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Functions 1

y

x

▶ Let’s start simple: x input space, y output space, both just R

▶ Function f : R → R, f ( x ) = y = output with input x

▶ Graph of f : gr( f ) = { ( f ( x ) , x ) : x ∈ R } ⊂ R2

▶ Image of f : im( f ) = { y : ∃ x ∈ R s.t. y = f ( x ) } ⊂ R
i.e., projection of gr( f ) on output space (a.k.a. co-domain)

▶ Level set at value v : L( f , v ) = { x ∈ R : f ( x )= v } ⊂ R
(roots of f = L( f , 0 ) = level set at value 0)
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(Univariate) Unconstrained optimization problem 2

f( x )

x

▶ f objective (function) of (univariate, unconstrained) optimization problem

(P) f∗ = min{ f ( x ) : x ∈ R }

▶ f∗ = ν(P ) optimal value (unique if ∃, which it may not)

▶ f∗ = smaller element of im( f ) = smaller v s.t. L( f , v ) ̸= ∅

▶ In fact, the problem is (P) x∗ ∈ argmin { f ( x ) : x ∈ R }

▶ x∗ s.t. f∗ = f ( x∗ ) ≤ f ( x ) ∀x ∈ R optimal solution (if ∃, which it may not)

▶ x∗ may not be unique: ∃ x ′ ̸= x∗ ∈ L( f , f∗ ) = X∗ set of optimal solutions, but
we don’t care (mostly): all optimal solutions equivalent “in the eyes of f ”
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An aside, once and for all: simple reformulations 3

f( x )

xf* L( f , f* )

▶ Sometimes changing f changes f∗ “in a simple way” but does not change X∗:
the corresponding problem is equivalent, a reformulation of (P)

▶ “min” w.l.o.g.: min{ f ( x ) : x ∈ R } =

− max{−f ( x ) : x ∈ R }
i.e., argmin { f ( x ) : x ∈ R } = argmax {−f ( x ) : x ∈ R }
(but min{ f ( x ) } ≠ max{ f ( x ) }, often rather different problems)

▶ Analogously, min{ f ( x ) : x ∈ R } =

i.e., argmin { f ( x ) : x ∈ R } = argmin { f ( x ) : x ∈ R } = X∗



An aside, once and for all: simple reformulations 3

-f( x )

x
-f*

L( -f , -f* )

▶ Sometimes changing f changes f∗ “in a simple way” but does not change X∗:
the corresponding problem is equivalent, a reformulation of (P)

▶ “min” w.l.o.g.: min{ f ( x ) : x ∈ R } = − max{−f ( x ) : x ∈ R }
i.e., argmin { f ( x ) : x ∈ R } = argmax {−f ( x ) : x ∈ R }
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▶ Sometimes changing f changes f∗ “in a simple way” but does not change X∗:
the corresponding problem is equivalent, a reformulation of (P)

▶ “min” w.l.o.g.: min{ f ( x ) : x ∈ R } = − max{−f ( x ) : x ∈ R }
i.e., argmin { f ( x ) : x ∈ R } = argmax {−f ( x ) : x ∈ R }
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(Univariate) Constrained optimization problem 4

f( x )

xX

▶ More general: feasible region any set X (⊆ R), objective f : X → R

(P) f∗ = min{ f ( x ) : x ∈ X } constrained optimization problem

▶ x ∈ X feasible solution; x ∈ R \ X unfeasible solution

▶ f∗ = ν(P ) = min( im(X , f ) ) = smaller element of image of X through f

▶ X∗ = L( f , f∗) ∩X : set of best feasible solutions

▶ X can be “useless” (X∗ same) or partly so (f∗ same) =⇒
makes sense to study the unconstrained case X = R first
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Anyhow, how is X specified? 5f( x )

x

▶ The “abstract constraint x ∈ X” need be specified somehow

▶ Often useful to represent a set via (more than) one function(s)

▶ Standard ways: equality constraint g( x )= v ≡ X = level set L( g , v ),

inequality constraint g( x )≤ v ≡ sublevel set S( g , v ) = { x : g( x ) ≤ v }
▶ For convenience “v hidden in f ” =⇒ f ( x ) ≤ 0 , f ( x ) = 0

▶ What if one rather wants g( x )≥ 0? Simply − g( x ) ≤ 0

▶ Usually multiple constraints: “g1( x ) ≤ 0 , g2( x ) ≤ 0” ≡ logical conjunction

(“first condition and second condition”) ≡ intersection of (sub)level sets

▶ Simple and common: bounds x ≤ x+ (up) / x ≥ x− (dn), boxes x− ≤ x ≤ x+
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▶ Usually multiple constraints: “g1( x ) ≤ 0 , g2( x ) ≤ 0” ≡ logical conjunction
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▶ Usually multiple constraints: “g1( x ) ≤ 0 , g2( x ) ≤ 0” ≡ logical conjunction

(“first condition and second condition”) ≡ intersection of (sub)level sets

▶ Simple and common: bounds x ≤ x+ (up) / x ≥ x− (dn),

boxes x− ≤ x ≤ x+



Anyhow, how is X specified? 5f( x )

xXx- x+

][

▶ The “abstract constraint x ∈ X” need be specified somehow

▶ Often useful to represent a set via (more than) one function(s)

▶ Standard ways: equality constraint g( x )= v ≡ X = level set L( g , v ),

inequality constraint g( x )≤ v ≡ sublevel set S( g , v ) = { x : g( x ) ≤ v }
▶ For convenience “v hidden in f ” =⇒ f ( x ) ≤ 0 , f ( x ) = 0
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What if f∗ ∄? 6

x

f( x ) = x 

▶ f has no minimum, (P) unbounded (below): f∗ = ν(P ) = −∞

▶ Just a convenient shorthand for ∀ t ∈ R ∃ x ∈ R s.t. f ( x ) ≤ t

i.e., “there is no (finite) lower bound on im( f )”

▶ Solving (P) actually (at least) two different things:
▶ finding x∗ and proving it is optimal (how??)

▶ constructively proving f unbounded below (how??)

▶ Hardly ever happens in learning since L(w ) ≥ 0

▶ Nontrivial and important in optimization (tied with duality, nonemptiness, . . . )



What if f∗ ∃ but x∗ ∄? 7

x

f( x ) = ex

▶ im( f ) is bounded below but has no minimum

▶ Either “naturally”

or “forcibly”

▶ inf{ f ( x ) : x ∈ R } ∃, but min{ f ( x ) : x ∈ R } ∄

▶ Arguably f∗ = inf{ f ( x ) : x ∈ R }, but ∄ x∗ s.t. f∗ = f ( x∗ )

▶ im( f ) is open, does not contain its boundary (will see)
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Mathematically speaking: Infima, suprema and R [1, A.2.2] 8

▶ R totally ordered =⇒ ∀ x , y ∈ R, at least one among x ≤ y , y ≤ x holds

▶ S ⊆ R, s = inf S ⇐⇒ s ≤ s ∀s ∈ S ∧ ∀t > s ∃ s ∈ S s.t. s ≤ t

s = supS ⇐⇒ s ≥ s ∀s ∈ S ∧ ∀t < s ∃ s ∈ S s.t. s ≥ t

▶ s ∈ S =⇒ s = minS , s ∈ S =⇒ s = maxS

▶ Issues: i) inf S/supS may not ∃ in R, ii) inf S/supS may not ∈ S

▶ Should write “inf{ f ( x ) . . .”, but we want (approximately) optimal solutions

▶ Set of extended reals: R = {−∞} ∪ R ∪ {+∞} (usually just R)

▶ For all S ⊆ R, ∃ sup / inf S ∈ R

▶ inf S = −∞ ⇐⇒ ∀ t ∈ R ∃ s ∈ S s.t. s ≤ t

supS = +∞ ⇐⇒ ∀ t ∈ R ∃ s ∈ S s.t. s ≥ t

just a convenient shorthand for “there is no (finite) inf / sup”

▶ inf ∅ = ∞, sup ∅ = −∞



Is this a real problem in practice? 9

▶ Several ways to ensure this never happens (hypotheses on f , X )

▶ On computers “x ∈ R” typically is “x ∈ Q” with up to 16 digits precision

=⇒ approximation errors unavoidable anyway

▶ Exact algebraic computation may be possible (if f is algebraic, which it

may be not) but anyway usually too slow

▶ In fact learning going the opposite way (float, half, FP8, . . . )

▶ Anyway, finding the exact x∗ impossible in general [4, p. 408]

▶ For any fixed ε > 0, plenty of ε-approximate solutions (ε-optima):

xε ∈ R s.t. f∗ ≤ f ( xε ) ≤ f∗ + ε

“as close to the optimal solution (value) as you want”

▶ Cost of solution algorithms typically depends on ε (sometimes very badly)

▶ And ε can’t really become very small anyway (see above)



Optimization need be approximate 10

▶ Absolute gap: A( x ) = f ( x )− f∗ (≥ 0)

▶ Relative gap: R( x ) = ( f ( x )− f∗ ) / | f∗ | = A( x ) / | f∗ | (≥ 0)

▶ Why R( x )? Because ∀α > 0 (P) ≡ (Pα) min{αf ( x ) : x ∈ R }
ν(Pα ) = αf∗ = αν(P ) =⇒ same R( x ) (scale invariant), different A( x )

Exercise: R( x ) ill-defined if f∗ = 0, propose solutions & justify them (change f∗)

▶ (Approximately) solve (P): fix ε, find x s.t. either A( x ) ≤ ε or R( x ) ≤ ε

▶ Issue: computing A( x ) or R( x ) requires f∗ which is typically unkown

▶ Could argue this is “the issue” in optimization: compute (an estimate of) f∗

▶ Sometimes ≈ known in learning (f∗ ≈ 0 in NN, but not in SVM)

▶ A real issue only if global optimum x∗ needed, hence not always
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Even approximate, optimization is hard / impossible 11

x

f( x )

...

▶ Impossible because isolated minima can be anywhere [4, p. 408]

▶ Does it help restricting to x ∈ X = [ x− , x+ ] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

. . . even on X = [ x− , x+ ] as spikes can be arbitrarily narrow

▶ To make (even approximate) optimization even possible, f must be “nice”

▶ Let’s start with the nicest possible ones where optimization is (≈) trivial
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Linear univariate functions 12

▶ The simplest possible function: f ( x ) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b > 0 ≡ increasing: x > z =⇒ f ( x )> f ( z )

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line
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▶ The simplest possible function: f ( x ) = bx (linear), fixed b ∈ R
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Optimizing a linear function 13

▶ Too easy: min = −∞, max = +∞ unless b = 0 =⇒ min = max = 0

▶ More interesting: box-constrained optimization

(P) min{ f ( x ) : x ∈ [ x− , x+ ] }

with −∞≤ x− ≤ x+ ≤ +∞ ≡ X possibly (half-)infinite interval

▶ Constraints often useful, (finite) box constraints (very simple) especially so

▶ b > 0 =⇒ argmin = x−, min = f ( x− ), argmax = x+ , max = f ( x+ )

▶ “Works” even if x− = −∞ and/or x+ = +∞, as b · (±∞) = ±∞

Exercise: Formally prove the result, state & prove cases b < 0 and b = 0

▶ Closed formula O( 1 ), don’t get used to it

▶ Yet solving simple problems the basis of solving complicated ones
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An aside (once and for all): optimising over an “open” box 14

▶ Could have used X = ( x− , x+ ) = { x ∈ R : x− < x < x+ } (open interval)?

▶ Bad idea: again, inf ∃ but min ∄, finite f∗ but x∗ ∄

▶ Would it make sense for applications? Hardly. x a physical quantity

=⇒ cannot be chosen/measured to ∞ precision

(Plank scale, Heisenberg’s Uncertainty Principle, . . . )

▶ It is a problem for algorithms? In theory yes, in practice hardly:

again, plenty of ε-optimal solutions however chosen ε > 0

▶ Does it make any sense at all? Hardly: if x−, x+ “can’t be touched”, use

X = [ x− + ε− , x+ − ε+] for appropriately chosen ε±

▶ All in all? Just use closed intervals and be done with it

▶ Will generalise to “just use closed sets and be done with it”
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Quadratic homogeneous univariate functions 15

▶ Next simplest function: f ( x ) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a > 0 ≡ decreasing for x ≤ 0, increasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola
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Optimizing a quadratic homogeneous function 16

▶ Clearly depends (and symmetric) on sign of a:

▶ a > 0 =⇒ min = argmin = 0, max = +∞, argmax = ±∞
▶ a < 0 =⇒ max = argmax = 0, min = −∞, argmin = ±∞

▶ Box-constrained optimization on (closed) X = [ x− , x+ ] more interesting

▶ a > 0 =⇒ three cases

▶ x+ < 0 =⇒ argmin = x+, argmax = x−

▶ x− > 0 =⇒ argmin = x−, argmax = x+

▶ x− ≤ 0 ≤ x+ =⇒ argmin = 0, argmax = argmax{ f ( x− ) , f ( x+ ) }

▶ “Works” even if x− = −∞ and/or x+ = +∞, as a · (±∞)2 = +∞

Exercise: Formally prove the result, state & prove cases a < 0 and a = 0

▶ Again closed formula O( 1 ), don’t get used to it

▶ max{ f ( x ) } and min{ f ( x ) } somewhat ̸= (cf. last case), will see much more
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Optimizing a quadratic homogeneous function 16

▶ Clearly depends (and symmetric) on sign of a:

▶ a > 0 =⇒ min = argmin = 0, max = +∞, argmax = ±∞
▶ a < 0 =⇒ max = argmax = 0, min = −∞, argmin = ±∞

▶ Box-constrained optimization on (closed) X = [ x− , x+ ] more interesting

▶ a > 0 =⇒ three cases

▶ x+ < 0 =⇒ argmin = x+, argmax = x−

▶ x− > 0 =⇒ argmin = x−, argmax = x+

▶ x− ≤ 0 ≤ x+ =⇒ argmin = 0, argmax = argmax{ f ( x− ) , f ( x+ ) }

▶ “Works” even if x− = −∞ and/or x+ = +∞, as a · (±∞)2 = +∞

Exercise: Formally prove the result, state & prove cases a < 0 and a = 0

▶ Again closed formula O( 1 ), don’t get used to it

▶ max{ f ( x ) } and min{ f ( x ) } somewhat ̸= (cf. last case), will see much more



Quadratic non-homogeneous univariate functions 17

▶ Next step: f ( x ) = ax2 + bx (non-homogeneous quadratic), fixed ( a , b ) ∈ R2

▶ As many different functions as pairs of real numbers (bijection)

▶ Basically, a homogeneous quadratic + a linear

▶ However, min{ ax2 + bx } ≠ min{ ax2 } + min{ bx }

▶ 0 clearly always a root, but in general not the argmin / argmax

▶ Powerful general concept: if f ( x ) is “too complicated”, make it “simpler”

▶ Sometimes this can be done by changing the space of variables (reformulation)

▶ In this case: change the input space so that it becomes homogeneous

▶ Clearly only needed if both a ̸= 0 and b ̸= 0



Optimizing a quadratic non-homogeneous function 18

▶ Fundamental trick: x̄ = −b/2a (because I say so), z = x − x̄ ≡ x = z + x̄

▶ The z-space is the x-space where the origin is moved to x̄

▶ Just algebra: f ( x ) = a(z + x̄)2 + b(z + x̄) = az2 + 2azx̄ + ax̄2 + bz + bx̄

= az2 + (2ax̄ + b)z + [ ax̄2 + bx̄ ] = az2 + f ( x̄ ) = g( z ) [ 2ax̄ + b = 0 ]

▶ Translated by x̄ horizontally (and by f ( x̄ ) vertically), f ( x ) is homogeneous

▶ Its argmin / argmax (depending on sign of a) is z = 0 ≡ x = x̄

▶ Then, just Optimizing a quadratic homogeneous function for g( z )

▶ Yet again, closed formula O( 1 ), don’t get used to it

Exercise: Flesh out the details: describe all cases in terms of f and x

Exercise: Discuss the position of x̄ and the roots of f depending on a, b
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Multivariate optimization 19

▶ Next crucial step: f : Rn → R, i.e., f ( x1 , x2 , . . . , xn ) = f ( x )

with x = [ xi ]
n
i=1 = [ x1 , x2 , . . . , xn ] ∈ Rn

▶ n can be smallish (2, 3, 100), largish (104, 105) or heinously large (109, 1011)

▶ All previous stuff (f∗, X∗, constraints, . . . ) immediately generalises

▶ Rn = R× R× . . .R, Cartesian product of R n times =⇒
“exponentially larger than R” ≡ finding stuff a lot harder

“ is big. Really big. You just won’t

believe how vastly, hugely, mind-bogglingly big it is.” [15]

▶ Assume we can even luckily restrict to a “small” x ∈ X ⊂Rn: a “box”

(hyperrectangle) X = { x ∈ Rn : x− ≤ x ≤ x+ }, x± ∈ Rn (with x− ≤ x+)

▶ Assume x− = 0, x+ = u = [ 1 , . . . , 1 ] and we can only look to integer values:

still have 2n points to look at (binary hypercube), grows too fast with n

▶ Even picturing things is more complex and requires appropriate tools
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An aside, once and for all: how about f : Rn → Rk? 20

▶ Already “f : X → R” a rather strong assumption:

can “express all the value of any x ∈ X with a single number” =⇒
given x ′ and x ′′ I can always tell which one I like best (R has total order)

▶ Often there would be more than one objective:

(P) min
{
[ f1( x ) , f2( x ) , . . . ] : x ∈ X

}
with f1, f2, . . . contrasting and/or with incomparable units (apples vs. oranges)

▶ car cost vs. flashiness vs. km/l vs. # seats vs. trunk space . . .

▶ loss function L(w ) vs. regularity R(w ) in ML

▶ . . .

▶ Vector-valued (a.k.a. multi-objective) optimization: f : X → Rk with k > 1

▶ Textbook example: portfolio selection problem

▶ X = set of financial instruments portfolios available to buy

▶ f1( x ) = expected return of portfolio x (e)

▶ f2( x ) = risk of portfolio x not achieving the expected return (%, CVAR, . . . )



A Very Quick Glimpse to Multi-objective Optimization 21

▶ Rk with k > 1 has no total order =⇒
no “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

a.k.a. scalarization min
{
f1( x ) + αf2( x ) : x ∈ X

}
(which α??)

▶ All a bit fuzzy, but it’s the nature of the beast

▶ We always assume this done if necessary at modelling stage
(regularization, grid search used to divine hyperparameters α, β1, β2)
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▶ Rk with k > 1 has no total order =⇒
no “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions: maximize risk-adjusted return,

a.k.a. scalarization min
{
f1( x ) + αf2( x ) : x ∈ X

}
(which α??)

▶ All a bit fuzzy, but it’s the nature of the beast
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risk budget

▶ Rk with k > 1 has no total order =⇒
no “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

maximize return with budget on maximum risk,

a.k.a. scalarization min
{
f1( x ) + αf2( x ) : x ∈ X

}
(which α??)

a.k.a. budgeting min
{
f1( x ) : f2( x ) ≤ β2 , x ∈ X

}
(which β2??)

▶ All a bit fuzzy, but it’s the nature of the beast

▶ We always assume this done if necessary at modelling stage
(regularization, grid search used to divine hyperparameters α, β1, β2)
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a.k.a. scalarization min
{
f1( x ) + αf2( x ) : x ∈ X
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a.k.a. budgeting min
{
f2( x ) : f1( x ) ≥ β1 , x ∈ X

}
(which β1??)

▶ All a bit fuzzy, but it’s the nature of the beast

▶ We always assume this done if necessary at modelling stage
(regularization, grid search used to divine hyperparameters α, β1, β2)
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Scalar product, norm, distance, ball 22

▶ (Euclidean) scalar product of x ∈ Rn and z ∈ Rn:

⟨ x , z ⟩ =
∑n

i=1 xizi = x1z1 + · · ·+ xnzn

▶ (Euclidean) norm: ∥ x ∥ :=
√

x21 + · · ·+ x2n =
√
⟨ x , x ⟩ (induced by ⟨ · , · ⟩)

x z  

= 0 ▶ Geometric interpretation: ⟨ x , z ⟩ = ∥ x ∥ · ∥ z ∥ · cos( θ )

⟨ x , z ⟩> 0 ≡ “x and z point in the same direction”

▶ Cauchy-Schwarz inequality: | ⟨ x , z ⟩ | ≤ ∥ x ∥∥ z ∥ ∀x , z

▶ (Euclidean) distance between x and z = norm of x when z is the origin:

d( x , z ) := ∥ x − z ∥ =
√
( x1 − z1 )2 + · · ·+ ( xn − zn )2

▶ Ball, center x ∈ Rn, radius r > 0: B( x , r ) = { z ∈ Rn : ∥ z − x ∥ ≤ r }
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Mathematically speaking: Vector space, scalar product [1, A.1.1] 23

▶ Rn ∈ vector space ≡ closed under sum and scalar multiplication

x + z = [ x1 + z1 , . . . , xn + zn ] , αx = [αx1 , . . . , αxn ]

▶ Finite-dimensional vector space: { ui }ni=1 finite base s.t. ∀ x ∈ Rn ∃α1, . . . , αn

s.t. x = α1u
1 + . . .+ αnu

n (canonical base: uii = 1, uih = 0 for h ̸= i , αi = xi )

▶ Not all vector spaces are finite-dimensional (function spaces, . . . )

▶ Properties ≡ definition of scalar product:

1. ⟨ x , z ⟩ = ⟨ z , x ⟩ ∀x , z ∈ Rn (symmetry)

2. ⟨ x , x ⟩ ≥ 0 ∀x ∈ Rn , ⟨ x , x ⟩ = 0 ⇐⇒ x = 0

3. ⟨αx , z ⟩ = α⟨ x , z ⟩ ∀x ∈ Rn , α ∈ R
4. ⟨ x + w , z ⟩ = ⟨ x , z ⟩+ ⟨w , z ⟩ ∀x , w , z ∈ Rn

▶ ∃ other scalar products that make sense in other spaces

(matrices, integrable functions, random variables, . . . )

▶ Not just theoretical stuff (cf. kernel in SVM)



Mathematically speaking: Norm, distance [14][1, A.1.2][6, p. 600] 24

▶ Properties ≡ definition of norm:

1. ∥ x ∥ ≥ 0 ∀x ∈ Rn , ∥ x ∥ = 0 ⇐⇒ x = 0

2. ∥αx ∥ = |α |∥ x ∥ ∀x ∈ Rn , α ∈ R

3. ∥ x + z ∥ ≤ ∥ x ∥+ ∥ z ∥ ∀x , z ∈ Rn (triangle inequality)

▶ ∥ x + z ∥2 = ∥ x ∥2 + ∥ z ∥2 + 2⟨ x , z ⟩ (only Euclidean norm)

▶ 2∥ x ∥2 + 2∥ z ∥2 = ∥ x + z ∥2 + ∥ x − z ∥2 (Parallelogram Law)
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1. d( x , z ) ≥ 0 ∀x , z ∈ Rn , d( x , z ) = 0 ⇐⇒ x = z

2. d(αx , 0 ) = |α|d( x , 0 ) ∀x ∈ Rn , α ∈ R

3. d( x , w ) ≤ d( x , z ) + d( z , w ) ∀x , w , z ∈ Rn (triangle inequality)

▶ ∥ · ∥ defines B( · , · ) ≡ the topology of the vector space:

what is next to what (will be useful later on)



Picturing multivariate functions 25

▶ gr( f ) ∈ Rn+1, impossible if n > 3 (n = 3 hard already)

▶ L( f , · ) ∈ Rn, impossible if n > 4 (n = 4 hard already)

▶ General n, f : Rn → R, x ∈ Rn (origin), d ∈ Rn (direction):

φx,d(α ) = f ( x + αd ) : R → R tomography of f from x along d

▶ gr(φx,d ) can always be pictured, but too many of them: which x , d?

▶ ∥ d ∥ only changes the scale: φx,βd(α ) = φx,d(βα ) (check) =⇒
often (but not always) convenient to use normalised direction (∥ d ∥ = 1)

▶ Simplest case: restriction along i-th coordinate (∥ ui ∥ = 1)

f ix (α ) = f ( x1 , . . . , xi−1 , α , xi+1 , . . . , xn ) ≡ φ[ x1 ,..., xi−1 , 0 , xi+1 ,..., xn ],ui (α )

▶ For small n can “look at all d”

▶ Otherwise, find the specific d that “shows what you want to see”

▶ When x and d clear from context (will happen a lot), just φ(α )
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The simplest multivariate functions: linear 26

▶ Linear function: f ( x ) = ⟨ b , x ⟩ =
∑n

i=1 bixi , fixed b ∈ Rn

▶ Linear ≡ i. f ( γx ) = γf ( x ), ii. f ( x + z ) = f ( x )+ f ( z ) ∀ x , γ , z

Exercise: Linear =⇒ i) + ii) trivial, prove ⇐=; extends to affine (. . . +c)?

▶ ⟨ b , x ⟩ =
∑n

i=1[ fi ( xi ) = bixi ], sum of n univariate linear functions

b

▶ gr( f ) = hyperplane in Rn+1 (plane in R3)

▶ Level sets are parallel hyperplanes in Rn (lines in R2) ⊥ b:

f ( x ) = f ( z ) ≡ ⟨ b , x ⟩ = ⟨ b , z ⟩ ≡ ⟨ b , z − x ⟩ = 0 ≡ b ⊥ z − x
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Tomography & optimization of linear multivariate functions 27

▶ f ( x ) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α ) = α⟨ b , d ⟩ = α∥ b ∥ cos( θ )

▶ Increasing if “b same direction as d”,

▶ f∗ = min{ f ( x ) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f ( x ) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O( 1 ) each, almost the last time
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A very simple quadratic function: separable (non-homogeneous) 28

▶ Separable (non-homogeneous) quadratic function:

f ( x ) =
∑n

i=1[ fi ( xi ) = aix
2
i + bixi ], fixed ( a , b ) ∈ R2n

= sum of n univariate quadratic (non-homogeneous) functions

▶ f ( x ) = ∥ x ∥2 =
∑n

i=1 x
2
i an important special case

▶ f ( x1 , x2 ) = ax21 + x22 [+0x1 + 0x2]

▶ Contour plots for different values of a

▶ For a = 1, perfect circles

▶ Larger / smaller a, more ↕ / ↔ elongated

▶ Could be non-homogeneous,

[ 0 , 0 ] → [−b1/2a1 , −b2/2a2 ]

▶ O( n ) Optimizing a quadratic non-homogeneous function ,
this is the last time

▶ Not a general quadratic function, coming right next
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The general (homogeneous) quadratic function 29

▶ Nonseparable homogeneous quadratic function: fixed Q ∈ Rn×n (n Qi ∈ Rn)

f ( x ) = 1
2x

TQx = 1
2

[ ∑n
i=1 Qiix

2
i +

∑n
i=1

∑n
j=1, j ̸=i Qijxixj

]
▶ Not linear: f ( x + z ) = 1

2 ( x + z )TQ( x + z ) = f ( x ) + f ( z )+ zTQx

▶ W.l.o.g. Q symmetric:

xTQx = [ (xTQx) + (xTQx)T ] / 2 = xT [ (Q + QT ) / 2 ]x

▶ f symmetric: f ( x ) = f (−x ) =⇒ “centred in x = 0”

▶ Tomography: φ(α ) = f (αd ) = 1
2α

2( dTQd ) =⇒

homogeneous quadratic univariate, sign and steepness depend on dTQd

▶ Need to know about signs of dTQd when d changes: (multi)linear algebra

▶ Crucial stuff: spectral decomposition, eigenvalues, eigenvectors of Q



Spectral decomposition [1, A.5.2][6, p. 603][11] 30

▶ Q ∈ Rn×n, v ∈ Rn, λ ∈ R s.t. Qv = λv : v eigenvector of Q, λ eigenvalue

▶ v eigenvector ≡ Qv = λv ≡ Q(−v) = λ(−v) ≡ − v eigenvector

▶ Q symmetric =⇒ has n distinct eigenvectors H1, H2, . . . , Hn and

n (not necessarily distinct) corresponding real eigenvalues λ1, λ2, . . . , λn

▶ Eigenvectors can always be taken orthonormal: Hi ⊥ Hj for i ̸= j , ∥Hi ∥ = 1

=⇒ linearly independent (check) =⇒ a(n orthonormal) basis of Rn

▶ Spectral decomposition: H = [H1 , . . . , Hn ] ∈ Rn×n, Λ = diag(λ1 , . . . , λn )

Q = HΛHT = λ1H1H
T
1 + . . .+ λnHnH

T
n (check)

▶ Notation: λ1 ≥ λ2 ≥ . . . ≥ λn (λ1 = max, λn = min)

▶ Variational characterization of eigenvalues:

λ1 = max{ dTQd / dTd : d ̸= 0 } = max{ dTQd : ∥ d ∥ = 1 }
λn = min{ dTQd / dTd : d ̸= 0 } = min{ dTQd : ∥ d ∥ = 1 }

▶ Q ≻ 0 = positive definite if λi > 0 ∀ i ≡ λn > 0 ≡ dTQd > 0 ∀ d ̸= 0

Q ⪰ 0 = positive semi-definite if λi ≥ 0 ∀ i ≡ λn ≥ 0 ≡ dTQd ≥ 0 ∀ d ̸= 0

negative definite (≺), semi-definite (⪯), indefinite (≻≺) obvious



Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α ) = α2λi (check)

▶ Q =
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−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶
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▶ dTQd < 0 ∀ d , steepness change with d
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Homogeneous quadratic functions: graph and level sets 35

▶ All level sets centred in x = 0 by symmetry

▶ Q =

[
6 −2

−2 6

]
≻ 0

graph is a (convex) paraboloid

▶ Level sets can be precisely described in terms of Hi , λi
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▶ All level sets centred in x = 0 by symmetry

▶ Q =
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≻≺ 0

graph saddle-shaped (0 is a saddle point)

▶ Level sets can be precisely described in terms of Hi , λi
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▶ All level sets centred in x = 0 by symmetry
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[
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Level sets of homogeneous quadratic functions algebraically 36

Q = H =

[
1 0
0 1

]
, λ =

[
1
1

]

▶ ∥ x ∥22 ≡ Q = H = Λ = I : perfect circles

▶ L( f , 1 ) ∩ Hi ≡ φHi (α ) = 1 =⇒ λi > 0

▶ φHi (α ) = 1 ≡ α =
√

1/λi =⇒
Hi ⊥ axes of L( f , 1 ), length

√
1/λi

▶ λi ↘ ≡ axis ↗, λi = 0 =⇒ “axis → ∞”

▶ λi < 0 =⇒ same with φHi (α ) = −1

▶ All λi have the same sign: f ( x ) either ≥ 0 or ≤ 0 =⇒ ellipsoids

▶ Some λi = 0 =⇒ “degenerate” ellipsoids (∞ axis)

▶ λi > 0 and λj < 0: ∃αi , αj s.t. φHi (αi ) + φHj (αj ) = 0 =⇒ hyperboloids
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√
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▶ Some λi = 0 =⇒ “degenerate” ellipsoids (∞ axis)

▶ λi > 0 and λj < 0: ∃αi , αj s.t. φHi (αi ) + φHj (αj ) = 0 =⇒ hyperboloids
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Q =

[
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√
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]
, λ =
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0

]

▶ Recall again φHi (α ) = α2λi

▶ L( f , 1 ) ∩ Hi ≡ φHi (α ) = 1 =⇒ λi > 0

▶ φHi (α ) = 1 ≡ α =
√
1/λi =⇒

Hi ⊥ axes of L( f , 1 ), length
√
1/λi

▶ λi ↘ ≡ axis ↗, λi = 0 =⇒ “axis → ∞”
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▶ All λi have the same sign: f ( x ) either ≥ 0 or ≤ 0 =⇒ ellipsoids

▶ Some λi = 0 =⇒ “degenerate” ellipsoids (∞ axis)

▶ λi > 0 and λj < 0: ∃αi , αj s.t. φHi (αi ) + φHj (αj ) = 0 =⇒ hyperboloids
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▶ Recall again φHi (α ) = α2λi

▶ L( f , 1 ) ∩ Hi ≡ φHi (α ) = 1 =⇒ λi > 0
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Level sets homogeneous quadratic functions, 3D example 37

Q =

 6 −2 0
−2 6 0
0 0 8

 , H =

 −1 1 0
1 1 0
0 0 1

 , λ =

 8
4
8


L( f , 1 )
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Optimizing a homogeneous quadratic multivariate function 38

▶ Clearly depends sign of eigenvalues of Q ≡ definiteness:

▶ Q ⪰ 0 ∧ Q ⪯ 0 ≡ λ1 = λn = 0 ≡ Q = 0 =⇒ min = max = 0 (constant)

▶ Q ⪰ 0 =⇒ min = 0, argmin = 0, max = +∞
▶ Q ⪯ 0 =⇒ max = 0, argmax = 0, min = −∞
▶ Q ≻≺ 0 =⇒ max = +∞, min = −∞

analogous to univariate case, but “many more ways to be > 0 / < 0”

Exercise: Formally prove all the unboundedness results

▶ Box-constrained optimization on (closed) hyperrectangle X

absolutely not analogous to the univariate case:

▶ NP-hard in most cases [3]

▶ min with Q ⪰ 0 and max with Q ⪯ 0 polynomial but nontrivial (will see)

▶ NP-hardness due to Rn “big” (X has 2n vertices), issue also in P case

▶ max{ f ( x ) } and min{ f ( x ) } very very different
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▶ NP-hardness due to Rn “big” (X has 2n vertices), issue also in P case

▶ max{ f ( x ) } and min{ f ( x ) } very very different



Optimizing non-homogeneous nonsingular quadratic functions 39

▶ f ( x ) = 1
2x

TQx +⟨ q , x ⟩: a homogeneous quadratic plus a linear

▶ q ̸= 0 but Q nonsingular ≡ λi ̸= 0∀i (regardless of the sign)

▶ Then f ( x ) = g( z ) = 1
2z

TQz + f ( x̄ ) for z = x − x̄ and x̄ = −Q−1q

Exercise: Prove the result, but it should look familiar

Optimizing a quadratic non-homogeneous function

▶ x̄ (̸= 0) centre of the level sets: repeat Optimizing a homogeneous quadratic multivariate function

for g( z ), translate the results back in x-space

▶ Box-constrained case remains hard / nontrivial

▶ Analogous to univariate case, but many more ways for (pieces of) Q to be 0

and therefore the result not be applicable

▶ More complicated analysis needed, coming right next
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▶ f ( x ) = 1
2x

TQx +⟨ q , x ⟩: a homogeneous quadratic plus a linear

▶ q ̸= 0 but Q nonsingular ≡ λi ̸= 0∀i (regardless of the sign)

▶ Then f ( x ) = g( z ) = 1
2z

TQz + f ( x̄ ) for z = x − x̄ and x̄ = −Q−1q

Exercise: Prove the result, but it should look familiar

Optimizing a quadratic non-homogeneous function

▶ x̄ (̸= 0) centre of the level sets: repeat Optimizing a homogeneous quadratic multivariate function

for g( z ), translate the results back in x-space

▶ Box-constrained case remains hard / nontrivial

▶ Analogous to univariate case, but many more ways for (pieces of) Q to be 0

and therefore the result not be applicable

▶ More complicated analysis needed, coming right next



Optimizing non-homogeneous singular quadratic functions I 40

▶ Q ∈ Rn×n, eigenvalue decomposition (H , Λ ), I = { 1 , 2 , . . . , n }

▶ I 0 = { i ∈ I ; λi = 0 }, I+ = I \ I 0, nonempty (k = | I 0 | > 0, h = | I+ | > 0)

▶ ker(Q ) = { v ∈ Rn : ∃η ∈ Rk s.t. v =
∑

i∈I 0 ηiHi}

▶ Qv = 0 ∀v ∈ ker(Q ) [⊃ { 0 }] (check)

▶ im(Q ) = {w ∈ Rn : ∃µ ∈ Rh s.t. w =
∑

i∈I+ µiHi}:

▶ ∀w ∈ im(Q ) ∃x ∈ Rn s.t. Qx = w , im(Q ) = im(−Q )

Exercise: Prove the result (recall Q = λ1H1H
T
1 + . . .+ λnHnH

T
n , use [16])

▶ Rn = im(Q ) + ker(Q ), im(Q ) ⊥ ker(Q ) (H is a hortonormal base of Rn)

▶ q = q+ + q0, q+ ⊥ q0, with q0 ∈ ker(Q ) ≡ Qq0 = 0, and

q+ ∈ im(Q ) = im(−Q ) ≡ ∃ x̄ s.t. (−Q)x̄ = q+

▶ Then f ( x ) = g( z ) = 1
2z

TQz + q0z + f ( x̄ ) for z = x − x̄

Exercise: Prove the result, but it should look very very familiar

Optimizing non-homogeneous nonsingular quadratic functions



Optimizing non-homogeneous singular quadratic functions II 41

▶ f is “truly quadratic” on im(Q ) but actually linear on ker(Q )

▶ No surprise: v ∈ ker(Q ) =⇒ f ( v ) = qv

▶ Assume Q ⪰ 0: f has minimum ⇐⇒ q0 = 0 ≡ Qx̄ = −q has solution

≡ q ∈ im(Q )

▶ x̄ is not unique, in fact ∞-ly many of them: “all are centres”

▶ x̄ solution =⇒ x̄ + v solution ∀ v ∈ ker(Q ), all have the same objective value

≡ they are all and only the minima of f

Exercise: Prove the result

Exercise: Discuss the cases Q ⪯ 0 and Q ≻≺ 0

▶ q0 ̸= 0 ≡ q /∈ im(Q ) =⇒ min = −∞, max = +∞

▶ Box-constrained version P (but nontrivial) if Q ⪰ 0 / Q ⪯ 0, hard otherwise

▶ All in all: solving system Qx̄ = −q (or proving no solutions) required
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▶ f is “truly quadratic” on im(Q ) but actually linear on ker(Q )

▶ No surprise: v ∈ ker(Q ) =⇒ f ( v ) = qv

▶ Assume Q ⪰ 0: f has minimum ⇐⇒ q0 = 0 ≡ Qx̄ = −q has solution

≡ q ∈ im(Q )

▶ x̄ is not unique, in fact ∞-ly many of them: “all are centres”

▶ x̄ solution =⇒ x̄ + v solution ∀ v ∈ ker(Q ), all have the same objective value

≡ they are all and only the minima of f

Exercise: Prove the result
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▶ q0 ̸= 0 ≡ q /∈ im(Q ) =⇒ min = −∞, max = +∞

▶ Box-constrained version P (but nontrivial) if Q ⪰ 0 / Q ⪯ 0, hard otherwise
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Multivariate optimization algorithms 42

▶ If one is lucky, optimising a quadratic function ≡ solving Qx̄ = −q

▶ Linear system O( n3 ) at worst, so doable for n ≈ 100

(no memory)

▶ Iterative procedures: start from initial guess x0, some process x i ⇝ x i+1

=⇒ a sequence { x i } that should “go towards an optimal solution”

▶ The natural way: { f i = f ( x i ) } sequence of values “go towards f∗”

▶ Typically we can’t get f∗ in finite time (∃ i vi = f∗), but we can
“get as close as we want”: there in the limit

▶ Recall: (infinite) sequence { vi } = { v1 , v2 , . . . },
{ vi } → v ≡ limi→∞ vi = v ≡ ∀ε > 0 ∃ h s.t. | vi − v | ≤ ε ∀i ≥ h

limi→∞ vi = ∞ ⇐⇒ ∀M > 0 ∃ h s.t. vi ∀i ≥ h

▶ { x i } s.t. { f i } → f∗ a minimizing sequence

▶ note that { f i } → −∞ =⇒ f∗ = −∞ =⇒ minimizing sequence

▶ A sequence may not have limit: are we “not converging”?

▶ Any monotone sequence has a limit (monotone algorithms are good)
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▶ If one is lucky, optimising a quadratic function ≡ solving Qx̄ = −q

▶ Linear system O( n3 ) at worst, so maybe doable for n ≈ 10000

(no memory)

▶ Iterative procedures: start from initial guess x0, some process x i ⇝ x i+1

=⇒ a sequence { x i } that should “go towards an optimal solution”

▶ The natural way: { f i = f ( x i ) } sequence of values “go towards f∗”

▶ Typically we can’t get f∗ in finite time (∃ i vi = f∗), but we can
“get as close as we want”: there in the limit
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▶ A sequence may not have limit: are we “not converging”?

▶ Any monotone sequence has a limit (monotone algorithms are good)



Multivariate optimization algorithms 42

▶ If one is lucky, optimising a quadratic function ≡ solving Qx̄ = −q

▶ Linear system O( n3 ) at worst, so not doable for n ≈ 109+ (no memory)

▶ Iterative procedures: start from initial guess x0, some process x i ⇝ x i+1

=⇒ a sequence { x i } that should “go towards an optimal solution”
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“get as close as we want”: there in the limit
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{ vi } → v ≡ limi→∞ vi = v ≡ ∀ε > 0 ∃ h s.t. | vi − v | ≤ ε ∀i ≥ h

limi→∞ vi = ∞ ⇐⇒ ∀M > 0 ∃ h s.t. vi ∀i ≥ h

▶ { x i } s.t. { f i } → f∗ a minimizing sequence

▶ note that { f i } → −∞ =⇒ f∗ = −∞ =⇒ minimizing sequence

▶ A sequence may not have limit: are we “not converging”?

▶ Any monotone sequence has a limit (monotone algorithms are good)



Multivariate optimization algorithms 42

▶ If one is lucky, optimising a quadratic function ≡ solving Qx̄ = −q

▶ Linear system O( n3 ) at worst, so not doable for n ≈ 109+ (no memory)

▶ Iterative procedures: start from initial guess x0, some process x i ⇝ x i+1

=⇒ a sequence { x i } that should “go towards an optimal solution”

▶ The natural way: { f i = f ( x i ) } sequence of values “go towards f∗”

▶ Typically we can’t get f∗ in finite time (∃ i vi = f∗), but we can
“get as close as we want”: there in the limit

▶ Recall: (infinite) sequence { vi } = { v1 , v2 , . . . },
{ vi } → v ≡ limi→∞ vi = v ≡ ∀ε > 0 ∃ h s.t. | vi − v | ≤ ε ∀i ≥ h

limi→∞ vi = +∞ ⇐⇒ ∀M > 0 ∃ h s.t. vi ≥ M ∀i ≥ h

▶ { x i } s.t. { f i } → f∗ a minimizing sequence

▶ note that { f i } → −∞ =⇒ f∗ = −∞ =⇒ minimizing sequence

▶ A sequence may not have limit: are we “not converging”?

▶ Any monotone sequence has a limit (monotone algorithms are good)
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▶ If one is lucky, optimising a quadratic function ≡ solving Qx̄ = −q

▶ Linear system O( n3 ) at worst, so not doable for n ≈ 109+ (no memory)

▶ Iterative procedures: start from initial guess x0, some process x i ⇝ x i+1

=⇒ a sequence { x i } that should “go towards an optimal solution”

▶ The natural way: { f i = f ( x i ) } sequence of values “go towards f∗”

▶ Typically we can’t get f∗ in finite time (∃ i vi = f∗), but we can
“get as close as we want”: there in the limit

▶ Recall: (infinite) sequence { vi } = { v1 , v2 , . . . },
{ vi } → v ≡ limi→∞ vi = v ≡ ∀ε > 0 ∃ h s.t. | vi − v | ≤ ε ∀i ≥ h

limi→∞ vi = −∞ ⇐⇒ ∀M > 0 ∃ h s.t. vi ≤ −M ∀i ≥ h

▶ { x i } s.t. { f i } → f∗ a minimizing sequence

▶ note that { f i } → −∞ =⇒ f∗ = −∞ =⇒ minimizing sequence

▶ A sequence may not have limit: are we “not converging”?

▶ Any monotone sequence has a limit (monotone algorithms are good)
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▶ If one is lucky, optimising a quadratic function ≡ solving Qx̄ = −q

▶ Linear system O( n3 ) at worst, so not doable for n ≈ 109+ (no memory)

▶ Iterative procedures: start from initial guess x0, some process x i ⇝ x i+1

=⇒ a sequence { x i } that should “go towards an optimal solution”

▶ The natural way: { f i = f ( x i ) } sequence of values “go towards f∗”

▶ Typically we can’t get f∗ in finite time (∃ i vi = f∗), but we can
“get as close as we want”: there in the limit

▶ Recall: (infinite) sequence { vi } = { v1 , v2 , . . . },
{ vi } → v ≡ limi→∞ vi = v ≡ ∀ε > 0 ∃ h s.t. | vi − v | ≤ ε ∀i ≥ h

limi→∞ vi = −∞ ⇐⇒ ∀M > 0 ∃ h s.t. vi ≤ −M ∀i ≥ h

▶ { x i } s.t. { f i } → f∗ a minimizing sequence

▶ note that { f i } → −∞ =⇒ f∗ = −∞ =⇒ minimizing sequence

▶ A sequence may not have limit: are we “not converging”?

▶ Any monotone sequence has a limit (monotone algorithms are good)



Gradient method, basic idea 43

▶ We generally assume minimization, but maximization is equivalent

▶ Given x i , necessarily compute g i = Qx i + q: if g i = 0 then stop

▶ “g i = 0” not doable in floating point arithmetic =⇒ ∥ g i ∥ ≤ ε (which ε?)

▶ Idea: if ∥ g i ∥ > [ε >] 0, produce a x i+1 “better” than x i

▶ How? Consider the tomography φx i ,−g i (α ) = f ( x i −αg i )−f ( x i )

= 1
2 ( x

i − αg i )TQ( x i − αg i ) + q( x i − αg i )− f ( x i )

= 1
2α

2(g i )TQg i − α[ (g i )TQx i + qg i ] = 1
2α

2(g i )TQg i −α∥ g i ∥2
positive negative

▶ For some α > 0, φx i ,−g i (α ) < 0 =⇒ f ( x i − αg i ) < f ( x i )

Exercise: Check all the above (recall Optimizing a quadratic non-homogeneous function )

▶ The same information (called gradient, we’ll see why) saying “you can’t stop”

is at the same time saying “you can get a better solution than x i over there”

▶ This immediately suggests a (monotone, f i+1 < f i ) algorithm



The gradient method for (multivariate) quadratic functions 44

▶ In fact it is easy to minimize φx i ,−g i (α ) ( Optimizing a quadratic non-homogeneous function )
αi = ∥ g i ∥2 / ( (g i )TQg i ) [1 / λ1 ≤ α ≤ 1 / λn (check)]

▶ Computing g i and the optimal value of α is O( n2 ) =⇒
n “large” =⇒ “we can do may iterations before hitting O( n3 )”

procedure x = SDQ (Q , q , x , ε )
do forever
g ← Qx + q;
if( ∥ g ∥ ≤ ε ) then break;
α← stepsize(); x ← x −αg ;

▶ stepsize() { return( ∥ g ∥2 / ( gTQg ) ); }, others possible

Exercise: something can go wrong with that formula ↑: what does it mean?
Improve the pseudo-code to take that occurrence into account.

Exercise: what happens if Q ̸⪰ 0? Does the (improved) code need be fixed?

Exercise: Discuss how to change the code to solve max{ f ( x ) } instead

Exercise: Rewrite the code with one product with Q per iteration

▶ It is very simple, but does it work? And is it efficient?



Convergence of the gradient method for Q ≻ 0 45

▶ Optimal stepsize =⇒ g i+1 ⊥ g i (check)

▶ “Homogeneous form of the error”: A( x ) = 1
2 (x − x∗)

TQ(x − x∗) (check)

▶ The above for x = x i+1, Q ≻ 0 and some algebra [5, Lm. 8.6.1] gives

A( x i+1 )=

(
1− ∥ g i ∥4

((g i )TQg i )((g i )TQ−1g i )

)
A( x i ) (check)[tedious]

▶ Easy to derive an estimate using κ = λ1 / λn [≥ 1] condition number of Q

∥x∥4

(xTQx)(xTQ−1x)
≥ λn

λ1
=

1

κ
(check) =⇒ A( x i+1 )≤

(
1− 1

κ

)
A( x i )

▶ This means the algorithm converges: A( x i ) ≤ r iA( x0 ) (check) with

r ≤ (κ− 1 ) / κ< 1 =⇒ A( x i ) → 0 exponentially fast as i → ∞

▶ Kantorovich inequality [5, 8.6.(34)] gives better estimate

∥x∥4

(xTQx)(xTQ−1x)
≥ 4λ1λn

(λ1 + λn)2
=⇒ r ≤

(
λ1 − λn

λ1 + λn

)2

=

(
κ− 1

κ+ 1

)2

▶ Let’s see it in practice



Complexity of the gradient method 46

▶ Crucial sequences: { x i } / { d i = ∥ x i − x∗ ∥ } [iterates / distance from x∗]

{ f i = f ( x i ) } / { ai = A( x i ) } / { r i = R( x i ) } [f -values / A/R gaps]

▶ Complexity as a function of prescribed accuracy ε:

max number of iterations k such that d i / ai / r i ≤ ε ∀i ≥ k

▶ General formula: vk ≤ rkv1 ≤ ε for k ≥ [ 1 / log( 1 / r ) ] log( v1 / ε ) (check)

▶ r ≈ 1 =⇒ k ∈ O( [ r / ( 1− r ) ] log( v1 / ε ) ) (check)

▶ Good news: dimension independent (n not there) =⇒ very-large-scale

▶ O( log( 1 / ε ) ) (good), but the constant ↑ ∞ as r → 1 (bad)

▶ v1 = f ( x1 )− f∗: starting closer to f∗ helps (would be strange if not)

▶ “∥ x i − x∗ ∥ ≤ ε” and “f ( x i )− f∗ ≤ ε” not the same (ε):

ai = 1
2 (x

i − x∗)
TQ(x i − x∗) ≤ ε =⇒ λn∥ x i − x∗ ∥2 ≤ ε =⇒

d i = ∥ x i − x∗ ∥ ≤
√
ε / λn

Exercise: Cook up the other direction (d i ≤ ε =⇒ . . .)



Convergence rates, complexity [6, p. 619] 47

▶ Converge: { f i } → f∗ ≈≡ { ai } → 0 ≡ { r i } → 0 ⇐= { d i } → 0 (≠⇒)

Exercise: Discuss why { f i } → f∗ is only ≈≡ to { ai } → 0 and why the ≠⇒

▶ But how rapidly does it (“in the tail”)? Rate/order of convergence

lim
i→∞

[
f i+1 − f∗
( f i − f∗ )p

=
ai+1

( ai )p
≈ r i+1

( r i )p

]
= r

[
xp → 0 faster than
x → 0 when p > 1

(check)

▶ p = 1 , r = 1 ≡ sublinear: important examples

error O( 1 / i ) O( 1 / i2 ) O( 1 /
√
i )

i O( 1 / ε ) (bad) O( 1 /
√
ε ) (a bit better) O( 1 / ε2 ) (horrible)

▶ p = 1 , r < 1 ≡ linear: r i =⇒ i ∈ O( log( 1/ε ) ) (good unless r ≈ 1)

▶ p = 2 , r > 0 ≡ quadratic (!!!): ≈ 1 / 22
i

=⇒ i ∈ O( log( log( 1/ε ) ) )

in practice O( 1 ) (correct digits double at each iteration)

▶ p ∈ ( 1 , 2 ) ≡ p = 1 , r = 0 ≡ superlinear (!): “something in the middle”

▶ p = 2 the best you can reasonably hope for: possible but not easy



Convergence Rates Pictorially 48
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Important note on the stopping criterion 49

▶ The stopping criterion one would want: A( x i ) ≤ ε / R( x i ) ≤ ε

▶ Issue: f∗ typically unknown, cannot be used on-line

▶ ∥ g i ∥“proxy” of A( x i ): hopefully ∥ g i ∥ “small” =⇒ A( x i ) “small”

but exact relationship nontrivial =⇒ choosing ε non obvious

▶ ∥ g i ∥ = Q( x i − x∗ ) =⇒ ∥ g i ∥ ≤ λ1∥ x i − x∗ ∥ . . . (??) wrong inequality:

∥ g i ∥ ≤ ε ≠⇒ ∥ x i − x∗ ∥ “small”

▶ ai = 1
2 (x

i − x∗)
TQ(x i − x∗) =

1
2 ⟨ x

i − x∗ , g
i ⟩ ≤ 1

2∥ g
i ∥∥ x i − x∗ ∥;

if we knew δ ≥ ∥ x i − x∗ ∥, which we don’t, then ∥ g i ∥ ≤ 2ε / δ =⇒ ai ≤ ε

▶ If we knew λn > 0, which we don’t, ∥ g i ∥ ≤
√
2λnε =⇒ ai ≤ ε (check)

▶ All in all, exact control on final ai / r i not obvious (not always really needed)



When “exponentially fast” is not “really fast” 50

▶ Convergence fast if λ1 ≈ λn (one iteration for ∥ x ∥2), rather slow if λ1 ≫ λn:

κ = λ1 / λn → ∞ (Q ill conditioned) =⇒ r → 1 =⇒ slow in practice

▶ g i+1 ⊥ g i + level sets very elongated =⇒ lots of “zig-zags” =⇒ slow

▶ Ex.: κ = 1000 =⇒ r ≈ 0.996 =⇒ r / ( 1− r ) ≈ 250

f ( x1 )− f∗ = 1, ε = 10−6 =⇒ k ≥ 3450 for n = 2

. . . but also for n = 108

▶ Note: with coarser formula r = 0.999 ≡ r / ( 1− r ) ≈ 1000 =⇒ k ≥ 13800

▶ In other words: 0.99610 ≈ 0.96071 0.99910 ≈ 0.99004

▶ More bad news, “hidden dependency”:

λ1 and λn may depend on n, κ may grow as n → ∞

▶ More bad news: the behaviour in practice is close to the bound

▶ Even more bad news: λn = 0 ≡ κ = ∞ happens



When “exponentially fast” is not “really fast” 50

▶ Convergence fast if λ1 ≈ λn (one iteration for ∥ x ∥2), rather slow if λ1 ≫ λn:

κ = λ1 / λn → ∞ (Q ill conditioned) =⇒ r → 1 =⇒ slow in practice

▶ g i+1 ⊥ g i + level sets very elongated =⇒ lots of “zig-zags” =⇒ slow

▶ Ex.: κ = 1000 =⇒ r ≈ 0.996 =⇒ r / ( 1− r ) ≈ 250

f ( x1 )− f∗ = 1, ε = 10−6 =⇒ k ≥ 3450 for n = 2 . . . but also for n = 108

▶ Note: with coarser formula r = 0.999 ≡ r / ( 1− r ) ≈ 1000 =⇒ k ≥ 13800

▶ In other words: 0.99610 ≈ 0.96071 0.99910 ≈ 0.99004

▶ More bad news, “hidden dependency”:

λ1 and λn may depend on n, κ may grow as n → ∞

▶ More bad news: the behaviour in practice is close to the bound

▶ Even more bad news: λn = 0 ≡ κ = ∞ happens



When “exponentially fast” is not “really fast” 50

▶ Convergence fast if λ1 ≈ λn (one iteration for ∥ x ∥2), rather slow if λ1 ≫ λn:

κ = λ1 / λn → ∞ (Q ill conditioned) =⇒ r → 1 =⇒ slow in practice
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▶ In other words: 0.996100 ≈ 0.66978 0.999100 ≈ 0.90479

▶ More bad news, “hidden dependency”:

λ1 and λn may depend on n, κ may grow as n → ∞

▶ More bad news: the behaviour in practice is close to the bound

▶ Even more bad news: λn = 0 ≡ κ = ∞ happens
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▶ Convergence fast if λ1 ≈ λn (one iteration for ∥ x ∥2), rather slow if λ1 ≫ λn:
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▶ Ex.: κ = 1000 =⇒ r ≈ 0.996 =⇒ r / ( 1− r ) ≈ 250
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▶ In other words: 0.9961000 ≈ 0.01816 0.9991000 ≈ 0.36769
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▶ Even more bad news: λn = 0 ≡ κ = ∞ happens



When “exponentially fast” is not “really fast” 50

▶ Convergence fast if λ1 ≈ λn (one iteration for ∥ x ∥2), rather slow if λ1 ≫ λn:

κ = λ1 / λn → ∞ (Q ill conditioned) =⇒ r → 1 =⇒ slow in practice

▶ g i+1 ⊥ g i + level sets very elongated =⇒ lots of “zig-zags” =⇒ slow
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▶ Note: with coarser formula r = 0.999 ≡ r / ( 1− r ) ≈ 1000 =⇒ k ≥ 13800

▶ In other words: 0.9962000 ≈ 0.00033 0.9992000 ≈ 0.13520

▶ More bad news, “hidden dependency”:

λ1 and λn may depend on n, κ may grow as n → ∞
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What if λn = 0? 51

▶ λn = 0 =⇒ not converging?

No, just can’t prove it this way

▶ In fact we can prove convergence (in a more general setting) [2, Theorem 3.3]:

α = 1 / λ1 =⇒ f ( x i )− f∗ ≤ 2λ1∥ x1 − x∗ ∥2 / ( i − 1 )

▶ Is it good news? Only partly. Because complexity is k ≥ 2λ1d
1 / ε

▶ O( 1 / ε ) vs. O( log( 1 / ε ) ): sublinear convergence, exponentially slower

▶ One further digit of accuracy ≡ 10 times more iterations =⇒
typically unfeasible to get more than 1e-3 / 1e-4 accuracy

▶ The result cannot be improved (in general, will see)

▶ Is it bad? Rather. Can it be worse? Yes (in general, will see)

▶ If λn > 0, can we do better than O( log( 1 / ε ) )? Yes – @Federico

▶ Fundamental idea, will see more than once: changing the space
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Wrap up 52

▶ Optimization problems are difficult

▶ Clever strategy: start simple, then use what you learnt to go more complex

▶ Simple problems provide intuition for the solution of more complex ones

▶ Solving a complex problem may entail solving a sequence of simpler ones

▶ Usual concept: if XYZ complex, use “simpler” ABC ≈ XYZ – a model

▶ Linear functions “too simple”: optimising (on simple constraints) always easy

▶ Quadratic functions already a different story: few really simple cases,

often polynomial but not with low exponent, up to NP-hard

▶ Solving (simple) optimization problems requires linear algebra, and vice-versa

▶ We now know all we need about simple problems, time to step up the game

▶ Will keep following an incremental approach: next step is

more complicated functions but only one variable
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▶ Use max{ | f∗ | , 1 } instead; this corresponds to min{ f ( x )+1 } [back]

▶ b > 0 and x − z > 0 =⇒ b(x − z) > 0 ≡ bx > bz ;

the others are analogous (or simpler) [back]

▶ If x+ = +∞, obviously x∗ = +∞ = x+

If x+ < +∞, since f ( x ) is increasing, f ( x ) < f ( x+ ) ∀x < x+

The treatment of x− is analogous.

If b < 0, the role of x+ and x− reverses (x+ = argmin, x− = argmax)

If b = 0, every point in X is an optimal solution [back]

▶ x > z , a > 0 and x > 0 =⇒ ax2 > axz > az2. Since f ( x ) is symmetric
(ax2 = a(−x)2), increasing for x > 0 ≡ deceasing for x < 0. When a < 0 the
sign of the inequalities in inverted (the function is reflected upon the x axis).
The case a = 0 is trivial [back]
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▶ f ( x ) has a minimum in 0, is decreasing for x < 0 and increasing for x > 0. If
x− > 0 then f ( x ) is increasing along all X , hence x− is the minimum and x+
the maximum. The argument is symmetric if x+ < 0. Obviously, if 0 ∈ X then
it is the minimum; for the maximization, since the function is increasing when x
moves away from 0 in both directions, the maximum has to be one of the two
extremes but we don’t know which until we test. The rest is too trivial [back]

▶ No, this is both too trivial and didactic [back]

▶ f ( x ) = ( ax + b )x , hence the roots are x = 0 and x = xp = −b / a. Clearly,
x̄ = −b / 2a is always in the middle of the interval defined by the roots. If a
and b have the same sign then xp < x̄ < 0, otherwise xp > x̄ > 0 [back]

▶ φx,(βd)(α ) = f ( x + α(βd) ) = f ( x + (αβ)d ) = φx,d(αβ ) [back]
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▶ We assume that i. and ii. hold for f and we want to show that f ( x ) = ⟨ b , x ⟩
for some b ∈ Rn. Let ui , i = 1, . . . , n, the i-th vector of the canonical base of
Rn (having 1 in the i-th position and 0 otherwise), and bi = f ( ui ). For any
x ∈ Rn, x =

∑n
i=1 xiui , hence f ( x ) = f (

∑n
i=1 xiui ) =

∑n
i=1 f ( xiui ) (using

ii. recursively n times) =
∑n

i=1 xi f ( ui ) (using i. on each individual term)
=

∑n
i=1 bixi (using the definition of bi ) = ⟨ b , x ⟩ (using the definition of

scalar product). The results clearly breaks in the affine case (c ̸= 0):
f ( x ) = x + 1 =⇒ f ( 2x ) = 2x + 1 ̸= 2( x + 1 ) = 2f ( x ) [back]

▶ By contradiction, ∃ γ ∈ Rn \ { 0 } s.t. Hγ = 0 =⇒
0 = ∥Hγ ∥2 = γT [HTH ]γ = ∥ γ ∥2 > 0 [γ ̸= 0] E [back]
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▶ This is based on a general result: for [A1 , A2 , . . . , An ] = A ∈ Rm×n (not
necessarily square) written by columns, AAT = M ∈ Rm×m (symmetric, prove
it using [AB ]T = BTAT ) can be written as the sum of the n rank-one
matrices corresponding to the columns, i.e., M =

∑n
i=1[D

i = Ai (Ai )T ]. In
fact, the h-th row of A is Ah = [A1

h , A
2
h , . . . , A

n
h ] and the k-th column of AT

is the k-th row of A, thus Mhk = ⟨Ah , Ak ⟩ =
∑n

i=1 A
i
hA

i
k . But D

i
hk = Ai

hA
i
h,

hence Mhk =
∑n

i=1 D
i
hk for all h and k

To complete the result, for Λ = diag( [λ1 , λ2 , . . . , λn ] ) ∈ Rn×n, L = AΛ =
= [λ1A

1 , λ2A
2 , . . . , λnA

n ]. In fact, the h-th row Ah = [A1
h , A

2
h , . . . , A

n
h ]

and the k-th column of Λ, i.e., λkuk (uk being the k-th vector of the canonical
base) give Lhk = ⟨Ah , λkuk ⟩ = λkA

k
h [back]

▶ φHi (α ) = (αHi )
TQ(αHi ) = α2[HT

i (λiHi ) ] = λiα
2 [back]

▶ λn < 0 =⇒ φHn(α ) [= λnα
2] unbounded below =⇒ f ( x ) unbounded below

λ1 > 0 =⇒ φH1(α ) unbounded above =⇒ f ( x ) unbounded above [back]
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▶ x = z + x̄ =⇒ 1
2x

TQx + qx = 1
2 ( z + x̄ )TQ( z + x̄ ) + q( z + x̄ ) =

1
2z

TQz + zT (Qx̄ + q ) + [ 1
2 x̄

TQx̄ + qx̄ ] = 1
2z

TQz + f ( x̄ )

as Qx̄ + q = Q(−Q−1q) + q = −q + q = 0 [back]

▶ Qv = Q[
∑

i∈Z ηiHi ] =
∑

i∈Z ηiQHi =
∑

i∈Z ηiλiHi = 0 [back]

▶ Q = HΛHT =
∑n

i=1 λiHiH
T
i =

∑
i∈Z λiHiH

T
i [ = 0 ] +

∑
i∈N λiHiH

T
i

We want to prove ∃ x s.t. (
∑

i∈N λiHiH
T
i )x =

∑
i∈N µiHi = w

True if λiH
T
i x = µi i ∈ N ≡ HT

i x = γi = µi / λi i ∈ N,
a linear system of k ≤ n equations in n variables (likely underdetermined)
All Hi linearly independent, HN = [Hi ]i∈N ∈ Rn×k =⇒ rank(HN ) = k
=⇒ [HT

N , γ ] ∈ Rk×n+1 has rank k (rank ≤ number of rows) =⇒
by [16] the system has a solution x (∞-ly many if k < n) [back]

▶ 1
2x

TQx + qx = 1
2 ( z + x̄ )TQ( z + x̄ ) + q( z + x̄ ) =

1
2z

TQz + zT (Qx̄ + q+ + q0 ) + f ( x̄ ) = 1
2z

TQz + q0z + f ( x̄ ) [back]
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▶ We know that f ( z ) = zTQz + f ( barx ), with z = x − x̄ . For x ∈ x̄ + v , with
v ∈ ker(Q ), z = x − x̄ = x̄ + v − x̄ = v . Hence f ( z ) = f ( x̄ ). On the other
hand, f ( z ) ≥ f ( x̄ ) for all z since Q ⪰ 0, thus any such point is a minimum.
Any point x ∈ x̄ + v with v /∈ ker(Q ) has f ( x ) = vTQv + f ( x̄ ) > f ( x̄ ) since
vTQv > 0 [back]

▶ No, this is both too trivial and didactic [back]

▶ φ(α ) = aα2 + bα quadratic non-homogeneous with a = (g i )TQg i ≥ 0 and
b = −∥ g i ∥2 < 0. If a > 0, then φ( ᾱ ) < φ( 0 ) = f ( x i ) ∀ ᾱ ∈ ( 0 , −b/a ); in
particular, ᾱ = ∥ g i ∥2 / (2(g i )TQg i ) is the minimum of φ. If a = 0 then φ is
decreasing and φ( ᾱ ) < φ( 0 ) = f ( x i ) ∀ᾱ > 0 [back]

▶ The variational characterization of the eigenvalues implies that
λ1 ≥ dTQd / ∥ d ∥2 ≥ λn for all d ̸= 0; this immediately gives
1 / λ1 ≤ ∥ d ∥2 / dTQd ≤ 1 / λn for all d , and therefore in particular d = g i

(knowing that g i ̸= 0 otherwise the algorithm would have stopped) [back]
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▶ The issue clearly is gTQg = 0 (very small), which means that φx,−g is (almost)
linear, and therefore f is unbounded below. One should therefore add a line

if( gTQg ≤ δ ) then break;
for a “very small” δ, but also add a proper way for the algorithm to signal that
the returned x is not optimal, e.g., by also returning a “status code” [back]

▶ Having added the extra check above, the code just works: if gTQg < 0 then
(−)g is direction where φ has negative curvature, which still implies f is
unbounded below. Note that this is not guaranteed to happen [back]

▶ Because a < 0, the step α will be negative, which basically means one is going
in direction g rather than −g . The algorithm remains the same, except that
the extra check above has to become gTQg ≥ −δ [back]
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▶ Assuming the gradient is computed in the “natural way” as g = Q ∗ x + q
before the algorithm starts (i.e., with x the initial guess x0), both quantities
depending from matrix-vector products can be recovered by computing the
vector v = Q ∗ g . In fact, a = gTQg = ⟨ g , v ⟩. Then, with x ′ = x − αg one
has g ′ = Qx ′ + q = Q(x − αg) + q = (Qx + q)− αQg = g − αv . Hence, the
gradient at the next iteration can be computed in O( n ) out of that of the
previous iteration and the vector v . As for the objective function,
1/2xTQx + ⟨ q , x ⟩ = 1/2(xTQx + 2⟨ q , x ⟩) = 1/2xT (Qx + q + q) =
1/2⟨ q + g , x ⟩, i.e., it can be computed in O( n ) once g is known [back]

▶ g i = Q(x i − x∗) = Qx i + q, αi = ∥ g i ∥2 / [(g i )TQg i ]
g i+1 = Qx i+1 + q = Q(x i − αig i ) + q = (I − αiQ)g i =⇒
⟨ g i+1 , g i ⟩ = ∥ g i ∥2 − αi [ (g i )TQg i ] = 0 [back]
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▶ All arguments boil down to the crucial Qx∗ + q = 0. This first of all gives that
f ( x∗ ) = 1

2 (x
∗)TQx∗ + ⟨ x∗ , q ⟩ = (x∗)TQx∗ + ⟨ x∗ , q ⟩ − 1

2 (x
∗)TQx∗ =

(x∗)T (Qx∗ + q)− 1
2 (x

∗)TQx∗ = − 1
2 (x

∗)TQx∗. Then, 1
2 (x − x∗)TQ(x − x∗) =

1
2x

TQx + 1
2 (x

∗)TQx∗ − xT (Qx∗) = 1
2x

TQx − ⟨ x , q ⟩+ 1
2 (x

∗)TQx∗ =
f ( x )− f ( x∗ ) (in the penultimate step we have used Qx∗ = −q) [back]

▶ Just induction: obvious for i = 0, if it holds for i − 1 then
A( x i ) ≤ rA( x i−1 ) ≤ r( r i−1A( x0 ) ) [back]

▶ Q nonsingular =⇒ x i − x∗ = Q−1g i =⇒
ai = 1

2 (x
i − x∗)

TQ(x i − x∗) =
1
2 (g

i )TQ−1g i =⇒
ai+1 = 1

2 (x
i+1−x∗)

TQ(x i+1−x∗) =
1
2 (x

i −αig i −x∗)
Tg i+1 = 1

2 (x
i −x∗)

Tg i+1

[ using ⟨ g i+1 , g i ⟩ = 0 ] = 1
2 (x

i − x∗)
TQ(x i − αig i − x∗)

= 1
2 (x

i − x∗)
TQ(x i − x∗)− 1

2α
i (x i − x∗)

TQg i = ai − 1
2α

i∥ g i ∥2

[ using Q(x i − x∗) = g i ] = ai − 1
2∥ g

i ∥4 / (g i )TQg i
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= ai −
∥ g i ∥4 1

2 (g
i )TQ−1g i

((g i )TQg i )((g i )TQ−1g i )
= ai

(
1− ∥ g i ∥4

((g i )TQg i )((g i )TQ−1g i )

)
[back]

▶ Recall 1 / λn ≥ . . . ≥ 1 / λ1 > 0 eigenvalues of Q−1; from the usual
λn∥ x ∥2 ≤ xTQx ≤ λ1∥ x ∥2 (applied to Q−1 as well) one has
∥ g ∥2 / gTQg ≥ 1 / λ1 and ∥ g ∥2 / gTQ−1g ≥ 1 / [1 / λn] [back]

▶ rkv1 ≤ ε ≡ rk ≤ ε / v1 ≡ log( rk ) ≤ log( ε / v1 ) (log monotone) ≡
k log( r ) ≤ log( ε / v1 ) (property of log); since r < 1, log( r ) < 0, giving
k ≥ log(ε / v1) / log( r ) = [− log( ε / v1 ) ] / [− log( r ) ] =
log( v1 / ε ) / log( 1/r ) = log( v1 / ε )[ 1 / log( 1 / r ) ] [back]

▶ This requires a bit of elementary calculus. The derivative of ln( x ) is 1 / x .
The first-order Taylor approximation is f ( x + δ ) ≈ f ( x ) + f ′( x )δ for δ ≈ 0.
Applied to ln(·) with x = 1 gives ln( 1 + δ ) ≈ δ, whence 1 / ln( 1 / r ) =
= 1 / ln( 1 + ( 1− r ) / r ) = r / ( 1− r ). But loga( x ) = logb( x ) / logb( a ),
hence ln( x ) = loge( x ) = log10( x ) / log10( e ) ≈ log( x ) / 0.43 ≈ 2.3 log( x ),
i.e., ln( x ) ∈ O( log( x ) ) [back]
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▶ λ1∥ x i − x∗ ∥2 ≥ ( xi − x∗ )
TQ( xi − x∗ ) = 2ai ≡ ∥ x i − x∗ ∥ ≥

√
2ai / λ1,

hence d i ≤ ε =⇒ ai ≤ λ1ε
2 / 2 [back]

▶ ai = 1
2 ( x

i − x∗ )
TQ( x i − x∗ ) =

1
2 ⟨ g

i , x i − x∗ ⟩ ≤ 1
2∥ g

i ∥∥ x i − x∗ ∥. On the
other hand, ∥ g i ∥2 = (x i − x∗)

TQTQ(x i − x∗) ≥ λ2
n∥ x i − x∗ ∥2 (recall λ2

n

eigenvalue of Q2, clearly the smallest), i.e., ∥ g i ∥ ≥ λn∥ x i − x∗ ∥. Hence,
∥ g i ∥ ≤

√
2λnε =⇒ ε ≥ 1

2λn
∥ g i ∥2 ≥ 1

2∥ g
i ∥∥ x i − x∗ ∥ ≥ ai [back]

▶ If f∗ = −∞, fi → −∞ is OK (minimising sequence) but ai = ai+1 = ∞ and
therefore their ratio is not well-defined. Since f is continuous, { d i } → 0 =⇒
{ ai } → 0, but the converse need not happen in general: say, { x2i } → x ′∗ and
{ x2i+1 } → x ′′∗ with x ′∗ ̸= x ′′∗ optimal solutions [back]

▶ Simply, limx→0 x
p / x = limx→0 x

p−1 = 0: the numerator goes to 0 faster than
the denominator [back]
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