
Simple Optimization Problems

Antonio Frangioni

Department of Computer Science
University of Pisa

https://www.di.unipi.it/~frangio

mailto:frangio@di.unipi.it

Computational Mathematics for Learning and Data Analysis
Master in Computer Science – University of Pisa

A.Y. 2024/25

https://www.di.unipi.it/~frangio
mailto:frangio@di.unipi.it

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

Functions 1

y

x

▶ Let’s start simple: x input space, y output space, both just R

▶ Function f : R → R, f (x) = y = output with input x

▶ Graph of f : gr(f) = { (f (x) , x) : x ∈ R } ⊂ R2

▶ Image of f : im(f) = { y : ∃ x ∈ R s.t. y = f (x) } ⊂ R
i.e., projection of gr(f) on output space (a.k.a. co-domain)

▶ Level set at value v : L(f , v) = { x ∈ R : f (x)= v } ⊂ R
(roots of f = L(f , 0) = level set at value 0)

Functions 1

y = f(x)

x

▶ Let’s start simple: x input space, y output space, both just R

▶ Function f : R → R, f (x) = y = output with input x

▶ Graph of f : gr(f) = { (f (x) , x) : x ∈ R } ⊂ R2

▶ Image of f : im(f) = { y : ∃ x ∈ R s.t. y = f (x) } ⊂ R
i.e., projection of gr(f) on output space (a.k.a. co-domain)

▶ Level set at value v : L(f , v) = { x ∈ R : f (x)= v } ⊂ R
(roots of f = L(f , 0) = level set at value 0)

Functions 1

f(x)

x

gr(f)

▶ Let’s start simple: x input space, y output space, both just R

▶ Function f : R → R, f (x) = y = output with input x

▶ Graph of f : gr(f) = { (f (x) , x) : x ∈ R } ⊂ R2

▶ Image of f : im(f) = { y : ∃ x ∈ R s.t. y = f (x) } ⊂ R
i.e., projection of gr(f) on output space (a.k.a. co-domain)

▶ Level set at value v : L(f , v) = { x ∈ R : f (x)= v } ⊂ R
(roots of f = L(f , 0) = level set at value 0)

Functions 1

f(x)

x

im
(

f
)

▶ Let’s start simple: x input space, y output space, both just R

▶ Function f : R → R, f (x) = y = output with input x

▶ Graph of f : gr(f) = { (f (x) , x) : x ∈ R } ⊂ R2

▶ Image of f : im(f) = { y : ∃ x ∈ R s.t. y = f (x) } ⊂ R
i.e., projection of gr(f) on output space (a.k.a. co-domain)

▶ Level set at value v : L(f , v) = { x ∈ R : f (x)= v } ⊂ R
(roots of f = L(f , 0) = level set at value 0)

Functions 1

f(x)

x

v

L(f , v)

▶ Let’s start simple: x input space, y output space, both just R

▶ Function f : R → R, f (x) = y = output with input x

▶ Graph of f : gr(f) = { (f (x) , x) : x ∈ R } ⊂ R2

▶ Image of f : im(f) = { y : ∃ x ∈ R s.t. y = f (x) } ⊂ R
i.e., projection of gr(f) on output space (a.k.a. co-domain)

▶ Level set at value v : L(f , v) = { x ∈ R : f (x)= v } ⊂ R

(roots of f = L(f , 0) = level set at value 0)

Functions 1

f(x)

x

▶ Let’s start simple: x input space, y output space, both just R

▶ Function f : R → R, f (x) = y = output with input x

▶ Graph of f : gr(f) = { (f (x) , x) : x ∈ R } ⊂ R2

▶ Image of f : im(f) = { y : ∃ x ∈ R s.t. y = f (x) } ⊂ R
i.e., projection of gr(f) on output space (a.k.a. co-domain)

▶ Level set at value v : L(f , v) = { x ∈ R : f (x)= v } ⊂ R
(roots of f = L(f , 0) = level set at value 0)

(Univariate) Unconstrained optimization problem 2

f(x)

x

▶ f objective (function) of (univariate, unconstrained) optimization problem

(P) f∗ = min{ f (x) : x ∈ R }

▶ f∗ = ν(P) optimal value (unique if ∃, which it may not)

▶ f∗ = smaller element of im(f) = smaller v s.t. L(f , v) ̸= ∅

▶ In fact, the problem is (P) x∗ ∈ argmin { f (x) : x ∈ R }

▶ x∗ s.t. f∗ = f (x∗) ≤ f (x) ∀x ∈ R optimal solution (if ∃, which it may not)

▶ x∗ may not be unique: ∃ x ′ ̸= x∗ ∈ L(f , f∗) = X∗ set of optimal solutions, but
we don’t care (mostly): all optimal solutions equivalent “in the eyes of f ”

(Univariate) Unconstrained optimization problem 2

f(x)

x

im
(

f
)

f*
▶ f objective (function) of (univariate, unconstrained) optimization problem

(P) f∗ = min{ f (x) : x ∈ R }

▶ f∗ = ν(P) optimal value (unique if ∃, which it may not)

▶ f∗ = smaller element of im(f)

= smaller v s.t. L(f , v) ̸= ∅

▶ In fact, the problem is (P) x∗ ∈ argmin { f (x) : x ∈ R }

▶ x∗ s.t. f∗ = f (x∗) ≤ f (x) ∀x ∈ R optimal solution (if ∃, which it may not)

▶ x∗ may not be unique: ∃ x ′ ̸= x∗ ∈ L(f , f∗) = X∗ set of optimal solutions, but
we don’t care (mostly): all optimal solutions equivalent “in the eyes of f ”

(Univariate) Unconstrained optimization problem 2

f(x)

xf* L(f , f*)
▶ f objective (function) of (univariate, unconstrained) optimization problem

(P) f∗ = min{ f (x) : x ∈ R }

▶ f∗ = ν(P) optimal value (unique if ∃, which it may not)

▶ f∗ = smaller element of im(f) = smaller v s.t. L(f , v) ̸= ∅

▶ In fact, the problem is (P) x∗ ∈ argmin { f (x) : x ∈ R }

▶ x∗ s.t. f∗ = f (x∗) ≤ f (x) ∀x ∈ R optimal solution (if ∃, which it may not)

▶ x∗ may not be unique: ∃ x ′ ̸= x∗ ∈ L(f , f∗) = X∗ set of optimal solutions, but
we don’t care (mostly): all optimal solutions equivalent “in the eyes of f ”

(Univariate) Unconstrained optimization problem 2

f(x)

xf*
x*

L(f , f*)
▶ f objective (function) of (univariate, unconstrained) optimization problem

(P) f∗ = min{ f (x) : x ∈ R }

▶ f∗ = ν(P) optimal value (unique if ∃, which it may not)

▶ f∗ = smaller element of im(f) = smaller v s.t. L(f , v) ̸= ∅

▶ In fact, the problem is (P) x∗ ∈ argmin { f (x) : x ∈ R }

▶ x∗ s.t. f∗ = f (x∗) ≤ f (x) ∀x ∈ R optimal solution (if ∃, which it may not)

▶ x∗ may not be unique: ∃ x ′ ̸= x∗ ∈ L(f , f∗) = X∗ set of optimal solutions, but
we don’t care (mostly): all optimal solutions equivalent “in the eyes of f ”

(Univariate) Unconstrained optimization problem 2

f(x)

xf* L(f , f*)
▶ f objective (function) of (univariate, unconstrained) optimization problem

(P) f∗ = min{ f (x) : x ∈ R }

▶ f∗ = ν(P) optimal value (unique if ∃, which it may not)

▶ f∗ = smaller element of im(f) = smaller v s.t. L(f , v) ̸= ∅

▶ In fact, the problem is (P) x∗ ∈ argmin { f (x) : x ∈ R }

▶ x∗ s.t. f∗ = f (x∗) ≤ f (x) ∀x ∈ R optimal solution (if ∃, which it may not)

▶ x∗ may not be unique: ∃ x ′ ̸= x∗ ∈ L(f , f∗) = X∗ set of optimal solutions, but
we don’t care (mostly): all optimal solutions equivalent “in the eyes of f ”

An aside, once and for all: simple reformulations 3

f(x)

xf* L(f , f*)

▶ Sometimes changing f changes f∗ “in a simple way” but does not change X∗:
the corresponding problem is equivalent, a reformulation of (P)

▶ “min” w.l.o.g.: min{ f (x) : x ∈ R } =

− max{−f (x) : x ∈ R }
i.e., argmin { f (x) : x ∈ R } = argmax {−f (x) : x ∈ R }
(but min{ f (x) } ≠ max{ f (x) }, often rather different problems)

▶ Analogously, min{ f (x) : x ∈ R } =

i.e., argmin { f (x) : x ∈ R } = argmin { f (x) : x ∈ R } = X∗

An aside, once and for all: simple reformulations 3

-f(x)

x
-f*

L(-f , -f*)

▶ Sometimes changing f changes f∗ “in a simple way” but does not change X∗:
the corresponding problem is equivalent, a reformulation of (P)

▶ “min” w.l.o.g.: min{ f (x) : x ∈ R } = − max{−f (x) : x ∈ R }
i.e., argmin { f (x) : x ∈ R } = argmax {−f (x) : x ∈ R }
(but min{ f (x) } ≠ max{ f (x) }, often rather different problems)

▶ Analogously, min{ f (x) : x ∈ R } =

i.e., argmin { f (x) : x ∈ R } = argmin { f (x) : x ∈ R } = X∗

An aside, once and for all: simple reformulations 3

f(x)

xf* L(f , f*)

▶ Sometimes changing f changes f∗ “in a simple way” but does not change X∗:
the corresponding problem is equivalent, a reformulation of (P)

▶ “min” w.l.o.g.: min{ f (x) : x ∈ R } = − max{−f (x) : x ∈ R }
i.e., argmin { f (x) : x ∈ R } = argmax {−f (x) : x ∈ R }
(but min{ f (x) } ≠ max{ f (x) }, often rather different problems)

▶ Analogously, min{ f (x)+c : x ∈ R } =

i.e., argmin { f (x) : x ∈ R } = argmin { f (x) : x ∈ R } = X∗

An aside, once and for all: simple reformulations 3

f(x)+c

xf*

f*+c
c

L(f+c , f*+c)
{

▶ Sometimes changing f changes f∗ “in a simple way” but does not change X∗:
the corresponding problem is equivalent, a reformulation of (P)

▶ “min” w.l.o.g.: min{ f (x) : x ∈ R } = − max{−f (x) : x ∈ R }
i.e., argmin { f (x) : x ∈ R } = argmax {−f (x) : x ∈ R }
(but min{ f (x) } ≠ max{ f (x) }, often rather different problems)

▶ Analogously, min{ f (x)+c : x ∈ R } = c+min{ f (x) : x ∈ R }
i.e., argmin { f (x)+c : x ∈ R } = argmin { f (x) : x ∈ R } = X∗

An aside, once and for all: simple reformulations 3

f(x)

xf* L(f , f*)

▶ Sometimes changing f changes f∗ “in a simple way” but does not change X∗:
the corresponding problem is equivalent, a reformulation of (P)

▶ “min” w.l.o.g.: min{ f (x) : x ∈ R } = − max{−f (x) : x ∈ R }
i.e., argmin { f (x) : x ∈ R } = argmax {−f (x) : x ∈ R }
(but min{ f (x) } ≠ max{ f (x) }, often rather different problems)

▶ Analogously, min{ cf (x) : x ∈ R } =

i.e., argmin { f (x) : x ∈ R } = argmin { f (x) : x ∈ R } = X∗

An aside, once and for all: simple reformulations 3

2f(x)

x
2f*

L(2f , 2f*)

▶ Sometimes changing f changes f∗ “in a simple way” but does not change X∗:
the corresponding problem is equivalent, a reformulation of (P)

▶ “min” w.l.o.g.: min{ f (x) : x ∈ R } = − max{−f (x) : x ∈ R }
i.e., argmin { f (x) : x ∈ R } = argmax {−f (x) : x ∈ R }
(but min{ f (x) } ≠ max{ f (x) }, often rather different problems)

▶ Analogously, min{ cf (x) : x ∈ R } = c min{ f (x) : x ∈ R } (if c > 0)

i.e., argmin { cf (x) : x ∈ R } = argmin { f (x) : x ∈ R } = X∗

(Univariate) Constrained optimization problem 4

f(x)

xX

▶ More general: feasible region any set X (⊆ R), objective f : X → R

(P) f∗ = min{ f (x) : x ∈ X } constrained optimization problem

▶ x ∈ X feasible solution; x ∈ R \ X unfeasible solution

▶ f∗ = ν(P) = min(im(X , f)) = smaller element of image of X through f

▶ X∗ = L(f , f∗) ∩X : set of best feasible solutions

▶ X can be “useless” (X∗ same) or partly so (f∗ same) =⇒
makes sense to study the unconstrained case X = R first

(Univariate) Constrained optimization problem 4

f(x)

xfeasibleX

▶ More general: feasible region any set X (⊆ R), objective f : X → R

(P) f∗ = min{ f (x) : x ∈ X } constrained optimization problem

▶ x ∈ X feasible solution;

x ∈ R \ X unfeasible solution

▶ f∗ = ν(P) = min(im(X , f)) = smaller element of image of X through f

▶ X∗ = L(f , f∗) ∩X : set of best feasible solutions

▶ X can be “useless” (X∗ same) or partly so (f∗ same) =⇒
makes sense to study the unconstrained case X = R first

(Univariate) Constrained optimization problem 4

f(x)

xunfeasibleX

▶ More general: feasible region any set X (⊆ R), objective f : X → R

(P) f∗ = min{ f (x) : x ∈ X } constrained optimization problem

▶ x ∈ X feasible solution; x ∈ R \ X unfeasible solution

▶ f∗ = ν(P) = min(im(X , f)) = smaller element of image of X through f

▶ X∗ = L(f , f∗) ∩X : set of best feasible solutions

▶ X can be “useless” (X∗ same) or partly so (f∗ same) =⇒
makes sense to study the unconstrained case X = R first

(Univariate) Constrained optimization problem 4

f(x)

xX

f*

im(X , f)

▶ More general: feasible region any set X (⊆ R), objective f : X → R

(P) f∗ = min{ f (x) : x ∈ X } constrained optimization problem

▶ x ∈ X feasible solution; x ∈ R \ X unfeasible solution

▶ f∗ = ν(P) = min(im(X , f)) = smaller element of image of X through f

▶ X∗ = L(f , f∗) ∩X : set of best feasible solutions

▶ X can be “useless” (X∗ same) or partly so (f∗ same) =⇒
makes sense to study the unconstrained case X = R first

(Univariate) Constrained optimization problem 4

f(x)

xX

f*

L(f , f*)

▶ More general: feasible region any set X (⊆ R), objective f : X → R

(P) f∗ = min{ f (x) : x ∈ X } constrained optimization problem

▶ x ∈ X feasible solution; x ∈ R \ X unfeasible solution

▶ f∗ = ν(P) = min(im(X , f)) = smaller element of image of X through f

▶ X∗ = L(f , f∗)

∩X : set of best feasible solutions

▶ X can be “useless” (X∗ same) or partly so (f∗ same) =⇒
makes sense to study the unconstrained case X = R first

(Univariate) Constrained optimization problem 4

f(x)

xX

f*

X*

▶ More general: feasible region any set X (⊆ R), objective f : X → R

(P) f∗ = min{ f (x) : x ∈ X } constrained optimization problem

▶ x ∈ X feasible solution; x ∈ R \ X unfeasible solution

▶ f∗ = ν(P) = min(im(X , f)) = smaller element of image of X through f

▶ X∗ = L(f , f∗) ∩X : set of best feasible solutions

▶ X can be “useless” (X∗ same) or partly so (f∗ same) =⇒
makes sense to study the unconstrained case X = R first

(Univariate) Constrained optimization problem 4

f(x)

x
X

f* L(f , f*)

▶ More general: feasible region any set X (⊆ R), objective f : X → R

(P) f∗ = min{ f (x) : x ∈ X } constrained optimization problem

▶ x ∈ X feasible solution; x ∈ R \ X unfeasible solution

▶ f∗ = ν(P) = min(im(X , f)) = smaller element of image of X through f

▶ X∗ = L(f , f∗) ∩X : set of best feasible solutions

▶ X can be “useless” (X∗ same)

or partly so (f∗ same) =⇒
makes sense to study the unconstrained case X = R first

(Univariate) Constrained optimization problem 4

f(x)

xf* L(f , f*)

X

▶ More general: feasible region any set X (⊆ R), objective f : X → R

(P) f∗ = min{ f (x) : x ∈ X } constrained optimization problem

▶ x ∈ X feasible solution; x ∈ R \ X unfeasible solution

▶ f∗ = ν(P) = min(im(X , f)) = smaller element of image of X through f

▶ X∗ = L(f , f∗) ∩X : set of best feasible solutions

▶ X can be “useless” (X∗ same) or partly so (f∗ same) =⇒
makes sense to study the unconstrained case X = R first

Anyhow, how is X specified? 5f(x)

x

▶ The “abstract constraint x ∈ X” need be specified somehow

▶ Often useful to represent a set via (more than) one function(s)

▶ Standard ways: equality constraint g(x)= v ≡ X = level set L(g , v),

inequality constraint g(x)≤ v ≡ sublevel set S(g , v) = { x : g(x) ≤ v }
▶ For convenience “v hidden in f ” =⇒ f (x) ≤ 0 , f (x) = 0

▶ What if one rather wants g(x)≥ 0? Simply − g(x) ≤ 0

▶ Usually multiple constraints: “g1(x) ≤ 0 , g2(x) ≤ 0” ≡ logical conjunction

(“first condition and second condition”) ≡ intersection of (sub)level sets

▶ Simple and common: bounds x ≤ x+ (up) / x ≥ x− (dn), boxes x− ≤ x ≤ x+

Anyhow, how is X specified? 5f(x)

x

v

L(f , v)

▶ The “abstract constraint x ∈ X” need be specified somehow

▶ Often useful to represent a set via (more than) one function(s)

▶ Standard ways: equality constraint g(x)= v ≡ X = level set L(g , v),

inequality constraint g(x)≤ v ≡ sublevel set S(g , v) = { x : g(x) ≤ v }
▶ For convenience “v hidden in f ” =⇒ f (x) ≤ 0 , f (x) = 0

▶ What if one rather wants g(x)≥ 0? Simply − g(x) ≤ 0

▶ Usually multiple constraints: “g1(x) ≤ 0 , g2(x) ≤ 0” ≡ logical conjunction

(“first condition and second condition”) ≡ intersection of (sub)level sets

▶ Simple and common: bounds x ≤ x+ (up) / x ≥ x− (dn), boxes x− ≤ x ≤ x+

Anyhow, how is X specified? 5f(x)

x

v

S(f , v)

▶ The “abstract constraint x ∈ X” need be specified somehow

▶ Often useful to represent a set via (more than) one function(s)

▶ Standard ways: equality constraint g(x)= v ≡ X = level set L(g , v),

inequality constraint g(x)≤ v ≡ sublevel set S(g , v) = { x : g(x) ≤ v }

▶ For convenience “v hidden in f ” =⇒ f (x) ≤ 0 , f (x) = 0

▶ What if one rather wants g(x)≥ 0? Simply − g(x) ≤ 0

▶ Usually multiple constraints: “g1(x) ≤ 0 , g2(x) ≤ 0” ≡ logical conjunction

(“first condition and second condition”) ≡ intersection of (sub)level sets

▶ Simple and common: bounds x ≤ x+ (up) / x ≥ x− (dn), boxes x− ≤ x ≤ x+

Anyhow, how is X specified? 5f(x) - v

xS(f - v , 0)

▶ The “abstract constraint x ∈ X” need be specified somehow

▶ Often useful to represent a set via (more than) one function(s)

▶ Standard ways: equality constraint g(x)= v ≡ X = level set L(g , v),

inequality constraint g(x)≤ v ≡ sublevel set S(g , v) = { x : g(x) ≤ v }
▶ For convenience “v hidden in f ” =⇒ f (x) ≤ 0 , f (x) = 0

▶ What if one rather wants g(x)≥ 0? Simply − g(x) ≤ 0

▶ Usually multiple constraints: “g1(x) ≤ 0 , g2(x) ≤ 0” ≡ logical conjunction

(“first condition and second condition”) ≡ intersection of (sub)level sets

▶ Simple and common: bounds x ≤ x+ (up) / x ≥ x− (dn), boxes x− ≤ x ≤ x+

Anyhow, how is X specified? 5f(x) - v

xS(f - v , 0)

▶ The “abstract constraint x ∈ X” need be specified somehow

▶ Often useful to represent a set via (more than) one function(s)

▶ Standard ways: equality constraint g(x)= v ≡ X = level set L(g , v),

inequality constraint g(x)≤ v ≡ sublevel set S(g , v) = { x : g(x) ≤ v }
▶ For convenience “v hidden in f ” =⇒ f (x) ≤ 0 , f (x) = 0

▶ What if one rather wants g(x)≥ 0? Simply − g(x) ≤ 0

▶ Usually multiple constraints: “g1(x) ≤ 0 , g2(x) ≤ 0” ≡ logical conjunction

(“first condition and second condition”) ≡ intersection of (sub)level sets

▶ Simple and common: bounds x ≤ x+ (up) / x ≥ x− (dn), boxes x− ≤ x ≤ x+

Anyhow, how is X specified? 5f(x)

xx+x ≤ x+
]

▶ The “abstract constraint x ∈ X” need be specified somehow

▶ Often useful to represent a set via (more than) one function(s)

▶ Standard ways: equality constraint g(x)= v ≡ X = level set L(g , v),

inequality constraint g(x)≤ v ≡ sublevel set S(g , v) = { x : g(x) ≤ v }
▶ For convenience “v hidden in f ” =⇒ f (x) ≤ 0 , f (x) = 0

▶ What if one rather wants g(x)≥ 0? Simply − g(x) ≤ 0

▶ Usually multiple constraints: “g1(x) ≤ 0 , g2(x) ≤ 0” ≡ logical conjunction

(“first condition and second condition”) ≡ intersection of (sub)level sets

▶ Simple and common: bounds x ≤ x+ (up)

/ x ≥ x− (dn), boxes x− ≤ x ≤ x+

Anyhow, how is X specified? 5f(x)

xx- x ≥ x-
[

▶ The “abstract constraint x ∈ X” need be specified somehow

▶ Often useful to represent a set via (more than) one function(s)

▶ Standard ways: equality constraint g(x)= v ≡ X = level set L(g , v),

inequality constraint g(x)≤ v ≡ sublevel set S(g , v) = { x : g(x) ≤ v }
▶ For convenience “v hidden in f ” =⇒ f (x) ≤ 0 , f (x) = 0

▶ What if one rather wants g(x)≥ 0? Simply − g(x) ≤ 0

▶ Usually multiple constraints: “g1(x) ≤ 0 , g2(x) ≤ 0” ≡ logical conjunction

(“first condition and second condition”) ≡ intersection of (sub)level sets

▶ Simple and common: bounds x ≤ x+ (up) / x ≥ x− (dn),

boxes x− ≤ x ≤ x+

Anyhow, how is X specified? 5f(x)

xXx- x+

][

▶ The “abstract constraint x ∈ X” need be specified somehow

▶ Often useful to represent a set via (more than) one function(s)

▶ Standard ways: equality constraint g(x)= v ≡ X = level set L(g , v),

inequality constraint g(x)≤ v ≡ sublevel set S(g , v) = { x : g(x) ≤ v }
▶ For convenience “v hidden in f ” =⇒ f (x) ≤ 0 , f (x) = 0

▶ What if one rather wants g(x)≥ 0? Simply − g(x) ≤ 0

▶ Usually multiple constraints: “g1(x) ≤ 0 , g2(x) ≤ 0” ≡ logical conjunction

(“first condition and second condition”) ≡ intersection of (sub)level sets

▶ Simple and common: bounds x ≤ x+ (up) / x ≥ x− (dn), boxes x− ≤ x ≤ x+

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

What if f∗ ∄? 6

x

f(x) = x

▶ f has no minimum, (P) unbounded (below): f∗ = ν(P) = −∞

▶ Just a convenient shorthand for ∀ t ∈ R ∃ x ∈ R s.t. f (x) ≤ t

i.e., “there is no (finite) lower bound on im(f)”

▶ Solving (P) actually (at least) two different things:
▶ finding x∗ and proving it is optimal (how??)

▶ constructively proving f unbounded below (how??)

▶ Hardly ever happens in learning since L(w) ≥ 0

▶ Nontrivial and important in optimization (tied with duality, nonemptiness, . . .)

What if f∗ ∃ but x∗ ∄? 7

x

f(x) = ex

▶ im(f) is bounded below but has no minimum

▶ Either “naturally”

or “forcibly”

▶ inf{ f (x) : x ∈ R } ∃, but min{ f (x) : x ∈ R } ∄

▶ Arguably f∗ = inf{ f (x) : x ∈ R }, but ∄ x∗ s.t. f∗ = f (x∗)

▶ im(f) is open, does not contain its boundary (will see)

What if f∗ ∃ but x∗ ∄? 7

x

f(x) { 1 , x = 0
| x | , x ≠ 0=

▶ im(f) is bounded below but has no minimum

▶ Either “naturally” or “forcibly”

▶ inf{ f (x) : x ∈ R } ∃, but min{ f (x) : x ∈ R } ∄

▶ Arguably f∗ = inf{ f (x) : x ∈ R }, but ∄ x∗ s.t. f∗ = f (x∗)

▶ im(f) is open, does not contain its boundary (will see)

Mathematically speaking: Infima, suprema and R [1, A.2.2] 8

▶ R totally ordered =⇒ ∀ x , y ∈ R, at least one among x ≤ y , y ≤ x holds

▶ S ⊆ R, s = inf S ⇐⇒ s ≤ s ∀s ∈ S ∧ ∀t > s ∃ s ∈ S s.t. s ≤ t

s = supS ⇐⇒ s ≥ s ∀s ∈ S ∧ ∀t < s ∃ s ∈ S s.t. s ≥ t

▶ s ∈ S =⇒ s = minS , s ∈ S =⇒ s = maxS

▶ Issues: i) inf S/supS may not ∃ in R, ii) inf S/supS may not ∈ S

▶ Should write “inf{ f (x) . . .”, but we want (approximately) optimal solutions

▶ Set of extended reals: R = {−∞} ∪ R ∪ {+∞} (usually just R)

▶ For all S ⊆ R, ∃ sup / inf S ∈ R

▶ inf S = −∞ ⇐⇒ ∀ t ∈ R ∃ s ∈ S s.t. s ≤ t

supS = +∞ ⇐⇒ ∀ t ∈ R ∃ s ∈ S s.t. s ≥ t

just a convenient shorthand for “there is no (finite) inf / sup”

▶ inf ∅ = ∞, sup ∅ = −∞

Is this a real problem in practice? 9

▶ Several ways to ensure this never happens (hypotheses on f , X)

▶ On computers “x ∈ R” typically is “x ∈ Q” with up to 16 digits precision

=⇒ approximation errors unavoidable anyway

▶ Exact algebraic computation may be possible (if f is algebraic, which it

may be not) but anyway usually too slow

▶ In fact learning going the opposite way (float, half, FP8, . . .)

▶ Anyway, finding the exact x∗ impossible in general [4, p. 408]

▶ For any fixed ε > 0, plenty of ε-approximate solutions (ε-optima):

xε ∈ R s.t. f∗ ≤ f (xε) ≤ f∗ + ε

“as close to the optimal solution (value) as you want”

▶ Cost of solution algorithms typically depends on ε (sometimes very badly)

▶ And ε can’t really become very small anyway (see above)

Optimization need be approximate 10

▶ Absolute gap: A(x) = f (x)− f∗ (≥ 0)

▶ Relative gap: R(x) = (f (x)− f∗) / | f∗ | = A(x) / | f∗ | (≥ 0)

▶ Why R(x)? Because ∀α > 0 (P) ≡ (Pα) min{αf (x) : x ∈ R }
ν(Pα) = αf∗ = αν(P) =⇒ same R(x) (scale invariant), different A(x)

Exercise: R(x) ill-defined if f∗ = 0, propose solutions & justify them (change f∗)

▶ (Approximately) solve (P): fix ε, find x s.t. either A(x) ≤ ε or R(x) ≤ ε

▶ Issue: computing A(x) or R(x) requires f∗ which is typically unkown

▶ Could argue this is “the issue” in optimization: compute (an estimate of) f∗

▶ Sometimes ≈ known in learning (f∗ ≈ 0 in NN, but not in SVM)

▶ A real issue only if global optimum x∗ needed, hence not always

Optimization need be approximate 10

▶ Absolute gap: A(x) = f (x)− f∗ (≥ 0)

▶ Relative gap: R(x) = (f (x)− f∗) / | f∗ | = A(x) / | f∗ | (≥ 0)

▶ Why R(x)? Because ∀α > 0 (P) ≡ (Pα) min{αf (x) : x ∈ R }
ν(Pα) = αf∗ = αν(P) =⇒ same R(x) (scale invariant), different A(x)

Exercise: R(x) ill-defined if f∗ = 0, propose solutions & justify them (change f∗)

▶ (Approximately) solve (P): fix ε, find x s.t. either A(x) ≤ ε or R(x) ≤ ε

▶ Issue: computing A(x) or R(x) requires f∗ which is typically unkown

▶ Could argue this is “the issue” in optimization: compute (an estimate of) f∗

▶ Sometimes ≈ known in learning (f∗ ≈ 0 in NN, but not in SVM)

▶ A real issue only if global optimum x∗ needed, hence not always

Even approximate, optimization is hard / impossible 11

x

f(x)

...

▶ Impossible because isolated minima can be anywhere [4, p. 408]

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

. . . even on X = [x− , x+] as spikes can be arbitrarily narrow

▶ To make (even approximate) optimization even possible, f must be “nice”

▶ Let’s start with the nicest possible ones where optimization is (≈) trivial

Even approximate, optimization is hard / impossible 11

x

f(x)

x- x+

][

▶ Impossible because isolated minima can be anywhere [4, p. 408]

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

. . . even on X = [x− , x+] as spikes can be arbitrarily narrow

▶ To make (even approximate) optimization even possible, f must be “nice”

▶ Let’s start with the nicest possible ones where optimization is (≈) trivial

Even approximate, optimization is hard / impossible 11

x

f(x)

x- x+

][

▶ Impossible because isolated minima can be anywhere [4, p. 408]

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”?

No, f can have isolated ↓ spikes anywhere

. . . even on X = [x− , x+] as spikes can be arbitrarily narrow

▶ To make (even approximate) optimization even possible, f must be “nice”

▶ Let’s start with the nicest possible ones where optimization is (≈) trivial

Even approximate, optimization is hard / impossible 11

x

f(x)
...

▶ Impossible because isolated minima can be anywhere [4, p. 408]

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

. . . even on X = [x− , x+] as spikes can be arbitrarily narrow

▶ To make (even approximate) optimization even possible, f must be “nice”

▶ Let’s start with the nicest possible ones where optimization is (≈) trivial

Even approximate, optimization is hard / impossible 11

x

f(x)

x- x+

][

▶ Impossible because isolated minima can be anywhere [4, p. 408]

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

. . . even on X = [x− , x+] as spikes can be arbitrarily narrow

▶ To make (even approximate) optimization even possible, f must be “nice”

▶ Let’s start with the nicest possible ones where optimization is (≈) trivial

Even approximate, optimization is hard / impossible 11

x

f(x)

x- x+

][

▶ Impossible because isolated minima can be anywhere [4, p. 408]

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

. . . even on X = [x− , x+] as spikes can be arbitrarily narrow

▶ To make (even approximate) optimization even possible, f must be “nice”

▶ Let’s start with the nicest possible ones where optimization is (≈) trivial

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

Linear univariate functions 12

▶ The simplest possible function: f (x) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b > 0 ≡ increasing: x > z =⇒ f (x)> f (z)

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line

Linear univariate functions 12

▶ The simplest possible function: f (x) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b > 0 ≡ increasing: x > z =⇒ f (x)> f (z)

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line

Linear univariate functions 12

▶ The simplest possible function: f (x) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b > 0 ≡ increasing: x > z =⇒ f (x)> f (z)

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line

Linear univariate functions 12

▶ The simplest possible function: f (x) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b > 0 ≡ increasing: x > z =⇒ f (x)> f (z)

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line

Linear univariate functions 12

▶ The simplest possible function: f (x) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b = 0 ≡ nondecreasing: x > z =⇒ f (x)≥ f (z) and

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line

Linear univariate functions 12

▶ The simplest possible function: f (x) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b = 0 ≡ nonincreasing: x > z =⇒ f (x)≤ f (z)

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line

Linear univariate functions 12

▶ The simplest possible function: f (x) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b = 0 ≡ constant: x > z =⇒ f (x)= f (z)

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line

Linear univariate functions 12

▶ The simplest possible function: f (x) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b < 0 ≡ decreasing: x > z =⇒ f (x)< f (z)

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line

Linear univariate functions 12

▶ The simplest possible function: f (x) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b < 0 ≡ decreasing: x > z =⇒ f (x)< f (z)

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line

Linear univariate functions 12

▶ The simplest possible function: f (x) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b < 0 ≡ decreasing: x > z =⇒ f (x)< f (z)

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line

Linear univariate functions 12

▶ The simplest possible function: f (x) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b < 0 ≡ decreasing: x > z =⇒ f (x)< f (z)

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line

Linear univariate functions 12

▶ The simplest possible function: f (x) = bx (linear), fixed b ∈ R

▶ As many different functions as real numbers (bijection)

▶ b < 0 ≡ decreasing: x > z =⇒ f (x)< f (z)

Exercise: Formally prove the stated properties

▶ b = linear coefficient = slope: the larger | b |, the steeper the line

Optimizing a linear function 13

▶ Too easy: min = −∞, max = +∞ unless b = 0 =⇒ min = max = 0

▶ More interesting: box-constrained optimization

(P) min{ f (x) : x ∈ [x− , x+] }

with −∞≤ x− ≤ x+ ≤ +∞ ≡ X possibly (half-)infinite interval

▶ Constraints often useful, (finite) box constraints (very simple) especially so

▶ b > 0 =⇒ argmin = x−, min = f (x−), argmax = x+ , max = f (x+)

▶ “Works” even if x− = −∞ and/or x+ = +∞, as b · (±∞) = ±∞

Exercise: Formally prove the result, state & prove cases b < 0 and b = 0

▶ Closed formula O(1), don’t get used to it

▶ Yet solving simple problems the basis of solving complicated ones

Optimizing a linear function 13

▶ Too easy: min = −∞, max = +∞ unless b = 0 =⇒ min = max = 0

▶ More interesting: box-constrained optimization

(P) min{ f (x) : x ∈ [x− , x+] }

with −∞≤ x− ≤ x+ ≤ +∞ ≡ X possibly (half-)infinite interval

▶ Constraints often useful, (finite) box constraints (very simple) especially so

▶ b > 0 =⇒ argmin = x−, min = f (x−), argmax = x+ , max = f (x+)

▶ “Works” even if x− = −∞ and/or x+ = +∞, as b · (±∞) = ±∞

Exercise: Formally prove the result, state & prove cases b < 0 and b = 0

▶ Closed formula O(1), don’t get used to it

▶ Yet solving simple problems the basis of solving complicated ones

Optimizing a linear function 13

▶ Too easy: min = −∞, max = +∞ unless b = 0 =⇒ min = max = 0

▶ More interesting: box-constrained optimization

(P) min{ f (x) : x ∈ [x− , x+] }

with −∞≤ x− ≤ x+ ≤ +∞ ≡ X possibly (half-)infinite interval

▶ Constraints often useful, (finite) box constraints (very simple) especially so

▶ b > 0 =⇒ argmin = x−, min = f (x−), argmax = x+ , max = f (x+)

▶ “Works” even if x− = −∞ and/or x+ = +∞, as b · (±∞) = ±∞

Exercise: Formally prove the result, state & prove cases b < 0 and b = 0

▶ Closed formula O(1), don’t get used to it

▶ Yet solving simple problems the basis of solving complicated ones

An aside (once and for all): optimising over an “open” box 14

▶ Could have used X = (x− , x+) = { x ∈ R : x− < x < x+ } (open interval)?

▶ Bad idea: again, inf ∃ but min ∄, finite f∗ but x∗ ∄

▶ Would it make sense for applications? Hardly. x a physical quantity

=⇒ cannot be chosen/measured to ∞ precision

(Plank scale, Heisenberg’s Uncertainty Principle, . . .)

▶ It is a problem for algorithms? In theory yes, in practice hardly:

again, plenty of ε-optimal solutions however chosen ε > 0

▶ Does it make any sense at all? Hardly: if x−, x+ “can’t be touched”, use

X = [x− + ε− , x+ − ε+] for appropriately chosen ε±

▶ All in all? Just use closed intervals and be done with it

▶ Will generalise to “just use closed sets and be done with it”

An aside (once and for all): optimising over an “open” box 14

▶ Could have used X = (x− , x+) = { x ∈ R : x− < x < x+ } (open interval)?

▶ Bad idea: again, inf ∃ but min ∄, finite f∗ but x∗ ∄

▶ Would it make sense for applications? Hardly. x a physical quantity

=⇒ cannot be chosen/measured to ∞ precision

(Plank scale, Heisenberg’s Uncertainty Principle, . . .)

▶ It is a problem for algorithms? In theory yes, in practice hardly:

again, plenty of ε-optimal solutions however chosen ε > 0

▶ Does it make any sense at all? Hardly: if x−, x+ “can’t be touched”, use

X = [x− + ε− , x+ − ε+] for appropriately chosen ε±

▶ All in all? Just use closed intervals and be done with it

▶ Will generalise to “just use closed sets and be done with it”

An aside (once and for all): optimising over an “open” box 14

▶ Could have used X = (x− , x+) = { x ∈ R : x− < x < x+ } (open interval)?

▶ Bad idea: again, inf ∃ but min ∄, finite f∗ but x∗ ∄

▶ Would it make sense for applications? Hardly. x a physical quantity

=⇒ cannot be chosen/measured to ∞ precision

(Plank scale, Heisenberg’s Uncertainty Principle, . . .)

▶ It is a problem for algorithms? In theory yes, in practice hardly:

again, plenty of ε-optimal solutions however chosen ε > 0

▶ Does it make any sense at all? Hardly: if x−, x+ “can’t be touched”, use

X = [x− + ε− , x+ − ε+] for appropriately chosen ε±

▶ All in all? Just use closed intervals and be done with it

▶ Will generalise to “just use closed sets and be done with it”

An aside (once and for all): optimising over an “open” box 14

▶ Could have used X = (x− , x+) = { x ∈ R : x− < x < x+ } (open interval)?

▶ Bad idea: again, inf ∃ but min ∄, finite f∗ but x∗ ∄

▶ Would it make sense for applications? Hardly. x a physical quantity

=⇒ cannot be chosen/measured to ∞ precision

(Plank scale, Heisenberg’s Uncertainty Principle, . . .)

▶ It is a problem for algorithms? In theory yes, in practice hardly:

again, plenty of ε-optimal solutions however chosen ε > 0

▶ Does it make any sense at all? Hardly: if x−, x+ “can’t be touched”, use

X = [x− + ε− , x+ − ε+] for appropriately chosen ε±

▶ All in all? Just use closed intervals and be done with it

▶ Will generalise to “just use closed sets and be done with it”

An aside (once and for all): optimising over an “open” box 14

▶ Could have used X = (x− , x+) = { x ∈ R : x− < x < x+ } (open interval)?

▶ Bad idea: again, inf ∃ but min ∄, finite f∗ but x∗ ∄

▶ Would it make sense for applications? Hardly. x a physical quantity

=⇒ cannot be chosen/measured to ∞ precision

(Plank scale, Heisenberg’s Uncertainty Principle, . . .)

▶ It is a problem for algorithms? In theory yes, in practice hardly:

again, plenty of ε-optimal solutions however chosen ε > 0

▶ Does it make any sense at all? Hardly: if x−, x+ “can’t be touched”, use

X = [x− + ε− , x+ − ε+] for appropriately chosen ε±

▶ All in all? Just use closed intervals and be done with it

▶ Will generalise to “just use closed sets and be done with it”

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a > 0 ≡ decreasing for x ≤ 0, increasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a > 0 ≡ decreasing for x ≤ 0, increasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a > 0 ≡ decreasing for x ≤ 0, increasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a > 0 ≡ decreasing for x ≤ 0, increasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a > 0 ≡ decreasing for x ≤ 0, increasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a = 0 ≡ nonincreasing for x ≤ 0, nondecreasing for x ≥ 0 and

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a = 0 ≡ nondecreasing for x ≤ 0, nonincreasing for x ≥ 0 (constant)

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a < 0 ≡ increasing for x ≤ 0, decreasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a < 0 ≡ increasing for x ≤ 0, decreasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a < 0 ≡ increasing for x ≤ 0, decreasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a < 0 ≡ increasing for x ≤ 0, decreasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a < 0 ≡ increasing for x ≤ 0, decreasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a < 0 ≡ increasing for x ≤ 0, decreasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Quadratic homogeneous univariate functions 15

▶ Next simplest function: f (x) = ax2 (homogeneous quadratic), fixed a ∈ R

▶ As many different functions as real numbers (bijection)

▶ a < 0 ≡ increasing for x ≤ 0, decreasing for x ≥ 0

Exercise: Formally prove the stated properties

▶ a = quadratic coefficient = curvature: the larger | a |, the steeper the parabola

Optimizing a quadratic homogeneous function 16

▶ Clearly depends (and symmetric) on sign of a:

▶ a > 0 =⇒ min = argmin = 0, max = +∞, argmax = ±∞
▶ a < 0 =⇒ max = argmax = 0, min = −∞, argmin = ±∞

▶ Box-constrained optimization on (closed) X = [x− , x+] more interesting

▶ a > 0 =⇒ three cases

▶ x+ < 0 =⇒ argmin = x+, argmax = x−

▶ x− > 0 =⇒ argmin = x−, argmax = x+

▶ x− ≤ 0 ≤ x+ =⇒ argmin = 0, argmax = argmax{ f (x−) , f (x+) }

▶ “Works” even if x− = −∞ and/or x+ = +∞, as a · (±∞)2 = +∞

Exercise: Formally prove the result, state & prove cases a < 0 and a = 0

▶ Again closed formula O(1), don’t get used to it

▶ max{ f (x) } and min{ f (x) } somewhat ̸= (cf. last case), will see much more

Optimizing a quadratic homogeneous function 16

▶ Clearly depends (and symmetric) on sign of a:

▶ a > 0 =⇒ min = argmin = 0, max = +∞, argmax = ±∞
▶ a < 0 =⇒ max = argmax = 0, min = −∞, argmin = ±∞

▶ Box-constrained optimization on (closed) X = [x− , x+] more interesting

▶ a > 0 =⇒ three cases

▶ x+ < 0 =⇒ argmin = x+, argmax = x−

▶ x− > 0 =⇒ argmin = x−, argmax = x+

▶ x− ≤ 0 ≤ x+ =⇒ argmin = 0, argmax = argmax{ f (x−) , f (x+) }

▶ “Works” even if x− = −∞ and/or x+ = +∞, as a · (±∞)2 = +∞

Exercise: Formally prove the result, state & prove cases a < 0 and a = 0

▶ Again closed formula O(1), don’t get used to it

▶ max{ f (x) } and min{ f (x) } somewhat ̸= (cf. last case), will see much more

Optimizing a quadratic homogeneous function 16

▶ Clearly depends (and symmetric) on sign of a:

▶ a > 0 =⇒ min = argmin = 0, max = +∞, argmax = ±∞
▶ a < 0 =⇒ max = argmax = 0, min = −∞, argmin = ±∞

▶ Box-constrained optimization on (closed) X = [x− , x+] more interesting

▶ a > 0 =⇒ three cases

▶ x+ < 0 =⇒ argmin = x+, argmax = x−

▶ x− > 0 =⇒ argmin = x−, argmax = x+

▶ x− ≤ 0 ≤ x+ =⇒ argmin = 0, argmax = argmax{ f (x−) , f (x+) }

▶ “Works” even if x− = −∞ and/or x+ = +∞, as a · (±∞)2 = +∞

Exercise: Formally prove the result, state & prove cases a < 0 and a = 0

▶ Again closed formula O(1), don’t get used to it

▶ max{ f (x) } and min{ f (x) } somewhat ̸= (cf. last case), will see much more

Quadratic non-homogeneous univariate functions 17

▶ Next step: f (x) = ax2 + bx (non-homogeneous quadratic), fixed (a , b) ∈ R2

▶ As many different functions as pairs of real numbers (bijection)

▶ Basically, a homogeneous quadratic + a linear

▶ However, min{ ax2 + bx } ≠ min{ ax2 } + min{ bx }

▶ 0 clearly always a root, but in general not the argmin / argmax

▶ Powerful general concept: if f (x) is “too complicated”, make it “simpler”

▶ Sometimes this can be done by changing the space of variables (reformulation)

▶ In this case: change the input space so that it becomes homogeneous

▶ Clearly only needed if both a ̸= 0 and b ̸= 0

Optimizing a quadratic non-homogeneous function 18

▶ Fundamental trick: x̄ = −b/2a (because I say so), z = x − x̄ ≡ x = z + x̄

▶ The z-space is the x-space where the origin is moved to x̄

▶ Just algebra: f (x) = a(z + x̄)2 + b(z + x̄) = az2 + 2azx̄ + ax̄2 + bz + bx̄

= az2 + (2ax̄ + b)z + [ax̄2 + bx̄] = az2 + f (x̄) = g(z) [2ax̄ + b = 0]

▶ Translated by x̄ horizontally (and by f (x̄) vertically), f (x) is homogeneous

▶ Its argmin / argmax (depending on sign of a) is z = 0 ≡ x = x̄

▶ Then, just Optimizing a quadratic homogeneous function for g(z)

▶ Yet again, closed formula O(1), don’t get used to it

Exercise: Flesh out the details: describe all cases in terms of f and x

Exercise: Discuss the position of x̄ and the roots of f depending on a, b

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

Multivariate optimization 19

▶ Next crucial step: f : Rn → R, i.e., f (x1 , x2 , . . . , xn) = f (x)

with x = [xi]
n
i=1 = [x1 , x2 , . . . , xn] ∈ Rn

▶ n can be smallish (2, 3, 100), largish (104, 105) or heinously large (109, 1011)

▶ All previous stuff (f∗, X∗, constraints, . . .) immediately generalises

▶ Rn = R× R× . . .R, Cartesian product of R n times =⇒
“exponentially larger than R” ≡ finding stuff a lot harder

“ is big. Really big. You just won’t

believe how vastly, hugely, mind-bogglingly big it is.” [15]

▶ Assume we can even luckily restrict to a “small” x ∈ X ⊂Rn: a “box”

(hyperrectangle) X = { x ∈ Rn : x− ≤ x ≤ x+ }, x± ∈ Rn (with x− ≤ x+)

▶ Assume x− = 0, x+ = u = [1 , . . . , 1] and we can only look to integer values:

still have 2n points to look at (binary hypercube), grows too fast with n

▶ Even picturing things is more complex and requires appropriate tools

Multivariate optimization 19

▶ Next crucial step: f : Rn → R, i.e., f (x1 , x2 , . . . , xn) = f (x)

with x = [xi]
n
i=1 = [x1 , x2 , . . . , xn] ∈ Rn

▶ n can be smallish (2, 3, 100), largish (104, 105) or heinously large (109, 1011)

▶ All previous stuff (f∗, X∗, constraints, . . .) immediately generalises

▶ Rn = R× R× . . .R, Cartesian product of R n times =⇒
“exponentially larger than R” ≡ finding stuff a lot harder

“Space is big. Really big. You just won’t

believe how vastly, hugely, mind-bogglingly big it is.” [15]

▶ Assume we can even luckily restrict to a “small” x ∈ X ⊂Rn: a “box”

(hyperrectangle) X = { x ∈ Rn : x− ≤ x ≤ x+ }, x± ∈ Rn (with x− ≤ x+)

▶ Assume x− = 0, x+ = u = [1 , . . . , 1] and we can only look to integer values:

still have 2n points to look at (binary hypercube), grows too fast with n

▶ Even picturing things is more complex and requires appropriate tools

Multivariate optimization 19

▶ Next crucial step: f : Rn → R, i.e., f (x1 , x2 , . . . , xn) = f (x)

with x = [xi]
n
i=1 = [x1 , x2 , . . . , xn] ∈ Rn

▶ n can be smallish (2, 3, 100), largish (104, 105) or heinously large (109, 1011)

▶ All previous stuff (f∗, X∗, constraints, . . .) immediately generalises

▶ Rn = R× R× . . .R, Cartesian product of R n times =⇒
“exponentially larger than R” ≡ finding stuff a lot harder

“Space is big. Really big. You just won’t

believe how vastly, hugely, mind-bogglingly big it is.” [15]

▶ Assume we can even luckily restrict to a “small” x ∈ X ⊂Rn: a “box”

(hyperrectangle) X = { x ∈ Rn : x− ≤ x ≤ x+ }, x± ∈ Rn (with x− ≤ x+)

▶ Assume x− = 0, x+ = u = [1 , . . . , 1] and we can only look to integer values:

still have 2n points to look at (binary hypercube), grows too fast with n

▶ Even picturing things is more complex and requires appropriate tools

Multivariate optimization 19

▶ Next crucial step: f : Rn → R, i.e., f (x1 , x2 , . . . , xn) = f (x)

with x = [xi]
n
i=1 = [x1 , x2 , . . . , xn] ∈ Rn

▶ n can be smallish (2, 3, 100), largish (104, 105) or heinously large (109, 1011)

▶ All previous stuff (f∗, X∗, constraints, . . .) immediately generalises

▶ Rn = R× R× . . .R, Cartesian product of R n times =⇒
“exponentially larger than R” ≡ finding stuff a lot harder

“The vector space Rn is big. Really big. You just won’t

believe how vastly, hugely, mind-bogglingly big it is.” [15]

▶ Assume we can even luckily restrict to a “small” x ∈ X ⊂Rn: a “box”

(hyperrectangle) X = { x ∈ Rn : x− ≤ x ≤ x+ }, x± ∈ Rn (with x− ≤ x+)

▶ Assume x− = 0, x+ = u = [1 , . . . , 1] and we can only look to integer values:

still have 2n points to look at (binary hypercube), grows too fast with n

▶ Even picturing things is more complex and requires appropriate tools

Multivariate optimization 19

▶ Next crucial step: f : Rn → R, i.e., f (x1 , x2 , . . . , xn) = f (x)

with x = [xi]
n
i=1 = [x1 , x2 , . . . , xn] ∈ Rn

▶ n can be smallish (2, 3, 100), largish (104, 105) or heinously large (109, 1011)

▶ All previous stuff (f∗, X∗, constraints, . . .) immediately generalises

▶ Rn = R× R× . . .R, Cartesian product of R n times =⇒
“exponentially larger than R” ≡ finding stuff a lot harder

“The vector space Rn is big. Really big. You just won’t

believe how vastly, hugely, mind-bogglingly big it is.” [15]

▶ Assume we can even luckily restrict to a “small” x ∈ X ⊂Rn: a “box”

(hyperrectangle) X = { x ∈ Rn : x− ≤ x ≤ x+ }, x± ∈ Rn (with x− ≤ x+)

▶ Assume x− = 0, x+ = u = [1 , . . . , 1] and we can only look to integer values:

still have 2n points to look at (binary hypercube), grows too fast with n

▶ Even picturing things is more complex and requires appropriate tools

Multivariate optimization 19

▶ Next crucial step: f : Rn → R, i.e., f (x1 , x2 , . . . , xn) = f (x)

with x = [xi]
n
i=1 = [x1 , x2 , . . . , xn] ∈ Rn

▶ n can be smallish (2, 3, 100), largish (104, 105) or heinously large (109, 1011)

▶ All previous stuff (f∗, X∗, constraints, . . .) immediately generalises

▶ Rn = R× R× . . .R, Cartesian product of R n times =⇒
“exponentially larger than R” ≡ finding stuff a lot harder

“The vector space Rn is big. Really big. You just won’t

believe how vastly, hugely, mind-bogglingly big it is.” [15]

▶ Assume we can even luckily restrict to a “small” x ∈ X ⊂Rn: a “box”

(hyperrectangle) X = { x ∈ Rn : x− ≤ x ≤ x+ }, x± ∈ Rn (with x− ≤ x+)

▶ Assume x− = 0, x+ = u = [1 , . . . , 1] and we can only look to integer values:

still have 2n points to look at (binary hypercube), grows too fast with n

▶ Even picturing things is more complex and requires appropriate tools

An aside, once and for all: how about f : Rn → Rk? 20

▶ Already “f : X → R” a rather strong assumption:

can “express all the value of any x ∈ X with a single number” =⇒
given x ′ and x ′′ I can always tell which one I like best (R has total order)

▶ Often there would be more than one objective:

(P) min
{
[f1(x) , f2(x) , . . .] : x ∈ X

}
with f1, f2, . . . contrasting and/or with incomparable units (apples vs. oranges)

▶ car cost vs. flashiness vs. km/l vs. # seats vs. trunk space . . .

▶ loss function L(w) vs. regularity R(w) in ML

▶ . . .

▶ Vector-valued (a.k.a. multi-objective) optimization: f : X → Rk with k > 1

▶ Textbook example: portfolio selection problem

▶ X = set of financial instruments portfolios available to buy

▶ f1(x) = expected return of portfolio x (e)

▶ f2(x) = risk of portfolio x not achieving the expected return (%, CVAR, . . .)

A Very Quick Glimpse to Multi-objective Optimization 21

▶ Rk with k > 1 has no total order =⇒
no “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

▶ All a bit fuzzy, but it’s the nature of the beast

▶ We always assume this done if necessary at modelling stage
(regularization, grid search used to divine hyperparameters α, β1, β2)

A Very Quick Glimpse to Multi-objective Optimization 21

return

ris
k

▶ Rk with k > 1 has no total order =⇒
no “best” solution, only

non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

▶ All a bit fuzzy, but it’s the nature of the beast

▶ We always assume this done if necessary at modelling stage
(regularization, grid search used to divine hyperparameters α, β1, β2)

A Very Quick Glimpse to Multi-objective Optimization 21

return

ris
k

▶ Rk with k > 1 has no total order =⇒
no “best” solution, only non-dominated ones on the

Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

▶ All a bit fuzzy, but it’s the nature of the beast

▶ We always assume this done if necessary at modelling stage
(regularization, grid search used to divine hyperparameters α, β1, β2)

A Very Quick Glimpse to Multi-objective Optimization 21

return

ris
k

▶ Rk with k > 1 has no total order =⇒
no “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

▶ All a bit fuzzy, but it’s the nature of the beast

▶ We always assume this done if necessary at modelling stage
(regularization, grid search used to divine hyperparameters α, β1, β2)

A Very Quick Glimpse to Multi-objective Optimization 21

return

ris
k

ris
k-

ad
just

ed

 re

tu
rn

▶ Rk with k > 1 has no total order =⇒
no “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions: maximize risk-adjusted return,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

▶ All a bit fuzzy, but it’s the nature of the beast

▶ We always assume this done if necessary at modelling stage
(regularization, grid search used to divine hyperparameters α, β1, β2)

A Very Quick Glimpse to Multi-objective Optimization 21

return

ris
k

risk budget

▶ Rk with k > 1 has no total order =⇒
no “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

maximize return with budget on maximum risk,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

a.k.a. budgeting min
{
f1(x) : f2(x) ≤ β2 , x ∈ X

}
(which β2??)

▶ All a bit fuzzy, but it’s the nature of the beast

▶ We always assume this done if necessary at modelling stage
(regularization, grid search used to divine hyperparameters α, β1, β2)

A Very Quick Glimpse to Multi-objective Optimization 21

return

ris
k

re
tu

rn
 b

ud
ge

t

▶ Rk with k > 1 has no total order =⇒
no “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

minimize risk with budget on minimum return,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

a.k.a. budgeting min
{
f2(x) : f1(x) ≥ β1 , x ∈ X

}
(which β1??)

▶ All a bit fuzzy, but it’s the nature of the beast

▶ We always assume this done if necessary at modelling stage
(regularization, grid search used to divine hyperparameters α, β1, β2)

A Very Quick Glimpse to Multi-objective Optimization 21

return

ris
k

re
tu

rn
 b

ud
ge

t

▶ Rk with k > 1 has no total order =⇒
no “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

minimize risk with budget on minimum return,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

a.k.a. budgeting min
{
f2(x) : f1(x) ≥ β1 , x ∈ X

}
(which β1??)

▶ All a bit fuzzy, but it’s the nature of the beast

▶ We always assume this done if necessary at modelling stage
(regularization, grid search used to divine hyperparameters α, β1, β2)

Scalar product, norm, distance, ball 22

▶ (Euclidean) scalar product of x ∈ Rn and z ∈ Rn:

⟨ x , z ⟩ =
∑n

i=1 xizi = x1z1 + · · ·+ xnzn

▶ (Euclidean) norm: ∥ x ∥ :=
√

x21 + · · ·+ x2n =
√
⟨ x , x ⟩ (induced by ⟨ · , · ⟩)

x z

= 0 ▶ Geometric interpretation: ⟨ x , z ⟩ = ∥ x ∥ · ∥ z ∥ · cos(θ)

⟨ x , z ⟩> 0 ≡ “x and z point in the same direction”

▶ Cauchy-Schwarz inequality: | ⟨ x , z ⟩ | ≤ ∥ x ∥∥ z ∥ ∀x , z

▶ (Euclidean) distance between x and z = norm of x when z is the origin:

d(x , z) := ∥ x − z ∥ =
√
(x1 − z1)2 + · · ·+ (xn − zn)2

▶ Ball, center x ∈ Rn, radius r > 0: B(x , r) = { z ∈ Rn : ∥ z − x ∥ ≤ r }

Scalar product, norm, distance, ball 22

▶ (Euclidean) scalar product of x ∈ Rn and z ∈ Rn:

⟨ x , z ⟩ =
∑n

i=1 xizi = x1z1 + · · ·+ xnzn

▶ (Euclidean) norm: ∥ x ∥ :=
√

x21 + · · ·+ x2n =
√
⟨ x , x ⟩ (induced by ⟨ · , · ⟩)

x z

= 0 ▶ Geometric interpretation: ⟨ x , z ⟩ = ∥ x ∥ · ∥ z ∥ · cos(θ)

⟨ x , z ⟩> 0 ≡ “x and z point in the same direction”

▶ Cauchy-Schwarz inequality: | ⟨ x , z ⟩ | ≤ ∥ x ∥∥ z ∥ ∀x , z

▶ (Euclidean) distance between x and z = norm of x when z is the origin:

d(x , z) := ∥ x − z ∥ =
√
(x1 − z1)2 + · · ·+ (xn − zn)2

▶ Ball, center x ∈ Rn, radius r > 0: B(x , r) = { z ∈ Rn : ∥ z − x ∥ ≤ r }

Scalar product, norm, distance, ball 22

▶ (Euclidean) scalar product of x ∈ Rn and z ∈ Rn:

⟨ x , z ⟩ =
∑n

i=1 xizi = x1z1 + · · ·+ xnzn

▶ (Euclidean) norm: ∥ x ∥ :=
√

x21 + · · ·+ x2n =
√
⟨ x , x ⟩ (induced by ⟨ · , · ⟩)

x

z

> 0

▶ Geometric interpretation: ⟨ x , z ⟩ = ∥ x ∥ · ∥ z ∥ · cos(θ)

⟨ x , z ⟩> 0 ≡ “x and z point in the same direction”

▶ Cauchy-Schwarz inequality: | ⟨ x , z ⟩ | ≤ ∥ x ∥∥ z ∥ ∀x , z

▶ (Euclidean) distance between x and z = norm of x when z is the origin:

d(x , z) := ∥ x − z ∥ =
√
(x1 − z1)2 + · · ·+ (xn − zn)2

▶ Ball, center x ∈ Rn, radius r > 0: B(x , r) = { z ∈ Rn : ∥ z − x ∥ ≤ r }

Scalar product, norm, distance, ball 22

▶ (Euclidean) scalar product of x ∈ Rn and z ∈ Rn:

⟨ x , z ⟩ =
∑n

i=1 xizi = x1z1 + · · ·+ xnzn

▶ (Euclidean) norm: ∥ x ∥ :=
√

x21 + · · ·+ x2n =
√
⟨ x , x ⟩ (induced by ⟨ · , · ⟩)

x

z

> 0

▶ Geometric interpretation: ⟨ x , z ⟩ = ∥ x ∥ · ∥ z ∥ · cos(θ)

⟨ x , z ⟩> 0 ≡ “x and z point in the same direction”

▶ Cauchy-Schwarz inequality: | ⟨ x , z ⟩ | ≤ ∥ x ∥∥ z ∥ ∀x , z

▶ (Euclidean) distance between x and z = norm of x when z is the origin:

d(x , z) := ∥ x − z ∥ =
√
(x1 − z1)2 + · · ·+ (xn − zn)2

▶ Ball, center x ∈ Rn, radius r > 0: B(x , r) = { z ∈ Rn : ∥ z − x ∥ ≤ r }

Scalar product, norm, distance, ball 22

▶ (Euclidean) scalar product of x ∈ Rn and z ∈ Rn:

⟨ x , z ⟩ =
∑n

i=1 xizi = x1z1 + · · ·+ xnzn

▶ (Euclidean) norm: ∥ x ∥ :=
√

x21 + · · ·+ x2n =
√
⟨ x , x ⟩ (induced by ⟨ · , · ⟩)

x

z

= 0

▶ Geometric interpretation: ⟨ x , z ⟩ = ∥ x ∥ · ∥ z ∥ · cos(θ)

⟨ x , z ⟩ = 0 ≡ x ⊥ z (orthogonal)

▶ Cauchy-Schwarz inequality: | ⟨ x , z ⟩ | ≤ ∥ x ∥∥ z ∥ ∀x , z

▶ (Euclidean) distance between x and z = norm of x when z is the origin:

d(x , z) := ∥ x − z ∥ =
√
(x1 − z1)2 + · · ·+ (xn − zn)2

▶ Ball, center x ∈ Rn, radius r > 0: B(x , r) = { z ∈ Rn : ∥ z − x ∥ ≤ r }

Scalar product, norm, distance, ball 22

▶ (Euclidean) scalar product of x ∈ Rn and z ∈ Rn:

⟨ x , z ⟩ =
∑n

i=1 xizi = x1z1 + · · ·+ xnzn

▶ (Euclidean) norm: ∥ x ∥ :=
√

x21 + · · ·+ x2n =
√
⟨ x , x ⟩ (induced by ⟨ · , · ⟩)

x

z

< 0

▶ Geometric interpretation: ⟨ x , z ⟩ = ∥ x ∥ · ∥ z ∥ · cos(θ)

⟨ x , z ⟩< 0 ≡ “x and z point in the opposite direction”

▶ Cauchy-Schwarz inequality: | ⟨ x , z ⟩ | ≤ ∥ x ∥∥ z ∥ ∀x , z

▶ (Euclidean) distance between x and z = norm of x when z is the origin:

d(x , z) := ∥ x − z ∥ =
√
(x1 − z1)2 + · · ·+ (xn − zn)2

▶ Ball, center x ∈ Rn, radius r > 0: B(x , r) = { z ∈ Rn : ∥ z − x ∥ ≤ r }

Scalar product, norm, distance, ball 22

▶ (Euclidean) scalar product of x ∈ Rn and z ∈ Rn:

⟨ x , z ⟩ =
∑n

i=1 xizi = x1z1 + · · ·+ xnzn

▶ (Euclidean) norm: ∥ x ∥ :=
√

x21 + · · ·+ x2n =
√
⟨ x , x ⟩ (induced by ⟨ · , · ⟩)

x

z

< 0

▶ Geometric interpretation: ⟨ x , z ⟩ = ∥ x ∥ · ∥ z ∥ · cos(θ)

⟨ x , z ⟩< 0 ≡ “x and z point in the opposite direction”

▶ Cauchy-Schwarz inequality: | ⟨ x , z ⟩ | ≤ ∥ x ∥∥ z ∥ ∀x , z

▶ (Euclidean) distance between x and z = norm of x when z is the origin:

d(x , z) := ∥ x − z ∥ =
√

(x1 − z1)2 + · · ·+ (xn − zn)2

▶ Ball, center x ∈ Rn, radius r > 0: B(x , r) = { z ∈ Rn : ∥ z − x ∥ ≤ r }

Mathematically speaking: Vector space, scalar product [1, A.1.1] 23

▶ Rn ∈ vector space ≡ closed under sum and scalar multiplication

x + z = [x1 + z1 , . . . , xn + zn] , αx = [αx1 , . . . , αxn]

▶ Finite-dimensional vector space: { ui }ni=1 finite base s.t. ∀ x ∈ Rn ∃α1, . . . , αn

s.t. x = α1u
1 + . . .+ αnu

n (canonical base: uii = 1, uih = 0 for h ̸= i , αi = xi)

▶ Not all vector spaces are finite-dimensional (function spaces, . . .)

▶ Properties ≡ definition of scalar product:

1. ⟨ x , z ⟩ = ⟨ z , x ⟩ ∀x , z ∈ Rn (symmetry)

2. ⟨ x , x ⟩ ≥ 0 ∀x ∈ Rn , ⟨ x , x ⟩ = 0 ⇐⇒ x = 0

3. ⟨αx , z ⟩ = α⟨ x , z ⟩ ∀x ∈ Rn , α ∈ R
4. ⟨ x + w , z ⟩ = ⟨ x , z ⟩+ ⟨w , z ⟩ ∀x , w , z ∈ Rn

▶ ∃ other scalar products that make sense in other spaces

(matrices, integrable functions, random variables, . . .)

▶ Not just theoretical stuff (cf. kernel in SVM)

Mathematically speaking: Norm, distance [14][1, A.1.2][6, p. 600] 24

▶ Properties ≡ definition of norm:

1. ∥ x ∥ ≥ 0 ∀x ∈ Rn , ∥ x ∥ = 0 ⇐⇒ x = 0

2. ∥αx ∥ = |α |∥ x ∥ ∀x ∈ Rn , α ∈ R

3. ∥ x + z ∥ ≤ ∥ x ∥+ ∥ z ∥ ∀x , z ∈ Rn (triangle inequality)

▶ ∥ x + z ∥2 = ∥ x ∥2 + ∥ z ∥2 + 2⟨ x , z ⟩ (only Euclidean norm)

▶ 2∥ x ∥2 + 2∥ z ∥2 = ∥ x + z ∥2 + ∥ x − z ∥2 (Parallelogram Law)

▶ Properties ≡ definition of distance:

1. d(x , z) ≥ 0 ∀x , z ∈ Rn , d(x , z) = 0 ⇐⇒ x = z

2. d(αx , 0) = |α|d(x , 0) ∀x ∈ Rn , α ∈ R

3. d(x , w) ≤ d(x , z) + d(z , w) ∀x , w , z ∈ Rn (triangle inequality)

▶ ∥ · ∥ defines B(· , ·) ≡ the topology of the vector space:

what is next to what (will be useful later on)

Picturing multivariate functions 25

▶ gr(f) ∈ Rn+1, impossible if n > 3 (n = 3 hard already)

▶ L(f , ·) ∈ Rn, impossible if n > 4 (n = 4 hard already)

▶ General n, f : Rn → R, x ∈ Rn (origin), d ∈ Rn (direction):

φx,d(α) = f (x + αd) : R → R tomography of f from x along d

▶ gr(φx,d) can always be pictured, but too many of them: which x , d?

▶ ∥ d ∥ only changes the scale: φx,βd(α) = φx,d(βα) (check) =⇒
often (but not always) convenient to use normalised direction (∥ d ∥ = 1)

▶ Simplest case: restriction along i-th coordinate (∥ ui ∥ = 1)

f ix (α) = f (x1 , . . . , xi−1 , α , xi+1 , . . . , xn) ≡ φ[x1 ,..., xi−1 , 0 , xi+1 ,..., xn],ui (α)

▶ For small n can “look at all d”

▶ Otherwise, find the specific d that “shows what you want to see”

▶ When x and d clear from context (will happen a lot), just φ(α)

Picturing multivariate functions 25

▶ gr(f) ∈ Rn+1, impossible if n > 3 (n = 3 hard already)

▶ L(f , ·) ∈ Rn, impossible if n > 4 (n = 4 hard already)

▶ General n, f : Rn → R, x ∈ Rn (origin), d ∈ Rn (direction):

φx,d(α) = f (x + αd) : R → R tomography of f from x along d

▶ gr(φx,d) can always be pictured, but too many of them: which x , d?

▶ ∥ d ∥ only changes the scale: φx,βd(α) = φx,d(βα) (check) =⇒
often (but not always) convenient to use normalised direction (∥ d ∥ = 1)

▶ Simplest case: restriction along i-th coordinate (∥ ui ∥ = 1)

f ix (α) = f (x1 , . . . , xi−1 , α , xi+1 , . . . , xn) ≡ φ[x1 ,..., xi−1 , 0 , xi+1 ,..., xn],ui (α)

▶ For small n can “look at all d”

▶ Otherwise, find the specific d that “shows what you want to see”

▶ When x and d clear from context (will happen a lot), just φ(α)

The simplest multivariate functions: linear 26

▶ Linear function: f (x) = ⟨ b , x ⟩ =
∑n

i=1 bixi , fixed b ∈ Rn

▶ Linear ≡ i. f (γx) = γf (x), ii. f (x + z) = f (x)+ f (z) ∀ x , γ , z

Exercise: Linear =⇒ i) + ii) trivial, prove ⇐=; extends to affine (. . . +c)?

▶ ⟨ b , x ⟩ =
∑n

i=1[fi (xi) = bixi], sum of n univariate linear functions

b

▶ gr(f) = hyperplane in Rn+1 (plane in R3)

▶ Level sets are parallel hyperplanes in Rn (lines in R2) ⊥ b:

f (x) = f (z) ≡ ⟨ b , x ⟩ = ⟨ b , z ⟩ ≡ ⟨ b , z − x ⟩ = 0 ≡ b ⊥ z − x

The simplest multivariate functions: linear 26

▶ Linear function: f (x) = ⟨ b , x ⟩ =
∑n

i=1 bixi , fixed b ∈ Rn

▶ Linear ≡ i. f (γx) = γf (x), ii. f (x + z) = f (x)+ f (z) ∀ x , γ , z

Exercise: Linear =⇒ i) + ii) trivial, prove ⇐=; extends to affine (. . . +c)?

▶ ⟨ b , x ⟩ =
∑n

i=1[fi (xi) = bixi], sum of n univariate linear functions

b

▶ gr(f) = hyperplane in Rn+1 (plane in R3)

▶ Level sets are parallel hyperplanes in Rn (lines in R2) ⊥ b:

f (x) = f (z) ≡ ⟨ b , x ⟩ = ⟨ b , z ⟩ ≡ ⟨ b , z − x ⟩ = 0 ≡ b ⊥ z − x

The simplest multivariate functions: linear 26

▶ Linear function: f (x) = ⟨ b , x ⟩ =
∑n

i=1 bixi , fixed b ∈ Rn

▶ Linear ≡ i. f (γx) = γf (x), ii. f (x + z) = f (x)+ f (z) ∀ x , γ , z

Exercise: Linear =⇒ i) + ii) trivial, prove ⇐=; extends to affine (. . . +c)?

▶ ⟨ b , x ⟩ =
∑n

i=1[fi (xi) = bixi], sum of n univariate linear functions

b

▶ gr(f) = hyperplane in Rn+1 (plane in R3)

▶ Level sets are parallel hyperplanes in Rn (lines in R2) ⊥ b:

f (x) = f (z) ≡ ⟨ b , x ⟩ = ⟨ b , z ⟩ ≡ ⟨ b , z − x ⟩ = 0 ≡ b ⊥ z − x

The simplest multivariate functions: linear 26

▶ Linear function: f (x) = ⟨ b , x ⟩ =
∑n

i=1 bixi , fixed b ∈ Rn

▶ Linear ≡ i. f (γx) = γf (x), ii. f (x + z) = f (x)+ f (z) ∀ x , γ , z

Exercise: Linear =⇒ i) + ii) trivial, prove ⇐=; extends to affine (. . . +c)?

▶ ⟨ b , x ⟩ =
∑n

i=1[fi (xi) = bixi], sum of n univariate linear functions

x

z

b

▶ gr(f) = hyperplane in Rn+1 (plane in R3)

▶ Level sets are parallel hyperplanes in Rn (lines in R2) ⊥ b:

f (x) = f (z) ≡ ⟨ b , x ⟩ = ⟨ b , z ⟩ ≡ ⟨ b , z − x ⟩ = 0 ≡ b ⊥ z − x

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”,

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”,

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”,

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”,

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”,

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”,

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”,

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”,

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”,

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”,

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”,

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”, “more collinear” =⇒ steeper

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”, collinear =⇒ steepest

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”, “less collinear” =⇒ less steep

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”, “less collinear” =⇒ less steep

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b same direction as d”, “less collinear” =⇒ less steep

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ “Flat” if d ⊥ b

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Decreasing if “b opposite direction as d”,

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Decreasing if “b opposite direction as d”, “more collinear” =⇒ steeper

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Decreasing if “b opposite direction as d”, “more collinear” =⇒ steeper

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Decreasing if “b opposite direction as d”, collinear =⇒ steepest (negative)

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Decreasing if “b opposite direction as d”,

“less collinear” =⇒ less steep

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Decreasing if “b opposite direction as d”, “less collinear” =⇒ less steep

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Decreasing if “b opposite direction as d”, “less collinear” =⇒ less steep

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ “Flat” if d ⊥ b

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b in the same direction as d”

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b in the same direction as d”

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

Tomography & optimization of linear multivariate functions 27

▶ f (x) = ⟨ b , x ⟩, x = 0, ∥ d ∥ = 1: φ(α) = α⟨ b , d ⟩ = α∥ b ∥ cos(θ)

▶ Increasing if “b in the same direction as d”

▶ f∗ = min{ f (x) } = −∞ except if b = 0, in which case f∗ = 0 (same for max)

▶ min{ f (x) : x ∈ X }, X hyperrectangle, Optimizing a linear function (same for max)

n independent problems, as nothing links xi and xj for i ̸= i

▶ n closed formulæ O(1) each, almost the last time

A very simple quadratic function: separable (non-homogeneous) 28

▶ Separable (non-homogeneous) quadratic function:

f (x) =
∑n

i=1[fi (xi) = aix
2
i + bixi], fixed (a , b) ∈ R2n

= sum of n univariate quadratic (non-homogeneous) functions

▶ f (x) = ∥ x ∥2 =
∑n

i=1 x
2
i an important special case

▶ f (x1 , x2) = ax21 + x22 [+0x1 + 0x2]

▶ Contour plots for different values of a

▶ For a = 1, perfect circles

▶ Larger / smaller a, more ↕ / ↔ elongated

▶ Could be non-homogeneous,

[0 , 0] → [−b1/2a1 , −b2/2a2]

▶ O(n) Optimizing a quadratic non-homogeneous function ,
this is the last time

▶ Not a general quadratic function, coming right next

A very simple quadratic function: separable (non-homogeneous) 28

▶ Separable (non-homogeneous) quadratic function:

f (x) =
∑n

i=1[fi (xi) = aix
2
i + bixi], fixed (a , b) ∈ R2n

= sum of n univariate quadratic (non-homogeneous) functions

▶ f (x) = ∥ x ∥2 =
∑n

i=1 x
2
i an important special case

▶ f (x1 , x2) = ax21 + x22 [+0x1 + 0x2]

▶ Contour plots for different values of a

▶ For a = 1, perfect circles

▶ Larger / smaller a, more ↕ / ↔ elongated

▶ Could be non-homogeneous,

[0 , 0] → [−b1/2a1 , −b2/2a2]

▶ O(n) Optimizing a quadratic non-homogeneous function ,
this is the last time

▶ Not a general quadratic function, coming right next

A very simple quadratic function: separable (non-homogeneous) 28

▶ Separable (non-homogeneous) quadratic function:

f (x) =
∑n

i=1[fi (xi) = aix
2
i + bixi], fixed (a , b) ∈ R2n

= sum of n univariate quadratic (non-homogeneous) functions

▶ f (x) = ∥ x ∥2 =
∑n

i=1 x
2
i an important special case

▶ f (x1 , x2) = ax21 + x22 [+0x1 + 0x2]

▶ Contour plots for different values of a

▶ For a = 1, perfect circles

▶ Larger / smaller a, more ↕ / ↔ elongated

▶ Could be non-homogeneous,

[0 , 0] → [−b1/2a1 , −b2/2a2]

▶ O(n) Optimizing a quadratic non-homogeneous function ,
this is the last time

▶ Not a general quadratic function, coming right next

A very simple quadratic function: separable (non-homogeneous) 28

▶ Separable (non-homogeneous) quadratic function:

f (x) =
∑n

i=1[fi (xi) = aix
2
i + bixi], fixed (a , b) ∈ R2n

= sum of n univariate quadratic (non-homogeneous) functions

▶ f (x) = ∥ x ∥2 =
∑n

i=1 x
2
i an important special case

▶ f (x1 , x2) = ax21 + x22 [+0x1 + 0x2]

▶ Contour plots for different values of a

▶ For a = 1, perfect circles

▶ Larger / smaller a, more ↕ / ↔ elongated

▶ Could be non-homogeneous,

[0 , 0] → [−b1/2a1 , −b2/2a2]

▶ O(n) Optimizing a quadratic non-homogeneous function ,
this is the last time

▶ Not a general quadratic function, coming right next

A very simple quadratic function: separable (non-homogeneous) 28

▶ Separable (non-homogeneous) quadratic function:

f (x) =
∑n

i=1[fi (xi) = aix
2
i + bixi], fixed (a , b) ∈ R2n

= sum of n univariate quadratic (non-homogeneous) functions

▶ f (x) = ∥ x ∥2 =
∑n

i=1 x
2
i an important special case

▶ f (x1 , x2) = ax21 + x22 [+0x1 + 0x2]

▶ Contour plots for different values of a

▶ For a = 1, perfect circles

▶ Larger / smaller a, more ↕ / ↔ elongated

▶ Could be non-homogeneous,

[0 , 0] → [−b1/2a1 , −b2/2a2]

▶ O(n) Optimizing a quadratic non-homogeneous function ,
this is the last time

▶ Not a general quadratic function, coming right next

A very simple quadratic function: separable (non-homogeneous) 28

▶ Separable (non-homogeneous) quadratic function:

f (x) =
∑n

i=1[fi (xi) = aix
2
i + bixi], fixed (a , b) ∈ R2n

= sum of n univariate quadratic (non-homogeneous) functions

▶ f (x) = ∥ x ∥2 =
∑n

i=1 x
2
i an important special case

▶ f (x1 , x2) = ax21 + x22 [+0x1 + 0x2]

▶ Contour plots for different values of a

▶ For a = 1, perfect circles

▶ Larger / smaller a, more ↕ / ↔ elongated

▶ Could be non-homogeneous,

[0 , 0] → [−b1/2a1 , −b2/2a2]

▶ O(n) Optimizing a quadratic non-homogeneous function ,
this is the last time

▶ Not a general quadratic function, coming right next

The general (homogeneous) quadratic function 29

▶ Nonseparable homogeneous quadratic function: fixed Q ∈ Rn×n (n Qi ∈ Rn)

f (x) = 1
2x

TQx = 1
2

[∑n
i=1 Qiix

2
i +

∑n
i=1

∑n
j=1, j ̸=i Qijxixj

]
▶ Not linear: f (x + z) = 1

2 (x + z)TQ(x + z) = f (x) + f (z)+ zTQx

▶ W.l.o.g. Q symmetric:

xTQx = [(xTQx) + (xTQx)T] / 2 = xT [(Q + QT) / 2]x

▶ f symmetric: f (x) = f (−x) =⇒ “centred in x = 0”

▶ Tomography: φ(α) = f (αd) = 1
2α

2(dTQd) =⇒

homogeneous quadratic univariate, sign and steepness depend on dTQd

▶ Need to know about signs of dTQd when d changes: (multi)linear algebra

▶ Crucial stuff: spectral decomposition, eigenvalues, eigenvectors of Q

Spectral decomposition [1, A.5.2][6, p. 603][11] 30

▶ Q ∈ Rn×n, v ∈ Rn, λ ∈ R s.t. Qv = λv : v eigenvector of Q, λ eigenvalue

▶ v eigenvector ≡ Qv = λv ≡ Q(−v) = λ(−v) ≡ − v eigenvector

▶ Q symmetric =⇒ has n distinct eigenvectors H1, H2, . . . , Hn and

n (not necessarily distinct) corresponding real eigenvalues λ1, λ2, . . . , λn

▶ Eigenvectors can always be taken orthonormal: Hi ⊥ Hj for i ̸= j , ∥Hi ∥ = 1

=⇒ linearly independent (check) =⇒ a(n orthonormal) basis of Rn

▶ Spectral decomposition: H = [H1 , . . . , Hn] ∈ Rn×n, Λ = diag(λ1 , . . . , λn)

Q = HΛHT = λ1H1H
T
1 + . . .+ λnHnH

T
n (check)

▶ Notation: λ1 ≥ λ2 ≥ . . . ≥ λn (λ1 = max, λn = min)

▶ Variational characterization of eigenvalues:

λ1 = max{ dTQd / dTd : d ̸= 0 } = max{ dTQd : ∥ d ∥ = 1 }
λn = min{ dTQd / dTd : d ̸= 0 } = min{ dTQd : ∥ d ∥ = 1 }

▶ Q ≻ 0 = positive definite if λi > 0 ∀ i ≡ λn > 0 ≡ dTQd > 0 ∀ d ̸= 0

Q ⪰ 0 = positive semi-definite if λi ≥ 0 ∀ i ≡ λn ≥ 0 ≡ dTQd ≥ 0 ∀ d ̸= 0

negative definite (≺), semi-definite (⪯), indefinite (≻≺) obvious

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶ least steep along H2 (λ2 = 4)

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶ steepest along H1 (λ1 = 8)

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶ least steep along −H2 (λ2 = 4)

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶ steepest along −H1 (λ1 = 8)

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions I 31

▶ Fundamental relation: φHi (α) = α2λi (check)

▶ Q =

[
6 −2

−2 6

]
≻ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
4

]

▶ dTQd > 0 ∀ d , steepness change with d

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶ completely flat along H2 (λ2 = 0)

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶ steepest along H1 (λ1 = 8)

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶ completely flat along −H2 (λ2 = 0)

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶ steepest along −H1 (λ1 = 8)

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions II 32

▶ Recall φHi (α) = α2λi

▶ Q =

[
4 −4

−4 4

]
⪰ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8
0

]

▶ dTQd ≥ 0 ∀ d , but ∃ d s.t. dTQd =0

▶ intermediate steepness “in between”

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶ steepest negative along H2 (λ2 = −2)

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶ steepest positive along H1 (λ1 = 8)

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶ intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶ intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶ intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶ steepest negative along −H2 (λ2 = −2)

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶ intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶ intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶ intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶ steepest positive along −H1 (λ1 = 8)

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶ intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions III 33

▶ Recall φHi (α) = α2λi

▶ Q =

[
3 −5

−5 3

]
≻≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
8

−2

]

▶ dTQd can be both > 0 and < 0

▶ intermediate steepness (positive or negative) “in between”

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶ steepest negative along H2 (λ2 = −8)

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶ least steep negative along H1 (λ1 = −4)

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶ intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶ intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶ intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶ steepest negative along −H2 (λ2 = −8)

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶ intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶ intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶ intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶ least steep negative along −H1 (λ1 = −4)

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶ intermediate steepness (negative) “in between”

Tomography of homogeneous quadratic functions IV 34

▶ Recall φHi (α) = α2λi

▶ Q =

[
−6 −2
−2 −6

]
≺ 0 H =

√
2

2

[
−1 1
1 1

]
λ =

[
−4
−8

]

▶ dTQd < 0 ∀ d , steepness change with d

▶ intermediate steepness (negative) “in between”

Homogeneous quadratic functions: graph and level sets 35

▶ All level sets centred in x = 0 by symmetry

▶ Q =

[
6 −2

−2 6

]
≻ 0

graph is a (convex) paraboloid

▶ Level sets can be precisely described in terms of Hi , λi

Homogeneous quadratic functions: graph and level sets 35

▶ All level sets centred in x = 0 by symmetry

▶ Q =

[
6 −2

−2 6

]
≻ 0

graph is a (convex) paraboloid

▶ Level sets can be precisely described in terms of Hi , λi

Homogeneous quadratic functions: graph and level sets 35

▶ All level sets centred in x = 0 by symmetry

▶ Q =

[
6 −2

−2 6

]
≻ 0

graph is a (convex) paraboloid

level sets are ellipsoids

▶ Level sets can be precisely described in terms of Hi , λi

Homogeneous quadratic functions: graph and level sets 35

▶ All level sets centred in x = 0 by symmetry

▶ Q =

[
2 2
2 2

]
⪰ 0

graph is a degenerate paraboloid

▶ Level sets can be precisely described in terms of Hi , λi

Homogeneous quadratic functions: graph and level sets 35

▶ All level sets centred in x = 0 by symmetry

▶ Q =

[
2 2
2 2

]
⪰ 0

graph is a degenerate paraboloid

level sets are degenerate ellipsoids

▶ Level sets can be precisely described in terms of Hi , λi

Homogeneous quadratic functions: graph and level sets 35

▶ All level sets centred in x = 0 by symmetry

▶ Q =

[
3 −5

−5 −3

]
≻≺ 0

graph saddle-shaped (0 is a saddle point)

▶ Level sets can be precisely described in terms of Hi , λi

Homogeneous quadratic functions: graph and level sets 35

▶ All level sets centred in x = 0 by symmetry

▶ Q =

[
3 −5

−5 −3

]
≻≺ 0

graph saddle-shaped (0 is a saddle point)

level sets are hyperboloids

▶ Level sets can be precisely described in terms of Hi , λi

Homogeneous quadratic functions: graph and level sets 35

▶ All level sets centred in x = 0 by symmetry

▶ Q =

[
−6 −2
−2 −6

]
≺ 0

graph a (concave, i.e., “upside-down”) paraboloid

▶ Level sets can be precisely described in terms of Hi , λi

Homogeneous quadratic functions: graph and level sets 35

▶ All level sets centred in x = 0 by symmetry

▶ Q =

[
−6 −2
−2 −6

]
≺ 0

graph a (concave, i.e., “upside-down”) paraboloid

level sets are ellipsoids again

▶ Level sets can be precisely described in terms of Hi , λi

Homogeneous quadratic functions: graph and level sets 35

▶ All level sets centred in x = 0 by symmetry

▶ Q =

[
−6 −2
−2 −6

]
≺ 0

graph a (concave, i.e., “upside-down”) paraboloid

level sets are ellipsoids again

▶ Level sets can be precisely described in terms of Hi , λi

Level sets of homogeneous quadratic functions algebraically 36

Q = H =

[
1 0
0 1

]
, λ =

[
1
1

]

▶ ∥ x ∥22 ≡ Q = H = Λ = I : perfect circles

▶ L(f , 1) ∩ Hi ≡ φHi (α) = 1 =⇒ λi > 0

▶ φHi (α) = 1 ≡ α =
√

1/λi =⇒
Hi ⊥ axes of L(f , 1), length

√
1/λi

▶ λi ↘ ≡ axis ↗, λi = 0 =⇒ “axis → ∞”

▶ λi < 0 =⇒ same with φHi (α) = −1

▶ All λi have the same sign: f (x) either ≥ 0 or ≤ 0 =⇒ ellipsoids

▶ Some λi = 0 =⇒ “degenerate” ellipsoids (∞ axis)

▶ λi > 0 and λj < 0: ∃αi , αj s.t. φHi (αi) + φHj (αj) = 0 =⇒ hyperboloids

Level sets of homogeneous quadratic functions algebraically 36

Q =

[
6 −2

−2 6

]
, H =

√
2

2

[
−1 1
1 1

]
, λ =

[
8
4

]

▶ Recall again φHi (α) = α2λi

▶ L(f , 1) ∩ Hi ≡ φHi (α) = 1 =⇒ λi > 0

▶ φHi (α) = 1 ≡ α =
√
1/λi =⇒

Hi ⊥ axes of L(f , 1), length
√
1/λi

▶ λi ↘ ≡ axis ↗, λi = 0 =⇒ “axis → ∞”

▶ λi < 0 =⇒ same with φHi (α) = −1

▶ All λi have the same sign: f (x) either ≥ 0 or ≤ 0 =⇒ ellipsoids

▶ Some λi = 0 =⇒ “degenerate” ellipsoids (∞ axis)

▶ λi > 0 and λj < 0: ∃αi , αj s.t. φHi (αi) + φHj (αj) = 0 =⇒ hyperboloids

Level sets of homogeneous quadratic functions algebraically 36

Q =

[
6 −2

−2 6

]
, H =

√
2

2

[
−1 1
1 1

]
, λ =

[
8
4

]

▶ Recall again φHi (α) = α2λi

▶ L(f , 1) ∩ Hi ≡ φHi (α) = 1 =⇒ λi > 0

▶ φHi (α) = 1 ≡ α =
√
1/λi =⇒

Hi ⊥ axes of L(f , 1), length
√
1/λi

▶ λi ↘ ≡ axis ↗, λi = 0 =⇒ “axis → ∞”

▶ λi < 0 =⇒ same with φHi (α) = −1

▶ All λi have the same sign: f (x) either ≥ 0 or ≤ 0 =⇒ ellipsoids

▶ Some λi = 0 =⇒ “degenerate” ellipsoids (∞ axis)

▶ λi > 0 and λj < 0: ∃αi , αj s.t. φHi (αi) + φHj (αj) = 0 =⇒ hyperboloids

Level sets of homogeneous quadratic functions algebraically 36

Q =

[
5 −3

−3 5

]
, H =

√
2

2

[
−1 1
1 1

]
, λ =

[
8
2

]

▶ Recall again φHi (α) = α2λi

▶ L(f , 1) ∩ Hi ≡ φHi (α) = 1 =⇒ λi > 0

▶ φHi (α) = 1 ≡ α =
√
1/λi =⇒

Hi ⊥ axes of L(f , 1), length
√
1/λi

▶ λi ↘ ≡ axis ↗,

λi = 0 =⇒ “axis → ∞”

▶ λi < 0 =⇒ same with φHi (α) = −1

▶ All λi have the same sign: f (x) either ≥ 0 or ≤ 0 =⇒ ellipsoids

▶ Some λi = 0 =⇒ “degenerate” ellipsoids (∞ axis)

▶ λi > 0 and λj < 0: ∃αi , αj s.t. φHi (αi) + φHj (αj) = 0 =⇒ hyperboloids

Level sets of homogeneous quadratic functions algebraically 36

Q =

[
4 −4

−4 4

]
, H =

√
2

2

[
−1 1
1 1

]
, λ =

[
8
0

]

▶ Recall again φHi (α) = α2λi

▶ L(f , 1) ∩ Hi ≡ φHi (α) = 1 =⇒ λi > 0

▶ φHi (α) = 1 ≡ α =
√
1/λi =⇒

Hi ⊥ axes of L(f , 1), length
√
1/λi

▶ λi ↘ ≡ axis ↗, λi = 0 =⇒ “axis → ∞”

▶ λi < 0 =⇒ same with φHi (α) = −1

▶ All λi have the same sign: f (x) either ≥ 0 or ≤ 0 =⇒ ellipsoids

▶ Some λi = 0 =⇒ “degenerate” ellipsoids (∞ axis)

▶ λi > 0 and λj < 0: ∃αi , αj s.t. φHi (αi) + φHj (αj) = 0 =⇒ hyperboloids

Level sets of homogeneous quadratic functions algebraically 36

Q =

[
4 −4

−4 4

]
, H =

√
2

2

[
−1 1
1 1

]
, λ =

[
8
0

]

▶ Recall again φHi (α) = α2λi

▶ L(f , 1) ∩ Hi ≡ φHi (α) = 1 =⇒ λi > 0

▶ φHi (α) = 1 ≡ α =
√
1/λi =⇒

Hi ⊥ axes of L(f , 1), length
√
1/λi

▶ λi ↘ ≡ axis ↗, λi = 0 =⇒ “axis → ∞”

▶ λi < 0 =⇒ same with φHi (α) = −1

▶ All λi have the same sign: f (x) either ≥ 0 or ≤ 0 =⇒ ellipsoids

▶ Some λi = 0 =⇒ “degenerate” ellipsoids (∞ axis)

▶ λi > 0 and λj < 0: ∃αi , αj s.t. φHi (αi) + φHj (αj) = 0 =⇒ hyperboloids

Level sets of homogeneous quadratic functions algebraically 36

Q =

[
3 −5

−5 3

]
, H =

√
2

2

[
−1 1
1 1

]
, λ =

[
8

−2

]

▶ Recall again φHi (α) = α2λi

▶ L(f , 1) ∩ Hi ≡ φHi (α) = 1 =⇒ λi > 0

▶ φHi (α) = 1 ≡ α =
√
1/λi =⇒

Hi ⊥ axes of L(f , 1), length
√
1/λi

▶ λi ↘ ≡ axis ↗, λi = 0 =⇒ “axis → ∞”

▶ λi < 0 =⇒ same with φHi (α) = −1

▶ All λi have the same sign: f (x) either ≥ 0 or ≤ 0 =⇒ ellipsoids

▶ Some λi = 0 =⇒ “degenerate” ellipsoids (∞ axis)

▶ λi > 0 and λj < 0: ∃αi , αj s.t. φHi (αi) + φHj (αj) = 0 =⇒ hyperboloids

Level sets of homogeneous quadratic functions algebraically 36

Q =

[
3 −5

−5 3

]
, H =

√
2

2

[
−1 1
1 1

]
, λ =

[
8

−2

]

▶ Recall again φHi (α) = α2λi

▶ L(f , 1) ∩ Hi ≡ φHi (α) = 1 =⇒ λi > 0

▶ φHi (α) = 1 ≡ α =
√
1/λi =⇒

Hi ⊥ axes of L(f , 1), length
√
1/λi

▶ λi ↘ ≡ axis ↗, λi = 0 =⇒ “axis → ∞”

▶ λi < 0 =⇒ same with φHi (α) = −1

▶ All λi have the same sign: f (x) either ≥ 0 or ≤ 0 =⇒ ellipsoids

▶ Some λi = 0 =⇒ “degenerate” ellipsoids (∞ axis)

▶ λi > 0 and λj < 0: ∃αi , αj s.t. φHi (αi) + φHj (αj) = 0 =⇒ hyperboloids

Level sets homogeneous quadratic functions, 3D example 37

Q =

 6 −2 0
−2 6 0
0 0 8

 , H =

 −1 1 0
1 1 0
0 0 1

 , λ =

 8
4
8


L(f , 1)

Level sets homogeneous quadratic functions, 3D example 37

Q =

 6 −2 0
−2 6 0
0 0 4

 , H =

 −1 1 0
1 1 0
0 0 1

 , λ =

 8
4
4


L(f , 1)

Level sets homogeneous quadratic functions, 3D example 37

Q =

 6 −2 0
−2 6 0
0 0 1

 , H =

 −1 1 0
1 1 0
0 0 1

 , λ =

 8
4
1


L(f , 1)

Level sets homogeneous quadratic functions, 3D example 37

Q =

 6 −2 0
−2 6 0
0 0 0

 , H =

 −1 1 0
1 1 0
0 0 1

 , λ =

 8
4
0


L(f , 1)

Optimizing a homogeneous quadratic multivariate function 38

▶ Clearly depends sign of eigenvalues of Q ≡ definiteness:

▶ Q ⪰ 0 ∧ Q ⪯ 0 ≡ λ1 = λn = 0 ≡ Q = 0 =⇒ min = max = 0 (constant)

▶ Q ⪰ 0 =⇒ min = 0, argmin = 0, max = +∞
▶ Q ⪯ 0 =⇒ max = 0, argmax = 0, min = −∞
▶ Q ≻≺ 0 =⇒ max = +∞, min = −∞

analogous to univariate case, but “many more ways to be > 0 / < 0”

Exercise: Formally prove all the unboundedness results

▶ Box-constrained optimization on (closed) hyperrectangle X

absolutely not analogous to the univariate case:

▶ NP-hard in most cases [3]

▶ min with Q ⪰ 0 and max with Q ⪯ 0 polynomial but nontrivial (will see)

▶ NP-hardness due to Rn “big” (X has 2n vertices), issue also in P case

▶ max{ f (x) } and min{ f (x) } very very different

Optimizing a homogeneous quadratic multivariate function 38

▶ Clearly depends sign of eigenvalues of Q ≡ definiteness:

▶ Q ⪰ 0 ∧ Q ⪯ 0 ≡ λ1 = λn = 0 ≡ Q = 0 =⇒ min = max = 0 (constant)

▶ Q ⪰ 0 =⇒ min = 0, argmin = 0, max = +∞
▶ Q ⪯ 0 =⇒ max = 0, argmax = 0, min = −∞
▶ Q ≻≺ 0 =⇒ max = +∞, min = −∞

analogous to univariate case, but “many more ways to be > 0 / < 0”

Exercise: Formally prove all the unboundedness results

▶ Box-constrained optimization on (closed) hyperrectangle X

absolutely not analogous to the univariate case:

▶ NP-hard in most cases [3]

▶ min with Q ⪰ 0 and max with Q ⪯ 0 polynomial but nontrivial (will see)

▶ NP-hardness due to Rn “big” (X has 2n vertices), issue also in P case

▶ max{ f (x) } and min{ f (x) } very very different

Optimizing a homogeneous quadratic multivariate function 38

▶ Clearly depends sign of eigenvalues of Q ≡ definiteness:

▶ Q ⪰ 0 ∧ Q ⪯ 0 ≡ λ1 = λn = 0 ≡ Q = 0 =⇒ min = max = 0 (constant)

▶ Q ⪰ 0 =⇒ min = 0, argmin = 0, max = +∞
▶ Q ⪯ 0 =⇒ max = 0, argmax = 0, min = −∞
▶ Q ≻≺ 0 =⇒ max = +∞, min = −∞

analogous to univariate case, but “many more ways to be > 0 / < 0”

Exercise: Formally prove all the unboundedness results

▶ Box-constrained optimization on (closed) hyperrectangle X

absolutely not analogous to the univariate case:

▶ NP-hard in most cases [3]

▶ min with Q ⪰ 0 and max with Q ⪯ 0 polynomial but nontrivial (will see)

▶ NP-hardness due to Rn “big” (X has 2n vertices), issue also in P case

▶ max{ f (x) } and min{ f (x) } very very different

Optimizing non-homogeneous nonsingular quadratic functions 39

▶ f (x) = 1
2x

TQx +⟨ q , x ⟩: a homogeneous quadratic plus a linear

▶ q ̸= 0 but Q nonsingular ≡ λi ̸= 0∀i (regardless of the sign)

▶ Then f (x) = g(z) = 1
2z

TQz + f (x̄) for z = x − x̄ and x̄ = −Q−1q

Exercise: Prove the result, but it should look familiar

Optimizing a quadratic non-homogeneous function

▶ x̄ (̸= 0) centre of the level sets: repeat Optimizing a homogeneous quadratic multivariate function

for g(z), translate the results back in x-space

▶ Box-constrained case remains hard / nontrivial

▶ Analogous to univariate case, but many more ways for (pieces of) Q to be 0

and therefore the result not be applicable

▶ More complicated analysis needed, coming right next

Optimizing non-homogeneous nonsingular quadratic functions 39

▶ f (x) = 1
2x

TQx +⟨ q , x ⟩: a homogeneous quadratic plus a linear

▶ q ̸= 0 but Q nonsingular ≡ λi ̸= 0∀i (regardless of the sign)

▶ Then f (x) = g(z) = 1
2z

TQz + f (x̄) for z = x − x̄ and x̄ = −Q−1q

Exercise: Prove the result, but it should look familiar

Optimizing a quadratic non-homogeneous function

▶ x̄ (̸= 0) centre of the level sets: repeat Optimizing a homogeneous quadratic multivariate function

for g(z), translate the results back in x-space

▶ Box-constrained case remains hard / nontrivial

▶ Analogous to univariate case, but many more ways for (pieces of) Q to be 0

and therefore the result not be applicable

▶ More complicated analysis needed, coming right next

Optimizing non-homogeneous singular quadratic functions I 40

▶ Q ∈ Rn×n, eigenvalue decomposition (H , Λ), I = { 1 , 2 , . . . , n }

▶ I 0 = { i ∈ I ; λi = 0 }, I+ = I \ I 0, nonempty (k = | I 0 | > 0, h = | I+ | > 0)

▶ ker(Q) = { v ∈ Rn : ∃η ∈ Rk s.t. v =
∑

i∈I 0 ηiHi}

▶ Qv = 0 ∀v ∈ ker(Q) [⊃ { 0 }] (check)

▶ im(Q) = {w ∈ Rn : ∃µ ∈ Rh s.t. w =
∑

i∈I+ µiHi}:

▶ ∀w ∈ im(Q) ∃x ∈ Rn s.t. Qx = w , im(Q) = im(−Q)

Exercise: Prove the result (recall Q = λ1H1H
T
1 + . . .+ λnHnH

T
n , use [16])

▶ Rn = im(Q) + ker(Q), im(Q) ⊥ ker(Q) (H is a hortonormal base of Rn)

▶ q = q+ + q0, q+ ⊥ q0, with q0 ∈ ker(Q) ≡ Qq0 = 0, and

q+ ∈ im(Q) = im(−Q) ≡ ∃ x̄ s.t. (−Q)x̄ = q+

▶ Then f (x) = g(z) = 1
2z

TQz + q0z + f (x̄) for z = x − x̄

Exercise: Prove the result, but it should look very very familiar

Optimizing non-homogeneous nonsingular quadratic functions

Optimizing non-homogeneous singular quadratic functions II 41

▶ f is “truly quadratic” on im(Q) but actually linear on ker(Q)

▶ No surprise: v ∈ ker(Q) =⇒ f (v) = qv

▶ Assume Q ⪰ 0: f has minimum ⇐⇒ q0 = 0 ≡ Qx̄ = −q has solution

≡ q ∈ im(Q)

▶ x̄ is not unique, in fact ∞-ly many of them: “all are centres”

▶ x̄ solution =⇒ x̄ + v solution ∀ v ∈ ker(Q), all have the same objective value

≡ they are all and only the minima of f

Exercise: Prove the result

Exercise: Discuss the cases Q ⪯ 0 and Q ≻≺ 0

▶ q0 ̸= 0 ≡ q /∈ im(Q) =⇒ min = −∞, max = +∞

▶ Box-constrained version P (but nontrivial) if Q ⪰ 0 / Q ⪯ 0, hard otherwise

▶ All in all: solving system Qx̄ = −q (or proving no solutions) required

Optimizing non-homogeneous singular quadratic functions II 41

▶ f is “truly quadratic” on im(Q) but actually linear on ker(Q)

▶ No surprise: v ∈ ker(Q) =⇒ f (v) = qv

▶ Assume Q ⪰ 0: f has minimum ⇐⇒ q0 = 0 ≡ Qx̄ = −q has solution

≡ q ∈ im(Q)

▶ x̄ is not unique, in fact ∞-ly many of them: “all are centres”

▶ x̄ solution =⇒ x̄ + v solution ∀ v ∈ ker(Q), all have the same objective value

≡ they are all and only the minima of f

Exercise: Prove the result

Exercise: Discuss the cases Q ⪯ 0 and Q ≻≺ 0

▶ q0 ̸= 0 ≡ q /∈ im(Q) =⇒ min = −∞, max = +∞

▶ Box-constrained version P (but nontrivial) if Q ⪰ 0 / Q ⪯ 0, hard otherwise

▶ All in all: solving system Qx̄ = −q (or proving no solutions) required

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

Multivariate optimization algorithms 42

▶ If one is lucky, optimising a quadratic function ≡ solving Qx̄ = −q

▶ Linear system O(n3) at worst, so doable for n ≈ 100

(no memory)

▶ Iterative procedures: start from initial guess x0, some process x i ⇝ x i+1

=⇒ a sequence { x i } that should “go towards an optimal solution”

▶ The natural way: { f i = f (x i) } sequence of values “go towards f∗”

▶ Typically we can’t get f∗ in finite time (∃ i vi = f∗), but we can
“get as close as we want”: there in the limit

▶ Recall: (infinite) sequence { vi } = { v1 , v2 , . . . },
{ vi } → v ≡ limi→∞ vi = v ≡ ∀ε > 0 ∃ h s.t. | vi − v | ≤ ε ∀i ≥ h

limi→∞ vi = ∞ ⇐⇒ ∀M > 0 ∃ h s.t. vi ∀i ≥ h

▶ { x i } s.t. { f i } → f∗ a minimizing sequence

▶ note that { f i } → −∞ =⇒ f∗ = −∞ =⇒ minimizing sequence

▶ A sequence may not have limit: are we “not converging”?

▶ Any monotone sequence has a limit (monotone algorithms are good)

Multivariate optimization algorithms 42

▶ If one is lucky, optimising a quadratic function ≡ solving Qx̄ = −q

▶ Linear system O(n3) at worst, so maybe doable for n ≈ 10000

(no memory)

▶ Iterative procedures: start from initial guess x0, some process x i ⇝ x i+1

=⇒ a sequence { x i } that should “go towards an optimal solution”

▶ The natural way: { f i = f (x i) } sequence of values “go towards f∗”

▶ Typically we can’t get f∗ in finite time (∃ i vi = f∗), but we can
“get as close as we want”: there in the limit

▶ Recall: (infinite) sequence { vi } = { v1 , v2 , . . . },
{ vi } → v ≡ limi→∞ vi = v ≡ ∀ε > 0 ∃ h s.t. | vi − v | ≤ ε ∀i ≥ h

limi→∞ vi = ∞ ⇐⇒ ∀M > 0 ∃ h s.t. vi ∀i ≥ h

▶ { x i } s.t. { f i } → f∗ a minimizing sequence

▶ note that { f i } → −∞ =⇒ f∗ = −∞ =⇒ minimizing sequence

▶ A sequence may not have limit: are we “not converging”?

▶ Any monotone sequence has a limit (monotone algorithms are good)

Multivariate optimization algorithms 42

▶ If one is lucky, optimising a quadratic function ≡ solving Qx̄ = −q

▶ Linear system O(n3) at worst, so not doable for n ≈ 109+ (no memory)

▶ Iterative procedures: start from initial guess x0, some process x i ⇝ x i+1

=⇒ a sequence { x i } that should “go towards an optimal solution”

▶ The natural way: { f i = f (x i) } sequence of values “go towards f∗”

▶ Typically we can’t get f∗ in finite time (∃ i vi = f∗), but we can
“get as close as we want”: there in the limit

▶ Recall: (infinite) sequence { vi } = { v1 , v2 , . . . },
{ vi } → v ≡ limi→∞ vi = v ≡ ∀ε > 0 ∃ h s.t. | vi − v | ≤ ε ∀i ≥ h

limi→∞ vi = ∞ ⇐⇒ ∀M > 0 ∃ h s.t. vi ∀i ≥ h

▶ { x i } s.t. { f i } → f∗ a minimizing sequence

▶ note that { f i } → −∞ =⇒ f∗ = −∞ =⇒ minimizing sequence

▶ A sequence may not have limit: are we “not converging”?

▶ Any monotone sequence has a limit (monotone algorithms are good)

Multivariate optimization algorithms 42

▶ If one is lucky, optimising a quadratic function ≡ solving Qx̄ = −q

▶ Linear system O(n3) at worst, so not doable for n ≈ 109+ (no memory)

▶ Iterative procedures: start from initial guess x0, some process x i ⇝ x i+1

=⇒ a sequence { x i } that should “go towards an optimal solution”

▶ The natural way: { f i = f (x i) } sequence of values “go towards f∗”

▶ Typically we can’t get f∗ in finite time (∃ i vi = f∗), but we can
“get as close as we want”: there in the limit

▶ Recall: (infinite) sequence { vi } = { v1 , v2 , . . . },
{ vi } → v ≡ limi→∞ vi = v ≡ ∀ε > 0 ∃ h s.t. | vi − v | ≤ ε ∀i ≥ h

limi→∞ vi = +∞ ⇐⇒ ∀M > 0 ∃ h s.t. vi ≥ M ∀i ≥ h

▶ { x i } s.t. { f i } → f∗ a minimizing sequence

▶ note that { f i } → −∞ =⇒ f∗ = −∞ =⇒ minimizing sequence

▶ A sequence may not have limit: are we “not converging”?

▶ Any monotone sequence has a limit (monotone algorithms are good)

Multivariate optimization algorithms 42

▶ If one is lucky, optimising a quadratic function ≡ solving Qx̄ = −q

▶ Linear system O(n3) at worst, so not doable for n ≈ 109+ (no memory)

▶ Iterative procedures: start from initial guess x0, some process x i ⇝ x i+1

=⇒ a sequence { x i } that should “go towards an optimal solution”

▶ The natural way: { f i = f (x i) } sequence of values “go towards f∗”

▶ Typically we can’t get f∗ in finite time (∃ i vi = f∗), but we can
“get as close as we want”: there in the limit

▶ Recall: (infinite) sequence { vi } = { v1 , v2 , . . . },
{ vi } → v ≡ limi→∞ vi = v ≡ ∀ε > 0 ∃ h s.t. | vi − v | ≤ ε ∀i ≥ h

limi→∞ vi = −∞ ⇐⇒ ∀M > 0 ∃ h s.t. vi ≤ −M ∀i ≥ h

▶ { x i } s.t. { f i } → f∗ a minimizing sequence

▶ note that { f i } → −∞ =⇒ f∗ = −∞ =⇒ minimizing sequence

▶ A sequence may not have limit: are we “not converging”?

▶ Any monotone sequence has a limit (monotone algorithms are good)

Multivariate optimization algorithms 42

▶ If one is lucky, optimising a quadratic function ≡ solving Qx̄ = −q

▶ Linear system O(n3) at worst, so not doable for n ≈ 109+ (no memory)

▶ Iterative procedures: start from initial guess x0, some process x i ⇝ x i+1

=⇒ a sequence { x i } that should “go towards an optimal solution”

▶ The natural way: { f i = f (x i) } sequence of values “go towards f∗”

▶ Typically we can’t get f∗ in finite time (∃ i vi = f∗), but we can
“get as close as we want”: there in the limit

▶ Recall: (infinite) sequence { vi } = { v1 , v2 , . . . },
{ vi } → v ≡ limi→∞ vi = v ≡ ∀ε > 0 ∃ h s.t. | vi − v | ≤ ε ∀i ≥ h

limi→∞ vi = −∞ ⇐⇒ ∀M > 0 ∃ h s.t. vi ≤ −M ∀i ≥ h

▶ { x i } s.t. { f i } → f∗ a minimizing sequence

▶ note that { f i } → −∞ =⇒ f∗ = −∞ =⇒ minimizing sequence

▶ A sequence may not have limit: are we “not converging”?

▶ Any monotone sequence has a limit (monotone algorithms are good)

Gradient method, basic idea 43

▶ We generally assume minimization, but maximization is equivalent

▶ Given x i , necessarily compute g i = Qx i + q: if g i = 0 then stop

▶ “g i = 0” not doable in floating point arithmetic =⇒ ∥ g i ∥ ≤ ε (which ε?)

▶ Idea: if ∥ g i ∥ > [ε >] 0, produce a x i+1 “better” than x i

▶ How? Consider the tomography φx i ,−g i (α) = f (x i −αg i)−f (x i)

= 1
2 (x

i − αg i)TQ(x i − αg i) + q(x i − αg i)− f (x i)

= 1
2α

2(g i)TQg i − α[(g i)TQx i + qg i] = 1
2α

2(g i)TQg i −α∥ g i ∥2
positive negative

▶ For some α > 0, φx i ,−g i (α) < 0 =⇒ f (x i − αg i) < f (x i)

Exercise: Check all the above (recall Optimizing a quadratic non-homogeneous function)

▶ The same information (called gradient, we’ll see why) saying “you can’t stop”

is at the same time saying “you can get a better solution than x i over there”

▶ This immediately suggests a (monotone, f i+1 < f i) algorithm

The gradient method for (multivariate) quadratic functions 44

▶ In fact it is easy to minimize φx i ,−g i (α) (Optimizing a quadratic non-homogeneous function)
αi = ∥ g i ∥2 / ((g i)TQg i) [1 / λ1 ≤ α ≤ 1 / λn (check)]

▶ Computing g i and the optimal value of α is O(n2) =⇒
n “large” =⇒ “we can do may iterations before hitting O(n3)”

procedure x = SDQ (Q , q , x , ε)
do forever
g ← Qx + q;
if(∥ g ∥ ≤ ε) then break;
α← stepsize(); x ← x −αg ;

▶ stepsize() { return(∥ g ∥2 / (gTQg)); }, others possible

Exercise: something can go wrong with that formula ↑: what does it mean?
Improve the pseudo-code to take that occurrence into account.

Exercise: what happens if Q ̸⪰ 0? Does the (improved) code need be fixed?

Exercise: Discuss how to change the code to solve max{ f (x) } instead

Exercise: Rewrite the code with one product with Q per iteration

▶ It is very simple, but does it work? And is it efficient?

Convergence of the gradient method for Q ≻ 0 45

▶ Optimal stepsize =⇒ g i+1 ⊥ g i (check)

▶ “Homogeneous form of the error”: A(x) = 1
2 (x − x∗)

TQ(x − x∗) (check)

▶ The above for x = x i+1, Q ≻ 0 and some algebra [5, Lm. 8.6.1] gives

A(x i+1)=

(
1− ∥ g i ∥4

((g i)TQg i)((g i)TQ−1g i)

)
A(x i) (check)[tedious]

▶ Easy to derive an estimate using κ = λ1 / λn [≥ 1] condition number of Q

∥x∥4

(xTQx)(xTQ−1x)
≥ λn

λ1
=

1

κ
(check) =⇒ A(x i+1)≤

(
1− 1

κ

)
A(x i)

▶ This means the algorithm converges: A(x i) ≤ r iA(x0) (check) with

r ≤ (κ− 1) / κ< 1 =⇒ A(x i) → 0 exponentially fast as i → ∞

▶ Kantorovich inequality [5, 8.6.(34)] gives better estimate

∥x∥4

(xTQx)(xTQ−1x)
≥ 4λ1λn

(λ1 + λn)2
=⇒ r ≤

(
λ1 − λn

λ1 + λn

)2

=

(
κ− 1

κ+ 1

)2

▶ Let’s see it in practice

Complexity of the gradient method 46

▶ Crucial sequences: { x i } / { d i = ∥ x i − x∗ ∥ } [iterates / distance from x∗]

{ f i = f (x i) } / { ai = A(x i) } / { r i = R(x i) } [f -values / A/R gaps]

▶ Complexity as a function of prescribed accuracy ε:

max number of iterations k such that d i / ai / r i ≤ ε ∀i ≥ k

▶ General formula: vk ≤ rkv1 ≤ ε for k ≥ [1 / log(1 / r)] log(v1 / ε) (check)

▶ r ≈ 1 =⇒ k ∈ O([r / (1− r)] log(v1 / ε)) (check)

▶ Good news: dimension independent (n not there) =⇒ very-large-scale

▶ O(log(1 / ε)) (good), but the constant ↑ ∞ as r → 1 (bad)

▶ v1 = f (x1)− f∗: starting closer to f∗ helps (would be strange if not)

▶ “∥ x i − x∗ ∥ ≤ ε” and “f (x i)− f∗ ≤ ε” not the same (ε):

ai = 1
2 (x

i − x∗)
TQ(x i − x∗) ≤ ε =⇒ λn∥ x i − x∗ ∥2 ≤ ε =⇒

d i = ∥ x i − x∗ ∥ ≤
√
ε / λn

Exercise: Cook up the other direction (d i ≤ ε =⇒ . . .)

Convergence rates, complexity [6, p. 619] 47

▶ Converge: { f i } → f∗ ≈≡ { ai } → 0 ≡ { r i } → 0 ⇐= { d i } → 0 (≠⇒)

Exercise: Discuss why { f i } → f∗ is only ≈≡ to { ai } → 0 and why the ≠⇒

▶ But how rapidly does it (“in the tail”)? Rate/order of convergence

lim
i→∞

[
f i+1 − f∗
(f i − f∗)p

=
ai+1

(ai)p
≈ r i+1

(r i)p

]
= r

[
xp → 0 faster than
x → 0 when p > 1

(check)

▶ p = 1 , r = 1 ≡ sublinear: important examples

error O(1 / i) O(1 / i2) O(1 /
√
i)

i O(1 / ε) (bad) O(1 /
√
ε) (a bit better) O(1 / ε2) (horrible)

▶ p = 1 , r < 1 ≡ linear: r i =⇒ i ∈ O(log(1/ε)) (good unless r ≈ 1)

▶ p = 2 , r > 0 ≡ quadratic (!!!): ≈ 1 / 22
i

=⇒ i ∈ O(log(log(1/ε)))

in practice O(1) (correct digits double at each iteration)

▶ p ∈ (1 , 2) ≡ p = 1 , r = 0 ≡ superlinear (!): “something in the middle”

▶ p = 2 the best you can reasonably hope for: possible but not easy

Convergence Rates Pictorially 48

0 10 20 30 40 50

10-11

10-8

10-5

0.01
1

i

1

i

1

i2

0.999i

0.996i

0.618i

Convergence Rates Pictorially 48

0 100 200 300 400 500

10-11

10-8

10-5

0.01
1

i

1

i

1

i2

0.999i

0.996i

0.618i

Convergence Rates Pictorially 48

0 1000 2000 3000 4000 5000

10-11

10-8

10-5

0.01 1

i

1

i

1

i2

0.999i

0.996i

0.618i

Convergence Rates Pictorially 48

0 10 20 30 40 50

10-11

10-8

10-5

0.01

0.999i

0.996i

0.618i

0.5i

0.999i
3

0.9992
i

Important note on the stopping criterion 49

▶ The stopping criterion one would want: A(x i) ≤ ε / R(x i) ≤ ε

▶ Issue: f∗ typically unknown, cannot be used on-line

▶ ∥ g i ∥“proxy” of A(x i): hopefully ∥ g i ∥ “small” =⇒ A(x i) “small”

but exact relationship nontrivial =⇒ choosing ε non obvious

▶ ∥ g i ∥ = Q(x i − x∗) =⇒ ∥ g i ∥ ≤ λ1∥ x i − x∗ ∥ . . . (??) wrong inequality:

∥ g i ∥ ≤ ε ≠⇒ ∥ x i − x∗ ∥ “small”

▶ ai = 1
2 (x

i − x∗)
TQ(x i − x∗) =

1
2 ⟨ x

i − x∗ , g
i ⟩ ≤ 1

2∥ g
i ∥∥ x i − x∗ ∥;

if we knew δ ≥ ∥ x i − x∗ ∥, which we don’t, then ∥ g i ∥ ≤ 2ε / δ =⇒ ai ≤ ε

▶ If we knew λn > 0, which we don’t, ∥ g i ∥ ≤
√
2λnε =⇒ ai ≤ ε (check)

▶ All in all, exact control on final ai / r i not obvious (not always really needed)

When “exponentially fast” is not “really fast” 50

▶ Convergence fast if λ1 ≈ λn (one iteration for ∥ x ∥2), rather slow if λ1 ≫ λn:

κ = λ1 / λn → ∞ (Q ill conditioned) =⇒ r → 1 =⇒ slow in practice

▶ g i+1 ⊥ g i + level sets very elongated =⇒ lots of “zig-zags” =⇒ slow

▶ Ex.: κ = 1000 =⇒ r ≈ 0.996 =⇒ r / (1− r) ≈ 250

f (x1)− f∗ = 1, ε = 10−6 =⇒ k ≥ 3450 for n = 2

. . . but also for n = 108

▶ Note: with coarser formula r = 0.999 ≡ r / (1− r) ≈ 1000 =⇒ k ≥ 13800

▶ In other words: 0.99610 ≈ 0.96071 0.99910 ≈ 0.99004

▶ More bad news, “hidden dependency”:

λ1 and λn may depend on n, κ may grow as n → ∞

▶ More bad news: the behaviour in practice is close to the bound

▶ Even more bad news: λn = 0 ≡ κ = ∞ happens

When “exponentially fast” is not “really fast” 50

▶ Convergence fast if λ1 ≈ λn (one iteration for ∥ x ∥2), rather slow if λ1 ≫ λn:

κ = λ1 / λn → ∞ (Q ill conditioned) =⇒ r → 1 =⇒ slow in practice

▶ g i+1 ⊥ g i + level sets very elongated =⇒ lots of “zig-zags” =⇒ slow

▶ Ex.: κ = 1000 =⇒ r ≈ 0.996 =⇒ r / (1− r) ≈ 250

f (x1)− f∗ = 1, ε = 10−6 =⇒ k ≥ 3450 for n = 2 . . . but also for n = 108

▶ Note: with coarser formula r = 0.999 ≡ r / (1− r) ≈ 1000 =⇒ k ≥ 13800

▶ In other words: 0.99610 ≈ 0.96071 0.99910 ≈ 0.99004

▶ More bad news, “hidden dependency”:

λ1 and λn may depend on n, κ may grow as n → ∞

▶ More bad news: the behaviour in practice is close to the bound

▶ Even more bad news: λn = 0 ≡ κ = ∞ happens

When “exponentially fast” is not “really fast” 50

▶ Convergence fast if λ1 ≈ λn (one iteration for ∥ x ∥2), rather slow if λ1 ≫ λn:

κ = λ1 / λn → ∞ (Q ill conditioned) =⇒ r → 1 =⇒ slow in practice

▶ g i+1 ⊥ g i + level sets very elongated =⇒ lots of “zig-zags” =⇒ slow

▶ Ex.: κ = 1000 =⇒ r ≈ 0.996 =⇒ r / (1− r) ≈ 250

f (x1)− f∗ = 1, ε = 10−6 =⇒ k ≥ 3450 for n = 2 . . . but also for n = 108

▶ Note: with coarser formula r = 0.999 ≡ r / (1− r) ≈ 1000 =⇒ k ≥ 13800

▶ In other words: 0.996100 ≈ 0.66978 0.999100 ≈ 0.90479

▶ More bad news, “hidden dependency”:

λ1 and λn may depend on n, κ may grow as n → ∞

▶ More bad news: the behaviour in practice is close to the bound

▶ Even more bad news: λn = 0 ≡ κ = ∞ happens

When “exponentially fast” is not “really fast” 50

▶ Convergence fast if λ1 ≈ λn (one iteration for ∥ x ∥2), rather slow if λ1 ≫ λn:

κ = λ1 / λn → ∞ (Q ill conditioned) =⇒ r → 1 =⇒ slow in practice

▶ g i+1 ⊥ g i + level sets very elongated =⇒ lots of “zig-zags” =⇒ slow

▶ Ex.: κ = 1000 =⇒ r ≈ 0.996 =⇒ r / (1− r) ≈ 250

f (x1)− f∗ = 1, ε = 10−6 =⇒ k ≥ 3450 for n = 2 . . . but also for n = 108

▶ Note: with coarser formula r = 0.999 ≡ r / (1− r) ≈ 1000 =⇒ k ≥ 13800

▶ In other words: 0.9961000 ≈ 0.01816 0.9991000 ≈ 0.36769

▶ More bad news, “hidden dependency”:

λ1 and λn may depend on n, κ may grow as n → ∞

▶ More bad news: the behaviour in practice is close to the bound

▶ Even more bad news: λn = 0 ≡ κ = ∞ happens

When “exponentially fast” is not “really fast” 50

▶ Convergence fast if λ1 ≈ λn (one iteration for ∥ x ∥2), rather slow if λ1 ≫ λn:

κ = λ1 / λn → ∞ (Q ill conditioned) =⇒ r → 1 =⇒ slow in practice

▶ g i+1 ⊥ g i + level sets very elongated =⇒ lots of “zig-zags” =⇒ slow

▶ Ex.: κ = 1000 =⇒ r ≈ 0.996 =⇒ r / (1− r) ≈ 250

f (x1)− f∗ = 1, ε = 10−6 =⇒ k ≥ 3450 for n = 2 . . . but also for n = 108

▶ Note: with coarser formula r = 0.999 ≡ r / (1− r) ≈ 1000 =⇒ k ≥ 13800

▶ In other words: 0.9962000 ≈ 0.00033 0.9992000 ≈ 0.13520

▶ More bad news, “hidden dependency”:

λ1 and λn may depend on n, κ may grow as n → ∞

▶ More bad news: the behaviour in practice is close to the bound

▶ Even more bad news: λn = 0 ≡ κ = ∞ happens

When “exponentially fast” is not “really fast” 50

▶ Convergence fast if λ1 ≈ λn (one iteration for ∥ x ∥2), rather slow if λ1 ≫ λn:

κ = λ1 / λn → ∞ (Q ill conditioned) =⇒ r → 1 =⇒ slow in practice

▶ g i+1 ⊥ g i + level sets very elongated =⇒ lots of “zig-zags” =⇒ slow

▶ Ex.: κ = 1000 =⇒ r ≈ 0.996 =⇒ r / (1− r) ≈ 250

f (x1)− f∗ = 1, ε = 10−6 =⇒ k ≥ 3450 for n = 2 . . . but also for n = 108

▶ Note: with coarser formula r = 0.999 ≡ r / (1− r) ≈ 1000 =⇒ k ≥ 13800

▶ In other words: 0.9962000 ≈ 0.00033 0.9992000 ≈ 0.13520

▶ More bad news, “hidden dependency”:

λ1 and λn may depend on n, κ may grow as n → ∞

▶ More bad news: the behaviour in practice is close to the bound

▶ Even more bad news: λn = 0 ≡ κ = ∞ happens

What if λn = 0? 51

▶ λn = 0 =⇒ not converging?

No, just can’t prove it this way

▶ In fact we can prove convergence (in a more general setting) [2, Theorem 3.3]:

α = 1 / λ1 =⇒ f (x i)− f∗ ≤ 2λ1∥ x1 − x∗ ∥2 / (i − 1)

▶ Is it good news? Only partly. Because complexity is k ≥ 2λ1d
1 / ε

▶ O(1 / ε) vs. O(log(1 / ε)): sublinear convergence, exponentially slower

▶ One further digit of accuracy ≡ 10 times more iterations =⇒
typically unfeasible to get more than 1e-3 / 1e-4 accuracy

▶ The result cannot be improved (in general, will see)

▶ Is it bad? Rather. Can it be worse? Yes (in general, will see)

▶ If λn > 0, can we do better than O(log(1 / ε))? Yes – @Federico

▶ Fundamental idea, will see more than once: changing the space

What if λn = 0? 51

▶ λn = 0 =⇒ not converging? No, just can’t prove it this way

▶ In fact we can prove convergence (in a more general setting) [2, Theorem 3.3]:

α = 1 / λ1 =⇒ f (x i)− f∗ ≤ 2λ1∥ x1 − x∗ ∥2 / (i − 1)

▶ Is it good news? Only partly. Because complexity is k ≥ 2λ1d
1 / ε

▶ O(1 / ε) vs. O(log(1 / ε)): sublinear convergence, exponentially slower

▶ One further digit of accuracy ≡ 10 times more iterations =⇒
typically unfeasible to get more than 1e-3 / 1e-4 accuracy

▶ The result cannot be improved (in general, will see)

▶ Is it bad? Rather. Can it be worse? Yes (in general, will see)

▶ If λn > 0, can we do better than O(log(1 / ε))? Yes – @Federico

▶ Fundamental idea, will see more than once: changing the space

What if λn = 0? 51

▶ λn = 0 =⇒ not converging? No, just can’t prove it this way

▶ In fact we can prove convergence (in a more general setting) [2, Theorem 3.3]:

α = 1 / λ1 =⇒ f (x i)− f∗ ≤ 2λ1∥ x1 − x∗ ∥2 / (i − 1)

▶ Is it good news? Only partly. Because complexity is k ≥ 2λ1d
1 / ε

▶ O(1 / ε) vs. O(log(1 / ε)): sublinear convergence, exponentially slower

▶ One further digit of accuracy ≡ 10 times more iterations =⇒
typically unfeasible to get more than 1e-3 / 1e-4 accuracy

▶ The result cannot be improved (in general, will see)

▶ Is it bad? Rather. Can it be worse? Yes (in general, will see)

▶ If λn > 0, can we do better than O(log(1 / ε))? Yes – @Federico

▶ Fundamental idea, will see more than once: changing the space

What if λn = 0? 51

▶ λn = 0 =⇒ not converging? No, just can’t prove it this way

▶ In fact we can prove convergence (in a more general setting) [2, Theorem 3.3]:

α = 1 / λ1 =⇒ f (x i)− f∗ ≤ 2λ1∥ x1 − x∗ ∥2 / (i − 1)

▶ Is it good news? Only partly. Because complexity is k ≥ 2λ1d
1 / ε

▶ O(1 / ε) vs. O(log(1 / ε)): sublinear convergence, exponentially slower

▶ One further digit of accuracy ≡ 10 times more iterations =⇒
typically unfeasible to get more than 1e-3 / 1e-4 accuracy

▶ The result cannot be improved (in general, will see)

▶ Is it bad? Rather. Can it be worse? Yes (in general, will see)

▶ If λn > 0, can we do better than O(log(1 / ε))? Yes – @Federico

▶ Fundamental idea, will see more than once: changing the space

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

Wrap up 52

▶ Optimization problems are difficult

▶ Clever strategy: start simple, then use what you learnt to go more complex

▶ Simple problems provide intuition for the solution of more complex ones

▶ Solving a complex problem may entail solving a sequence of simpler ones

▶ Usual concept: if XYZ complex, use “simpler” ABC ≈ XYZ – a model

▶ Linear functions “too simple”: optimising (on simple constraints) always easy

▶ Quadratic functions already a different story: few really simple cases,

often polynomial but not with low exponent, up to NP-hard

▶ Solving (simple) optimization problems requires linear algebra, and vice-versa

▶ We now know all we need about simple problems, time to step up the game

▶ Will keep following an incremental approach: next step is

more complicated functions but only one variable

Wrap up 52

▶ Optimization problems are difficult

▶ Clever strategy: start simple, then use what you learnt to go more complex

▶ Simple problems provide intuition for the solution of more complex ones

▶ Solving a complex problem may entail solving a sequence of simpler ones

▶ Usual concept: if XYZ complex, use “simpler” ABC ≈ XYZ – a model

▶ Linear functions “too simple”: optimising (on simple constraints) always easy

▶ Quadratic functions already a different story: few really simple cases,

often polynomial but not with low exponent, up to NP-hard

▶ Solving (simple) optimization problems requires linear algebra, and vice-versa

▶ We now know all we need about simple problems, time to step up the game

▶ Will keep following an incremental approach: next step is

more complicated functions but only one variable

Wrap up 52

▶ Optimization problems are difficult

▶ Clever strategy: start simple, then use what you learnt to go more complex

▶ Simple problems provide intuition for the solution of more complex ones

▶ Solving a complex problem may entail solving a sequence of simpler ones

▶ Usual concept: if XYZ complex, use “simpler” ABC ≈ XYZ – a model

▶ Linear functions “too simple”: optimising (on simple constraints) always easy

▶ Quadratic functions already a different story: few really simple cases,

often polynomial but not with low exponent, up to NP-hard

▶ Solving (simple) optimization problems requires linear algebra, and vice-versa

▶ We now know all we need about simple problems, time to step up the game

▶ Will keep following an incremental approach: next step is

more complicated functions but only one variable

Wrap up 52

▶ Optimization problems are difficult

▶ Clever strategy: start simple, then use what you learnt to go more complex

▶ Simple problems provide intuition for the solution of more complex ones

▶ Solving a complex problem may entail solving a sequence of simpler ones

▶ Usual concept: if XYZ complex, use “simpler” ABC ≈ XYZ – a model

▶ Linear functions “too simple”: optimising (on simple constraints) always easy

▶ Quadratic functions already a different story: few really simple cases,

often polynomial but not with low exponent, up to NP-hard

▶ Solving (simple) optimization problems requires linear algebra, and vice-versa

▶ We now know all we need about simple problems, time to step up the game

▶ Will keep following an incremental approach: next step is

more complicated functions but only one variable

References I 53

[1] S. Boyd, L. Vandenberghe Convex Optimization,
https://web.stanford.edu/~boyd/cvxbook

Cambridge University Press, 2008

[2] S. Bubeck Convex Optimization: Algorithms and Complexity,
arXiv:1405.4980v2, https://arxiv.org/abs/1405.4980, 2015

[3] E. de Klerk “The complexity of optimizing over a simplex, hypercube or
sphere: a short survey” Central European Journal of Operations Research
16: 111–125, 2008 https://link.springer.com/content/pdf/10.

1007/s10100-007-0052-9.pdf

[4] P. Hansen, B. Jaumard “Lipschitz Optimization” in Handbook of Global
Optimization – Nonconvex optimization and its applications, R. Horst
and P.M. Pardalos (Eds.), Chapter 8, 407–494, Springer, 1995

[5] D.G. Luenberger, Y. Ye Linear and Nonlinear Programming, Springer
International Series in Operations Research & Management Science, 2008

[6] J. Nocedal, S.J. Wright, Numerical Optimization – second edition,
Springer Series in Operations Research and Financial Engineering, 2006

https://web.stanford.edu/~boyd/cvxbook
https://arxiv.org/abs/1405.4980
https://link.springer.com/content/pdf/10.1007/s10100-007-0052-9.pdf
https://link.springer.com/content/pdf/10.1007/s10100-007-0052-9.pdf

References II 54

[7] Wikipedia – Cubic equation
https://en.wikipedia.org/wiki/Cubic_equation

[8] Wikipedia – Determinant
https://en.wikipedia.org/wiki/Determinant

[9] Wikipedia – Laplace expansion
https://en.wikipedia.org/wiki/Laplace_expansion

[10] Wikipedia – Eigenvalue Algorithm
https://en.wikipedia.org/wiki/Eigenvalue_algorithm

[11] Wikipedia – Eigenvalues and Eigenvectors
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

[12] Wikipedia – Islands of Space
https://en.wikipedia.org/wiki/Islands_of_Space

[13] Wikipedia – Matrix Norm
https://en.wikipedia.org/wiki/Matrix_norm

https://en.wikipedia.org/wiki/Cubic_equation
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Laplace_expansion
https://en.wikipedia.org/wiki/Eigenvalue_algorithm
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Islands_of_Space
https://en.wikipedia.org/wiki/Matrix_norm

References III 55

[14] Wikipedia – Norm
https://en.wikipedia.org/wiki/Norm_(mathematics)

[15] Wikipedia – The Hitchhiker’s Guide to the Galaxy
https://en.wikipedia.org/wiki/The_Hitchhiker’s_Guide_to_the_Galaxy

[16] Wikipedia – Underdetermined System
https://en.wikipedia.org/wiki/Underdetermined_system

https://en.wikipedia.org/wiki/Norm_(mathematics)
https://en.wikipedia.org/wiki/The_Hitchhiker's_Guide_to_the_Galaxy
https://en.wikipedia.org/wiki/Underdetermined_system

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

Solutions I 56

▶ Use max{ | f∗ | , 1 } instead; this corresponds to min{ f (x)+1 } [back]

▶ b > 0 and x − z > 0 =⇒ b(x − z) > 0 ≡ bx > bz ;

the others are analogous (or simpler) [back]

▶ If x+ = +∞, obviously x∗ = +∞ = x+

If x+ < +∞, since f (x) is increasing, f (x) < f (x+) ∀x < x+

The treatment of x− is analogous.

If b < 0, the role of x+ and x− reverses (x+ = argmin, x− = argmax)

If b = 0, every point in X is an optimal solution [back]

▶ x > z , a > 0 and x > 0 =⇒ ax2 > axz > az2. Since f (x) is symmetric
(ax2 = a(−x)2), increasing for x > 0 ≡ deceasing for x < 0. When a < 0 the
sign of the inequalities in inverted (the function is reflected upon the x axis).
The case a = 0 is trivial [back]

Solutions II 57

▶ f (x) has a minimum in 0, is decreasing for x < 0 and increasing for x > 0. If
x− > 0 then f (x) is increasing along all X , hence x− is the minimum and x+
the maximum. The argument is symmetric if x+ < 0. Obviously, if 0 ∈ X then
it is the minimum; for the maximization, since the function is increasing when x
moves away from 0 in both directions, the maximum has to be one of the two
extremes but we don’t know which until we test. The rest is too trivial [back]

▶ No, this is both too trivial and didactic [back]

▶ f (x) = (ax + b)x , hence the roots are x = 0 and x = xp = −b / a. Clearly,
x̄ = −b / 2a is always in the middle of the interval defined by the roots. If a
and b have the same sign then xp < x̄ < 0, otherwise xp > x̄ > 0 [back]

▶ φx,(βd)(α) = f (x + α(βd)) = f (x + (αβ)d) = φx,d(αβ) [back]

Solutions III 58

▶ We assume that i. and ii. hold for f and we want to show that f (x) = ⟨ b , x ⟩
for some b ∈ Rn. Let ui , i = 1, . . . , n, the i-th vector of the canonical base of
Rn (having 1 in the i-th position and 0 otherwise), and bi = f (ui). For any
x ∈ Rn, x =

∑n
i=1 xiui , hence f (x) = f (

∑n
i=1 xiui) =

∑n
i=1 f (xiui) (using

ii. recursively n times) =
∑n

i=1 xi f (ui) (using i. on each individual term)
=

∑n
i=1 bixi (using the definition of bi) = ⟨ b , x ⟩ (using the definition of

scalar product). The results clearly breaks in the affine case (c ̸= 0):
f (x) = x + 1 =⇒ f (2x) = 2x + 1 ̸= 2(x + 1) = 2f (x) [back]

▶ By contradiction, ∃ γ ∈ Rn \ { 0 } s.t. Hγ = 0 =⇒
0 = ∥Hγ ∥2 = γT [HTH]γ = ∥ γ ∥2 > 0 [γ ̸= 0] E [back]

Solutions IV 59

▶ This is based on a general result: for [A1 , A2 , . . . , An] = A ∈ Rm×n (not
necessarily square) written by columns, AAT = M ∈ Rm×m (symmetric, prove
it using [AB]T = BTAT) can be written as the sum of the n rank-one
matrices corresponding to the columns, i.e., M =

∑n
i=1[D

i = Ai (Ai)T]. In
fact, the h-th row of A is Ah = [A1

h , A
2
h , . . . , A

n
h] and the k-th column of AT

is the k-th row of A, thus Mhk = ⟨Ah , Ak ⟩ =
∑n

i=1 A
i
hA

i
k . But D

i
hk = Ai

hA
i
h,

hence Mhk =
∑n

i=1 D
i
hk for all h and k

To complete the result, for Λ = diag([λ1 , λ2 , . . . , λn]) ∈ Rn×n, L = AΛ =
= [λ1A

1 , λ2A
2 , . . . , λnA

n]. In fact, the h-th row Ah = [A1
h , A

2
h , . . . , A

n
h]

and the k-th column of Λ, i.e., λkuk (uk being the k-th vector of the canonical
base) give Lhk = ⟨Ah , λkuk ⟩ = λkA

k
h [back]

▶ φHi (α) = (αHi)
TQ(αHi) = α2[HT

i (λiHi)] = λiα
2 [back]

▶ λn < 0 =⇒ φHn(α) [= λnα
2] unbounded below =⇒ f (x) unbounded below

λ1 > 0 =⇒ φH1(α) unbounded above =⇒ f (x) unbounded above [back]

Solutions V 60

▶ x = z + x̄ =⇒ 1
2x

TQx + qx = 1
2 (z + x̄)TQ(z + x̄) + q(z + x̄) =

1
2z

TQz + zT (Qx̄ + q) + [1
2 x̄

TQx̄ + qx̄] = 1
2z

TQz + f (x̄)

as Qx̄ + q = Q(−Q−1q) + q = −q + q = 0 [back]

▶ Qv = Q[
∑

i∈Z ηiHi] =
∑

i∈Z ηiQHi =
∑

i∈Z ηiλiHi = 0 [back]

▶ Q = HΛHT =
∑n

i=1 λiHiH
T
i =

∑
i∈Z λiHiH

T
i [= 0] +

∑
i∈N λiHiH

T
i

We want to prove ∃ x s.t. (
∑

i∈N λiHiH
T
i)x =

∑
i∈N µiHi = w

True if λiH
T
i x = µi i ∈ N ≡ HT

i x = γi = µi / λi i ∈ N,
a linear system of k ≤ n equations in n variables (likely underdetermined)
All Hi linearly independent, HN = [Hi]i∈N ∈ Rn×k =⇒ rank(HN) = k
=⇒ [HT

N , γ] ∈ Rk×n+1 has rank k (rank ≤ number of rows) =⇒
by [16] the system has a solution x (∞-ly many if k < n) [back]

▶ 1
2x

TQx + qx = 1
2 (z + x̄)TQ(z + x̄) + q(z + x̄) =

1
2z

TQz + zT (Qx̄ + q+ + q0) + f (x̄) = 1
2z

TQz + q0z + f (x̄) [back]

Solutions VI 61

▶ We know that f (z) = zTQz + f (barx), with z = x − x̄ . For x ∈ x̄ + v , with
v ∈ ker(Q), z = x − x̄ = x̄ + v − x̄ = v . Hence f (z) = f (x̄). On the other
hand, f (z) ≥ f (x̄) for all z since Q ⪰ 0, thus any such point is a minimum.
Any point x ∈ x̄ + v with v /∈ ker(Q) has f (x) = vTQv + f (x̄) > f (x̄) since
vTQv > 0 [back]

▶ No, this is both too trivial and didactic [back]

▶ φ(α) = aα2 + bα quadratic non-homogeneous with a = (g i)TQg i ≥ 0 and
b = −∥ g i ∥2 < 0. If a > 0, then φ(ᾱ) < φ(0) = f (x i) ∀ ᾱ ∈ (0 , −b/a); in
particular, ᾱ = ∥ g i ∥2 / (2(g i)TQg i) is the minimum of φ. If a = 0 then φ is
decreasing and φ(ᾱ) < φ(0) = f (x i) ∀ᾱ > 0 [back]

▶ The variational characterization of the eigenvalues implies that
λ1 ≥ dTQd / ∥ d ∥2 ≥ λn for all d ̸= 0; this immediately gives
1 / λ1 ≤ ∥ d ∥2 / dTQd ≤ 1 / λn for all d , and therefore in particular d = g i

(knowing that g i ̸= 0 otherwise the algorithm would have stopped) [back]

Solutions VII 62

▶ The issue clearly is gTQg = 0 (very small), which means that φx,−g is (almost)
linear, and therefore f is unbounded below. One should therefore add a line

if(gTQg ≤ δ) then break;
for a “very small” δ, but also add a proper way for the algorithm to signal that
the returned x is not optimal, e.g., by also returning a “status code” [back]

▶ Having added the extra check above, the code just works: if gTQg < 0 then
(−)g is direction where φ has negative curvature, which still implies f is
unbounded below. Note that this is not guaranteed to happen [back]

▶ Because a < 0, the step α will be negative, which basically means one is going
in direction g rather than −g . The algorithm remains the same, except that
the extra check above has to become gTQg ≥ −δ [back]

Solutions VIII 63

▶ Assuming the gradient is computed in the “natural way” as g = Q ∗ x + q
before the algorithm starts (i.e., with x the initial guess x0), both quantities
depending from matrix-vector products can be recovered by computing the
vector v = Q ∗ g . In fact, a = gTQg = ⟨ g , v ⟩. Then, with x ′ = x − αg one
has g ′ = Qx ′ + q = Q(x − αg) + q = (Qx + q)− αQg = g − αv . Hence, the
gradient at the next iteration can be computed in O(n) out of that of the
previous iteration and the vector v . As for the objective function,
1/2xTQx + ⟨ q , x ⟩ = 1/2(xTQx + 2⟨ q , x ⟩) = 1/2xT (Qx + q + q) =
1/2⟨ q + g , x ⟩, i.e., it can be computed in O(n) once g is known [back]

▶ g i = Q(x i − x∗) = Qx i + q, αi = ∥ g i ∥2 / [(g i)TQg i]
g i+1 = Qx i+1 + q = Q(x i − αig i) + q = (I − αiQ)g i =⇒
⟨ g i+1 , g i ⟩ = ∥ g i ∥2 − αi [(g i)TQg i] = 0 [back]

Solutions IX 64

▶ All arguments boil down to the crucial Qx∗ + q = 0. This first of all gives that
f (x∗) = 1

2 (x
∗)TQx∗ + ⟨ x∗ , q ⟩ = (x∗)TQx∗ + ⟨ x∗ , q ⟩ − 1

2 (x
∗)TQx∗ =

(x∗)T (Qx∗ + q)− 1
2 (x

∗)TQx∗ = − 1
2 (x

∗)TQx∗. Then, 1
2 (x − x∗)TQ(x − x∗) =

1
2x

TQx + 1
2 (x

∗)TQx∗ − xT (Qx∗) = 1
2x

TQx − ⟨ x , q ⟩+ 1
2 (x

∗)TQx∗ =
f (x)− f (x∗) (in the penultimate step we have used Qx∗ = −q) [back]

▶ Just induction: obvious for i = 0, if it holds for i − 1 then
A(x i) ≤ rA(x i−1) ≤ r(r i−1A(x0)) [back]

▶ Q nonsingular =⇒ x i − x∗ = Q−1g i =⇒
ai = 1

2 (x
i − x∗)

TQ(x i − x∗) =
1
2 (g

i)TQ−1g i =⇒
ai+1 = 1

2 (x
i+1−x∗)

TQ(x i+1−x∗) =
1
2 (x

i −αig i −x∗)
Tg i+1 = 1

2 (x
i −x∗)

Tg i+1

[using ⟨ g i+1 , g i ⟩ = 0] = 1
2 (x

i − x∗)
TQ(x i − αig i − x∗)

= 1
2 (x

i − x∗)
TQ(x i − x∗)− 1

2α
i (x i − x∗)

TQg i = ai − 1
2α

i∥ g i ∥2

[using Q(x i − x∗) = g i] = ai − 1
2∥ g

i ∥4 / (g i)TQg i

Solutions X 65

= ai −
∥ g i ∥4 1

2 (g
i)TQ−1g i

((g i)TQg i)((g i)TQ−1g i)
= ai

(
1− ∥ g i ∥4

((g i)TQg i)((g i)TQ−1g i)

)
[back]

▶ Recall 1 / λn ≥ . . . ≥ 1 / λ1 > 0 eigenvalues of Q−1; from the usual
λn∥ x ∥2 ≤ xTQx ≤ λ1∥ x ∥2 (applied to Q−1 as well) one has
∥ g ∥2 / gTQg ≥ 1 / λ1 and ∥ g ∥2 / gTQ−1g ≥ 1 / [1 / λn] [back]

▶ rkv1 ≤ ε ≡ rk ≤ ε / v1 ≡ log(rk) ≤ log(ε / v1) (log monotone) ≡
k log(r) ≤ log(ε / v1) (property of log); since r < 1, log(r) < 0, giving
k ≥ log(ε / v1) / log(r) = [− log(ε / v1)] / [− log(r)] =
log(v1 / ε) / log(1/r) = log(v1 / ε)[1 / log(1 / r)] [back]

▶ This requires a bit of elementary calculus. The derivative of ln(x) is 1 / x .
The first-order Taylor approximation is f (x + δ) ≈ f (x) + f ′(x)δ for δ ≈ 0.
Applied to ln(·) with x = 1 gives ln(1 + δ) ≈ δ, whence 1 / ln(1 / r) =
= 1 / ln(1 + (1− r) / r) = r / (1− r). But loga(x) = logb(x) / logb(a),
hence ln(x) = loge(x) = log10(x) / log10(e) ≈ log(x) / 0.43 ≈ 2.3 log(x),
i.e., ln(x) ∈ O(log(x)) [back]

Solutions XI 66

▶ λ1∥ x i − x∗ ∥2 ≥ (xi − x∗)
TQ(xi − x∗) = 2ai ≡ ∥ x i − x∗ ∥ ≥

√
2ai / λ1,

hence d i ≤ ε =⇒ ai ≤ λ1ε
2 / 2 [back]

▶ ai = 1
2 (x

i − x∗)
TQ(x i − x∗) =

1
2 ⟨ g

i , x i − x∗ ⟩ ≤ 1
2∥ g

i ∥∥ x i − x∗ ∥. On the
other hand, ∥ g i ∥2 = (x i − x∗)

TQTQ(x i − x∗) ≥ λ2
n∥ x i − x∗ ∥2 (recall λ2

n

eigenvalue of Q2, clearly the smallest), i.e., ∥ g i ∥ ≥ λn∥ x i − x∗ ∥. Hence,
∥ g i ∥ ≤

√
2λnε =⇒ ε ≥ 1

2λn
∥ g i ∥2 ≥ 1

2∥ g
i ∥∥ x i − x∗ ∥ ≥ ai [back]

▶ If f∗ = −∞, fi → −∞ is OK (minimising sequence) but ai = ai+1 = ∞ and
therefore their ratio is not well-defined. Since f is continuous, { d i } → 0 =⇒
{ ai } → 0, but the converse need not happen in general: say, { x2i } → x ′∗ and
{ x2i+1 } → x ′′∗ with x ′∗ ̸= x ′′∗ optimal solutions [back]

▶ Simply, limx→0 x
p / x = limx→0 x

p−1 = 0: the numerator goes to 0 faster than
the denominator [back]

	Optimization Problems
	Optimization is difficult
	Simple Functions, Univariate case
	Simple Functions, Multivariate case
	Multivariate Quadratic case: Gradient Method
	Wrap up & References
	Solutions

