d)=ca| bl cos(8)

0

Tomography & optimization of linear multivariate functions
> f(x)=(b,x),x=0,|d||=1 p(a)=a(b,d)=ca| bl cos(8)

0

Tomography & optimization of linear multivariate functions
> f(x)=(b,x),x=0,|d||=1 p(a)=a(b,d)=ca| bl cos(8)

0

Tomography & optimization of linear multivariate functions
> f(x)=(b,x),x=0,|d]|=1 ¢(a)=a(b,d)=al b| cos(§)

0

Tomography & optimization of linear multivariate functions
> f(x)=(b,x),x=0,|d]|=1 ¢(a)=a(b,d)=al b| cos(§)

0

Tomography & optimization of linear multivariate functions
> f(x)=(b,x),x=0,|d]|=1 ¢(a)=a(b,d)=al b| cos(§)

0

Tomography & optimization of linear multivariate functions
> f(x)=(b,x),x=0,|d]|=1 ¢(a)=a(b,d)=al b| cos(§)

0

Tomography & optimization of linear multivariate functions
> f(x)=(b,x),x=0,|d]|=1 ¢(a)=a(b,d)=al b| cos(§)

0

27

Tomography & optimization of linear multivariate functions
> f(x)=(b,x),x=0,|d]|=1 ¢(a)=a(b,d)=al b| cos(§)

0

27

Tomography & optimization of linear multivariate functions
> f(x)=(b,x), x=0[d] =1 ¢(a)=alb, d) =al bl cos(f)

101

-1ob

» Increasing if “b same direction as d"”,

Tomography & optimization of linear multivariate functions
> f(x)=(b,x), x=0,[d[| =1 p(a)=a(b, d) =«af b cos(6)

101

27

-1ob

» Increasing if “b same direction as d", “more collinear" = steeper

Tomography & optimization of linear multivariate functions

> f(x)= (b, x), x=0,[d||=1 ¢(a)=alb, d) =af b|cos(0)

101

27

—1ob

» Increasing if “b same direction as d", collinear —>

steepest

Tomography & optimization of linear multivariate functions
> f(x)=(b,x), x=0,[d[| =1 p(a)=a(b, d) =«af b cos(6)

101

27

-1ob

» Increasing if “b same direction as d"”,

“less collinear” — less steep

Tomography & optimization of linear multivariate functions
> f(x)=(b,x), x=0,[d[| =1 p(a)=a(b, d) =«af b cos(6)

10

A

27

-1ob

» Increasing if “b same direction as d"”,

“less collinear” — less steep

Tomography & optimization of linear multivariate functions
> f(x)=(b,x), x=0,[d[| =1 p(a)=a(b, d) =«af b cos(6)

101

27

-1ob

» Increasing if “b same direction as d"”,

“less collinear” — less steep

Tomography & optimization of linear multivariate functions
> f(x)=(b,x), x=0[d] =1 ¢(a)=alb, d) =al bl cos(f)

101

—1ob

> “Flat" if d L b

Tomography & optimization of linear multivariate functions
> f(x)=(b,x), x=0[d] =1 ¢(a)=alb, d) =al bl cos(f)

101

-1ob

» Decreasing if “b opposite direction as d"”,

Tomography & optimization of linear multivariate functions

> f(x)= (b, x), x=0,[d||=1 ¢(a)=alb, d) =af b|cos(0)

101

27

g\

—1ob

» Decreasing if “b opposite direction as d"”,

“more collinear”

= steeper

Tomography & optimization of linear multivariate functions

> f(x)= (b, x), x=0,[d||=1 ¢(a)=alb, d) =af b|cos(0)

101

27

—1ob

» Decreasing if “b opposite direction as d"”,

“more collinear”

= steeper

Tomography & optimization of linear multivariate functions 27
> f(x)=(b,x), x=0,|d|=1: o(a) =alb,d) =al b|cos(0)

101

-0l

» Decreasing if b opposite direction as d”, collinear = steepest (negative)

Tomography & optimization of linear multivariate functions
> f(x)=(b,x), x=0[d] =1 ¢(a)=alb, d) =al bl cos(f)

101

-1ob

» Decreasing if “b opposite direction as d"”,

Tomography & optimization of linear multivariate functions 27
> f(x)=(b,x), x=0,|d|=1: o(a) =alb,d) =al b|cos(0)

101

A\

-1.0

» Decreasing if “b opposite direction as d”, “less collinear’ = less steep

Tomography & optimization of linear multivariate functions 27
> f(x)=(b,x), x=0,|d|=1: o(a) =alb,d) =al b|cos(0)

101

-0l

» Decreasing if “b opposite direction as d”, “less collinear’ = less steep

Tomography & optimization of linear multivariate functions
> f(x)=(b,x), x=0[d] =1 ¢(a)=alb, d) =al bl cos(f)

101

—1ob

> “Flat" if d L b

Tomography & optimization of linear multivariate functions
> f(x)=(b,x), x=0[d] =1 ¢(a)=alb, d) =al bl cos(f)

101

—1ob

» Increasing if “b in the same direction as d"

Tomography & optimization of linear multivariate functions
> f(x)=(b,x), x=0[d] =1 ¢(a)=alb, d) =al bl cos(f)

101

—1ob

» Increasing if “b in the same direction as d"

Tomography & optimization of linear multivariate functions 27
> f(x)=(b,x), x=0,|d|=1: o(a) =alb,d) =al b|cos(0)

b 100

-1ob

» Increasing if “b in the same direction as d"
> f.=min{f(x)} = —o0 except if b =0, in which case f, = 0 (same for max)

> min{f(x) : x € X}, X hyperrectangle, (same for max)

n independent problems, as nothing links x; and x; for i # i

» n closed formulee O(1) each, almost the last time

A very simple quadratic function: separable (non-homogeneous) 28

> Separable (non-homogeneous) quadratic function:
f(x)=>11[fi(x)=ax?+ bix;], fixed (a, b) € R*"
= sum of n univariate quadratic (non-homogeneous) functions
> f(x)=|x||>=>_1_, x? an important special case

’/ N f(Xl s X2) = ax12 +X22 [+0X1 +0X2]

|\ » Contour plots for different values of a

A very simple quadratic function: separable (non-homogeneous) 28

> Separable (non-homogeneous) quadratic function:
f(x)=>11[fi(x)=ax?+ bix;], fixed (a, b) € R*"

= sum of n univariate quadratic (non-homogeneous) functions

> f(x)=|x||>=>_1_, x? an important special case

> f(x1, x)=ax + x3 [+0x; + Ox]

» Contour plots for different values of a

A very simple quadratic function: separable (non-homogeneous) 28
> Separable (non-homogeneous) quadratic function:
f(x)=>11[fi(x)=ax?+ bix;], fixed (a, b) € R*"
= sum of n univariate quadratic (non-homogeneous) functions
> f(x)=|x||>=>_1_, x? an important special case
////j T T \\\\\ > f(x1, x)=ax + x3 [+0x; + Ox]
S \\ \ » Contour plots for different values of a

» For a = 1, perfect circles

/ / / / 0\
/'/ / / /'/ ™. \ \,\ \

A very simple quadratic function: separable (non-homogeneous) 28
> Separable (non-homogeneous) quadratic function:
f(x)=>11[fi(x)=ax?+ bix;], fixed (a, b) € R*"
= sum of n univariate quadratic (non-homogeneous) functions
> f(x)=|x||>=>_1_, x? an important special case

> f(xa, xe) = axd + 3 [+0x1 + 0x)

" » Contour plots for different values of a
» For a =1, perfect circles

; a-033 | » Larger / smaller a, more / «» elongated

A very simple quadratic function: separable (non-homogeneous) 28

> Separable (non-homogeneous) quadratic function:
f(x)=>11[fi(x)=ax?+ bix;], fixed (a, b) € R*"

= sum of n univariate quadratic (non-homogeneous) functions

> f(x)=|x||>=>_1_, x? an important special case

f(x1, x2) = ax? + x5 [+0x; + 0x]
Contour plots for different values of a

For a = 1, perfect circles

Larger / smaller a, more] / «» elongated

Could be non-homogeneous,
[0,0] = [—b1/2a1, —b2/22;]

O(n) :
this is the last time

A very simple quadratic function: separable (non-homogeneous) 28

> Separable (non-homogeneous) quadratic function:
f(x)=>11[fi(x)=ax?+ bix;], fixed (a, b) € R*"

= sum of n univariate quadratic (non-homogeneous) functions

> f(x)=|x||>=>_1_, x? an important special case

f(x1, x2) = ax? + x5 [+0x; + 0x]
Contour plots for different values of a

For a = 1, perfect circles

Larger / smaller a, more] / «» elongated

Could be non-homogeneous,
[0,0] = [—b1/2a1, —b2/22;]

O(n) :
this is the last time

» Not a general quadratic function, coming right next

The general (homogeneous) quadratic function 29

> Nonseparable homogeneous quadratic function: fixed Q@ € R"*" (n Q; € R")
f(x)= %XTQX = %[27:1 QiiXi2 + 27:1 f:l,j;éi QUX/'XJ]

> Not linear: f(x+2z)=24(x+2)TQ(x+z)="f(x)+f(z)+z"Qx

> W.lo.g. Q symmetric:
xTQx=[(xTQ) + (x"Q)"]/2=xT[(Q+QT) /2]x

» f symmetric: f(x)=f(—x) = ‘centred in x =0"

> Tomography: p(a)=f(ad)=3a*(d"Qd) =

homogeneous quadratic univariate, sign and steepness depend on d’ Qd
» Need to know about signs of d” Qd when d changes: (multi)linear algebra

» Crucial stuff: spectral decomposition, eigenvalues, eigenvectors of @

Spectral decomposition [1, A.5.2][6, p. 603][11] 30

>
>
>

QeR™™ veR" AeRs.t. Qv = Av: v eigenvector of Q, A eigenvalue
v eigenvector = Qv =)\v = Q(—v) = A(—v) = — v eigenvector
Q® symmetric = has n distinct eigenvectors H;, H>, ..., H, and
n (not necessarily distinct) corresponding real eigenvalues A1, A2, ..., Ay
Eigenvectors can always be taken orthonormal: H; L H; for i # j, || Hi|| =1
= linearly independent (check) = a(n orthonormal) basis of R”
Spectral decomposition: H =[Hy,..., H,] € R™*" A =diag(\1,..., Ap)
Q = HAHT = \iHiH + ...+ X\,H,HT (check)
Notation: Ay > A, > ... > A, (A = max, A\, = min)
Variational characterization of eigenvalues:
AM=max{d"Qd/d"d : d#0} =max{d"Qd : ||d| =1}
Ao=min{d"Qd/d"d : d#0} =min{d"Qd : |d||=1}
Q = 0 = positive definite if \; >0Vi = X\, >0 = d"Qd>0Vd #0
Q = 0 = positive semi-definite if \; >0Vi = X\, >0 = d"Qd>0Vd #0
negative definite (<), semi-definite (<), indefinite (><) obvious

Tomography of homogeneous quadratic functions | 31

» Fundamental relation: ¢y, (a) = a?)\; (check)

SRR FH T

Tomography of homogeneous quadratic functions | 31

» Fundamental relation: ¢y, (a) = a?)\; (check)

SRR FH T

0,

Tomography of homogeneous quadratic functions | 31

» Fundamental relation: ¢y, (a) = a?)\; (check)

SRR FH T

0,

Tomography of homogeneous quadratic functions | 31

» Fundamental relation: ¢y, (a) = a?)\; (check)

SRR FH T

0,

Tomography of homogeneous quadratic functions | 31

» Fundamental relation: ¢y, (a) = a?)\; (check)

o[4] 1]]

10,

Tomography of homogeneous quadratic functions | 31

» Fundamental relation: ¢y, (a) = a?)\; (check)

SRR FH T

0,

Tomography of homogeneous quadratic functions | 31

» Fundamental relation: ¢y, (a) = a?)\; (check)

SRR FH T

0,

Tomography of homogeneous quadratic functions | 31

» Fundamental relation: ¢y, (a) = a?)\; (check)

SRR FH T

0,

Tomography of homogeneous quadratic functions | 31

» Fundamental relation: ¢y, (a) = a?)\; (check)

SRR FH T

0,

Tomography of homogeneous quadratic functions |
» Fundamental relation: ¢p,(a) = a?\; (check)

Sl BRI EIEAE SIS

10r

Hy H, 10

-1ol

» d7Qd>0Vd, steepness change with d

>

Tomography of homogeneous quadratic functions | 31
» Fundamental relation: ¢y (a) = a?)\; (check)

Sl BRI EIEAE SIS

10r

Hy H, 10

-1ol

» d7Qd>0Vd, steepness change with d

>

Tomography of homogeneous quadratic functions |
» Fundamental relation: ¢y, (a) = a?)\; (check)

~o-[2 5] R[] e [d]

10r

Hy H,

=

&

-1ol

» d7Qd>0Vd, steepness change with d

> least steep along Hy (A2 = 4)

Tomography of homogeneous quadratic functions | 31
» Fundamental relation: ¢y (a) = a?)\; (check)

Sl BRI EIEAE SIS

10r

Hy H, 10

-1ol

» d7Qd>0Vd, steepness change with d

>

Tomography of homogeneous quadratic functions |
» Fundamental relation: ¢p,(a) = a?\; (check)

Sl BRI EIEAE SIS

10

Hy H, 10

-1ol

» d7Qd>0Vd, steepness change with d

>

Tomography of homogeneous quadratic functions |
» Fundamental relation: ¢p,(a) = a?\; (check)

Sl BRI EIEAE SIS

10r

Hy H, 10

-1ol

» d7Qd>0Vd, steepness change with d

>

Tomography of homogeneous quadratic functions |
» Fundamental relation: ¢y, (a) = a?)\; (check)

~o-[2 5] R[] e [d]

10r

Hy H,

=

-1ol

» d7Qd>0Vd, steepness change with d

> steepest along H; (A = 8)

Tomography of homogeneous quadratic functions |

» Fundamental relation: ¢y (a) = a?)\; (check)

~as[8 %] me g [71] - [d]

10r

Hy Hy

=

-1ol

» d7Qd>0Vd, steepness change with d

» intermediate steepness “in between”

Tomography of homogeneous quadratic functions |

» Fundamental relation: ¢y (a) = a?)\; (check)

~as[8 %] me g [71] - [d]

10r

Hy Hy

=

-1ol

» d7Qd>0Vd, steepness change with d

» intermediate steepness “in between”

Tomography of homogeneous quadratic functions | 31

» Fundamental relation: ¢y (a) = a?)\; (check)

~as[8 %] me g [71] - [d]

10r

Hy Hy 10

-1ol

» d7Qd>0Vd, steepness change with d

» intermediate steepness “in between”

Tomography of homogeneous quadratic functions |
» Fundamental relation: ¢y, (a) = a?)\; (check)

~o-[2 5] R[] e [d]

10r

Hy H, 10

&

-1ol

» d"Qd>0Vd, steepness change with d

> least steep along —H, (A, = 4)

Tomography of homogeneous quadratic functions | 31

» Fundamental relation: ¢y (a) = a?)\; (check)

~as[8 %] me g [71] - [d]

10r

Hy Hy 10

-1ol

» d7Qd>0Vd, steepness change with d

» intermediate steepness “in between”

Tomography of homogeneous quadratic functions |

» Fundamental relation: ¢y (a) = a?)\; (check)

~as[8 %] me g [71] - [d]

10r

Hy Hy

=

-10

» d7Qd>0Vd, steepness change with d

» intermediate steepness “in between”

Tomography of homogeneous quadratic functions |

» Fundamental relation: ¢y (a) = a?)\; (check)

~as[8 %] me g [71] - [d]

10r

Hy Hy

=

-1ol

» d7Qd>0Vd, steepness change with d

» intermediate steepness “in between”

Tomography of homogeneous quadratic functions |
» Fundamental relation: ¢y, (a) = a?)\; (check)

~o-[2 5] R[] e [d]

10r

Hy H, 10

-1ol

» d"Qd>0Vd, steepness change with d

> steepest along —H; (A1 = 8)

Tomography of homogeneous quadratic functions |

» Fundamental relation: ¢y (a) = a?)\; (check)

~as[8 %] me g [71] - [d]

10r

Hy Hy

=

-1ol

» d7Qd>0Vd, steepness change with d

» intermediate steepness “in between”

Tomography of homogeneous quadratic functions |

» Fundamental relation: ¢y (a) = a?)\; (check)

~as[8 %] me g [71] - [d]

10r

Hy Hy

=

-1ol

» d7Qd>0Vd, steepness change with d

» intermediate steepness “in between”

Tomography of homogeneous quadratic functions Il 32
> Recall pp.(a) = a?);

4 —4 V2 [-1 1 8
’Q_[—4 4]i0 H‘T[1 1} ’_{o}

1.0

Hy H, 10

H

-10

» d"Qd >0Vd, but 3dst. d"Qd=0

>

Tomography of homogeneous quadratic functions Il

> Recall pp.(a) = a?);

4 —4

TRERIERRE

1.0

Hy Hy

-10

» d"Qd >0Vd, but 3dst. d"Qd=0

>

Tomography of homogeneous quadratic functions Il 32

> Recall pp.(a) = a2\
ma-[e 0] - [E]

Hy H, 10

-10

» d7Qd >0Vd, but 3dst. dTQd=0

> completely flat along H, (A, = 0)

Tomography of homogeneous quadratic functions Il

> Recall pp.(a) = a?);

4 —4

TRERIERRE

1.0

Hy Hy

-10

» d"Qd >0Vd, but 3dst. d"Qd=0

>

Tomography of homogeneous quadratic functions Il
> Recall pp.(a) = a?);

SEERIER SRS

L
Hy H; 10

H

-10

» d"Qd >0Vd, but 3dst. d"Qd=0

>

Tomography of homogeneous quadratic functions Il 32
> Recall pp.(a) = a?);

4 —4 V2 [-1 1 8
’Q_[—4 4]i0 H‘T[1 1} ’_{o}

1.0

Hy H, 10

H

-10

» d"Qd >0Vd, but 3dst. d"Qd=0

>

Tomography of homogeneous quadratic functions Il 32

> Recall pp.(a) = a2\
ma-[e 0] - [E]

Hy Hy

=

H

-10

» d7Qd >0Vd, but 3dst. dTQd=0

> steepest along H; (A = 8)

Tomography of homogeneous quadratic functions Il

» Recall pp.(a) = a?);

4 —4

>Q:{—4 4

BESd

1.0

Hy Hy

-1

=

H

» d7Qd >0Vd, but 3dst. dTQd=0

» intermediate steepness "“in between”

Tomography of homogeneous quadratic functions Il

» Recall pp.(a) = a?);

4 —4

>Q:{—4 4

BESd

1.0

Hy Hy

-1

=

H

» d7Qd >0Vd, but 3dst. dTQd=0

» intermediate steepness "“in between”

Tomography of homogeneous quadratic functions Il
> Recall pp.(a) = a?);

4 —4 V2 [-1 1 8
—4 4}& H‘z[1 1} /_{0}

1.0

>Q:{

Hy H; 10

-10

» d7Qd >0Vd, but 3dst. dTQd=0

» intermediate steepness "“in between”

Tomography of homogeneous quadratic functions Il 32

> Recall pp.(a) = a2\
ma-[e 0] - [E]

Hy H, 10

-10

» d7Qd >0Vd, but 3dst. dTQd=0

> completely flat along —H, (A, = 0)

Tomography of homogeneous quadratic functions Il 32

» Recall pp.(a) = a?);

o[410 w-2[1] a-3]

—4 4

1.0

Hy H; 10

-10

» d7Qd >0Vd, but 3dst. dTQd=0

» intermediate steepness "“in between”

Tomography of homogeneous quadratic functions Il

» Recall pp.(a) = a?);

4 —4

>Q:{—4 4

BESd

1.0

Hy Hy

-1

=

H

r

» d7Qd >0Vd, but 3dst. dTQd=0

» intermediate steepness "“in between”

Tomography of homogeneous quadratic functions Il

» Recall pp.(a) = a?);

4 —4

>Q:{—4 4

BESd

1.0

Hy Hy

-1

=

H

» d7Qd >0Vd, but 3dst. dTQd=0

» intermediate steepness "“in between”

Tomography of homogeneous quadratic functions Il 32

> Recall pp.(a) = a2\
ma-[e 0] - [E]

Hy Hy

=

H

-10

» d7Qd >0Vd, but 3dst. dTQd=0

> steepest along —H; (A1 = 8)

Tomography of homogeneous quadratic functions Il

» Recall pp.(a) = a?);

4 —4

>Q:{—4 4

BESd

1.0

Hy Hy

-1

=

H

» d7Qd >0Vd, but 3dst. dTQd=0

» intermediate steepness "“in between”

Tomography of homogeneous quadratic functions Il

» Recall pp.(a) = a?);

4 —4

>Q:{—4 4

BESd

1.0

Hy Hy

-1

=

H

» d7Qd >0Vd, but 3dst. dTQd=0

» intermediate steepness "“in between”

Tomography of homogeneous quadratic functions Ill

> Recall pp.(a) = a?);

3 -5

’Q:[—5 3

]>—<0 H=

1.0

Hy Hy

2

1
1

| o]

-10

» d7Qd can be both > 0 and <0

>

Tomography of homogeneous quadratic functions Ill

> Recall pp.(a) = a?);

3 -5

’Q:[—5 3

]>—<0 H=

1.0

Hy Hy

2

1
1

| o]

-10

» d7Qd can be both > 0 and <0

>

Tomography of homogeneous quadratic functions Ill

> Recall pp.(a) = a?);

Hy Hy

| |

-10

» d7Qd can be both > 0 and < 0

> steepest negative along Hy (A = —2)

Tomography of homogeneous quadratic functions Ill

> Recall pp.(a) = a?);

3 -5

’Q:[—5 3

]>—<0 H=

1.0

Hy Hy

2

1
1

| o]

-10

» d7Qd can be both > 0 and <0

>

Tomography of homogeneous quadratic functions Ill

> Recall pp.(a) = a?);

3 -5

’Q:[—5 3

]>—<0 H=

1.0

L
Hy Hy

2

1
1

| o]

-10

» d7Qd can be both > 0 and <0

>

Tomography of homogeneous quadratic functions Ill

> Recall pp.(a) = a?);

3 -5

’Q:[—5 3

]>—<0 H=

1.0

Hy Hy

2

-1
1

| =]

10

H

-10

» d7Qd can be both > 0 and <0

>

Tomography of homogeneous quadratic functions Ill

> Recall pp.(a) = a2\

Hy Hy

IR

10

H

-10

» d7Qd can be both > 0and <0

> steepest positive along H; (A1 = 8)

Tomography of homogeneous quadratic functions Ill

» Recall pp.(a) = a?);

o[3 3]0 1] |

Hy Hy

H

-10

» d7Qd can be both > 0and <0

> intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions Ill

» Recall pp.(a) = a?);

o[3 3] n 2] |

Hy Hy

-10

» d7Qd can be both > 0and <0

> intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions Ill

> Recall pp.(a) = a2\

o[3 3] n 2] |

Hy Hy

-10

» d7Qd can be both > 0and <0

> intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions Ill

> Recall pp.(a) = a?);

Hy Hy

-10

» d7Qd can be both > 0 and < 0

> steepest negative along —H, (A2 = —2)

Tomography of homogeneous quadratic functions Ill

> Recall pp.(a) = a2\

Hy Hy

-10

» d7Qd can be both > 0and <0

> intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions Ill

> Recall pp.(a) = a2\

o[3 3] n 2] |

Hy Hy

r

-10

» d7Qd can be both > 0and <0

> intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions Ill

» Recall pp.(a) = a?);

o[3 3]0 1] |

Hy Hy

H

-10

» d7Qd can be both > 0and <0

> intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions Ill

> Recall pp.(a) = a?);

Hy

H,

211 |

10

H

-10

» d7Qd can be both > 0 and < 0

> steepest positive along —H; (A = 8)

Tomography of homogeneous quadratic functions Ill

» Recall pp.(a) = a?);

o[3 3]0 1] |

Hy Hy

H

-10

» d7Qd can be both > 0and <0

> intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions Ill

» Recall pp.(a) = a?);

o[3 3] n 2] |

Hy Hy

-10

» d7Qd can be both > 0and <0

> intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions 1V

> Recall pp.(a) = a?);

>Q:[:g :g]w H:\/?E[_i

Hy Hy

-10

> d7Qd <0Vd, steepness change with d

>

Tomography of homogeneous quadratic functions 1V

> Recall pp.(a) = a?);

>Q:[:g :g]w H:\/?E[_i

Hy Hy

-10

> d7Qd <0Vd, steepness change with d

>

Tomography of homogeneous quadratic functions IV 34

> Recall pp.(a) = a?);

Hy H, 10

-10

> d7Qd <0Vd, steepness change with d

> steepest negative along H, (A, = —8)

Tomography of homogeneous quadratic functions 1V

> Recall pp.(a) = a?);

>Q:[:g :g]w H:\/?E[_i

Hy Hy

-10

> d7Qd <0Vd, steepness change with d

>

Tomography of homogeneous quadratic functions 1V

> Recall pp.(a) = a?);

>Q:[:g :g]w H:\/?E[_i

1.0

L
Hy Hy

-10

> d7Qd <0Vd, steepness change with d

>

Tomography of homogeneous quadratic functions 1V

> Recall pp.(a) = a?);

>Q:[:g :g]w H:\/?E[_i

Hy Hy

-10

> d7Qd <0Vd, steepness change with d

>

Tomography of homogeneous quadratic functions IV 34

> Recall pp.(a) = a?);

Hy H, 10

-10

» d7Qd <0Vd, steepness change with d

> least steep negative along H; (A1 = —4)

Tomography of homogeneous quadratic functions IV 34

> Recall pp.(a) = a?);

Hy H, 10

-10

» d7Qd <0Vd, steepness change with d

> intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions IV 34

> Recall pp.(a) = a2\

Hy H, 10

-10

» d"Qd<0Vd, steepness change with d

> intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions IV 34

> Recall pp.(a) = a?);

Hy H, 10

-10

» d7Qd <0Vd, steepness change with d

> intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions IV 34

> Recall pp.(a) = a?);

H, H; 10

-10

> d7Qd <0Vd, steepness change with d

> steepest negative along —H, (A2 = —8)

Tomography of homogeneous quadratic functions IV 34

> Recall pp.(a) = a?);

Hy H, 10

-10

» d7Qd <0Vd, steepness change with d

> intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions 1V

> Recall pp,(a)

Hy

042/\,'

H,

r

-10

» d7Qd <0Vd, steepness change with d

> intermediate steepness (negative) “in between’

Tomography of homogeneous quadratic functions IV 34

> Recall pp.(a) = a?);

Hy H, 10

-10

» d7Qd <0Vd, steepness change with d

> intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions IV 34

> Recall pp.(a) = a?);

Hy H, 10

-10

> d7Qd <0Vd, steepness change with d

> least steep negative along —H; (A = —4)

Tomography of homogeneous quadratic functions IV 34

> Recall pp.(a) = a?);

Hy H, 10

-10

» d7Qd <0Vd, steepness change with d

> intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions IV 34

> Recall pp.(a) = a2\

Hy H, 10

-10

» d"Qd<0Vd, steepness change with d

> intermediate steepness (negative) “in between”

Homogeneous quadratic functions: graph and level sets

» All level sets centred in x = 0 by symmetry

35

Homogeneous quadratic functions: graph and level sets

> All level sets centred in x = 0 by symmetry

35

Homogeneous quadratic functions: graph and level sets 35
10 //// \
_10 \ %

> All level sets centred in x = 0 by symmetry

-05

6 —2 graph is a (convex) paraboloid
level sets are ellipsoids

Homogeneous quadratic functions: graph and level sets

> All level sets centred in x = 0 by symmetry

35

Homogeneous quadratic functions: graph and level sets 35

> All level sets centred in x = 0 by symmetry

05

00

-10 -05 00 05 10

2 2 . graph is a degenerate paraboloid
2 2 level sets are degenerate ellipsoids

Homogeneous quadratic functions: graph and level sets

» All level sets centred in x = 0 by symmetry

35

35

Homogeneous quadratic functions: graph and level sets

> All level sets centred in x = 0 by symmetry
10 /) ’ ‘
| / "/
et T _ |
_— -":':;:";':'..".'."...... / 0s / //
= J
Z> A) /
I B
b ‘10 00 VV/V”/W’#/ B
o ﬁ
05 j’ //
-05 | /
. | /
' /
\\ | /
\\)
10 \\
s 00

graph saddle-shaped (0 is a saddle point)

level sets are hyperboloids

Homogeneous quadratic functions: graph and level sets 35

> All level sets centred in x = 0 by symmetry

Homogeneous quadratic functions: graph and level sets 35

> All level sets centred in x = 0 by symmetry

{ -6 -2] -0 graph a (concave, i.e., “upside-down") paraboloid

level sets are ellipsoids again

Homogeneous quadratic functions: graph and level sets 35

» All level sets centred in x = 0 by symmetry

>Q:{

graph a (concave, i.e.,

“upside-down”) paraboloid

level sets are ellipsoids again

> Level sets can be precisely described in terms of H;, A;

Level sets of homogeneous quadratic functions algebraically 36

> ||x|? = Q =H=A=I: perfect circles

10
05
00

Level sets of homogeneous quadratic functions algebraically 36

7/ \ > Recall again op, (@) = a2\
/\\ > L(f,1)NH = pp(a)=1= X\ >0
/ /] /) b on(a)=1 = a=JI/N —
\

Level sets of homogeneous quadratic functions algebraically 36

T P Reaall again pp(a) = a?);
\\\\

> L(f,1)NH = op(a)=1 = X\, >0

05

> SDH,-(O[):]- = o= 1/)\,’ -
H; 1 axes of L(f, 1), length \/1/);

00

Level sets of homogeneous quadratic functions algebraically 36

7// s » Recall again gy () = a2\
Yoyl —
> L(f, l)ﬂH,' = (pH‘(Oé):]. =)\, >0

i

> SDH,-(O[):]- = o= 1/)\,’ -
H; 1 axes of L(f, 1), length \/1/);

/ >)\ = axis N,

Level sets of homogeneous quadratic functions algebraically 36

7 Recall again o () = a2\
> L(f, l)ﬂH,' = (pH,.(Oz):]. = A\ >0

> @HI.(O[)Zl = a= 1/)\,’ -
H; 1 axes of L(f, 1), length \/1/);

>\ N = axis A =0 = “axis = o0”

% >)\ <0 = same with gy ()= —1

-10 -05 00 05 10

o-[2 2] 2] - [E]

-05

Level sets of homogeneous quadratic functions algebraically 36
/ B \ > Recall again oy, () = a?)\;
/ \\ L(F1)NH = gu(a)=1 = X >0
/ ,f > op(a)=1=a=/1/} =

: H; L axes of L(f, 1), length \/1/\;
-0 \\\ / >\ N = axis A =0 = "axis — o0”

>)\ <0 = same with ¢ () = —1

REEEINE- EH RS

> All \; have the same sign: f(x) either > 0 or <0 = ellipsoids

Level sets of homogeneous quadratic functions algebraically 36

| \x > Recall again gp(a) = a2);

0s PL(f,l)ﬁH,-ELpH,.(a):l:/\,->0

10°

> op(a)=1=a=/1/\ =
H; L axes of L(f, 1), length \/1/\;

00

031 AN = axis L\ =0 = “axis — o0

-10 x >)\; <0 = same with QDHI.(O[) = -1

-10 05 00 05 10

[23] w-2[11] -]

» All \; have the same sign: f(x) either > 0 or <0 = ellipsoids

> Some \; =0 = “degenerate” ellipsoids (oo axis)

Level sets of homogeneous quadratic functions algebraically 36

“l // / /] > Recall again ¢y, (a) = a?)\;
/ / / | \
yavi / .
0s - / ‘,"“ >L(f,].)ﬁl"/,'EL,O/I-/,.(OC):]. =)\, >0
/”/ /'J
’ o pp(a)=1 = a=/1/\ =
. //////’ B H; L axes of L(f, 1), length \/1/\;
e ‘,"“ // S AN\ = axis S, A =0 = "axis = 00"
\\ / // / P
N : A4 / >)\ <0 = same with py(a)= —1

3 -5 V2 [-1 1 8
e IR S ST IR]
» All \; have the same sign: f(x) either > 0 or <0 = ellipsoids

> Some \; =0 = “degenerate” ellipsoids (oo axis)

> A >0and \; <0: Jaj, 0 s.t. op,(ai) + on(j) =0 = hyperboloids

Level sets homogeneous quadratic functions, 3D example

6 -2 0 -1 1 0 8
0 0 8 0 01 8

o/ A
0.0
0.5 -05

0.0

Level sets homogeneous quadratic functions, 3D example 37

6 —2 0 -1 1 0 8
0 0 4 0 01 4
0.5
L(f,1
(f, 1) o
0.5 -05
0.0
-0.5 1 |

Level sets homogeneous quadratic functions, 3D example

6 —2 0 11 0
Q=] -2 6 0| ,H=| 1 10|, 2=
0 01 00 1

8
4
1

|

37

Level sets homogeneous quadratic functions, 3D example

6 —2 0 11 0
Q=] -2 6 0| ,H=| 1 10|, 2=
0 00 00 1

8
4
0

|

37

Optimizing a homogeneous quadratic multivariate function 38

» Clearly depends sign of eigenvalues of @ = definiteness:

> Q-0ANQ=0=X=X=0= Q=0 = min =max =0 (constant)

» Q>0 = min =0, argmin =0, max = 4+00
> QX0 = max =0, argmax =0, min = —c©
» Q@< 0 = max = +o0o, min = —0o

analogous to univariate case, but “many more ways to be >0/ < 0"

Exercise: Formally prove all the unboundedness results

Optimizing a homogeneous quadratic multivariate function 38

» Clearly depends sign of eigenvalues of @ = definiteness:

> Q-0ANQ=0=X=X=0= Q=0 = min =max =0 (constant)

» Q>0 = min =0, argmin =0, max = 4+00
> QX0 = max =0, argmax =0, min = —c©
» Q@< 0 = max = +o0o, min = —0o

analogous to univariate case, but “many more ways to be >0/ < 0"
Exercise: Formally prove all the unboundedness results

> Box-constrained optimization on (closed) hyperrectangle X

Optimizing a homogeneous quadratic multivariate function 38

» Clearly depends sign of eigenvalues of @ = definiteness:
> Q-0ANQ=0=X=X=0= Q=0 = min =max =0 (constant)
» Q>0 = min =0, argmin =0, max = 4+00
> QX0 = max =0, argmax =0, min = —c©
> Q<0 = max =400, min = —00

analogous to univariate case, but “many more ways to be >0/ < 0"
Exercise: Formally prove all the unboundedness results

> Box-constrained optimization on (closed) hyperrectangle X
absolutely not analogous to the univariate case:

» AP-hard in most cases [3]

» min with Q > 0 and max with @ < 0 polynomial but nontrivial (will see)
> NP-hardness due to R" “big” (X has 2" vertices), issue also in P case

» max{ f(x)} and min{ f(x)} very very different

Optimizing non-homogeneous nonsingular quadratic functions 39

> f(x)= %XTQX +(qg, x): a homogeneous quadratic plus a linear
» g # 0 but Q nonsingular = X; # 0Vi (regardless of the sign)
> Then f(x)=g(z)=32"Qz+f(x)forz=x—%and x=-Q 'q

Exercise: Prove the result, but it should look familiar

Optimizing non-homogeneous nonsingular quadratic functions 39

> f(x)= %XTQX +(qg, x): a homogeneous quadratic plus a linear
> g +# 0 but Q nonsingular = \; # 0Vi (regardless of the sign)
> Then f(x)=g(z)=1z"Qz+f(x)forz=x—%and x=—-Q 'q

Exercise: Prove the result, but it should look familiar

> X (# 0) centre of the level sets: repeat

for g(z), translate the results back in x-space
> Box-constrained case remains hard / nontrivial

> Analogous to univariate case, but many more ways for (pieces of) @ to be 0
and therefore the result not be applicable

» More complicated analysis needed, coming right next

Optimizing non-homogeneous singular quadratic functions | 40
> @ € R™", eigenvalue decomposition (H, A), I ={1,2,...,n}

> 0= {iel; \;=0}, 1" =1\1° nonempty (k=|I°] >0, h=|I"|>0)
ker(Q)={veR" : IneRst. v=>, oniH}

> Qu=0Vveker(Q)[D>{0} (check)

> im(Q)={weR": JueRrst. w=>3 .. niH}:

> Vweim(Q)IxeR"st. Qx=w, im(Q)=im(—-Q)

v

Exercise: Prove the result (recall @ = \{H H + ...+ X\ H,H]I, use [16])
> R"=im(Q)+ ker(Q), im(Q) L ker(Q) (H is a hortonormal base of R")
> g=qg" +q° g7 L q° with q° € ker(Q) = Qq° =0, and
gt eim(Q)=im(—Q) = Ixst. (—-Q)x=gqg"
> Then f(x)=g(z)=1z"Qz+ "2+ f(x) for z=x—x

Exercise: Prove the result, but it should look very very familiar

Optimizing non-homogeneous singular quadratic functions Il 41

> fis “truly quadratic” on im(Q) but actually linear on ker(Q)
» No surprise: v € ker(Q) = f(v)=gqv

> Assume @ = 0: f has minimum <= ¢° =0 = QX = —q has solution

= geim(Q)
» X is not unique, in fact oo-ly many of them: “all are centres”

> X solution = X+ v solution ¥ v € ker(Q), all have the same objective value
= they are all and only the minima of f

Exercise: Prove the result
Exercise: Discuss the cases @ <0 and @ =0
> g0 #0 = g¢im(Q) = min = —00, max = 00

> Box-constrained version P (but nontrivial) if @ = 0 / Q < 0, hard otherwise

Optimizing non-homogeneous singular quadratic functions Il 41

> fis “truly quadratic” on im(Q) but actually linear on ker(Q)
» No surprise: v € ker(Q) = f(v)=gqv

> Assume @ = 0: f has minimum <= ¢° =0 = QX = —q has solution

= geim(Q)
» X is not unique, in fact oo-ly many of them: “all are centres”

> X solution = X+ v solution ¥ v € ker(Q), all have the same objective value
= they are all and only the minima of f

Exercise: Prove the result
Exercise: Discuss the cases @ <0 and @ =0
> qo #0

> Box-constrained version P (but nontrivial) if @ = 0 / Q < 0, hard otherwise

g ¢ im(Q) = min = —o0, max = 00

> All in all: solving system QX = —q (or proving no solutions) required

Outline

Multivariate Quadratic case: Gradient Method

Multivariate optimization algorithms

» If one is lucky, optimising a quadratic function = solving Qx = —q

» Linear system O(n?) at worst, so doable for n a2 100

42

Multivariate optimization algorithms

» If one is lucky, optimising a quadratic function = solving QX = —q

» Linear system O(n3) at worst, so maybe doable for n 22 10000

42

Multivariate optimization algorithms

» If one is lucky, optimising a quadratic function = solving Qx = —q

» Linear system O(n?) at worst, so not doable for n = 10°* (no memory)

42

Multivariate optimization algorithms 42

» If one is lucky, optimising a quadratic function = solving QX = —q

» Linear system O(n?) at worst, so not doable for n = 10°* (no memory)

0 +1

» lterative procedures: start from initial guess x°, some process x’ ~ x'
= a sequence { x' } that should “go towards an optimal solution”

» The natural way: {f' = f(x')} sequence of values “go towards "

> Typically we can't get £, in finite time (37 v; = f.), but we can
“get as close as we want”: there in the limit
» Recall: (infinite) sequence {v; } ={vi, vo, ...},
{vi}=v = limLsevi=v = Ve>03hst |vi—v|<eVi>h
lim 4o vi=4+0 <= VYM>0dhst v;>MVi>h

Multivariate optimization algorithms 42

» If one is lucky, optimising a quadratic function = solving QX = —q

» Linear system O(n?) at worst, so not doable for n = 10°* (no memory)

0 +1

» lterative procedures: start from initial guess x°, some process x’ ~ x'
= a sequence { x' } that should “go towards an optimal solution”

» The natural way: {f' = f(x')} sequence of values “go towards "

> Typically we can't get £, in finite time (37 v; = f.), but we can
“get as close as we want”: there in the limit
» Recall: (infinite) sequence {v; } ={vi, vo, ...},
{vi}=v = limLsevi=v = Ve>03hst |vi—v|<eVi>h
lim 4o vi=—0 <= VYM>0dhst v, <-MVi>h

Multivariate optimization algorithms

>

>

v

vV v V

42

If one is lucky, optimising a quadratic function = solving Qx = —q

Linear system O(n®) at worst, so not doable for n 22 10°* (no memory)

Iterative procedures: start from initial guess x°, some process x’ ~» x/*1
= a sequence { x' } that should “go towards an optimal solution”
The natural way: { f/ = f(x')} sequence of values “go towards f.”
Typically we can't get f. in finite time (37 v; = f.), but we can
“get as close as we want”: there in the limit
Recall: (infinite) sequence {v; } ={wvi, vo, ...},

{vi}=v = limLsevi=v = Ve>03hst |vi—v|<eVi>h

lim 4o vi=—0 <= VYM>0dhst v, <-MVi>h
{x"}st. {f'} = f. a minimizing sequence
note that { '} — —0o = f, = —o0c == minimizing sequence
A sequence may not have limit: are we “not converging”?

Any monotone sequence has a limit (monotone algorithms are good)

Gradient method, basic idea 43
» We generally assume minimization, but maximization is equivalent

» Given x', necessarily compute g’ = Qx’ + g: if g’ = 0 then stop

» “g/ = 0" not doable in floating point arithmetic = || g'|| < & (which £7)
> Idea: if || g’ || > [¢ >]0, produce a x'™! “better" than x’

» How? Consider the tomography Oxi ,g-(a)=f(x' —ag')—f(x")
=3(xX' —ag")TQ(x" —ag') + q(x' —ag’) — f(x')
= éaz(g) Qg —al(g)TQX +qg'] = 50%(g") Qg' —allg' |
positive negative

> For some o >0, ¢, () <0 = f(x' —ag') < f(x")
Exercise: Check all the above (recall)

» The same information (called gradient, we'll see why) saying “you can’t stop”

is at the same time saying “you can get a better solution than x’ over there’

» This immediately suggests a (monotone, f'*1 < ') algorithm

The gradient method for (multivariate) quadratic functions 44

> In fact it is easy to minimize ¢,i () ()
o = | g'[2/((g)7Qg') [1/M<a<1/A (check)]

» Computing g’ and the optimal value of ais O(n?) =
n “large” = “we can do may iterations before hitting O(n*)"

procedure x = SDQ (Q, q, x, €)
do forever
g+ Qx+gq;
if(|| g || <€) then break;
a < stepsize(); x < x —ag;

> stepsize() { return(| g|*/(g"Qg)); }, others possible

Exercise: something can go wrong with that formula 1: what does it mean?
Improve the pseudo-code to take that occurrence into account.

Exercise: what happens if Q # 07 Does the (improved) code need be fixed?
Exercise: Discuss how to change the code to solve max{ f(x)} instead
Exercise: Rewrite the code with one product with @ per iteration

» It is very simple, but does it work? And is it efficient?

Convergence of the gradient method for Q >~ 0 45

>

>

>

Optimal stepsize = g'*1 | g’ (check)
“Homogeneous form of the error’: A(x) = 1(x — x.)TQ(x — x.) (check)

The above for x = x'*1, @ = 0 and some algebra [5, Lm. 8.6.1] gives

Kty — _ g’ II* i edious
A= (1 ragiara gy) A< (heckliedions

Easy to derive an estimate using k = A1 / A, [> 1] condition number of Q

[x]* A1 .) ;
TRITa) = a (e = AT < (1 -) A(X')

This means the algorithm converges: A(x') < r'/A(x%) (check) with

r<(k-1)/k<l = A(x') — 0 exponentially fast as i — oo

Kantorovich inequality [5, 8.6.(34)] gives better estimate

[Ix||* e (A (m- 2
(xXTRX)(xTQ1x) = (A1 +)2 “\ M+ \k+1

Let's see it in practice

Complexity of the gradient method 46

» Crucial sequences: {x'} / {d" = | x" — x. || } [iterates / distance from x,]
(F=F(x)} /{4 =A(x')} [{r = R(x')} [F-values / A/R gaps

» Complexity as a function of prescribed accuracy ¢:
max number of iterations k such that d’ / a' / r' <eVi > k

» General formula: vk < rkvl <efor k >[1/log(1/r)]log(v'/e) (check)
> re1 = ke O([r/(1—r)]log(vl/e)) (check)

» Good news: dimension independent (n not there) = very-large-scale

» O(log(1/¢)) (good), but the constant 1 oo as r — 1 (bad)

» v = f(x!)— f.: starting closer to f. helps (would be strange if not)

> ul

x'—x, || <&" and “f(x') — f. <&" not the same (¢):

ai = %(X’. —_ X*)TQ(Xi — X*) S £ — /\n||Xi — X« ||2 S € =

d=|x" —x || <\/e/ A\,

Exercise: Cook up the other direction (d' <e = ...)

Convergence rates, complexity [6, p. 619] a7
> Converge: {f'} wfi~={a'}—>0={r}—=0 <« {d'}—0(=~)
Exercise: Discuss why { '} — f, isonly ~= to {a' } — 0 and why the =%

» But how rapidly does it (“in the tail")? Rate/order of convergence

im fr—f Attt] xP — 0 faster than (check)
imoo | (FF=F)P (@)p — (ri)p | x — 0 whenp>1

» p=1, r=1 = sublinear: important examples
error O(1/1i) o(1/i?) O(1/i)

i O(1/¢) (bad) O(1/+/€) (a bit better) O(1/¢&?) (horrible)

» p=1, r<1l = linear: r' = i€ O(log(1/¢)) (good unless r ~ 1)

> p=2, r>0 = quadratic (1) ~#1/22 = i€ O(log(log(1/c)))
in practice O(1) (correct digits double at each iteration)

> pe(1,2) = p=1, r=0 = superlinear (!): “something in the middle"

» p = 2 the best you can reasonably hope for: possible but not easy

Convergence Rates Pictorially

0.01+

10—5 L

1078t

Convergence Rates Pictorially

0.01+

10'5 L

1078+

10-1"

0

100

200

300

400 500

Convergence Rates Pictorially 48

0.01 1

— A

1070 — l.

i

1

10-8 7
— 0.999'
1071 0.996'
— 0.618'

0 1000 2000 3000 4000 5000

Convergence Rates Pictorially 48

0.01+ '
— 0.999

05 0.996
— 0618’

108} — 05
— 0.999"

0=} .
— 09997

Important note on the stopping criterion 49

>

>

The stopping criterion one would want: A(x') <e / R(x') <e
Issue: f, typically unknown, cannot be used on-line

|l g || “proxy” of A(x"): hopefully || g'| “small” = A(x') “small’

but exact relationship nontrivial = choosing € non obvious

lg'll = Q(x" = x.) == | &' | < Ml x' = x. || ... (?7) wrong inequality:
lg'|| <e =~ || x — x| “small”

a' =3¢ = x)TQ(—x.) = 3 (X —x, g") < 3l g I X" — x|l
if we knew & > || x’ — x, ||, which we don't, then || g'|| < 2¢ /0 = a' <¢

If we knew A\, > 0, which we don't, || g' || < v2\,e = a' <& (check)

All in all, exact control on final a’ / r' not obvious (not always really needed)

When “exponentially fast” is not “really fast” 50

> Convergence fast if A\; = A\, (one iteration for || x ||2) rather slow if A\ > A\,:

k=M /An — 00 (Q ill conditioned) = r —1 = slow in practice
» gl | g’ + level sets very elongated = lots of “zig-zags’ = slow

» Ex.: k=100 = r~0.99 = r/(1—r)=~250
f(x})—fi=1,e=10"% = k > 3450 for n =2

When “exponentially fast” is not “really fast” 50

> Convergence fast if A\; = A\, (one iteration for || x ||2) rather slow if A\ > A\,:

k=M /An — 00 (Q ill conditioned) = r —1 = slow in practice
» gl | g’ + level sets very elongated = lots of “zig-zags’ = slow

> Ex. k=1000 = r~0.996 — r/(1—r) =250
f(xl)—f*zlvgzlo_ﬁ — k > 3450 for n =2 ...but also for n = 108

> Note: with coarser formula r =0.999=r/(1—r)~ 1000 = k > 13800

» In other words: 0.9961° ~ 0.96071 0.99910 ~ 0.99004

When “exponentially fast” is not “really fast” 50

> Convergence fast if A\; = A\, (one iteration for || x ||2) rather slow if A\ > A\,:

k=M /An — 00 (Q ill conditioned) = r —1 = slow in practice
» gl | g’ + level sets very elongated = lots of “zig-zags’ = slow

> Ex. k=1000 = r~0.996 — r/(1—r) =250
f(xl)—f*zlvgzlo_ﬁ — k > 3450 for n =2 ...but also for n = 108

> Note: with coarser formula r =0.999=r/(1—r)~ 1000 = k > 13800

» In other words: 0.9961%° ~ 0.66978 0.999100 ~ 0.90479

When “exponentially fast” is not “really fast” 50

> Convergence fast if A\; = A\, (one iteration for || x ||2) rather slow if A\ > A\,:

k=M /An — 00 (Q ill conditioned) = r —1 = slow in practice
» gl | g’ + level sets very elongated = lots of “zig-zags’ = slow

> Ex. k=1000 = r~0.996 — r/(1—r) =250
f(xl)—f*zlvgzlo_ﬁ — k > 3450 for n =2 ...but also for n = 108

> Note: with coarser formula r =0.999=r/(1—r)~ 1000 = k > 13800

» In other words: 0.9961900 ~; 0.01816 0.9991000 ~; 0.36769

When “exponentially fast” is not “really fast” 50

> Convergence fast if A\; = A\, (one iteration for || x ||2) rather slow if A\ > A\,:

k=M /An — 00 (Q ill conditioned) = r —1 = slow in practice
» gl | g’ + level sets very elongated = lots of “zig-zags’ = slow

> Ex. k=1000 = r~0.996 — r/(1—r) =250
f(xl)—f*zlvgzlo_ﬁ — k > 3450 for n =2 ...but also for n = 108

> Note: with coarser formula r =0.999=r/(1—r)~ 1000 = k > 13800

» In other words: 0.9962°00 ~; 0.00033 0.9992000 ~; 0.13520

When “exponentially fast” is not “really fast” 50

> Convergence fast if A\; = A\, (one iteration for || x ||2) rather slow if A\ > A\,:
k=M /An — 00 (Q ill conditioned) = r —1 = slow in practice

» gl | g’ + level sets very elongated = lots of “zig-zags’ = slow

> Ex. k=1000 = r~0.996 — r/(1—r) =250
f(xl)—f*zlvgzlo_ﬁ — k > 3450 for n =2 ...but also for n = 108

> Note: with coarser formula r =0.999=r/(1—r)~ 1000 = k > 13800
> In other words: 0.9962°%° ~ 0.00033 0.999%20% ~ 0.13520

» More bad news, “hidden dependency”:
A1 and A\, may depend on n, kK may grow as n — oo

» More bad news: the behaviour in practice is close to the bound

» Even more bad news: \, =0 = k = oo happens

What if)\, = 0?

»)\, =0 = not converging?

51

What if)\, = 0? 51

»)\, =0 = not converging? No, just can't prove it this way
ging J p

» In fact we can prove convergence (in a more general setting) [2, Theorem 3.3]:
a=1/ 1 = f(x')—f <2\ x* —x|?/(i—1)

What if)\, = 0? 51

»)\, =0 = not converging? No, just can't prove it this way
ging J p

» In fact we can prove convergence (in a more general setting) [2, Theorem 3.3]:
a=1/ 1 = f(x')—f <2\ x* —x|?/(i—1)

» Is it good news? Only partly. Because complexity is k > 2\;d* /¢
» O(1/e) vs. O(log(1/¢e)): sublinear convergence, exponentially slower

» One further digit of accuracy = 10 times more iterations —
typically unfeasible to get more than 1e-3 / 1e-4 accuracy

» The result cannot be improved (in general, will see)

> |s it bad? Rather. Can it be worse? Yes (in general, will see)

What if)\, = 0? 51

>

>

An =0 = not converging? No, just can't prove it this way

In fact we can prove convergence (in a more general setting) [2, Theorem 3.3]:
a=1/ 1 = f(x')—f <2\ x* —x|?/(i—1)

Is it good news? Only partly. Because complexity is k > 2\;d* /¢
O(1/e) vs. O(log(1/e)): sublinear convergence, exponentially slower

One further digit of accuracy = 10 times more iterations —>
typically unfeasible to get more than 1e-3 / 1e-4 accuracy

The result cannot be improved (in general, will see)
Is it bad? Rather. Can it be worse? Yes (in general, will see)
If A\p > 0, can we do better than O(log(1/¢))? Yes — @Federico

Fundamental idea, will see more than once: changing the space

Outline

Wrap up & References

Wrap up 52
» Optimization problems are difficult

» Clever strategy: start simple, then use what you learnt to go more complex

Wrap up 52
» Optimization problems are difficult

» Clever strategy: start simple, then use what you learnt to go more complex
» Simple problems provide intuition for the solution of more complex ones

» Solving a complex problem may entail solving a sequence of simpler ones

» Usual concept: if XYZ complex, use “simpler’ ABC ~ XYZ — a model

Wrap up 52

» Optimization problems are difficult

v

Clever strategy: start simple, then use what you learnt to go more complex
» Simple problems provide intuition for the solution of more complex ones

» Solving a complex problem may entail solving a sequence of simpler ones

» Usual concept: if XYZ complex, use “simpler’ ABC ~ XYZ — a model

> Linear functions “too simple”: optimising (on simple constraints) always easy

» Quadratic functions already a different story: few really simple cases,
often polynomial but not with low exponent, up to A/P-hard

> Solving (simple) optimization problems requires linear algebra, and vice-versa

Wrap up 52

» Optimization problems are difficult

v

Clever strategy: start simple, then use what you learnt to go more complex
» Simple problems provide intuition for the solution of more complex ones

» Solving a complex problem may entail solving a sequence of simpler ones

» Usual concept: if XYZ complex, use “simpler’ ABC ~ XYZ — a model

> Linear functions “too simple”: optimising (on simple constraints) always easy

» Quadratic functions already a different story: few really simple cases,
often polynomial but not with low exponent, up to A/P-hard

> Solving (simple) optimization problems requires linear algebra, and vice-versa
» We now know all we need about simple problems, time to step up the game

> Will keep following an incremental approach: next step is

more complicated functions but only one variable

References | 53

[1]

2]

(3]

[4]

[5]
[6]

S. Boyd, L. Vandenberghe Convex Optimization,
https://web.stanford.edu/~boyd/cvxbook
Cambridge University Press, 2008

S. Bubeck Convex Optimization: Algorithms and Complexity,
arXiv:1405.4980v2, https://arxiv.org/abs/1405.4980, 2015

E. de Klerk “The complexity of optimizing over a simplex, hypercube or
sphere: a short survey” Central European Journal of Operations Research
16: 111-125, 2008 https://1link.springer.com/content/pdf/10.
1007/s10100-007-0052-9 . pdf

P. Hansen, B. Jaumard "Lipschitz Optimization” in Handbook of Global
Optimization — Nonconvex optimization and its applications, R. Horst
and P.M. Pardalos (Eds.), Chapter 8, 407-494, Springer, 1995

D.G. Luenberger, Y. Ye Linear and Nonlinear Programming, Springer
International Series in Operations Research & Management Science, 2008

J. Nocedal, S.J. Wright, Numerical Optimization — second edition,
Springer Series in Operations Research and Financial Engineering, 2006

https://web.stanford.edu/~boyd/cvxbook
https://arxiv.org/abs/1405.4980
https://link.springer.com/content/pdf/10.1007/s10100-007-0052-9.pdf
https://link.springer.com/content/pdf/10.1007/s10100-007-0052-9.pdf

References Il 54

7
8]
9]
[10]
[11]
[12]

[13]

Wikipedia — Cubic equation
https://en.wikipedia.org/wiki/Cubic_equation

Wikipedia — Determinant
https://en.wikipedia.org/wiki/Determinant

Wikipedia — Laplace expansion
https://en.wikipedia.org/wiki/Laplace_expansion

Wikipedia — Eigenvalue Algorithm
https://en.wikipedia.org/wiki/Eigenvalue_algorithm

Wikipedia — Eigenvalues and Eigenvectors
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Wikipedia — Islands of Space
https://en.wikipedia.org/wiki/Islands_of_Space

Wikipedia — Matrix Norm
https://en.wikipedia.org/wiki/Matrix_norm

https://en.wikipedia.org/wiki/Cubic_equation
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Laplace_expansion
https://en.wikipedia.org/wiki/Eigenvalue_algorithm
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Islands_of_Space
https://en.wikipedia.org/wiki/Matrix_norm

References IlI 55

[14] Wikipedia — Norm
https://en.wikipedia.org/wiki/Norm_(mathematics)

[15] Wikipedia — The Hitchhiker's Guide to the Galaxy
https://en.wikipedia.org/wiki/The_Hitchhiker’s_Guide_to_the_Galaxy

[16] Wikipedia — Underdetermined System
https://en.wikipedia.org/wiki/Underdetermined_system

https://en.wikipedia.org/wiki/Norm_(mathematics)
https://en.wikipedia.org/wiki/The_Hitchhiker's_Guide_to_the_Galaxy
https://en.wikipedia.org/wiki/Underdetermined_system

Outline

Solutions

Solutions | 56

» Use max{|f.|, 1} instead; this corresponds to min{ f(x)+1} [back]

> b>0and x—z>0 = b(x—2z) >0 = bx > bz,
the others are analogous (or simpler) [back]

> If x; = +00, obviously x, = +00 = x
If x; < 400, since f(x) is increasing, f(x) < f(x;) Vx < x4
The treatment of x_ is analogous.
If b <0, the role of x; and x_ reverses (x; = argmin, x_ = argmax)
If b=0, every point in X is an optimal solution [back]

> x>z, a>0and x>0 = ax? > axz > az?. Since f(x) is symmetric
(ax? = a(—x)?), increasing for x > 0 = deceasing for x < 0. When a < 0 the
sign of the inequalities in inverted (the function is reflected upon the x axis).
The case a = 0 is trivial [back]

Solutions Il 57

» f(x) has a minimum in 0, is decreasing for x < 0 and increasing for x > 0. If
x_ > 0 then f(x) is increasing along all X, hence x_ is the minimum and x;
the maximum. The argument is symmetric if x; < 0. Obviously, if 0 € X then
it is the minimum; for the maximization, since the function is increasing when x
moves away from 0 in both directions, the maximum has to be one of the two
extremes but we don’t know which until we test. The rest is too trivial [back]

» No, this is both too trivial and didactic [back]

» f(x) = (ax+ b)x, hence the roots are x =0 and x = x, = —b/ a. Clearly,
X = —b/2ais always in the middle of the interval defined by the roots. If a
and b have the same sign then x, < X < 0, otherwise x, > x >0 [back]

> o pay(a) = f(x+a(fd)) = f(x+(af)d) = pxa(af) [back]

Solutions Il 58

» \We assume that i. and ii. hold for f and we want to show that f(x) = (b, x)
for some b € R". Let u;, i =1,...,n, the i-th vector of the canonical base of
R” (having 1 in the i-th position and 0 otherwise), and b; = f(u;). For any
x €R" x =", xuj, hence f(x) = (>l xu;)= f(xu;) (using
ii. recursively n times) = Y7 | x;f(w;) (using i. on each individual term)
=37, bix; (using the definition of b;) = (b, x) (using the definition of
scalar product). The results clearly breaks in the affine case (¢ # 0):
f(x)=x4+41 = f(2x)=2x+1#2(x+1)=2f(x) [back]

» By contradiction, 3y e R"\ {0} s.it. Hy=0 =
0=|[lHy[?=~T[HTHly=|~v[>>0[y#0] ¢ [back]

Solutions IV 59

» This is based on a general result: for [Al, A%, , ATl =A e R™ (not
necessarily square) written by columns, AAT = M € R™*™ (symmetric, prove
it using [AB]T = BTAT) can be written as the sum of the n rank-one
matrices corresponding to the columns, i.e., M =37 [D' = A((A)T]. In
fact, the h-th row of Ais A, = [A}, A2, ..., A7] and the k-th column of AT
is the k-th row of A, thus My, = (Ah, Ak> =3, A;,A;;. But D,’;k = A;;AL,
hence My = >_7_, Dj, for all h and k
To complete the result, for A = diag([A1, A2, ..., Ap]) ER™" L =AAN=
= [MAY, MA%) .. AAT]L In fact, the h-th row Ay = [A}, A2, ..., A7]
and the k-th column of A, i.e., Akuk (ux being the k-th vector of the canonical
base) give Lpx = (A", Aguk) = AcAf [back]

> on(a) = (aH)" Q(aH;) = a?[HT (AiH;)] = Aia® [back]

>)\, <0 = ¢u,(a)[= Aa?] unbounded below = f(x) unbounded below
A1 >0 = ¢p,(a) unbounded above = f(x) unbounded above [back]

Solutions V 60

> x=z+Xx = ;XTQx—i—qx—l(z—l—)?)TQ(z—i—)_() g(z+x) =
127Qz+2"T(Qx+q)+ [3xTQx+ gx] = 127 Qz + f(X)
as Qx+q=Q(-Q~ q)+q:fq+q:0 [back]

> Qv =Q[> iczniHil = iczmiQHi =) jczmiAiHi =0 [back]

> Q=HAHT = 27:1)‘iHiHiT = Ziez)\;H,-H,.T[: 0]+ EieN)‘iH/H/T
We want to prove Ix s.t. (Y ;cny MiHiHT)x =Y icy uiHi = w
True if /\,-H,.Tx =u; €N = H,-Tx =vi=ui /N i €N,
a linear system of k < n equations in n variables (likely underdetermined)
All H; linearly independent, Hy = [H;]ieny € R™* = rank(Hy) = k
= [H] , v] € R**"*1 has rank k (rank < number of rows) =
by [16] the system has a solution x (co-ly many if k < n) [back]

> IxXTQx+ax=3(z+%)TQ(z+%)+q(z+%) =
127Qz4+2T(Qx+q"+q°)+f(x)=32"Qz+q¢°z+ f(x) [back]

Solutions VI 61

» We know that f(z) = z" Qz + f(barx), with z = x — X. For x € X + v, with
veker(Q), z=x—-—X=Xx+v—Xx=v. Hence f(z) = f(x). On the other
hand, f(z) > f(X) for all z since Q = 0, thus any such point is a minimum.
Any point x € X+ v with v & ker(Q) has f(x) = v Qv+ f(X) > f(X) since
viQv >0 [back]

> No, this is both too trivial and didactic [back]

» o(a) = aa? + ba quadratic non-homogeneous with a = (g’)" Qg’ > 0 and
b=—|g"||><0.1fa>0, then p(a) < p(0)=f(x")Vae (0, —b/a);in
particular, @ = || g" ||2 / (2(g") " Qg') is the minimum of ¢. If a =0 then ¢ is
decreasing and (&) < ¢(0) = f(x') Va >0 [back]

» The variational characterization of the eigenvalues implies that
M >dTQd /| d||>> A, for all d # 0; this immediately gives
1/M <||d]?/d"Qd <1/), for all d, and therefore in particular d = g’
(knowing that g’ # 0 otherwise the algorithm would have stopped) [back]

Solutions VII 62

> The issue clearly is g7 Qg = 0 (very small), which means that ¢, _ is (almost)
linear, and therefore f is unbounded below. One should therefore add a line
if(g’ Qg < §) then break;
for a “very small” §, but also add a proper way for the algorithm to signal that
the returned x is not optimal, e.g., by also returning a “status code” [back]

» Having added the extra check above, the code just works: if g7 Qg < 0 then
(—)g is direction where ¢ has negative curvature, which still implies f is
unbounded below. Note that this is not guaranteed to happen [back]

» Because a < 0, the step « will be negative, which basically means one is going
in direction g rather than —g. The algorithm remains the same, except that
the extra check above has to become g7 Qg > —J [back]

Solutions VIII 63

» Assuming the gradient is computed in the “natural way” as g = Q@ *x x4+ g
before the algorithm starts (i.e., with x the initial guess x°), both quantities
depending from matrix-vector products can be recovered by computing the
vector v=Qx*g. In fact, a=g" Qg = (g, v). Then, with X' = x — ag one
has g = Qx'+ 9= Q(x — ag)+ g = (Qx+ q) — aQg = g — av. Hence, the
gradient at the next iteration can be computed in O(n) out of that of the
previous iteration and the vector v. As for the objective function,
1/2xTQx+(q, x) =1/2(x"Qx +2(q, x)) =1/2x"(Qx + g+ q) =
1/2(q+g, x), i.e., it can be computed in O(n) once g is known [back]

g=Qx -x)=Q"+qd =g /l(g) Qg
g = Qx4 g = Q(X’ ag)+q—(/*a0)g:>
(g1, g')=1g'*—a[(g')"Qg'] =0 [back]

Solutions IX 64

> All arguments boil down to the crucial @x* + g = 0. This first of all gives that
(x') = 3)TQx" + (x" . g) = ()T Qx" + (x" q) — H(x)7 Qx" =
(+)7(Qx" +4) = B(x')TQx" = —1(")7@x". Then, 1(x ~ x') T Qx —x) =
IxTQx+ 1 (“7T QX —xT(Qx*) =ixTQx — (x, q) + 3(x*)TQx* =
f() — f(x*) (in the penultimate step we have used QX —q) [back]

» Just induction: obvious for i = 0, if it holds for i — 1 then
A(x") < rA(X71) < r(ri71A(X%)) [back]

» @ nonsingular = x' —x, = Q7 lg/ =
ai — %(Xi _ X*)TQ(X" _ X*) _ %(gi)TQ—lgi [
ai+1 — %(XiJrl,X*)TQ(XiJrl 7X*) — %(X'.fa"g'.fx) g/+1 %(7X*)Tgi+1
[using (g1, g") =0] = 3(x' — x.)T Q(x' — o'g’ — x.)
= 16— x)TQ(—x.) — Ja(x' — x.)TQg' = &' — ol ' |P
[using Q(x' —x.) =g'] =a'— 3l &'[I*/(g")" Q&'

i+1

Solutions X 65

L o AT le | y
= @) (@R) (((gf)Togf)((gf)To—lgf>> [back]

> Recall 1/X\, >...>1/A; > 0 eigenvalues of Q%; from the usual
Ml x 1?2 < xT@x < i x ||? (applied to Q1 as well) one has
lgl’/e"Qg>1/ M and ||g]*/g" @ 'g>1/[1/A,] [back]

> rkvy <e = rfk<e/vt = log(rk) <log(e/v!') (log monotone) =
klog(r) <log(e/v!') (property of log); since r < 1, log(r) < 0, giving
k > log(e /v') / log(r) =[—log(e/v!)]/[~log(r)] =
log(v! /) / log(1/r) =log(v'/e)[1/log(1/r)] [back]

> This requires a bit of elementary calculus. The derivative of In(x) is 1/ x.
The first-order Taylor approximation is f(x 4+ 6)~ f(x)+ f'(x)d for 6 ~ 0.
Applied to In(:) with x =1 gives In(1 46) ~ §, whence 1/ In(1/r) =
=1/In(1+(1-r)/r)=r/(1=r). Butlog,(x)=logy(x)/ logs(a),
hence In(x) = log.(x) = logyg(x) / logio(€) ~ log(x)/0.43 = 2.3 log(x),
i.e., In(x) e O(log(x)) [back]

Solutions XI 66

> Al x = x 2> (6 —x)T Q(x —x) =23 = || x' — x| > /23 / A1,
hence d' <& = a’ < \1e?/2 [back]

> o =3(xX - x)TQ(X —x)=3(g", x —x.) <3| || X = x.||. On the
other hand, || g’ [|> = (x' = x)TQT Q(x" — x.) > Aj|| x' — x. [|* (recall A3
eigenvalue of Q?, clearly the smallest), i.e., [[g" || > Anl[x" — X ||. Hence,
lg'll < V2hne = e 53-llg" 17 = 5llg' [l x" = x.|| > ' [back]

» If f, = —o0, f; = —oo is OK (minimising sequence) but a’ = a"*! = oo and
therefore their ratio is not well-defined. Since f is continuous, {d'} — 0 =
{a'} — 0, but the converse need not happen in general: say, { x* } — x/ and
{x2#1} — x” with x. # x! optimal solutions [back]

» Simply, lim,_0xP / x = lim,_,o xP~1 = 0: the numerator goes to 0 faster than
the denominator [back]

	Optimization Problems
	Optimization is difficult
	Simple Functions, Univariate case
	Simple Functions, Multivariate case
	Multivariate Quadratic case: Gradient Method
	Wrap up & References
	Solutions

