Simple Optimization Problems

Antonio Frangioni

Department of Computer Science University of Pisa https://www.di.unipi.it/~frangio mailto:frangio@di.unipi.it

Computational Mathematics for Learning and Data Analysis Master in Computer Science – University of Pisa

A.Y. 2024/25

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

• Let's start simple: x input space, y output space, both just \mathbb{R}

• Let's start simple: x input space, y output space, both just \mathbb{R}

Function $f : \mathbb{R} \to \mathbb{R}$, f(x) = y = output with input x

- Let's start simple: x input space, y output space, both just \mathbb{R}
- Function $f : \mathbb{R} \to \mathbb{R}$, f(x) = y = output with input x
- Graph of f: gr(f) = { (f(x), x) : $x \in \mathbb{R}$ } $\subset \mathbb{R}^2$

- Let's start simple: x input space, y output space, both just $\mathbb R$
- Function $f : \mathbb{R} \to \mathbb{R}$, f(x) = y = output with input x
- Graph of f: gr(f) = { (f(x), x) : $x \in \mathbb{R}$ } $\subset \mathbb{R}^2$
- Image of f: im(f) = { y : ∃x ∈ ℝ s.t. y = f(x) } ⊂ ℝ i.e., projection of gr(f) on output space (a.k.a. co-domain)

- Let's start simple: x input space, y output space, both just R
- Function $f : \mathbb{R} \to \mathbb{R}$, f(x) = y = output with input x
- Graph of f: gr(f) = { $(f(x), x) : x \in \mathbb{R}$ } $\subset \mathbb{R}^2$
- ▶ Image of f: im $(f) = \{ y : \exists x \in \mathbb{R} \text{ s.t. } y = f(x) \} \subset \mathbb{R}$ i.e., projection of gr(f) on output space (a.k.a. co-domain)

• Level set at value $v: L(f, v) = \{x \in \mathbb{R} : f(x) = v\} \subset \mathbb{R}$

- Let's start simple: x input space, y output space, both just $\mathbb R$
- Function $f : \mathbb{R} \to \mathbb{R}$, f(x) = y = output with input x
- Graph of f: gr(f) = { (f(x), x) : $x \in \mathbb{R}$ } $\subset \mathbb{R}^2$
- ▶ Image of f: im $(f) = \{ y : \exists x \in \mathbb{R} \text{ s.t. } y = f(x) \} \subset \mathbb{R}$ i.e., projection of gr(f) on output space (a.k.a. co-domain)

Level set at value v: L(f, v) = {x ∈ ℝ : f(x) = v} ⊂ ℝ (roots of f = L(f, 0) = level set at value 0)

 $(P) \quad f_* = \min\{f(x) : x \in \mathbb{R}\}$

• $f_* = \nu(P)$ optimal value (unique if \exists , which it may not)

 $(P) \quad f_* = \min\{f(x) : x \in \mathbb{R}\}$

- $f_* = \nu(P)$ optimal value (unique if \exists , which it may not)
- $f_* = \text{smaller element of im}(f)$

- $f_* = \nu(P)$ optimal value (unique if \exists , which it may not)
- ▶ $f_* = \text{smaller element of im}(f) = \text{smaller } v \text{ s.t. } L(f, v) \neq \emptyset$

- (P) $f_* = \min\{f(x) : x \in \mathbb{R}\}$
- $f_* = \nu(P)$ optimal value (unique if \exists , which it may not)
- ▶ $f_* = \text{smaller element of im}(f) = \text{smaller } v \text{ s.t. } L(f, v) \neq \emptyset$
- ▶ In fact, the problem is (P) $x_* \in \operatorname{argmin} \{ f(x) : x \in \mathbb{R} \}$
- ▶ x_* s.t. $f_* = f(x_*) \le f(x)$ $\forall x \in \mathbb{R}$ optimal solution (if \exists , which it may not)

(Univariate) Unconstrained optimization problem 2 f(x) f_* $L(f, f_*)$

- *f* objective (function) of (univariate, unconstrained) optimization problem
 (*P*) *f*_{*} = min{ *f*(*x*) : *x* ∈ ℝ }
- ► $f_* = \nu(P)$ optimal value (unique if \exists , which it may not)
- ▶ $f_* = \text{smaller element of im}(f) = \text{smaller } v \text{ s.t. } L(f, v) \neq \emptyset$
- ▶ In fact, the problem is (P) $x_* \in \operatorname{argmin} \{ f(x) : x \in \mathbb{R} \}$
- ▶ x_* s.t. $f_* = f(x_*) \le f(x)$ $\forall x \in \mathbb{R}$ optimal solution (if \exists , which it may not)
- x_{*} may not be unique: ∃ x' ≠ x_{*} ∈ L(f, f_{*}) = X_{*} set of optimal solutions, but we don't care (mostly): all optimal solutions equivalent "in the eyes of f"

Sometimes changing f changes f_{*} "in a simple way" but does not change X_{*}: the corresponding problem is equivalent, a reformulation of (P)

• "min" w.l.o.g.: min{ $f(x) : x \in \mathbb{R}$ } =

An aside, once and for all: simple reformulations

Sometimes changing f changes f_{*} "in a simple way" but does not change X_{*}: the corresponding problem is equivalent, a reformulation of (P)

▶ "min" w.l.o.g.: min{ $f(x) : x \in \mathbb{R}$ } = $-\max\{-f(x) : x \in \mathbb{R}$ } i.e., argmin { $f(x) : x \in \mathbb{R}$ } = argmax { $-f(x) : x \in \mathbb{R}$ } (but min{ f(x) } ≠ max{ f(x) }, often rather different problems)

Sometimes changing f changes f_{*} "in a simple way" but does not change X_{*}: the corresponding problem is equivalent, a reformulation of (P)

• "min" w.l.o.g.: min{ $f(x) : x \in \mathbb{R}$ } = $-\max\{-f(x) : x \in \mathbb{R}\}$ i.e., argmin { $f(x) : x \in \mathbb{R}$ } = argmax { $-f(x) : x \in \mathbb{R}$ } (but min{ f(x) } $\neq \max\{f(x)\}$, often rather different problems)

• Analogously, $\min\{f(x)+c : x \in \mathbb{R}\} =$

Sometimes changing f changes f_{*} "in a simple way" but does not change X_{*}: the corresponding problem is equivalent, a reformulation of (P)

▶ "min" w.l.o.g.: min{ $f(x) : x \in \mathbb{R}$ } = $-\max\{-f(x) : x \in \mathbb{R}\}$ i.e., argmin { $f(x) : x \in \mathbb{R}$ } = argmax { $-f(x) : x \in \mathbb{R}$ } (but min{ f(x) } ≠ max{ f(x) }, often rather different problems)

Analogously, min{ $f(x)+c : x \in \mathbb{R}$ } = $c+\min\{f(x) : x \in \mathbb{R}\}$ i.e., argmin { $f(x)+c : x \in \mathbb{R}$ } = argmin { $f(x) : x \in \mathbb{R}$ } = X_*

Sometimes changing f changes f_{*} "in a simple way" but does not change X_{*}: the corresponding problem is equivalent, a reformulation of (P)

• "min" w.l.o.g.: min{ $f(x) : x \in \mathbb{R}$ } = $-\max\{-f(x) : x \in \mathbb{R}\}$ i.e., argmin { $f(x) : x \in \mathbb{R}$ } = argmax { $-f(x) : x \in \mathbb{R}$ } (but min{ f(x) } $\neq \max\{f(x)\}$, often rather different problems)

• Analogously, $\min\{cf(x) : x \in \mathbb{R}\} =$

Sometimes changing f changes f_{*} "in a simple way" but does not change X_{*}: the corresponding problem is equivalent, a reformulation of (P)

▶ "min" w.l.o.g.: min{ $f(x) : x \in \mathbb{R}$ } = $-\max\{-f(x) : x \in \mathbb{R}\}$ i.e., argmin { $f(x) : x \in \mathbb{R}$ } = argmax { $-f(x) : x \in \mathbb{R}$ } (but min{ f(x) } ≠ max{ f(x) }, often rather different problems)

Analogously, $\min\{cf(x) : x \in \mathbb{R}\} = c \min\{f(x) : x \in \mathbb{R}\}\$ (if c > 0) i.e., $\arg\min\{cf(x) : x \in \mathbb{R}\} = \arg\min\{f(x) : x \in \mathbb{R}\} = X_*$

(P) $f_* = \min\{f(x) : x \in X\}$ constrained optimization problem

▶ More general: feasible region any set $X (\subseteq \mathbb{R})$, objective $f : X \to \mathbb{R}$

(P) $f_* = \min\{f(x) : x \in X\}$ constrained optimization problem

• $x \in X$ feasible solution;

▶ More general: feasible region any set $X (\subseteq \mathbb{R})$, objective $f : X \to \mathbb{R}$

(P) $f_* = \min\{f(x) : x \in X\}$ constrained optimization problem

• $x \in X$ feasible solution; $x \in \mathbb{R} \setminus X$ unfeasible solution

(P) $f_* = \min\{f(x) : x \in X\}$ constrained optimization problem

• $x \in X$ feasible solution; $x \in \mathbb{R} \setminus X$ unfeasible solution

• $f_* = \nu(P) = \min(im(X, f)) = \text{smaller element of image of } X \text{ through } f$

(P) $f_* = \min\{f(x) : x \in X\}$ constrained optimization problem

• $x \in X$ feasible solution; $x \in \mathbb{R} \setminus X$ unfeasible solution

*f*_{*} = ν(*P*) = min(*im*(*X*, *f*)) = smaller element of image of *X* through *f X*_{*} = *L*(*f*, *f*_{*})

(P) $f_* = \min\{f(x) : x \in X\}$ constrained optimization problem

• $x \in X$ feasible solution; $x \in \mathbb{R} \setminus X$ unfeasible solution

• $f_* = \nu(P) = \min(im(X, f)) = \text{smaller element of image of } X \text{ through } f$

• $X_* = L(f, f_*) \cap X$: set of best feasible solutions

▶ More general: feasible region any set $X (\subseteq \mathbb{R})$, objective $f : X \to \mathbb{R}$

(P) $f_* = \min\{f(x) : x \in X\}$ constrained optimization problem

• $x \in X$ feasible solution; $x \in \mathbb{R} \setminus X$ unfeasible solution

• $f_* = \nu(P) = \min(im(X, f)) = \text{smaller element of image of } X \text{ through } f$

- $X_* = L(f, f_*) \cap X$: set of best feasible solutions
- ► X can be "useless" (X_{*} same)

(P) $f_* = \min\{f(x) : x \in X\}$ constrained optimization problem

• $x \in X$ feasible solution; $x \in \mathbb{R} \setminus X$ unfeasible solution

► $f_* = \nu(P) = \min(im(X, f)) = \text{smaller element of image of } X \text{ through } f$

- $X_* = L(f, f_*) \cap X$: set of best feasible solutions
- ➤ X can be "useless" (X_{*} same) or partly so (f_{*} same) ⇒ makes sense to study the unconstrained case X = ℝ first

- The "abstract constraint $x \in X$ " need be specified somehow
- Often useful to represent a set via (more than) one function(s)

- The "abstract constraint $x \in X$ " need be specified somehow
- Often useful to represent a set via (more than) one function(s)
- Standard ways: equality constraint $g(x) = v \equiv X = \text{level set } L(g, v)$,

- The "abstract constraint $x \in X$ " need be specified somehow
- Often useful to represent a set via (more than) one function(s)
- Standard ways: equality constraint g(x) = v ≡ X = level set L(g, v), inequality constraint g(x) ≤ v ≡ sublevel set S(g, v) = {x : g(x) ≤ v}

- The "abstract constraint $x \in X$ " need be specified somehow
- Often useful to represent a set via (more than) one function(s)
- Standard ways: equality constraint g(x) = v ≡ X = level set L(g, v), inequality constraint g(x) ≤ v ≡ sublevel set S(g, v) = {x : g(x) ≤ v}
- For convenience "v hidden in f" \implies $f(x) \le 0$, f(x) = 0
- What if one rather wants g(x) ≥ 0? Simply −g(x) ≤ 0

- The "abstract constraint $x \in X$ " need be specified somehow
- Often useful to represent a set via (more than) one function(s)
- Standard ways: equality constraint g(x) = v ≡ X = level set L(g, v), inequality constraint g(x) ≤ v ≡ sublevel set S(g, v) = {x : g(x) ≤ v}
- For convenience "v hidden in f" \implies $f(x) \le 0$, f(x) = 0
- What if one rather wants $g(x) \ge 0$? Simply $-g(x) \le 0$
- ▶ Usually multiple constraints: " $g_1(x) \le 0$, $g_2(x) \le 0$ " \equiv logical conjunction ("first condition and second condition") \equiv intersection of (sub)level sets

- The "abstract constraint $x \in X$ " need be specified somehow
- Often useful to represent a set via (more than) one function(s)
- Standard ways: equality constraint g(x) = v ≡ X = level set L(g, v), inequality constraint g(x) ≤ v ≡ sublevel set S(g, v) = {x : g(x) ≤ v}
- For convenience "v hidden in f" \implies $f(x) \le 0$, f(x) = 0
- What if one rather wants $g(x) \ge 0$? Simply $-g(x) \le 0$
- Usually multiple constraints: "g₁(x) ≤ 0 , g₂(x) ≤ 0" ≡ logical conjunction ("first condition and second condition") ≡ intersection of (sub)level sets
- Simple and common: bounds $x \le x_+$ (up)

- The "abstract constraint $x \in X$ " need be specified somehow
- Often useful to represent a set via (more than) one function(s)
- Standard ways: equality constraint g(x) = v ≡ X = level set L(g, v), inequality constraint g(x) ≤ v ≡ sublevel set S(g, v) = {x : g(x) ≤ v}
- For convenience "v hidden in f" \implies $f(x) \le 0$, f(x) = 0
- What if one rather wants $g(x) \ge 0$? Simply $-g(x) \le 0$
- Usually multiple constraints: "g₁(x) ≤ 0 , g₂(x) ≤ 0" ≡ logical conjunction ("first condition and second condition") ≡ intersection of (sub)level sets
- Simple and common: bounds $x \le x_+$ (up) / $x \ge x_-$ (dn),

- The "abstract constraint $x \in X$ " need be specified somehow
- Often useful to represent a set via (more than) one function(s)
- Standard ways: equality constraint g(x) = v ≡ X = level set L(g, v), inequality constraint g(x) ≤ v ≡ sublevel set S(g, v) = {x : g(x) ≤ v}
- For convenience "v hidden in f" \implies $f(x) \le 0$, f(x) = 0
- What if one rather wants $g(x) \ge 0$? Simply $-g(x) \le 0$
- Usually multiple constraints: "g₁(x) ≤ 0 , g₂(x) ≤ 0" ≡ logical conjunction ("first condition and second condition") ≡ intersection of (sub)level sets

▶ Simple and common: bounds $x \le x_+$ (up) / $x \ge x_-$ (dn), boxes $x_- \le x \le x_+$

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions
What if $f_* \nexists$?

6

▶ *f* has no minimum, (*P*) unbounded (below): $f_* = \nu(P) = -\infty$

- Just a convenient shorthand for ∀ t ∈ ℝ ∃ x ∈ ℝ s.t. f(x) ≤ t i.e., "there is no (finite) lower bound on im(f)"
- Solving (P) actually (at least) two different things:
 - finding x_{*} and proving it is optimal (how??)
 - constructively proving f unbounded below (how??)
- Hardly ever happens in learning since $\mathcal{L}(w) \ge 0$

Nontrivial and important in optimization (tied with duality, nonemptiness, ...)

What if $f_* \exists$ but $x_* \nexists$?

▶ im(f) is bounded below but has no minimum

Either "naturally"

- ▶ im(f) is bounded below but has no minimum
- Either "naturally" or "forcibly"
- $\inf\{f(x) : x \in \mathbb{R}\} \exists$, but $\min\{f(x) : x \in \mathbb{R}\} \ddagger$
- Arguably $f_* = \inf\{f(x) : x \in \mathbb{R}\}$, but $\nexists x_*$ s.t. $f_* = f(x_*)$

im(f) is open, does not contain its boundary (will see)

Mathematically speaking: Infima, suprema and \mathbb{R} [1, A.2.2]

- ▶ \mathbb{R} totally ordered $\implies \forall x, y \in \mathbb{R}$, at least one among $x \leq y, y \leq x$ holds
- $S \subseteq \mathbb{R}, \ \underline{s} = \inf S \quad \Longleftrightarrow \quad \underline{s} \le s \ \forall s \in S \ \land \ \forall t > \underline{s} \ \exists s \in S \ \text{s.t.} \ s \le t \\ \overline{s} = \sup S \quad \Longleftrightarrow \quad \overline{s} \ge s \ \forall s \in S \ \land \ \forall t < \overline{s} \ \exists s \in S \ \text{s.t.} \ s \ge t$
- $\underline{s} \in S \Longrightarrow \underline{s} = \min S, \ \overline{s} \in S \Longrightarrow \overline{s} = \max S$
- ▶ Issues: i) inf S/sup S may not \exists in \mathbb{R} , ii) inf S/sup S may not $\in S$
- Should write "inf{f(x)...", but we want (approximately) optimal solutions
- ▶ Set of extended reals: $\overline{\mathbb{R}} = \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$ (usually just \mathbb{R})
- ▶ For all $S \subseteq \mathbb{R}$, $\exists \sup / \inf S \in \mathbb{R}$
- ▶ inf $S = -\infty$ \iff $\forall t \in \mathbb{R} \exists s \in S \text{ s.t. } s \leq t$ sup $S = +\infty$ \iff $\forall t \in \mathbb{R} \exists s \in S \text{ s.t. } s \geq t$ just a convenient shorthand for "there is no (finite) inf / sup"

• inf
$$\emptyset = \infty$$
, sup $\emptyset = -\infty$

Is this a real problem in practice?

- Several ways to ensure this never happens (hypotheses on f, X)
- On computers "x ∈ ℝ" typically is "x ∈ ℚ" with up to 16 digits precision ⇒ approximation errors unavoidable anyway
- Exact algebraic computation may be possible (if f is algebraic, which it may be not) but anyway usually too slow
- In fact learning going the opposite way (float, half, FP8, ...)
- Anyway, finding the exact x_{*} impossible in general [4, p. 408]
- For any fixed ε > 0, plenty of ε-approximate solutions (ε-optima):
 x_ε ∈ ℝ s.t. f_{*} ≤ f(x_ε) ≤ f_{*} + ε
 "as close to the optimal solution (value) as you want"
- Cost of solution algorithms typically depends on ε (sometimes very badly)
- And ε can't really become very small anyway (see above)

Optimization need be approximate

- Absolute gap: $A(x) = f(x) f_* (\geq 0)$
- ▶ Relative gap: $R(x) = (f(x) f_*) / |f_*| = A(x) / |f_*| (≥ 0)$
- ▶ Why R(x)? Because $\forall \alpha > 0$ (P) \equiv (P_{\alpha}) min{ $\alpha f(x) : x \in \mathbb{R}$ } $\nu(P_{\alpha}) = \alpha f_* = \alpha \nu(P) \implies$ same R(x) (scale invariant), different A(x)

Exercise: R(x) ill-defined if $f_* = 0$, propose solutions & justify them (change f_*)

Optimization need be approximate

- Absolute gap: $A(x) = f(x) f_* (\geq 0)$
- ▶ Relative gap: $R(x) = (f(x) f_*) / |f_*| = A(x) / |f_*| (≥ 0)$
- ▶ Why R(x)? Because $\forall \alpha > 0$ (P) \equiv (P_{\alpha}) min{ $\alpha f(x) : x \in \mathbb{R}$ } $\nu(P_{\alpha}) = \alpha f_* = \alpha \nu(P) \implies$ same R(x) (scale invariant), different A(x)

Exercise: R(x) ill-defined if $f_* = 0$, propose solutions & justify them (change f_*)

- (Approximately) solve (P): fix ε , find x s.t. either $A(x) \leq \varepsilon$ or $R(x) \leq \varepsilon$
- ▶ Issue: computing A(x) or R(x) requires f_* which is typically unkown
- Could argue this is "the issue" in optimization: compute (an estimate of) f*
- Sometimes \approx known in learning ($f_* \approx 0$ in NN, but not in SVM)
- A real issue only if global optimum x_* needed, hence not always

Impossible because isolated minima can be anywhere [4, p. 408]

- Impossible because isolated minima can be anywhere [4, p. 408]
- ▶ Does it help restricting to $x \in X = [x_-, x_+]$ ($-\infty < x_- < x_+ < +\infty$)?
- No: still uncountably many points to try

- Impossible because isolated minima can be anywhere [4, p. 408]
- ▶ Does it help restricting to $x \in X = [x_-, x_+]$ ($-\infty < x_- < x_+ < +\infty$)?
- No: still uncountably many points to try
- ▶ Is it because f "jumps"?

Even approximate, optimization is hard / impossible f(x) ... x

11

- Impossible because isolated minima can be anywhere [4, p. 408]
- ▶ Does it help restricting to $x \in X = [x_-, x_+]$ ($-\infty < x_- < x_+ < +\infty$)?
- No: still uncountably many points to try
- ▶ Is it because f "jumps"? No, f can have isolated \downarrow spikes anywhere

- Impossible because isolated minima can be anywhere [4, p. 408]
- ▶ Does it help restricting to $x \in X = [x_-, x_+]$ $(-\infty < x_- < x_+ < +\infty)$?
- No: still uncountably many points to try
- Is it because f "jumps"? No, f can have isolated ↓ spikes anywhere ... even on X = [x₋, x₊] as spikes can be arbitrarily narrow

Impossible because isolated minima can be anywhere [4, p. 408]

- ▶ Does it help restricting to $x \in X = [x_-, x_+]$ $(-\infty < x_- < x_+ < +\infty)$?
- No: still uncountably many points to try
- Is it because f "jumps"? No, f can have isolated ↓ spikes anywhere ... even on X = [x₋, x₊] as spikes can be arbitrarily narrow
- To make (even approximate) optimization even possible, f must be "nice"
- Let's start with the nicest possible ones where optimization is (\approx) trivial

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

- ► The simplest possible function: f(x) = bx (linear), fixed $b \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $b > 0 \equiv$ increasing: $x > z \Longrightarrow f(x) > f(z)$

- ▶ The simplest possible function: f(x) = bx (linear), fixed $b \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $b > 0 \equiv$ increasing: $x > z \Longrightarrow f(x) > f(z)$

- ▶ The simplest possible function: f(x) = bx (linear), fixed $b \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $b > 0 \equiv$ increasing: $x > z \Longrightarrow f(x) > f(z)$

- ▶ The simplest possible function: f(x) = bx (linear), fixed $b \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $b > 0 \equiv$ increasing: $x > z \Longrightarrow f(x) > f(z)$

- ▶ The simplest possible function: f(x) = bx (linear), fixed $b \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- ▶ $b = 0 \equiv$ nondecreasing: $x > z \Longrightarrow f(x) \ge f(z)$ and

- ▶ The simplest possible function: f(x) = bx (linear), fixed $b \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- ▶ $b = 0 \equiv$ nonincreasing: $x > z \Longrightarrow f(x) \le f(z)$

- ▶ The simplest possible function: f(x) = bx (linear), fixed $b \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $b = 0 \equiv \text{constant}$: $x > z \Longrightarrow f(x) = f(z)$

- ▶ The simplest possible function: f(x) = bx (linear), fixed $b \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $b < 0 \equiv$ decreasing: $x > z \Longrightarrow f(x) < f(z)$

- ▶ The simplest possible function: f(x) = bx (linear), fixed $b \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $b < 0 \equiv$ decreasing: $x > z \Longrightarrow f(x) < f(z)$

- ▶ The simplest possible function: f(x) = bx (linear), fixed $b \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $b < 0 \equiv$ decreasing: $x > z \Longrightarrow f(x) < f(z)$

- ▶ The simplest possible function: f(x) = bx (linear), fixed $b \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $b < 0 \equiv$ decreasing: $x > z \Longrightarrow f(x) < f(z)$

Exercise: Formally prove the stated properties

- ▶ The simplest possible function: f(x) = bx (linear), fixed $b \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $b < 0 \equiv$ decreasing: $x > z \Longrightarrow f(x) < f(z)$

Exercise: Formally prove the stated properties

 \blacktriangleright b = linear coefficient = slope: the larger |b|, the steeper the line

Optimizing a linear function

- Too easy: $\min = -\infty$, $\max = +\infty$ unless $b = 0 \implies \min = \max = 0$
- More interesting: box-constrained optimization

(P) $\min\{f(x) : x \in [x_{-}, x_{+}]\}$

with $-\infty \le x_{-} \le x_{+} \le +\infty \equiv X$ possibly (half-)infinite interval

Constraints often useful, (finite) box constraints (very simple) especially so

$$\blacktriangleright \ b>0 \implies \text{argmin} = x_-, \ \text{min} = f(x_-), \ \text{argmax} = x_+ \ , \ \text{max} = f(x_+)$$

• "Works" even if $x_{-} = -\infty$ and/or $x_{+} = +\infty$, as $b \cdot (\pm \infty) = \pm \infty$

Optimizing a linear function

- Too easy: $\min = -\infty$, $\max = +\infty$ unless $b = 0 \implies \min = \max = 0$
- More interesting: box-constrained optimization

(P) $\min\{f(x) : x \in [x_{-}, x_{+}]\}$

with $-\infty \le x_{-} \le x_{+} \le +\infty \equiv X$ possibly (half-)infinite interval

Constraints often useful, (finite) box constraints (very simple) especially so

►
$$b > 0 \implies$$
 argmin = x_- , min = $f(x_-)$, argmax = x_+ , max = $f(x_+)$

• "Works" even if $x_{-} = -\infty$ and/or $x_{+} = +\infty$, as $b \cdot (\pm \infty) = \pm \infty$

Exercise: Formally prove the result, state & prove cases b < 0 and b = 0

Optimizing a linear function

- Too easy: min = $-\infty$, max = $+\infty$ unless $b = 0 \implies$ min = max = 0
- More interesting: box-constrained optimization

(P) $\min\{f(x) : x \in [x_{-}, x_{+}]\}$

with $-\infty \le x_{-} \le x_{+} \le +\infty \equiv X$ possibly (half-)infinite interval

Constraints often useful, (finite) box constraints (very simple) especially so

$$\blacktriangleright \ b>0 \implies \text{argmin} = x_-, \ \text{min} = f(x_-), \ \text{argmax} = x_+ \ , \ \text{max} = f(x_+)$$

• "Works" even if $x_{-} = -\infty$ and/or $x_{+} = +\infty$, as $b \cdot (\pm \infty) = \pm \infty$

Exercise: Formally prove the result, state & prove cases b < 0 and b = 0

Closed formula O(1), don't get used to it

Yet solving simple problems the basis of solving complicated ones

► Could have used $X = (x_-, x_+) = \{x \in \mathbb{R} : x_- < x < x_+\}$ (open interval)?

- Could have used $X = (x_-, x_+) = \{x \in \mathbb{R} : x_- < x < x_+\}$ (open interval)?
- ▶ Bad idea: again, inf \exists but min \nexists , finite f_* but $x_* \nexists$

- ► Could have used $X = (x_-, x_+) = \{x \in \mathbb{R} : x_- < x < x_+\}$ (open interval)?
- ▶ Bad idea: again, inf \exists but min \nexists , finite f_* but $x_* \nexists$
- ► Would it make sense for applications? Hardly. x a physical quantity ⇒ cannot be chosen/measured to ∞ precision (Plank scale, Heisenberg's Uncertainty Principle, ...)

- ► Could have used $X = (x_-, x_+) = \{x \in \mathbb{R} : x_- < x < x_+\}$ (open interval)?
- ▶ Bad idea: again, inf \exists but min \nexists , finite f_* but $x_* \nexists$
- ► Would it make sense for applications? Hardly. x a physical quantity ⇒ cannot be chosen/measured to ∞ precision (Plank scale, Heisenberg's Uncertainty Principle, ...)
- It is a problem for algorithms? In theory yes, in practice hardly: again, plenty of ε-optimal solutions however chosen ε > 0

- ► Could have used $X = (x_-, x_+) = \{x \in \mathbb{R} : x_- < x < x_+\}$ (open interval)?
- Bad idea: again, inf ∃ but min ∄, finite f_{*} but x_{*} ∄
- ▶ Would it make sense for applications? Hardly. x a physical quantity ⇒ cannot be chosen/measured to ∞ precision (Plank scale, Heisenberg's Uncertainty Principle, ...)
- It is a problem for algorithms? In theory yes, in practice hardly: again, plenty of ε-optimal solutions however chosen ε > 0
- Does it make any sense at all? Hardly: if x_−, x₊ "can't be touched", use X = [x_− + ε_−, x₊ − ε₊] for appropriately chosen ε_±
- All in all? Just use closed intervals and be done with it
- Will generalise to "just use closed sets and be done with it"

- As many different functions as real numbers (bijection)
- $a > 0 \equiv$ decreasing for $x \leq 0$, increasing for $x \geq 0$

- ▶ Next simplest function: $f(x) = ax^2$ (homogeneous quadratic), fixed $a \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $a > 0 \equiv$ decreasing for $x \leq 0$, increasing for $x \geq 0$

- ▶ Next simplest function: $f(x) = ax^2$ (homogeneous quadratic), fixed $a \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $a > 0 \equiv$ decreasing for $x \leq 0$, increasing for $x \geq 0$

- ▶ Next simplest function: $f(x) = ax^2$ (homogeneous quadratic), fixed $a \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $a > 0 \equiv$ decreasing for $x \leq 0$, increasing for $x \geq 0$

Quadratic homogeneous univariate functions 15 a = 0.01

- ▶ Next simplest function: $f(x) = ax^2$ (homogeneous quadratic), fixed $a \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $a > 0 \equiv$ decreasing for $x \leq 0$, increasing for $x \geq 0$

Quadratic homogeneous univariate functions a = 0

- ▶ Next simplest function: $f(x) = ax^2$ (homogeneous quadratic), fixed $a \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- ▶ $a = 0 \equiv$ nonincreasing for $x \leq 0$, nondecreasing for $x \geq 0$ and

Quadratic homogeneous univariate functions 15 a = 0

- ▶ Next simplest function: $f(x) = ax^2$ (homogeneous quadratic), fixed $a \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- ▶ $a = 0 \equiv$ nondecreasing for $x \le 0$, nonincreasing for $x \ge 0$ (constant)

- ▶ Next simplest function: $f(x) = ax^2$ (homogeneous quadratic), fixed $a \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $a < 0 \equiv$ increasing for $x \le 0$, decreasing for $x \ge 0$

- ▶ Next simplest function: $f(x) = ax^2$ (homogeneous quadratic), fixed $a \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $a < 0 \equiv$ increasing for $x \le 0$, decreasing for $x \ge 0$

- ▶ Next simplest function: $f(x) = ax^2$ (homogeneous quadratic), fixed $a \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $a < 0 \equiv$ increasing for $x \le 0$, decreasing for $x \ge 0$

- ▶ Next simplest function: $f(x) = ax^2$ (homogeneous quadratic), fixed $a \in \mathbb{R}$
- As many different functions as real numbers (bijection)
- $a < 0 \equiv$ increasing for $x \le 0$, decreasing for $x \ge 0$

- As many different functions as real numbers (bijection)
- $a < 0 \equiv$ increasing for $x \le 0$, decreasing for $x \ge 0$

- As many different functions as real numbers (bijection)
- $a < 0 \equiv$ increasing for $x \le 0$, decreasing for $x \ge 0$

Exercise: Formally prove the stated properties

- As many different functions as real numbers (bijection)
- $a < 0 \equiv$ increasing for $x \le 0$, decreasing for $x \ge 0$

Exercise: Formally prove the stated properties

• a = quadratic coefficient = curvature: the larger |a|, the steeper the parabola

Optimizing a quadratic homogeneous function

Clearly depends (and symmetric) on sign of a:

•
$$a > 0 \implies \min = \operatorname{argmin} = 0$$
, $\max = +\infty$, $\operatorname{argmax} = \pm \infty$

• $a < 0 \implies \max = \operatorname{argmax} = 0$, $\min = -\infty$, $\operatorname{argmin} = \pm \infty$

▶ Box-constrained optimization on (closed) $X = [x_{-}, x_{+}]$ more interesting

a > 0 ⇒ three cases x₊ < 0 ⇒ argmin = x₊, argmax = x₋ x₋ > 0 ⇒ argmin = x₋, argmax = x₊ x₋ ≤ 0 ≤ x₊ ⇒ argmin = 0, argmax = argmax{f(x₋), f(x₊)}

• "Works" even if $x_{-} = -\infty$ and/or $x_{+} = +\infty$, as $a \cdot (\pm \infty)^2 = +\infty$

Optimizing a quadratic homogeneous function

Clearly depends (and symmetric) on sign of a:

•
$$a > 0 \implies \min = \operatorname{argmin} = 0$$
, $\max = +\infty$, $\operatorname{argmax} = \pm \infty$

• $a < 0 \implies \max = \operatorname{argmax} = 0$, $\min = -\infty$, $\operatorname{argmin} = \pm \infty$

▶ Box-constrained optimization on (closed) $X = [x_{-}, x_{+}]$ more interesting

►
$$a > 0 \implies$$
 three cases
► $x_+ < 0 \implies$ argmin = x_+ , argmax = x_-
► $x_- > 0 \implies$ argmin = x_- , argmax = x_+
► $x_- \le 0 \le x_+ \implies$ argmin = 0, argmax = argmax{ $f(x_-), f(x_+)$ }

• "Works" even if $x_{-} = -\infty$ and/or $x_{+} = +\infty$, as $a \cdot (\pm \infty)^{2} = +\infty$

Exercise: Formally prove the result, state & prove cases a < 0 and a = 0

Optimizing a quadratic homogeneous function

Clearly depends (and symmetric) on sign of a:

•
$$a > 0 \implies \min = \operatorname{argmin} = 0$$
, $\max = +\infty$, $\operatorname{argmax} = \pm \infty$

• $a < 0 \implies \max = \operatorname{argmax} = 0$, $\min = -\infty$, $\operatorname{argmin} = \pm \infty$

▶ Box-constrained optimization on (closed) $X = [x_{-}, x_{+}]$ more interesting

• "Works" even if $x_{-} = -\infty$ and/or $x_{+} = +\infty$, as $a \cdot (\pm \infty)^{2} = +\infty$

Exercise: Formally prove the result, state & prove cases a < 0 and a = 0

Again closed formula O(1), don't get used to it

• max{ f(x) } and min{ f(x) } somewhat \neq (cf. last case), will see much more

Quadratic non-homogeneous univariate functions

- ▶ Next step: $f(x) = ax^2 + bx$ (non-homogeneous quadratic), fixed $(a, b) \in \mathbb{R}^2$
- As many different functions as pairs of real numbers (bijection)
- Basically, a homogeneous quadratic + a linear
- However, $\min\{ax^2 + bx\} \neq \min\{ax^2\} + \min\{bx\}$
- O clearly always a root, but in general not the argmin / argmax
- ▶ Powerful general concept: if f(x) is "too complicated", make it "simpler"
- Sometimes this can be done by changing the space of variables (reformulation)
- In this case: change the input space so that it becomes homogeneous
- Clearly only needed if both $a \neq 0$ and $b \neq 0$

Optimizing a quadratic non-homogeneous function

- Fundamental trick: $\bar{x} = -b/2a$ (because I say so), $z = x \bar{x} \equiv x = z + \bar{x}$
- The z-space is the x-space where the origin is moved to \bar{x}
- ► Just algebra: $f(x) = a(z + \bar{x})^2 + b(z + \bar{x}) = az^2 + 2az\bar{x} + a\bar{x}^2 + bz + b\bar{x}$ = $az^2 + (2a\bar{x} + b)z + [a\bar{x}^2 + b\bar{x}] = az^2 + f(\bar{x}) = g(z)$ [$2a\bar{x} + b = 0$]
- Translated by \bar{x} horizontally (and by $f(\bar{x})$ vertically), f(x) is homogeneous
- lts argmin / argmax (depending on sign of a) is $z = 0 \equiv x = \bar{x}$

• Then, just • Optimizing a quadratic homogeneous function for g(z)

• Yet again, closed formula O(1), don't get used to it

Exercise: Flesh out the details: describe all cases in terms of f and x**Exercise:** Discuss the position of \bar{x} and the roots of f depending on a, b

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

- ▶ Next crucial step: $f : \mathbb{R}^n \to \mathbb{R}$, i.e., $f(x_1, x_2, ..., x_n) = f(x)$ with $x = [x_i]_{i=1}^n = [x_1, x_2, ..., x_n] \in \mathbb{R}^n$
- ▶ *n* can be smallish (2, 3, 100), largish $(10^4, 10^5)$ or heinously large $(10^9, 10^{11})$
- ▶ All previous stuff (f_* , X_* , constraints, ...) immediately generalises

- ▶ Next crucial step: $f : \mathbb{R}^n \to \mathbb{R}$, i.e., $f(x_1, x_2, ..., x_n) = f(x)$ with $x = [x_i]_{i=1}^n = [x_1, x_2, ..., x_n] \in \mathbb{R}^n$
- ▶ *n* can be smallish (2, 3, 100), largish $(10^4, 10^5)$ or heinously large $(10^9, 10^{11})$
- ▶ All previous stuff (f_* , X_* , constraints, ...) immediately generalises
- ▶ $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \mathbb{R}$, Cartesian product of \mathbb{R} *n* times \implies "exponentially larger than \mathbb{R} " \equiv finding stuff a lot harder

- ▶ Next crucial step: $f : \mathbb{R}^n \to \mathbb{R}$, i.e., $f(x_1, x_2, ..., x_n) = f(x)$ with $x = [x_i]_{i=1}^n = [x_1, x_2, ..., x_n] \in \mathbb{R}^n$
- ▶ *n* can be smallish (2, 3, 100), largish $(10^4, 10^5)$ or heinously large $(10^9, 10^{11})$
- ▶ All previous stuff (f_* , X_* , constraints, ...) immediately generalises
- ▶ ℝⁿ = ℝ × ℝ × ... ℝ, Cartesian product of ℝ n times ⇒
 "exponentially larger than ℝ" ≡ finding stuff a lot harder
 "Space is big. Really big. You just won't

believe how vastly, hugely, mind-bogglingly big it is." [15]

- ▶ Next crucial step: $f : \mathbb{R}^n \to \mathbb{R}$, i.e., $f(x_1, x_2, ..., x_n) = f(x)$ with $x = [x_i]_{i=1}^n = [x_1, x_2, ..., x_n] \in \mathbb{R}^n$
- ▶ *n* can be smallish (2, 3, 100), largish $(10^4, 10^5)$ or heinously large $(10^9, 10^{11})$
- ▶ All previous stuff (f_* , X_* , constraints, ...) immediately generalises
- ▶ $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \mathbb{R}$, Cartesian product of \mathbb{R} *n* times \implies "exponentially larger than \mathbb{R} " \equiv finding stuff a lot harder

"The vector space \mathbb{R}^n is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is." [15]

- ▶ Next crucial step: $f : \mathbb{R}^n \to \mathbb{R}$, i.e., $f(x_1, x_2, ..., x_n) = f(x)$ with $x = [x_i]_{i=1}^n = [x_1, x_2, ..., x_n] \in \mathbb{R}^n$
- ▶ *n* can be smallish (2, 3, 100), largish $(10^4, 10^5)$ or heinously large $(10^9, 10^{11})$
- ▶ All previous stuff (f_* , X_* , constraints, ...) immediately generalises
- ▶ ℝⁿ = ℝ × ℝ × ... ℝ, Cartesian product of ℝ n times ⇒
 "exponentially larger than ℝ" ≡ finding stuff a lot harder
 "The vector space ℝⁿ is big. Really big. You just won't

believe how vastly, hugely, mind-bogglingly big it is." [15]

- Assume we can even luckily restrict to a "small" x ∈ X ⊂ ℝⁿ: a "box" (hyperrectangle) X = { x ∈ ℝⁿ : x_− ≤ x ≤ x₊ }, x_± ∈ ℝⁿ (with x_− ≤ x₊)
- ► Assume x₋ = 0, x₊ = u = [1, ..., 1] and we can only look to integer values: still have 2ⁿ points to look at (binary hypercube), grows too fast with n

- ▶ Next crucial step: $f : \mathbb{R}^n \to \mathbb{R}$, i.e., $f(x_1, x_2, ..., x_n) = f(x)$ with $x = [x_i]_{i=1}^n = [x_1, x_2, ..., x_n] \in \mathbb{R}^n$
- ▶ *n* can be smallish (2, 3, 100), largish $(10^4, 10^5)$ or heinously large $(10^9, 10^{11})$
- ▶ All previous stuff (f_* , X_* , constraints, ...) immediately generalises
- ▶ $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \mathbb{R}$, Cartesian product of \mathbb{R} *n* times \implies "exponentially larger than \mathbb{R} " \equiv finding stuff a lot harder

"The vector space \mathbb{R}^n is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is." [15]

- Assume we can even luckily restrict to a "small" x ∈ X ⊂ ℝⁿ: a "box" (hyperrectangle) X = { x ∈ ℝⁿ : x_− ≤ x ≤ x₊ }, x_± ∈ ℝⁿ (with x_− ≤ x₊)
- ► Assume x₋ = 0, x₊ = u = [1, ..., 1] and we can only look to integer values: still have 2ⁿ points to look at (binary hypercube), grows too fast with n

Even picturing things is more complex and requires appropriate tools

An aside, once and for all: how about $f : \mathbb{R}^n \to \mathbb{R}^k$?

- Already "f : X → ℝ" a rather strong assumption:
 can "express all the value of any x ∈ X with a single number" ⇒
 given x' and x" I can always tell which one I like best (ℝ has total order)
- Often there would be more than one objective:

(P) $\min \{ [f_1(x), f_2(x), \ldots] : x \in X \}$

20

with f₁, f₂, ... contrasting and/or with incomparable units (apples vs. oranges)
► car cost vs. flashiness vs. km/l vs. # seats vs. trunk space ...

- loss function $\mathcal{L}(w)$ vs. regularity R(w) in ML
- ▶ Vector-valued (a.k.a. multi-objective) optimization: $f : X \to \mathbb{R}^k$ with k > 1

Textbook example: portfolio selection problem

▶ ...

 \blacktriangleright X = set of financial instruments portfolios available to buy

- ► $f_1(x) =$ expected return of portfolio $x \in$
- $f_2(x) = \text{risk of portfolio } x \text{ not achieving the expected return (%, CVAR, ...)}$

▶ ℝ^k with k > 1 has no total order ⇒ no "best" solution, only

▶ ℝ^k with k > 1 has no total order ⇒ no "best" solution, only non-dominated ones on the

- ▶ ℝ^k with k > 1 has no total order ⇒ no "best" solution, only non-dominated ones on the Pareto frontier
- Two practical solutions:

- ▶ ℝ^k with k > 1 has no total order ⇒ no "best" solution, only non-dominated ones on the Pareto frontier
- ► Two practical solutions: maximize risk-adjusted return, a.k.a. scalarization min { $f_1(x) + \alpha f_2(x) : x \in X$ } (which α ??)

- ▶ ℝ^k with k > 1 has no total order ⇒ no "best" solution, only non-dominated ones on the Pareto frontier
- ► Two practical solutions: maximize return with budget on maximum risk, a.k.a. budgeting min { $f_1(x) : f_2(x) \le \beta_2$, $x \in X$ } (which β_2 ??)

- ▶ ℝ^k with k > 1 has no total order ⇒ no "best" solution, only non-dominated ones on the Pareto frontier
- ► Two practical solutions: minimize risk with budget on minimum return, a.k.a. budgeting min { $f_2(x)$: $f_1(x) \ge \beta_1$, $x \in X$ } (which β_1 ??)

- ▶ ℝ^k with k > 1 has no total order ⇒ no "best" solution, only non-dominated ones on the Pareto frontier
- ► Two practical solutions: minimize risk with budget on minimum return, a.k.a. budgeting min { $f_2(x)$: $f_1(x) \ge \beta_1$, $x \in X$ } (which β_1 ??)
- All a bit fuzzy, but it's the nature of the beast
- We always assume this done if necessary at modelling stage (regularization, grid search used to divine hyperparameters α, β₁, β₂)

Scalar product, norm, distance, ball

• (Euclidean) scalar product of $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$: $\langle x, z \rangle = \sum_{i=1}^n x_i z_i = x_1 z_1 + \dots + x_n z_n$

• (Euclidean) norm: $||x|| := \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\langle x, x \rangle}$ (induced by $\langle \cdot, \cdot \rangle$)

Scalar product, norm, distance, ball

► (Euclidean) scalar product of $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$: $\langle x, z \rangle = \sum_{i=1}^n x_i z_i = x_1 z_1 + \dots + x_n z_n$

 $\begin{array}{c} \textbf{(Euclidean) norm: } \|x\| := \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\langle x, x \rangle} \text{ (induced by } \langle \cdot, \cdot \rangle) \\ \\ \theta = 0 \\ \hline \\ z \\ \end{array} \\ \begin{array}{c} \textbf{B} = 0 \\ \hline \\ x \\ z \\ \end{array} \\ \begin{array}{c} \textbf{C} \\ \textbf{C$

Scalar product, norm, distance, ball

► (Euclidean) scalar product of $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$: $\langle x, z \rangle = \sum_{i=1}^n x_i z_i = x_1 z_1 + \dots + x_n z_n$

• (Euclidean) norm: $||x|| := \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\langle x, x \rangle}$ (induced by $\langle \cdot, \cdot \rangle$)

► Geometric interpretation: $\langle x, z \rangle = ||x|| \cdot ||z|| \cdot \cos(\theta)$ ► $\langle x, z \rangle > 0 \equiv x$ and z point in the same direction ► 0
► (Euclidean) scalar product of $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$: $\langle x, z \rangle = \sum_{i=1}^n x_i z_i = x_1 z_1 + \dots + x_n z_n$

• (Euclidean) norm: $||x|| := \sqrt{x_1^2 + \cdots + x_n^2} = \sqrt{\langle x, x \rangle}$ (induced by $\langle \cdot, \cdot \rangle$)

• Geometric interpretation: $\langle x, z \rangle = ||x|| \cdot ||z|| \cdot \cos(\theta)$ $\langle x, z \rangle > 0 \equiv "x \text{ and } z \text{ point in the same direction"}$

► (Euclidean) scalar product of $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$: $\langle x, z \rangle = \sum_{i=1}^n x_i z_i = x_1 z_1 + \dots + x_n z_n$

• (Euclidean) norm: $||x|| := \sqrt{x_1^2 + \cdots + x_n^2} = \sqrt{\langle x, x \rangle}$ (induced by $\langle \cdot, \cdot \rangle$)

Geometric interpretation: $\langle x, z \rangle = ||x|| \cdot ||z|| \cdot \cos(\theta)$ $\langle x, z \rangle = 0 \equiv x \perp z \text{ (orthogonal)}$ = 0

• (Euclidean) scalar product of $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$: $\langle x, z \rangle = \sum_{i=1}^n x_i z_i = x_1 z_1 + \dots + x_n z_n$

• (Euclidean) norm: $||x|| := \sqrt{x_1^2 + \cdots + x_n^2} = \sqrt{\langle x, x \rangle}$ (induced by $\langle \cdot, \cdot \rangle$)

Geometric interpretation: $\langle x, z \rangle = ||x|| \cdot ||z|| \cdot \cos(\theta)$ $\langle x, z \rangle < 0 \equiv "x \text{ and } z \text{ point in the opposite direction"}$

• (Euclidean) scalar product of $x \in \mathbb{R}^n$ and $z \in \mathbb{R}^n$: $\langle x, z \rangle = \sum_{i=1}^n x_i z_i = x_1 z_1 + \dots + x_n z_n$

• (Euclidean) norm: $||x|| := \sqrt{x_1^2 + \cdots + x_n^2} = \sqrt{\langle x, x \rangle}$ (induced by $\langle \cdot, \cdot \rangle$)

 $\begin{array}{c} \bullet \quad \text{Geometric interpretation: } \langle x, z \rangle = \|x\| \cdot \|z\| \cdot \cos(\theta) \\ \langle x, z \rangle < 0 \equiv \text{``x and } z \text{ point in the opposite direction''} \\ \bullet \quad \text{Cauchy-Schwarz inequality: } |\langle x, z \rangle| \leq \|x\| \|z\| \ \forall x, z \end{aligned}$

• (Euclidean) distance between x and z = norm of x when z is the origin: $d(x, z) := ||x - z|| = \sqrt{(x_1 - z_1)^2 + \dots + (x_n - z_n)^2}$

▶ Ball, center $x \in \mathbb{R}^n$, radius r > 0: $\mathcal{B}(x, r) = \{ z \in \mathbb{R}^n : || z - x || \le r \}$

Mathematically speaking: Vector space, scalar product [1, A.1.1] 23

 $\triangleright \mathbb{R}^n \in$ vector space \equiv closed under sum and scalar multiplication х

$$\alpha + z = [x_1 + z_1, \ldots, x_n + z_n] , \quad \alpha x = [\alpha x_1, \ldots, \alpha x_n]$$

- Finite-dimensional vector space: $\{u^i\}_{i=1}^n$ finite base s.t. $\forall x \in \mathbb{R}^n \exists \alpha_1, \ldots, \alpha_n$ s.t. $x = \alpha_1 u^1 + \ldots + \alpha_n u^n$ (canonical base: $u_i^i = 1$, $u_h^i = 0$ for $h \neq i$, $\alpha_i = x_i$)
- Not all vector spaces are finite-dimensional (function spaces, ...)
- Properties \equiv definition of scalar product:

1.
$$\langle x, z \rangle = \langle z, x \rangle$$
 $\forall x, z \in \mathbb{R}^{n}$ (symmetry)
2. $\langle x, x \rangle \ge 0$ $\forall x \in \mathbb{R}^{n}$, $\langle x, x \rangle = 0$ \iff $x = 0$
3. $\langle \alpha x, z \rangle = \alpha \langle x, z \rangle$ $\forall x \in \mathbb{R}^{n}$, $\alpha \in \mathbb{R}$
4. $\langle x + w, z \rangle = \langle x, z \rangle + \langle w, z \rangle$ $\forall x, w, z \in \mathbb{R}^{n}$

- \blacktriangleright \exists other scalar products that make sense in other spaces (matrices, integrable functions, random variables, ...)
- Not just theoretical stuff (cf. kernel in SVM)

Mathematically speaking: Norm, distance [14][1, A.1.2][6, p. 600] 24

• Properties \equiv definition of norm:

1.
$$||x|| \ge 0 \quad \forall x \in \mathbb{R}^n$$
, $||x|| = 0 \iff x = 0$

2.
$$\|\alpha x\| = |\alpha| \|x\| \quad \forall x \in \mathbb{R}^n, \ \alpha \in \mathbb{R}$$

3. $||x + z|| \le ||x|| + ||z|| \quad \forall x, z \in \mathbb{R}^n$ (triangle inequality)

$$||x + z||^2 = ||x||^2 + ||z||^2 + 2\langle x, z \rangle \text{ (only Euclidean norm)}$$

▶
$$2 \| x \|^2 + 2 \| z \|^2 = \| x + z \|^2 + \| x - z \|^2$$
 (Parallelogram Law)

• Properties
$$\equiv$$
 definition of distance:

1.
$$d(x, z) \ge 0 \quad \forall x, z \in \mathbb{R}^n$$
, $d(x, z) = 0 \iff x = z$

2.
$$d(\alpha x, 0) = |\alpha| d(x, 0) \quad \forall x \in \mathbb{R}^n, \ \alpha \in \mathbb{R}$$

3.
$$d(x, w) \leq d(x, z) + d(z, w) \quad \forall x, w, z \in \mathbb{R}^n$$
 (triangle inequality)

▶ $\|\cdot\|$ defines $\mathcal{B}(\cdot, \cdot) \equiv$ the topology of the vector space: what is next to what (will be useful later on)

Picturing multivariate functions

- gr(f) $\in \mathbb{R}^{n+1}$, impossible if n > 3 (n = 3 hard already)
- ▶ $L(f, \cdot) \in \mathbb{R}^n$, impossible if n > 4 (n = 4 hard already)

Picturing multivariate functions

- gr(f) $\in \mathbb{R}^{n+1}$, impossible if n > 3 (n = 3 hard already)
- ▶ $L(f, \cdot) \in \mathbb{R}^n$, impossible if n > 4 (n = 4 hard already)
- ► General *n*, $f : \mathbb{R}^n \to \mathbb{R}$, $x \in \mathbb{R}^n$ (origin), $d \in \mathbb{R}^n$ (direction): $\varphi_{x,d}(\alpha) = f(x + \alpha d) : \mathbb{R} \to \mathbb{R}$ tomography of *f* from *x* along *d*
- gr($\varphi_{x,d}$) can always be pictured, but too many of them: which x, d?
- ▶ || d || only changes the scale: $\varphi_{x,\beta d}(\alpha) = \varphi_{x,d}(\beta \alpha)$ (check) \implies often (but not always) convenient to use normalised direction (|| d || = 1)
- Simplest case: restriction along *i*-th coordinate $(|| u^i || = 1)$ $f_x^i(\alpha) = f(x_1, \ldots, x_{i-1}, \alpha, x_{i+1}, \ldots, x_n) \equiv \varphi_{[x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n], u^i}(\alpha)$
- For small n can "look at all d"
- Otherwise, find the specific d that "shows what you want to see"
- When x and d clear from context (will happen a lot), just $\varphi(\alpha)$

• Linear function: $f(x) = \langle b, x \rangle = \sum_{i=1}^{n} b_i x_i$, fixed $b \in \mathbb{R}^n$

Linear
$$\equiv$$
 i. $f(\gamma x) = \gamma f(x)$, ii. $f(x+z) = f(x) + f(z) \quad \forall x, \gamma, z$

Exercise: Linear \implies i) + ii) trivial, prove \iff ; extends to affine (...+c)?

• $\langle b, x \rangle = \sum_{i=1}^{n} [f_i(x_i) = b_i x_i]$, sum of *n* univariate linear functions

• Linear function: $f(x) = \langle b, x \rangle = \sum_{i=1}^{n} b_i x_i$, fixed $b \in \mathbb{R}^n$

Linear
$$\equiv$$
 i. $f(\gamma x) = \gamma f(x)$, ii. $f(x+z) = f(x) + f(z) \quad \forall x, \gamma, z$

Exercise: Linear \implies i) + ii) trivial, prove \iff ; extends to affine (...+c)?

• $\langle b, x \rangle = \sum_{i=1}^{n} [f_i(x_i) = b_i x_i]$, sum of *n* univariate linear functions

• gr(f) = hyperplane in \mathbb{R}^{n+1} (plane in \mathbb{R}^3)

• Linear function: $f(x) = \langle b, x \rangle = \sum_{i=1}^{n} b_i x_i$, fixed $b \in \mathbb{R}^n$

Linear
$$\equiv$$
 i. $f(\gamma x) = \gamma f(x)$, ii. $f(x+z) = f(x) + f(z) \quad \forall x, \gamma, z$

Exercise: Linear \implies i) + ii) trivial, prove \iff ; extends to affine (...+c)?

• $\langle b, x \rangle = \sum_{i=1}^{n} [f_i(x_i) = b_i x_i]$, sum of *n* univariate linear functions

- gr(f) = hyperplane in \mathbb{R}^{n+1} (plane in \mathbb{R}^3)
- Level sets are parallel hyperplanes in \mathbb{R}^n (lines in \mathbb{R}^2) $\perp b$:

• Linear function: $f(x) = \langle b, x \rangle = \sum_{i=1}^{n} b_i x_i$, fixed $b \in \mathbb{R}^n$

Linear
$$\equiv$$
 i. $f(\gamma x) = \gamma f(x)$, ii. $f(x+z) = f(x) + f(z) \quad \forall x, \gamma, z$

Exercise: Linear \implies i) + ii) trivial, prove \iff ; extends to affine (...+c)?

• $\langle b, x \rangle = \sum_{i=1}^{n} [f_i(x_i) = b_i x_i]$, sum of *n* univariate linear functions

• gr(f) = hyperplane in \mathbb{R}^{n+1} (plane in \mathbb{R}^3)

► Level sets are parallel hyperplanes in \mathbb{R}^n (lines in \mathbb{R}^2) $\perp b$: $f(x) = f(z) \equiv \langle b, x \rangle = \langle b, z \rangle \equiv \langle b, z - x \rangle = 0 \equiv b \perp z - x$ **Tomography & optimization of linear multivariate functions** • $f(x) = \langle b, x \rangle, x = 0, ||d|| = 1: \varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$

27

Tomography & optimization of linear multivariate functions

 $\blacktriangleright f(x) = \langle b, x \rangle, x = 0, ||d|| = 1: \varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$

27

Tomography & optimization of linear multivariate functions

 $\blacktriangleright f(x) = \langle b, x \rangle, x = 0, ||d|| = 1: \varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$

Tomography & optimization of linear multivariate functions • $f(x) = \langle b, x \rangle, x = 0, ||d|| = 1: \varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$

Tomography & optimization of linear multivariate functions $f(x) = \langle b, x \rangle, x = 0, ||d|| = 1: \varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$ 1.0 -0.5 0.0 --0.5 -1.0 -1.0 -0.5 0.0

27

Tomography & optimization of linear multivariate functions

 $\blacktriangleright f(x) = \langle b, x \rangle, x = 0, ||d|| = 1: \varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$

Tomography & optimization of linear multivariate functions

 $\blacktriangleright f(x) = \langle b, x \rangle, x = 0, ||d|| = 1: \varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$

Tomography & optimization of linear multivariate functions $f(x) = \langle b, x \rangle, x = 0, ||d|| = 1: \varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$ 1.0 b 0.5 0.5 0.0 -0.5 -1.0

-0.5

0.0

-1.0

27

Tomography & optimization of linear multivariate functions • $f(x) = \langle b, x \rangle, x = 0, ||d|| = 1$: $\varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$

Tomography & optimization of linear multivariate functions • $f(x) = \langle b, x \rangle, x = 0, ||d|| = 1$: $\varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$

27

Increasing if "b same direction as d",

Increasing if "b same direction as d", "more collinear" => steeper

Increasing if "b same direction as d", collinear \implies steepest

▶ Increasing if "b same direction as d", "less collinear" \implies less steep

Tomography & optimization of linear multivariate functions 27 $f(x) = \langle b, x \rangle, x = 0, ||d|| = 1: \varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$ 1.0 0.5 -0.5 -0.5

► Increasing if "b same direction as d", "less collinear" ⇒ less steep

Tomography & optimization of linear multivariate functions 27 • $f(x) = \langle b, x \rangle, x = 0, ||d|| = 1: \varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$

Tomography & optimization of linear multivariate functions 27 • $f(x) = \langle b, x \rangle, x = 0, ||d|| = 1$: $\varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$

Decreasing if "b opposite direction as d",

Decreasing if "b opposite direction as d", "more collinear" => steeper

Decreasing if "b opposite direction as d", "more collinear" ⇒ steeper

• Decreasing if "b opposite direction as d", collinear \implies steepest (negative)

Decreasing if "b opposite direction as d",

• Decreasing if "b opposite direction as d", "less collinear" \implies less steep

-0.5

-1.0 L

• Decreasing if "b opposite direction as d", "less collinear" \implies less steep

-0.5
Tomography & optimization of linear multivariate functions 27 • $f(x) = \langle b, x \rangle, x = 0, ||d|| = 1: \varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$

Tomography & optimization of linear multivariate functions 27 • $f(x) = \langle b, x \rangle, x = 0, ||d|| = 1: \varphi(\alpha) = \alpha \langle b, d \rangle = \alpha ||b|| \cos(\theta)$

Increasing if "b in the same direction as d"

Increasing if "b in the same direction as d"

Increasing if "b in the same direction as d"

▶ $f_* = \min\{f(x)\} = -\infty$ except if b = 0, in which case $f_* = 0$ (same for max)

- ▶ min{ $f(x) : x \in X$ }, X hyperrectangle, ▶ Optimizing a linear function (same for max) *n* independent problems, as nothing links x_i and x_j for $i \neq i$
- n closed formulæ O(1) each, almost the last time

Separable (non-homogeneous) quadratic function:

$$f(x) = \sum_{i=1}^{n} [f_i(x_i) = a_i x_i^2 + b_i x_i]$$
, fixed $(a, b) \in \mathbb{R}^{2n}$

= sum of *n* univariate quadratic (non-homogeneous) functions

• $f(x) = ||x||^2 = \sum_{i=1}^n x_i^2$ an important special case

• $f(x_1, x_2) = ax_1^2 + x_2^2 [+0x_1 + 0x_2]$

Contour plots for different values of a

Separable (non-homogeneous) quadratic function:

$$f(x) = \sum_{i=1}^{n} [f_i(x_i) = a_i x_i^2 + b_i x_i], \text{ fixed } (a, b) \in \mathbb{R}^{2n}$$

= sum of *n* univariate quadratic (non-homogeneous) functions

• $f(x) = ||x||^2 = \sum_{i=1}^n x_i^2$ an important special case

•
$$f(x_1, x_2) = ax_1^2 + x_2^2 [+0x_1 + 0x_2]$$

Contour plots for different values of a

Separable (non-homogeneous) quadratic function:

$$f(x) = \sum_{i=1}^{n} [f_i(x_i) = a_i x_i^2 + b_i x_i], \text{ fixed } (a, b) \in \mathbb{R}^{2n}$$

= sum of *n* univariate quadratic (non-homogeneous) functions

• $f(x) = ||x||^2 = \sum_{i=1}^n x_i^2$ an important special case

$$f(x_1, x_2) = ax_1^2 + x_2^2 [+0x_1 + 0x_2]$$

Contour plots for different values of a

Separable (non-homogeneous) quadratic function:

$$f(x) = \sum_{i=1}^{n} [f_i(x_i) = a_i x_i^2 + b_i x_i], \text{ fixed } (a, b) \in \mathbb{R}^{2n}$$

= sum of *n* univariate quadratic (non-homogeneous) functions

• $f(x) = ||x||^2 = \sum_{i=1}^n x_i^2$ an important special case

a = 0.33

 $f(x_1, x_2) = ax_1^2 + x_2^2 [+0x_1 + 0x_2]$

- Contour plots for different values of a
- For a = 1, perfect circles

• Larger / smaller *a*, more
$$\uparrow$$
 / \leftrightarrow elongated

Separable (non-homogeneous) quadratic function:

$$f(x) = \sum_{i=1}^{n} [f_i(x_i) = a_i x_i^2 + b_i x_i], \text{ fixed } (a, b) \in \mathbb{R}^{2n}$$

= sum of *n* univariate quadratic (non-homogeneous) functions

• $f(x) = ||x||^2 = \sum_{i=1}^n x_i^2$ an important special case

•
$$f(x_1, x_2) = ax_1^2 + x_2^2 [+0x_1 + 0x_2]$$

For
$$a = 1$$
, perfect circles

• Larger / smaller *a*, more \uparrow / \leftrightarrow elongated

Could be non-homogeneous, $[0, 0] \rightarrow [-b_1/2a_1, -b_2/2a_2]$

 O(n) • Optimizing a quadratic non-homogeneous function, this is the last time

Separable (non-homogeneous) quadratic function:

$$f(x) = \sum_{i=1}^{n} [f_i(x_i) = a_i x_i^2 + b_i x_i], \text{ fixed } (a, b) \in \mathbb{R}^{2n}$$

= sum of *n* univariate quadratic (non-homogeneous) functions

• $f(x) = ||x||^2 = \sum_{i=1}^n x_i^2$ an important special case

Not a general quadratic function, coming right next

The general (homogeneous) quadratic function

- ▶ Nonseparable homogeneous quadratic function: fixed $Q \in \mathbb{R}^{n \times n}$ ($n \ Q_i \in \mathbb{R}^n$) $f(x) = \frac{1}{2}x^T Q x = \frac{1}{2} \left[\sum_{i=1}^n Q_{ii} x_i^2 + \sum_{i=1}^n \sum_{j=1, j \neq i}^n Q_{ij} x_i x_j \right]$
- Not linear: $f(x+z) = \frac{1}{2}(x+z)^T Q(x+z) = f(x) + f(z) + z^T Qx$
- ► W.I.o.g. *Q* symmetric:

$$x^{T}Qx = [(x^{T}Qx) + (x^{T}Qx)^{T}]/2 = x^{T}[(Q + Q^{T})/2]x$$

▶ f symmetric:
$$f(x) = f(-x) \implies$$
 "centred in $x = 0$ "

- ► Tomography: φ(α) = f(αd) = ½α²(d^TQd) ⇒ homogeneous quadratic univariate, sign and steepness depend on d^TQd
- ▶ Need to know about signs of $d^T Q d$ when d changes: (multi)linear algebra
- Crucial stuff: spectral decomposition, eigenvalues, eigenvectors of Q

Spectral decomposition [1, A.5.2][6, p. 603][11]

- ▶ $Q \in \mathbb{R}^{n \times n}$, $v \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$ s.t. $Qv = \lambda v$: v eigenvector of Q, λ eigenvalue
- ► v eigenvector $\equiv Qv = \lambda v \equiv Q(-v) = \lambda(-v) \equiv -v$ eigenvector
- Q symmetric \implies has *n* distinct eigenvectors H_1, H_2, \ldots, H_n and *n* (not necessarily distinct) corresponding real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$
- Eigenvectors can always be taken orthonormal: H_i ⊥ H_j for i ≠ j, || H_i || = 1 ⇒ linearly independent (check) ⇒ a(n orthonormal) basis of ℝⁿ
- ► Spectral decomposition: $H = [H_1, ..., H_n] \in \mathbb{R}^{n \times n}$, $\Lambda = \text{diag}(\lambda_1, ..., \lambda_n)$ $Q = H \Lambda H^T = \lambda_1 H_1 H_1^T + ... + \lambda_n H_n H_n^T$ (check)
- Notation: $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n \ (\lambda_1 = \max, \ \lambda_n = \min)$
- Variational characterization of eigenvalues:

$$\lambda_{1} = \max\{ d^{T}Qd / d^{T}d : d \neq 0 \} = \max\{ d^{T}Qd : ||d|| = 1 \}$$

$$\lambda_{n} = \min\{ d^{T}Qd / d^{T}d : d \neq 0 \} = \min\{ d^{T}Qd : ||d|| = 1 \}$$

► $Q \succ 0$ = positive definite if $\lambda_i > 0 \forall i \equiv \lambda_n > 0 \equiv d^T Q d > 0 \forall d \neq 0$ $Q \succeq 0$ = positive semi-definite if $\lambda_i \ge 0 \forall i \equiv \lambda_n \ge 0 \equiv d^T Q d \ge 0 \forall d \neq 0$ negative definite (≺), semi-definite (∠), indefinite (≻) obvious

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

31

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

31

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

least steep along H_2 ($\lambda_2 = 4$)

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

31

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

31

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

• steepest along H_1 ($\lambda_1 = 8$)

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

• Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

least steep along
$$-H_2$$
 ($\lambda_2 = 4$)

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

► $d^T Q d > 0 \forall d$, steepness change with d

• steepest along $-H_1$ ($\lambda_1 = 8$)
Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

Fundamental relation: $\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$ (check)

• $d^T Q d > 0 \forall d$, steepness change with d

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0$ $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ $\lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$
 H_1
 H_1
 A_1
 A_2
 A_2
 A_1
 A_2
 A_1
 A_2
 A_1
 A_2
 A_1
 A_2
 A_2
 A_1
 A_2
 A_2
 A_2
 A_1
 A_2
 A_1
 A_2
 A_2
 A_1
 A_2
 A_2
 A_1
 A_2
 A_2
 A_1
 A_2
 A_2
 A_2
 A_2
 A_2
 A_1
 A_2
 A_2
 A_2
 A_2
 A_2
 A_3
 A_4
 A_4

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$
 H_1
 A_1
 A_1
 A_2
 A_1
 A_2
 A_1
 A_2
 A_1
 A_2
 A_1
 A_2
 A_2
 A_1
 A_2
 A_2
 A_1
 A_2
 A_2
 A_2
 A_2
 A_1
 A_2
 A_2
 A_1
 A_2
 A_2
 A_2
 A_2
 A_2
 A_1
 A_2
 A_2
 A_2
 A_1
 A_2
 A_2
 A_1
 A_2
 A_2
 A_2
 A_2
 A_3
 A_4
 A_4

32

► Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

► $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$
H₁
 \downarrow_{-10}
 \downarrow_{-1

▶ $d^T Q d \ge 0 \forall d$, but $\exists d$ s.t. $d^T Q d = 0$

• completely flat along H_2 ($\lambda_2 = 0$)

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

$$Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$$

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

$$Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$$

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

$$Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$$

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

$$Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$$

• $d^T Q d \ge 0 \forall d$, but $\exists d$ s.t. $d^T Q d = 0$

• steepest along H_1 ($\lambda_1 = 8$)

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0$ $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ $\lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$
How the second seco

• $d^T Q d \ge 0 \forall d$, but $\exists d$ s.t. $d^T Q d = 0$

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0$ $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ $\lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$
How the second seco

• $d^T Q d \ge 0 \forall d$, but $\exists d$ s.t. $d^T Q d = 0$

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$
 H_i
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 H_i
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
 $A_i = \begin{bmatrix}$

• $d^T Q d \ge 0 \forall d$, but $\exists d$ s.t. $d^T Q d = 0$

► Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

► $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$

▶ $d^T Q d \ge 0 \forall d$, but $\exists d$ s.t. $d^T Q d = 0$

• completely flat along $-H_2$ ($\lambda_2 = 0$)

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

 $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$
 H_1
 $A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 H_1
 $A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $A = \begin{bmatrix} 0 \\ 0$

• $d^T Q d \ge 0 \forall d$, but $\exists d$ s.t. $d^T Q d = 0$

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 H_i
 $A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 A

• $d^T Q d \ge 0 \forall d$, but $\exists d$ s.t. $d^T Q d = 0$

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 H_1
 $A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 A

• $d^T Q d \ge 0 \forall d$, but $\exists d$ s.t. $d^T Q d = 0$

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
Here, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

• steepest along
$$-H_1$$
 ($\lambda_1 = 8$)

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0$ $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ $\lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$
 H_i
 H_i
 A_i
 H_i
 A_i
 A_i

• $d^T Q d \ge 0 \forall d$, but $\exists d$ s.t. $d^T Q d = 0$

► Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

► $Q = \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} \succeq 0$ $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ $\lambda = \begin{bmatrix} 8 \\ 0 \end{bmatrix}$
H₁
 H_1
 H_2
 H_2
 H_1
 H_2
 H_2
 H_2
 H_3
 H_4
 H_2
 H_2
 H_3
 H_4
 H_2
 H_2
 H_3
 H_4
 H_2
 H_2
 H_3
 H_4
 H_2
 H_4
 H_2
 H_4
 H_2
 H_5
 H_6
 H

• $d^T Q d \ge 0 \forall d$, but $\exists d$ s.t. $d^T Q d = 0$

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} \asymp 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$

• $d^T Q d$ can be both > 0 and < 0

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} \asymp 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

• $d^T Q d$ can be both > 0 and < 0

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} > 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$

- $d^T Q d$ can be both > 0 and < 0
- steepest negative along H_2 ($\lambda_2 = -2$)

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} > 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

• $d^T Q d$ can be both > 0 and < 0

...

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} \asymp 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$

• $d^T Q d$ can be both > 0 and < 0

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} \asymp 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$

• $d^T Q d$ can be both > 0 and < 0

...

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} > 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$
 H_i
 $A = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

- $d^T Q d$ can be both > 0 and < 0
- steepest positive along H_1 ($\lambda_1 = 8$)

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} > 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$
 H_i
 $A = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

- $d^T Q d$ can be both > 0 and < 0
- intermediate steepness (positive or negative) "in between"

$$\mathsf{Recall} \varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

$$\mathsf{Q} = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} \asymp 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$$

$$\mathsf{H}_1 \qquad \qquad \mathsf{H}_2 \qquad \qquad \mathsf{H}_2$$

- $d^T Q d$ can be both > 0 and < 0
- intermediate steepness (positive or negative) "in between"

► Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

► $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} > 0$ $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
H₁
H₂
H₃
H₄
H₂
H₄
H₅
H₆
H₂
H₄
H₂
H₄
H₅
H₆
H₆
H₇
H₆
H₇
H₆
H₇
H₆
H₇
H₇
H₆
H₇

- $d^T Q d$ can be both > 0 and < 0
- intermediate steepness (positive or negative) "in between"

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} \asymp 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$
 H_i
 H_i
 H_i
 H_i
 H_i
 A_i
 A_i

- $d^T Q d$ can be both > 0 and < 0
- ▶ steepest negative along $-H_2$ ($\lambda_2 = -2$)

► Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

► $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} > 0$ $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
H₁
H₁
H₂
H₁
H₂
H₃
H₄
H₂
H₄
H₂
H₄
H₂
H₅
H₆
H₂
H₄
H₂
H₅
H₆
H₂
H₆
H₆
H₂
H₁
H₂
H₁
H₂
H₃
H₄
H₅
H₆
H₆
H₂
H₆
H₆
H₇
H₆
H₇
H₆
H₇
H₆
H₇
H₆
H₇
H₆
H₇

- $d^T Q d$ can be both > 0 and < 0
- intermediate steepness (positive or negative) "in between"

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} \asymp 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$

- $d^T Q d$ can be both > 0 and < 0
- intermediate steepness (positive or negative) "in between"

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} \asymp 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$

• $d^T Q d$ can be both > 0 and < 0

intermediate steepness (positive or negative) "in between"

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} > 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$

- $d^T Q d$ can be both > 0 and < 0
- steepest positive along $-H_1$ ($\lambda_1 = 8$)

$$\mathsf{Recall} \varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$

$$\mathsf{Q} = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} \asymp 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$$

$$\mathsf{H}_1 \qquad \qquad \mathsf{H}_2 \qquad \qquad \mathsf{H}_2$$

- $d^T Q d$ can be both > 0 and < 0
- intermediate steepness (positive or negative) "in between"

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix} \asymp 0$
 $H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
 $\lambda = \begin{bmatrix} 8 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 \\ -2 \end{bmatrix}$

- $d^T Q d$ can be both > 0 and < 0
- intermediate steepness (positive or negative) "in between"
Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
H
 $4 = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix}$
 $4 = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$ <

• $d^T Q d < 0 \forall d$, steepness change with d

34

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
H
 $A = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$

• $d^T Q d < 0 \forall d$, steepness change with d

34

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, the second secon

▶ $d^T Q d < 0 \forall d$, steepness change with d

▶ steepest negative along
$$H_2$$
 $(\lambda_2 = -8)$

`

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, $A = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$

• $d^T Q d < 0 \forall d$, steepness change with d

34

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, $A = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$

• $d^T Q d < 0 \forall d$, steepness change with d

34

`

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, the second secon

• $d^T Q d < 0 \forall d$, steepness change with d

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, $A = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$

▶ $d^T Q d < 0 \forall d$, steepness change with d

least steep negative along
$$H_1$$
 ($\lambda_1 = -4$)

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
H
 $4 = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix}$
 $4 = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
 $4 = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$

▶ $d^T Q d < 0 \forall d$, steepness change with d

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, $A = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$

▶ $d^T Q d < 0 \forall d$, steepness change with d

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, the second secon

▶ $d^T Q d < 0 \forall d$, steepness change with d

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, $A_i = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$

▶ $d^T Q d < 0 \forall d$, steepness change with d

• steepest negative along $-H_2$ ($\lambda_2 = -8$)

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, $A_i = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$

▶ $d^T Q d < 0 \forall d$, steepness change with d

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, the second secon

▶ $d^T Q d < 0 \forall d$, steepness change with d

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, $A = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$

▶ $d^T Q d < 0 \forall d$, steepness change with d

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, $A_i = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$

▶ $d^T Q d < 0 \forall d$, steepness change with d

▶ least steep negative along $-H_1$ ($\lambda_1 = -4$)

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, $A = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$

▶ $d^T Q d < 0 \forall d$, steepness change with d

Recall
$$\varphi_{H_i}(\alpha) = \alpha^2 \lambda_i$$
 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0 \quad H = \frac{\sqrt{2}}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \lambda = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$
Here, $A = \begin{bmatrix} -4 \\ -8 \end{bmatrix}$

▶ $d^T Q d < 0 \forall d$, steepness change with d

• All level sets centred in x = 0 by symmetry

• All level sets centred in x = 0 by symmetry

•
$$Q = \begin{bmatrix} 6 & -2 \\ -2 & 6 \end{bmatrix} \succ 0$$
 graph is a (convex) paraboloid

▶ All level sets centred in x = 0 by symmetry

$$\blacktriangleright Q = \begin{bmatrix} 6 & -2 \\ -2 & 6 \end{bmatrix} \succ 0$$

graph is a (convex) paraboloid level sets are ellipsoids

• All level sets centred in x = 0 by symmetry

•
$$Q = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \succeq 0$$
 graph is a degenerate paraboloid

• All level sets centred in x = 0 by symmetry

 $\blacktriangleright Q = \left[\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array} \right] \succeq 0$

graph is a degenerate paraboloid level sets are degenerate ellipsoids

▶ All level sets centred in x = 0 by symmetry

$$\blacktriangleright Q = \begin{bmatrix} 3 & -5 \\ -5 & -3 \end{bmatrix} \rightarrowtail 0$$

graph saddle-shaped (0 is a saddle point)

All level sets centred in x = 0 by symmetry

$$\blacktriangleright Q = \begin{bmatrix} 3 & -5 \\ -5 & -3 \end{bmatrix} \rightarrowtail 0$$

graph saddle-shaped (0 is a saddle point) level sets are hyperboloids

• All level sets centred in x = 0 by symmetry

• $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0$ graph a (concave, i.e., "upside-down") paraboloid

• All level sets centred in x = 0 by symmetry

 $\blacktriangleright \quad Q = \left[\begin{array}{cc} -6 & -2 \\ -2 & -6 \end{array} \right] \prec 0$

graph a (concave, i.e., "upside-down") paraboloid level sets are ellipsoids again

• All level sets centred in x = 0 by symmetry

 $Q = \begin{bmatrix} -6 & -2 \\ -2 & -6 \end{bmatrix} \prec 0$ graph a (concave, i.e., "upside-down") paraboloid level sets are ellipsoids again

• Level sets can be precisely described in terms of H_i , λ_i

36

36

36

All λ_i have the same sign: f(x) either ≥ 0 or $\leq 0 \implies$ ellipsoids

Some $\lambda_i = 0 \implies$ "degenerate" ellipsoids (∞ axis)

36

Some $\lambda_i = 0 \implies$ "degenerate" ellipsoids (∞ axis)

► $\lambda_i > 0$ and $\lambda_j < 0$: $\exists \alpha_i, \alpha_j$ s.t. $\varphi_{H_i}(\alpha_i) + \varphi_{H_j}(\alpha_j) = 0 \implies$ hyperboloids

Level sets homogeneous quadratic functions, 3D example

Level sets homogeneous quadratic functions, 3D example

37

Level sets homogeneous quadratic functions, 3D example

Level sets homogeneous quadratic functions, 3D example

Optimizing a homogeneous quadratic multivariate function

• Clearly depends sign of eigenvalues of $Q \equiv$ definiteness:

$$\blacktriangleright \quad Q \succeq 0 \land Q \preceq 0 \ \equiv \ \lambda_1 = \lambda_n = 0 \ \equiv \ Q = 0 \implies \mathsf{min} = \mathsf{max} = 0 \ (\mathsf{constant})$$

•
$$Q \succeq 0 \implies \min = 0$$
, $\operatorname{argmin} = 0$, $\max = +\infty$

•
$$Q \leq 0 \implies \max = 0$$
, $\operatorname{argmax} = 0$, $\min = -\infty$

•
$$Q
ightarrow 0 \implies \mathsf{max} = +\infty$$
, $\mathsf{min} = -\infty$

analogous to univariate case, but "many more ways to be > 0 / < 0"

Exercise: Formally prove all the unboundedness results

Optimizing a homogeneous quadratic multivariate function

• Clearly depends sign of eigenvalues of $Q \equiv$ definiteness:

$$\blacktriangleright \quad Q \succeq 0 \land Q \preceq 0 \ \equiv \ \lambda_1 = \lambda_n = 0 \ \equiv \ Q = 0 \implies \mathsf{min} = \mathsf{max} = \mathsf{0} \ (\mathsf{constant})$$

•
$$Q \succeq 0 \implies \min = 0$$
, $\operatorname{argmin} = 0$, $\max = +\infty$

•
$$Q \leq 0 \implies \max = 0$$
, $\operatorname{argmax} = 0$, $\min = -\infty$

•
$$Q
ightarrow 0 \implies \mathsf{max} = +\infty$$
, $\mathsf{min} = -\infty$

analogous to univariate case, but "many more ways to be $> 0 \ / < 0$ "

Exercise: Formally prove all the unboundedness results

Box-constrained optimization on (closed) hyperrectangle X

Optimizing a homogeneous quadratic multivariate function

• Clearly depends sign of eigenvalues of $Q \equiv$ definiteness:

$$\blacktriangleright \ Q \succeq 0 \land Q \preceq 0 \ \equiv \ \lambda_1 = \lambda_n = 0 \ \equiv \ Q = 0 \implies \mathsf{min} = \mathsf{max} = 0 \ (\mathsf{constant})$$

•
$$Q \succeq 0 \implies \min = 0$$
, $\operatorname{argmin} = 0$, $\max = +\infty$

•
$$Q \preceq 0 \implies \max = 0$$
, $\operatorname{argmax} = 0$, $\min = -\infty$

•
$$Q
ightarrow 0 \implies \mathsf{max} = +\infty$$
, $\mathsf{min} = -\infty$

analogous to univariate case, but "many more ways to be $> 0 \ / < 0$ "

Exercise: Formally prove all the unboundedness results

- Box-constrained optimization on (closed) hyperrectangle X absolutely not analogous to the univariate case:
 - *NP*-hard in most cases [3]
 - ▶ min with $Q \succeq 0$ and max with $Q \preceq 0$ polynomial but nontrivial (will see)
- ▶ \mathcal{NP} -hardness due to \mathbb{R}^n "big" (X has 2^n vertices), issue also in \mathcal{P} case

Optimizing non-homogeneous nonsingular quadratic functions

- $f(x) = \frac{1}{2}x^T Qx + \langle q, x \rangle$: a homogeneous quadratic plus a linear
- ▶ $q \neq 0$ but Q nonsingular $\equiv \lambda_i \neq 0 \forall i$ (regardless of the sign)
- Then $f(x) = g(z) = \frac{1}{2}z^T Q z + f(\bar{x})$ for $z = x \bar{x}$ and $\bar{x} = -Q^{-1}q$

Exercise: Prove the result, but it should look familiar

Optimizing a quadratic non-homogeneous function

Optimizing non-homogeneous nonsingular quadratic functions

- $f(x) = \frac{1}{2}x^T Qx + \langle q, x \rangle$: a homogeneous quadratic plus a linear
- ▶ $q \neq 0$ but Q nonsingular $\equiv \lambda_i \neq 0 \forall i$ (regardless of the sign)
- Then $f(x) = g(z) = \frac{1}{2}z^T Q z + f(\bar{x})$ for $z = x \bar{x}$ and $\bar{x} = -Q^{-1}q$

Exercise: Prove the result, but it should look familiar

Optimizing a quadratic non-homogeneous function

- ▶ \bar{x} (≠ 0) centre of the level sets: repeat ▶ Optimizing a homogeneous quadratic multivariate function for g(z), translate the results back in x-space
- Box-constrained case remains hard / nontrivial
- Analogous to univariate case, but many more ways for (pieces of) Q to be 0 and therefore the result not be applicable
- More complicated analysis needed, coming right next

Optimizing non-homogeneous singular quadratic functions I

- ► $Q \in \mathbb{R}^{n \times n}$, eigenvalue decomposition (H, Λ), $I = \{1, 2, ..., n\}$
- ► $I^0 = \{ i \in I ; \lambda_i = 0 \}, I^+ = I \setminus I^0$, nonempty $(k = |I^0| > 0, h = |I^+| > 0)$
- $\blacktriangleright \text{ ker}(Q) = \{ v \in \mathbb{R}^n : \exists \eta \in \mathbb{R}^k \text{ s.t. } v = \sum_{i \in I^0} \eta_i H_i \}$
- $Qv = 0 \ \forall v \in \ker(Q) \ [\supset \{0\}]$ (check)
- $\blacktriangleright \operatorname{im}(Q) = \{ w \in \mathbb{R}^n : \exists \mu \in \mathbb{R}^h \text{ s.t. } w = \sum_{i \in I^+} \mu_i H_i \}:$
- $\blacktriangleright \forall w \in im(Q) \exists x \in \mathbb{R}^n \text{ s.t. } Qx = w, im(Q) = im(-Q)$

Exercise: Prove the result (recall $Q = \lambda_1 H_1 H_1^T + \ldots + \lambda_n H_n H_n^T$, use [16])

- $\blacktriangleright \mathbb{R}^n = im(Q) + ker(Q), im(Q) \perp ker(Q) (H is a hortonormal base of \mathbb{R}^n)$
- ▶ $q = q^+ + q^0$, $q^+ \perp q^0$, with $q^0 \in ker(Q) \equiv Qq^0 = 0$, and $q^+ \in im(Q) = im(-Q) \equiv \exists \bar{x} \text{ s.t. } (-Q)\bar{x} = q^+$
- Then $f(x) = g(z) = \frac{1}{2}z^TQz + q^0z + f(\bar{x})$ for $z = x \bar{x}$

Exercise: Prove the result, but it should look very very familiar

Optimizing non-homogeneous singular quadratic functions II

- f is "truly quadratic" on im(Q) but actually linear on ker(Q)
- ▶ No surprise: $v \in \ker(Q) \implies f(v) = qv$
- Assume $Q \succeq 0$: f has minimum $\iff q^0 = 0 \equiv Q\bar{x} = -q$ has solution $\equiv q \in im(Q)$
- $\blacktriangleright \bar{x}$ is not unique, in fact ∞ -ly many of them: "all are centres"
- ▶ \bar{x} solution $\implies \bar{x} + v$ solution $\forall v \in \text{ker}(Q)$, all have the same objective value \equiv they are all and only the minima of f

Exercise: Prove the result

Exercise: Discuss the cases $Q \leq 0$ and $Q \succ 0$

▶ $q_0 \neq 0 \equiv q \notin im(Q) \implies min = -\infty, max = +\infty$

▶ Box-constrained version \mathcal{P} (but nontrivial) if $Q \succeq 0 \ / \ Q \preceq 0$, hard otherwise

Optimizing non-homogeneous singular quadratic functions II

- f is "truly quadratic" on im(Q) but actually linear on ker(Q)
- ▶ No surprise: $v \in \ker(Q) \implies f(v) = qv$
- Assume $Q \succeq 0$: f has minimum $\iff q^0 = 0 \equiv Q\bar{x} = -q$ has solution $\equiv q \in im(Q)$
- $\blacktriangleright \bar{x}$ is not unique, in fact ∞ -ly many of them: "all are centres"
- ▶ \bar{x} solution $\implies \bar{x} + v$ solution $\forall v \in \text{ker}(Q)$, all have the same objective value ≡ they are all and only the minima of f

Exercise: Prove the result

Exercise: Discuss the cases $Q \leq 0$ and $Q \succ 0$

- ▶ $q_0 \neq 0 \equiv q \notin im(Q) \implies min = -\infty, max = +\infty$
- ▶ Box-constrained version \mathcal{P} (but nontrivial) if $Q \succeq 0 \ / \ Q \preceq 0$, hard otherwise
- ▶ All in all: solving system $Q\bar{x} = -q$ (or proving no solutions) required

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

- ▶ If one is lucky, optimising a quadratic function \equiv solving $Q\bar{x} = -q$
- Linear system $O(n^3)$ at worst, so doable for $n \approx 100$

- ▶ If one is lucky, optimising a quadratic function \equiv solving $Q\bar{x} = -q$
- ▶ Linear system $O(n^3)$ at worst, so maybe doable for $n \approx 10000$

- ▶ If one is lucky, optimising a quadratic function \equiv solving $Q\bar{x} = -q$
- ▶ Linear system $O(n^3)$ at worst, so not doable for $n \approx 10^{9+}$ (no memory)

- ▶ If one is lucky, optimising a quadratic function \equiv solving $Q\bar{x} = -q$
- ▶ Linear system $O(n^3)$ at worst, so not doable for $n \approx 10^{9+}$ (no memory)
- Iterative procedures: start from initial guess x⁰, some process xⁱ → xⁱ⁺¹ ⇒ a sequence {xⁱ} that should "go towards an optimal solution"
- ▶ The natural way: $\{f^i = f(x^i)\}$ sequence of values "go towards f_* "
- Typically we can't get f_{*} in finite time (∃ i v_i = f_{*}), but we can "get as close as we want": there in the limit

► Recall: (infinite) sequence $\{v_i\} = \{v_1, v_2, ...\},$ $\{v_i\} \rightarrow v \equiv \lim_{i \rightarrow \infty} v_i = v \equiv \forall \varepsilon > 0 \exists h \text{ s.t. } |v_i - v| \le \varepsilon \forall i \ge h$ $\lim_{i \rightarrow \infty} v_i = +\infty \iff \forall M > 0 \exists h \text{ s.t. } v_i \ge M \forall i \ge h$

- ▶ If one is lucky, optimising a quadratic function \equiv solving $Q\bar{x} = -q$
- ▶ Linear system $O(n^3)$ at worst, so not doable for $n \approx 10^{9+}$ (no memory)
- Iterative procedures: start from initial guess x⁰, some process xⁱ → xⁱ⁺¹ ⇒ a sequence {xⁱ} that should "go towards an optimal solution"
- ▶ The natural way: $\{f^i = f(x^i)\}$ sequence of values "go towards f_* "
- Typically we can't get f_{*} in finite time (∃ i v_i = f_{*}), but we can "get as close as we want": there in the limit

► Recall: (infinite) sequence $\{v_i\} = \{v_1, v_2, ...\},$ $\{v_i\} \rightarrow v \equiv \lim_{i \rightarrow \infty} v_i = v \equiv \forall \varepsilon > 0 \exists h \text{ s.t. } |v_i - v| \le \varepsilon \forall i \ge h$ $\lim_{i \rightarrow \infty} v_i = -\infty \iff \forall M > 0 \exists h \text{ s.t. } v_i \le -M \forall i \ge h$

- ▶ If one is lucky, optimising a quadratic function \equiv solving $Q\bar{x} = -q$
- ▶ Linear system $O(n^3)$ at worst, so not doable for $n \approx 10^{9+}$ (no memory)
- Iterative procedures: start from initial guess x⁰, some process xⁱ → xⁱ⁺¹ ⇒ a sequence {xⁱ} that should "go towards an optimal solution"
- ▶ The natural way: $\{f^i = f(x^i)\}$ sequence of values "go towards f_* "
- Typically we can't get f_{*} in finite time (∃ i v_i = f_{*}), but we can "get as close as we want": there in the limit
- ► Recall: (infinite) sequence $\{v_i\} = \{v_1, v_2, ...\},$ $\{v_i\} \rightarrow v \equiv \lim_{i \rightarrow \infty} v_i = v \equiv \forall \varepsilon > 0 \exists h \text{ s.t. } |v_i - v| \le \varepsilon \forall i \ge h$ $\lim_{i \rightarrow \infty} v_i = -\infty \iff \forall M > 0 \exists h \text{ s.t. } v_i \le -M \forall i \ge h$
- $\{x^i\}$ s.t. $\{f^i\} \rightarrow f_*$ a minimizing sequence
- ▶ note that $\{f^i\} \rightarrow -\infty \implies f_* = -\infty \implies$ minimizing sequence

A sequence may not have limit: are we "not converging"?

Any monotone sequence has a limit (monotone algorithms are good)

Gradient method, basic idea

- We generally assume minimization, but maximization is equivalent
- Given x^i , necessarily compute $g^i = Qx^i + q$: if $g^i = 0$ then stop
- " $g^i = 0$ " not doable in floating point arithmetic $\implies ||g^i|| \le \varepsilon$ (which ε ?)
- ▶ Idea: if $||g^i|| > [\varepsilon >] 0$, produce a x^{i+1} "better" than x^i
- ► How? Consider the tomography $\varphi_{x^i,-g^i}(\alpha) = f(x^i \alpha g^i) f(x^i)$ = $\frac{1}{2}(x^i - \alpha g^i)^T Q(x^i - \alpha g^i) + q(x^i - \alpha g^i) - f(x^i)$ = $\frac{1}{2}\alpha^2(g^i)^T Qg^i - \alpha[(g^i)^T Qx^i + qg^i] = \frac{1}{2}\alpha^2(g^i)^T Qg^i - \alpha ||g^i||^2$ positive negative

For some
$$\alpha > 0$$
, $\varphi_{x^i,-g^i}(\alpha) < 0 \implies f(x^i - \alpha g^i) < f(x^i)$

Exercise: Check all the above (recall • Optimizing a quadratic non-homogeneous function)

- The same information (called gradient, we'll see why) saying "you can't stop" is at the same time saying "you can get a better solution than xⁱ over there"
- ▶ This immediately suggests a (monotone, *fⁱ⁺¹ < fⁱ*) algorithm

The gradient method for (multivariate) quadratic functions

► In fact it is easy to minimize $\varphi_{x^i,-g^i}(\alpha)$ (Continuing a quadratic non-homogeneous function) $\alpha^i = \|g^i\|^2 / ((g^i)^T Q g^i) \quad [1 / \lambda_1 \le \alpha \le 1 / \lambda_n \text{ (check)}]$

• Computing g^i and the optimal value of α is $O(n^2) \implies$ n "large" \implies "we can do may iterations before hitting $O(n^3)$ "

> procedure $x = SDQ (Q, q, x, \varepsilon)$ do forever $g \leftarrow Qx + q;$ if $(||g|| \le \varepsilon)$ then break; $\alpha \leftarrow$ stepsize(); $x \leftarrow x - \alpha g;$

▶ stepsize() { return($||g||^2 / (g^T Qg)$); }, others possible

Exercise: something can go wrong with that formula ↑: what does it mean? Improve the pseudo-code to take that occurrence into account.

Exercise: what happens if $Q \not\succeq 0$? Does the (improved) code need be fixed?

- **Exercise:** Discuss how to change the code to solve $\max\{f(x)\}$ instead
- **Exercise:** Rewrite the code with one product with Q per iteration
- It is very simple, but does it work? And is it efficient?

Convergence of the gradient method for $Q \succ 0$

- Optimal stepsize $\implies g^{i+1} \perp g^i$ (check)
- "Homogeneous form of the error": $A(x) = \frac{1}{2}(x x_*)^T Q(x x_*)$ (check)
- ▶ The above for $x = x^{i+1}$, $Q \succ 0$ and some algebra [5, Lm. 8.6.1] gives

$$A(x^{i+1}) = \left(1 - \frac{\|g^i\|^4}{((g^i)^T Q g^i)((g^i)^T Q^{-1} g^i)}\right) A(x^i) \quad (\text{check})[\text{tedious}]$$

- ► Easy to derive an estimate using $\kappa = \lambda_1 / \lambda_n$ [≥ 1] condition number of Q $\frac{\|x\|^4}{(x^T Q x)(x^T Q^{-1} x)} \ge \frac{\lambda_n}{\lambda_1} = \frac{1}{\kappa} \text{ (check)} \implies A(x^{i+1}) \le \left(1 - \frac{1}{\kappa}\right) A(x^i)$
- ► This means the algorithm converges: $A(x^i) \le r^i A(x^0)$ (check) with $r \le (\kappa 1) / \kappa < 1 \implies A(x^i) \to 0$ exponentially fast as $i \to \infty$

Kantorovich inequality [5, 8.6.(34)] gives better estimate

$$\frac{\|x\|^4}{(x^T Q x)(x^T Q^{-1} x)} \geq \frac{4\lambda_1 \lambda_n}{(\lambda_1 + \lambda_n)^2} \implies r \leq \left(\frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}\right)^2 = \left(\frac{\kappa - 1}{\kappa + 1}\right)^2$$

Let's see it in practice

Complexity of the gradient method

- Crucial sequences: $\{x^i\} / \{d^i = ||x^i x_*||\}$ [iterates / distance from x_*] $\{f^i = f(x^i)\} / \{a^i = A(x^i)\} / \{r^i = R(x^i)\}$ [f-values / A/R gaps]
- Complexity as a function of prescribed accuracy ε: max number of iterations k such that dⁱ / aⁱ / rⁱ ≤ ε ∀i ≥ k
- ► General formula: $v^k \le r^k v^1 \le \varepsilon$ for $k \ge \lfloor 1 / \log(1/r) \rfloor \log(v^1/\varepsilon)$ (check)
- ► $r \approx 1 \implies k \in O([r/(1-r)]\log(v^1/\varepsilon))$ (check)
- Good news: dimension independent (n not there) \implies very-large-scale
- ▶ $O(\log(1/\varepsilon))$ (good), but the constant $\uparrow \infty$ as $r \to 1$ (bad)
- ▶ $v^1 = f(x^1) f_*$: starting closer to f_* helps (would be strange if not)

• "
$$||x^{i} - x_{*}|| \leq \varepsilon$$
" and " $f(x^{i}) - f_{*} \leq \varepsilon$ " not the same (ε):
 $a^{i} = \frac{1}{2}(x^{i} - x_{*})^{T}Q(x^{i} - x_{*}) \leq \varepsilon \implies \lambda_{n}||x^{i} - x_{*}||^{2} \leq \varepsilon \implies d^{i} = ||x^{i} - x_{*}|| \leq \sqrt{\varepsilon / \lambda_{n}}$

Exercise: Cook up the other direction $(d^i \leq \varepsilon \implies \ldots)$

Convergence rates, complexity [6, p. 619]

► Converge: $\{f^i\} \rightarrow f_* \approx \equiv \{a^i\} \rightarrow 0 \equiv \{r^i\} \rightarrow 0 \iff \{d^i\} \rightarrow 0 \iff$

Exercise: Discuss why $\{ f^i \} \rightarrow f_*$ is only $\approx \equiv$ to $\{ a^i \} \rightarrow 0$ and why the \Rightarrow

▶ But how rapidly does it ("in the tail")? Rate/order of convergence $\lim_{i \to \infty} \left[\frac{f^{i+1} - f_*}{(f^i - f_*)^p} = \frac{a^{i+1}}{(a^i)^p} \approx \frac{r^{i+1}}{(r^i)^p} \right] = r \quad \left[\begin{array}{c} x^p \to 0 \text{ faster than} \\ x \to 0 \text{ when } p > 1 \end{array} \right] \text{ (check)}$ ▶ p = 1, $r = 1 \equiv$ sublinear: important examples
error O(1/i) $O(1/i^2)$ $O(1/\sqrt{i})$ i $O(1/\varepsilon)$ (bad) $O(1/\sqrt{\varepsilon})$ (a bit better) $O(1/\varepsilon^2)$ (horrible)

- ▶ p = 1 , $r < 1 \equiv$ linear: $r^i \implies i \in O(\log(1/\varepsilon))$ (good unless $r \approx 1$)
- ▶ p = 2, $r > 0 \equiv$ quadratic (!!!): $\approx 1/2^{2^i} \implies i \in O(\log(\log(1/\varepsilon)))$ in practice O(1) (correct digits double at each iteration)

▶ $p \in (1, 2) \equiv p = 1$, $r = 0 \equiv$ superlinear (!): "something in the middle"

 \triangleright p = 2 the best you can reasonably hope for: possible but not easy

Convergence Rates Pictorially

48

Important note on the stopping criterion

- ▶ The stopping criterion one would want: $A(x^i) \le \varepsilon / R(x^i) \le \varepsilon$
- Issue: f_{*} typically unknown, cannot be used on-line
- ▶ $||g^i||$ "proxy" of $A(x^i)$: hopefully $||g^i||$ "small" $\implies A(x^i)$ "small" but exact relationship nontrivial \implies choosing ε non obvious

$$\|g^i\| = Q(x^i - x_*) \Longrightarrow \|g^i\| \le \lambda_1 \|x^i - x_*\| \dots (??) \text{ wrong inequality:} \\ \|g^i\| \le \varepsilon \implies \|x^i - x_*\| \text{ "small"}$$

- ► $a^i = \frac{1}{2} (x^i x_*)^T Q(x^i x_*) = \frac{1}{2} \langle x^i x_*, g^i \rangle \le \frac{1}{2} ||g^i|| ||x^i x_*||;$ if we knew $\delta \ge ||x^i - x_*||$, which we don't, then $||g^i|| \le 2\varepsilon / \delta \implies a^i \le \varepsilon$
- ▶ If we knew $\lambda_n > 0$, which we don't, $||g^i|| \le \sqrt{2\lambda_n \varepsilon} \implies a^i \le \varepsilon$ (check)

All in all, exact control on final a^i / r^i not obvious (not always really needed)

- Convergence fast if $\lambda_1 \approx \lambda_n$ (one iteration for $||x||^2$), rather slow if $\lambda_1 \gg \lambda_n$: $\kappa = \lambda_1 / \lambda_n \to \infty$ (*Q* ill conditioned) $\implies r \to 1 \implies$ slow in practice
- ▶ $g^{i+1} \perp g^i$ + level sets very elongated \implies lots of "zig-zags" \implies slow

► Ex.:
$$\kappa = 1000 \implies r \approx 0.996 \implies r / (1 - r) \approx 250$$

 $f(x^1) - f_* = 1, \varepsilon = 10^{-6} \implies k \ge 3450$ for $n = 2$

- Convergence fast if $\lambda_1 \approx \lambda_n$ (one iteration for $||x||^2$), rather slow if $\lambda_1 \gg \lambda_n$: $\kappa = \lambda_1 / \lambda_n \to \infty$ (*Q* ill conditioned) $\implies r \to 1 \implies$ slow in practice
- ▶ $g^{i+1} \perp g^i$ + level sets very elongated \implies lots of "zig-zags" \implies slow
- ► Ex.: $\kappa = 1000 \implies r \approx 0.996 \implies r/(1-r) \approx 250$ $f(x^1) - f_* = 1, \ \varepsilon = 10^{-6} \implies k \ge 3450 \text{ for } n = 2 \dots \text{ but also for } n = 10^8$
- ▶ Note: with coarser formula $r = 0.999 \equiv r / (1 r) \approx 1000 \implies k \ge 13800$

▶ In other words: $0.996^{10} \approx 0.96071$ $0.999^{10} \approx 0.99004$

- Convergence fast if $\lambda_1 \approx \lambda_n$ (one iteration for $||x||^2$), rather slow if $\lambda_1 \gg \lambda_n$: $\kappa = \lambda_1 / \lambda_n \to \infty$ (*Q* ill conditioned) $\implies r \to 1 \implies$ slow in practice
- ▶ $g^{i+1} \perp g^i$ + level sets very elongated \implies lots of "zig-zags" \implies slow
- ► Ex.: $\kappa = 1000 \implies r \approx 0.996 \implies r/(1-r) \approx 250$ $f(x^1) - f_* = 1, \ \varepsilon = 10^{-6} \implies k \ge 3450 \text{ for } n = 2 \dots \text{ but also for } n = 10^8$
- ▶ Note: with coarser formula $r = 0.999 \equiv r / (1 r) \approx 1000 \implies k \ge 13800$

▶ In other words: $0.996^{100} \approx 0.66978$ $0.999^{100} \approx 0.90479$

Convergence fast if $\lambda_1 \approx \lambda_n$ (one iteration for $||x||^2$), rather slow if $\lambda_1 \gg \lambda_n$: $\kappa = \lambda_1 / \lambda_n \to \infty$ (*Q* ill conditioned) $\implies r \to 1 \implies$ slow in practice

▶ $g^{i+1} \perp g^i$ + level sets very elongated \implies lots of "zig-zags" \implies slow

► Ex.:
$$\kappa = 1000 \implies r \approx 0.996 \implies r/(1-r) \approx 250$$

 $f(x^1) - f_* = 1, \ \varepsilon = 10^{-6} \implies k \ge 3450 \text{ for } n = 2 \dots \text{ but also for } n = 10^8$

▶ Note: with coarser formula $r = 0.999 \equiv r / (1 - r) \approx 1000 \implies k \ge 13800$

▶ In other words: $0.996^{1000} \approx 0.01816$ $0.999^{1000} \approx 0.36769$

Convergence fast if $\lambda_1 \approx \lambda_n$ (one iteration for $||x||^2$), rather slow if $\lambda_1 \gg \lambda_n$: $\kappa = \lambda_1 / \lambda_n \to \infty$ (*Q* ill conditioned) $\implies r \to 1 \implies$ slow in practice

▶ $g^{i+1} \perp g^i$ + level sets very elongated \implies lots of "zig-zags" \implies slow

► Ex.:
$$\kappa = 1000 \implies r \approx 0.996 \implies r/(1-r) \approx 250$$

 $f(x^1) - f_* = 1, \ \varepsilon = 10^{-6} \implies k \ge 3450 \text{ for } n = 2 \dots \text{ but also for } n = 10^8$

▶ Note: with coarser formula $r = 0.999 \equiv r / (1 - r) \approx 1000 \implies k \ge 13800$

▶ In other words: $0.996^{2000} \approx 0.00033$ $0.999^{2000} \approx 0.13520$

- Convergence fast if $\lambda_1 \approx \lambda_n$ (one iteration for $||x||^2$), rather slow if $\lambda_1 \gg \lambda_n$: $\kappa = \lambda_1 / \lambda_n \to \infty$ (*Q* ill conditioned) $\implies r \to 1 \implies$ slow in practice
- ▶ $g^{i+1} \perp g^i$ + level sets very elongated \implies lots of "zig-zags" \implies slow
- ► Ex.: $\kappa = 1000 \implies r \approx 0.996 \implies r/(1-r) \approx 250$ $f(x^1) - f_* = 1, \ \varepsilon = 10^{-6} \implies k \ge 3450 \text{ for } n = 2 \dots \text{ but also for } n = 10^8$
- ▶ Note: with coarser formula $r = 0.999 \equiv r / (1 r) \approx 1000 \implies k \ge 13800$
- ▶ In other words: $0.996^{2000} \approx 0.00033$ $0.999^{2000} \approx 0.13520$
- More bad news, "hidden dependency": λ_1 and λ_n may depend on n, κ may grow as $n \to \infty$
- More bad news: the behaviour in practice is close to the bound

• Even more bad news: $\lambda_n = 0 \equiv \kappa = \infty$ happens

What if $\lambda_n = 0$?

 $\blacktriangleright \lambda_n = 0 \implies \text{not converging}?$

What if $\lambda_n = 0$?

▶ $\lambda_n = 0 \implies$ not converging? No, just can't prove it this way

► In fact we can prove convergence (in a more general setting) [2, Theorem 3.3]: $\alpha = 1 / \lambda_1 \implies f(x^i) - f_* \le 2\lambda_1 ||x^1 - x_*||^2 / (i-1)$
What if $\lambda_n = 0$?

- ▶ $\lambda_n = 0 \implies$ not converging? No, just can't prove it this way
- ► In fact we can prove convergence (in a more general setting) [2, Theorem 3.3]: $\alpha = 1 / \lambda_1 \implies f(x^i) - f_* \le 2\lambda_1 ||x^1 - x_*||^2 / (i-1)$
- ▶ Is it good news? Only partly. Because complexity is $k \ge 2\lambda_1 d^1 / \varepsilon$
- $O(1/\varepsilon)$ vs. $O(\log(1/\varepsilon))$: sublinear convergence, exponentially slower
- One further digit of accuracy ≡ 10 times more iterations ⇒ typically unfeasible to get more than 1e-3 / 1e-4 accuracy
- The result cannot be improved (in general, will see)
- Is it bad? Rather. Can it be worse? Yes (in general, will see)

What if $\lambda_n = 0$?

- ▶ $\lambda_n = 0 \implies$ not converging? No, just can't prove it this way
- ► In fact we can prove convergence (in a more general setting) [2, Theorem 3.3]: $\alpha = 1 / \lambda_1 \implies f(x^i) - f_* \le 2\lambda_1 ||x^1 - x_*||^2 / (i - 1)$
- ▶ Is it good news? Only partly. Because complexity is $k \ge 2\lambda_1 d^1 / \varepsilon$
- $O(1/\varepsilon)$ vs. $O(\log(1/\varepsilon))$: sublinear convergence, exponentially slower
- One further digit of accuracy ≡ 10 times more iterations ⇒ typically unfeasible to get more than 1e-3 / 1e-4 accuracy
- The result cannot be improved (in general, will see)
- Is it bad? Rather. Can it be worse? Yes (in general, will see)
- ▶ If $\lambda_n > 0$, can we do better than $O(\log(1/\varepsilon))$? Yes @Federico
- Fundamental idea, will see more than once: changing the space

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

- Optimization problems are difficult
- Clever strategy: start simple, then use what you learnt to go more complex

- Optimization problems are difficult
- Clever strategy: start simple, then use what you learnt to go more complex
- Simple problems provide intuition for the solution of more complex ones
- Solving a complex problem may entail solving a sequence of simpler ones
- ▶ Usual concept: if XYZ complex, use "simpler" ABC \approx XYZ a model

- Optimization problems are difficult
- Clever strategy: start simple, then use what you learnt to go more complex
- Simple problems provide intuition for the solution of more complex ones
- Solving a complex problem may entail solving a sequence of simpler ones
- ▶ Usual concept: if XYZ complex, use "simpler" ABC \approx XYZ a model
- Linear functions "too simple": optimising (on simple constraints) always easy
- Quadratic functions already a different story: few really simple cases, often polynomial but not with low exponent, up to NP-hard
- Solving (simple) optimization problems requires linear algebra, and vice-versa

- Optimization problems are difficult
- Clever strategy: start simple, then use what you learnt to go more complex
- Simple problems provide intuition for the solution of more complex ones
- Solving a complex problem may entail solving a sequence of simpler ones
- ▶ Usual concept: if XYZ complex, use "simpler" ABC \approx XYZ a model
- Linear functions "too simple": optimising (on simple constraints) always easy
- Quadratic functions already a different story: few really simple cases, often polynomial but not with low exponent, up to NP-hard
- Solving (simple) optimization problems requires linear algebra, and vice-versa
- We now know all we need about simple problems, time to step up the game
- Will keep following an incremental approach: next step is more complicated functions but only one variable

References I

- S. Boyd, L. Vandenberghe Convex Optimization, https://web.stanford.edu/~boyd/cvxbook Cambridge University Press, 2008
- S. Bubeck Convex Optimization: Algorithms and Complexity, arXiv:1405.4980v2, https://arxiv.org/abs/1405.4980, 2015
- [3] E. de Klerk "The complexity of optimizing over a simplex, hypercube or sphere: a short survey" *Central European Journal of Operations Research* 16: 111-125, 2008 https://link.springer.com/content/pdf/10. 1007/s10100-007-0052-9.pdf
- [4] P. Hansen, B. Jaumard "Lipschitz Optimization" in Handbook of Global Optimization – Nonconvex optimization and its applications, R. Horst and P.M. Pardalos (Eds.), Chapter 8, 407–494, Springer, 1995
- [5] D.G. Luenberger, Y. Ye Linear and Nonlinear Programming, Springer International Series in Operations Research & Management Science, 2008
- [6] J. Nocedal, S.J. Wright, Numerical Optimization second edition, Springer Series in Operations Research and Financial Engineering, 2006

References II

- [7] Wikipedia Cubic equation https://en.wikipedia.org/wiki/Cubic_equation
- [8] Wikipedia Determinant https://en.wikipedia.org/wiki/Determinant
- [9] Wikipedia Laplace expansion https://en.wikipedia.org/wiki/Laplace_expansion
- [10] Wikipedia Eigenvalue Algorithm https://en.wikipedia.org/wiki/Eigenvalue_algorithm
- [11] Wikipedia Eigenvalues and Eigenvectors https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
- [12] Wikipedia Islands of Space https://en.wikipedia.org/wiki/Islands_of_Space
- [13] Wikipedia Matrix Norm https://en.wikipedia.org/wiki/Matrix_norm

References III

- [14] Wikipedia Norm https://en.wikipedia.org/wiki/Norm_(mathematics)
- [15] Wikipedia The Hitchhiker's Guide to the Galaxy https://en.wikipedia.org/wiki/The_Hitchhiker's_Guide_to_the_Galaxy
- [16] Wikipedia Underdetermined System https://en.wikipedia.org/wiki/Underdetermined_system

Outline

Optimization Problems

Optimization is difficult

Simple Functions, Univariate case

Simple Functions, Multivariate case

Multivariate Quadratic case: Gradient Method

Wrap up & References

Solutions

Solutions I

- Use max{ $|f_*|$, 1} instead; this corresponds to min{f(x)+1} [back]
- b > 0 and x − z > 0 ⇒ b(x − z) > 0 ≡ bx > bz; the others are analogous (or simpler) [back]
- If x₊ = +∞, obviously x_{*} = +∞ = x₊
 If x₊ < +∞, since f(x) is increasing, f(x) < f(x₊) ∀x < x₊
 The treatment of x₋ is analogous.
 If b < 0, the role of x₊ and x₋ reverses (x₊ = argmin, x₋ = argmax)
 If b = 0, every point in X is an optimal solution [back]
- ▶ x > z, a > 0 and $x > 0 \implies ax^2 > axz > az^2$. Since f(x) is symmetric $(ax^2 = a(-x)^2)$, increasing for $x > 0 \equiv$ deceasing for x < 0. When a < 0 the sign of the inequalities in inverted (the function is reflected upon the x axis). The case a = 0 is trivial **[back]**

Solutions II

- f(x) has a minimum in 0, is decreasing for x < 0 and increasing for x > 0. If
 x₋ > 0 then f(x) is increasing along all X, hence x₋ is the minimum and x₊
 the maximum. The argument is symmetric if x₊ < 0. Obviously, if 0 ∈ X then
 it is the minimum; for the maximization, since the function is increasing when x
 moves away from 0 in both directions, the maximum has to be one of the two
 extremes but we don't know which until we test. The rest is too trivial [back]
 </p>
- No, this is both too trivial and didactic [back]
- f(x) = (ax + b)x, hence the roots are x = 0 and x = x_p = −b / a. Clearly, x̄ = −b / 2a is always in the middle of the interval defined by the roots. If a and b have the same sign then x_p < x̄ < 0, otherwise x_p > x̄ > 0 [back]

$$\blacktriangleright \varphi_{\mathbf{x},(\beta d)}(\alpha) = f(\mathbf{x} + \alpha(\beta d)) = f(\mathbf{x} + (\alpha \beta)d) = \varphi_{\mathbf{x},d}(\alpha \beta) \quad [\mathsf{back}]$$

Solutions III

- ▶ We assume that i. and ii. hold for f and we want to show that $f(x) = \langle b, x \rangle$ for some $b \in \mathbb{R}^n$. Let u_i , i = 1, ..., n, the *i*-th vector of the canonical base of \mathbb{R}^n (having 1 in the *i*-th position and 0 otherwise), and $b_i = f(u_i)$. For any $x \in \mathbb{R}^n$, $x = \sum_{i=1}^n x_i u_i$, hence $f(x) = f(\sum_{i=1}^n x_i u_i) = \sum_{i=1}^n f(x_i u_i)$ (using ii. recursively *n* times) $= \sum_{i=1}^n x_i f(u_i)$ (using i. on each individual term) $= \sum_{i=1}^n b_i x_i$ (using the definition of b_i) $= \langle b, x \rangle$ (using the definition of scalar product). The results clearly breaks in the affine case ($c \neq 0$): $f(x) = x + 1 \implies f(2x) = 2x + 1 \neq 2(x + 1) = 2f(x)$ [back]
- ► By contradiction, $\exists \gamma \in \mathbb{R}^n \setminus \{0\}$ s.t. $H\gamma = 0 \implies 0 = ||H\gamma||^2 = \gamma^T [|H^TH]\gamma = ||\gamma||^2 > 0 [\gamma \neq 0] \notin [back]$

Solutions IV

► This is based on a general result: for $[A^1, A^2, ..., A^n] = A \in \mathbb{R}^{m \times n}$ (not necessarily square) written by columns, $AA^T = M \in \mathbb{R}^{m \times m}$ (symmetric, prove it using $[AB]^T = B^T A^T$) can be written as the sum of the *n* rank-one matrices corresponding to the columns, i.e., $M = \sum_{i=1}^n [D^i = A^i (A^i)^T]$. In fact, the *h*-th row of *A* is $A_h = [A_h^1, A_h^2, ..., A_h^n]$ and the *k*-th column of A^T is the *k*-th row of *A*, thus $M_{hk} = \langle A_h, A_k \rangle = \sum_{i=1}^n A_h^i A_k^i$. But $D_{hk}^i = A_h^i A_h^i$, hence $M_{hk} = \sum_{i=1}^n D_{hk}^i$ for all *h* and *k* To complete the result, for $\Lambda = \text{diag}([\lambda_1, \lambda_2, ..., \lambda_n]) \in \mathbb{R}^{n \times n}$, $L = A\Lambda = [\lambda_1 A^1, \lambda_2 A^2, ..., \lambda_n A^n]$. In fact, the *h*-th row $A_h = [A_h^1, A_h^2, ..., A_h^n]$ and the *k*-th column of Λ , i.e., $\lambda_k u_k$ (u_k being the *k*-th vector of the canonical base) give $L_{hk} = \langle A^h, \lambda_k u_k \rangle = \lambda_k A_h^k$ [back]

•
$$\varphi_{H_i}(\alpha) = (\alpha H_i)^T Q(\alpha H_i) = \alpha^2 [H_i^T(\lambda_i H_i)] = \lambda_i \alpha^2$$
 [back]

► $\lambda_n < 0 \implies \varphi_{H_n}(\alpha) [= \lambda_n \alpha^2]$ unbounded below $\implies f(x)$ unbounded below $\lambda_1 > 0 \implies \varphi_{H_1}(\alpha)$ unbounded above $\implies f(x)$ unbounded above [back]

Solutions V

►
$$x = z + \bar{x} \implies \frac{1}{2}x^TQx + qx = \frac{1}{2}(z + \bar{x})^TQ(z + \bar{x}) + q(z + \bar{x}) = \frac{1}{2}z^TQz + z^T(Q\bar{x} + q) + [\frac{1}{2}\bar{x}^TQ\bar{x} + q\bar{x}] = \frac{1}{2}z^TQz + f(\bar{x})$$

as $Q\bar{x} + q = Q(-Q^{-1}q) + q = -q + q = 0$ [back]

•
$$Qv = Q[\sum_{i \in Z} \eta_i H_i] = \sum_{i \in Z} \eta_i QH_i = \sum_{i \in Z} \eta_i \lambda_i H_i = 0$$
 [back]

►
$$Q = H\Lambda H^T = \sum_{i=1}^n \lambda_i H_i H_i^T = \sum_{i \in Z} \lambda_i H_i H_i^T [= 0] + \sum_{i \in N} \lambda_i H_i H_i^T$$

We want to prove $\exists x$ s.t. $(\sum_{i \in N} \lambda_i H_i H_i^T) x = \sum_{i \in N} \mu_i H_i = w$
True if $\lambda_i H_i^T x = \mu_i$ $i \in N \equiv H_i^T x = \gamma_i = \mu_i / \lambda_i$ $i \in N$,
a linear system of $k \leq n$ equations in n variables (likely underdetermined)
All H_i linearly independent, $H_N = [H_i]_{i \in N} \in \mathbb{R}^{n \times k} \implies rank(H_N) = k$
 $\implies [H_N^T, \gamma] \in \mathbb{R}^{k \times n+1}$ has rank k (rank \leq number of rows) \implies
by [16] the system has a solution x (∞ -ly many if $k < n$) [back]

$$\frac{1}{2}x^{T}Qx + qx = \frac{1}{2}(z + \bar{x})^{T}Q(z + \bar{x}) + q(z + \bar{x}) = \frac{1}{2}z^{T}Qz + z^{T}(Q\bar{x} + q^{+} + q^{0}) + f(\bar{x}) = \frac{1}{2}z^{T}Qz + q^{0}z + f(\bar{x})$$
 [back]

Solutions VI

- ▶ We know that $f(z) = z^T Qz + f(barx)$, with $z = x \bar{x}$. For $x \in \bar{x} + v$, with $v \in \text{ker}(Q)$, $z = x \bar{x} = \bar{x} + v \bar{x} = v$. Hence $f(z) = f(\bar{x})$. On the other hand, $f(z) \ge f(\bar{x})$ for all z since $Q \succeq 0$, thus any such point is a minimum. Any point $x \in \bar{x} + v$ with $v \notin \text{ker}(Q)$ has $f(x) = v^T Qv + f(\bar{x}) > f(\bar{x})$ since $v^T Qv > 0$ [back]
- No, this is both too trivial and didactic [back]
- $\varphi(\alpha) = a\alpha^2 + b\alpha$ quadratic non-homogeneous with $a = (g^i)^T Qg^i \ge 0$ and $b = -\|g^i\|^2 < 0$. If a > 0, then $\varphi(\bar{\alpha}) < \varphi(0) = f(x^i) \ \forall \ \bar{\alpha} \in (0, -b/a)$; in particular, $\bar{\alpha} = \|g^i\|^2 / (2(g^i)^T Qg^i)$ is the minimum of φ . If a = 0 then φ is decreasing and $\varphi(\bar{\alpha}) < \varphi(0) = f(x^i) \ \forall \ \bar{\alpha} > 0$ [back]
- ▶ The variational characterization of the eigenvalues implies that $\lambda_1 \ge d^T Q d / || d ||^2 \ge \lambda_n$ for all $d \ne 0$; this immediately gives $1 / \lambda_1 \le || d ||^2 / d^T Q d \le 1 / \lambda_n$ for all d, and therefore in particular $d = g^i$ (knowing that $g^i \ne 0$ otherwise the algorithm would have stopped) [back]

Solutions VII

The issue clearly is g^TQg = 0 (very small), which means that φ_{x,-g} is (almost) linear, and therefore f is unbounded below. One should therefore add a line if (g^TQg ≤ δ) then break;

for a "very small" δ , but also add a proper way for the algorithm to signal that the returned x is not optimal, e.g., by also returning a "status code" **[back]**

- Having added the extra check above, the code just works: if g^TQg < 0 then (-)g is direction where φ has negative curvature, which still implies f is unbounded below. Note that this is not guaranteed to happen [back]</p>
- Because a < 0, the step α will be negative, which basically means one is going in direction g rather than −g. The algorithm remains the same, except that the extra check above has to become g^TQg ≥ −δ [back]

Solutions VIII

Assuming the gradient is computed in the "natural way" as g = Q * x + qbefore the algorithm starts (i.e., with x the initial guess x^0), both quantities depending from matrix-vector products can be recovered by computing the vector v = Q * g. In fact, $a = g^T Qg = \langle g, v \rangle$. Then, with $x' = x - \alpha g$ one has $g' = Qx' + q = Q(x - \alpha g) + q = (Qx + q) - \alpha Qg = g - \alpha v$. Hence, the gradient at the next iteration can be computed in O(n) out of that of the previous iteration and the vector v. As for the objective function, $1/2x^T Qx + \langle q, x \rangle = 1/2(x^T Qx + 2\langle q, x \rangle) = 1/2x^T(Qx + q + q) =$ $1/2\langle q + g, x \rangle$, i.e., it can be computed in O(n) once g is known [back]

•
$$g^{i} = Q(x^{i} - x_{*}) = Qx^{i} + q, \ \alpha^{i} = ||g^{i}||^{2} / [(g^{i})^{T}Qg^{i}]$$

 $g^{i+1} = Qx^{i+1} + q = Q(x^{i} - \alpha^{i}g^{i}) + q = (I - \alpha^{i}Q)g^{i} \implies$
 $\langle g^{i+1}, g^{i} \rangle = ||g^{i}||^{2} - \alpha^{i}[(g^{i})^{T}Qg^{i}] = 0$ [back]

Solutions IX

- All arguments boil down to the crucial $Qx^* + q = 0$. This first of all gives that $f(x^*) = \frac{1}{2}(x^*)^T Qx^* + \langle x^*, q \rangle = (x^*)^T Qx^* + \langle x^*, q \rangle \frac{1}{2}(x^*)^T Qx^* = (x^*)^T (Qx^* + q) \frac{1}{2}(x^*)^T Qx^* = -\frac{1}{2}(x^*)^T Qx^*$. Then, $\frac{1}{2}(x x^*)^T Q(x x^*) = \frac{1}{2}x^T Qx + \frac{1}{2}(x^*)^T Qx^* x^T (Qx^*) = \frac{1}{2}x^T Qx \langle x, q \rangle + \frac{1}{2}(x^*)^T Qx^* = f(x) f(x^*)$ (in the penultimate step we have used $Qx^* = -q$) [back]
- ▶ Just induction: obvious for i = 0, if it holds for i 1 then $A(x^i) \le rA(x^{i-1}) \le r(r^{i-1}A(x^0))$ [back]

▶ Q nonsingular
$$\implies x^i - x_* = Q^{-1}g^i \implies$$

 $a^i = \frac{1}{2}(x^i - x_*)^T Q(x^i - x_*) = \frac{1}{2}(g^i)^T Q^{-1}g^i \implies$
 $a^{i+1} = \frac{1}{2}(x^{i+1} - x_*)^T Q(x^{i+1} - x_*) = \frac{1}{2}(x^i - \alpha^i g^i - x_*)^T g^{i+1} = \frac{1}{2}(x^i - x_*)^T g^{i+1}$
[using $\langle g^{i+1}, g^i \rangle = 0$] = $\frac{1}{2}(x^i - x_*)^T Q(x^i - \alpha^i g^i - x_*)$
 $= \frac{1}{2}(x^i - x_*)^T Q(x^i - x_*) - \frac{1}{2}\alpha^i (x^i - x_*)^T Qg^i = a^i - \frac{1}{2}\alpha^i ||g^i||^2$
[using $Q(x^i - x_*) = g^i$] = $a^i - \frac{1}{2} ||g^i||^4 / (g^i)^T Qg^i$

Solutions X

$$= a^{i} - \frac{\|g^{i}\|^{4}}{((g^{i})^{T}Qg^{i})((g^{i})^{T}Q^{-1}g^{i})} = a^{i} \left(1 - \frac{\|g^{i}\|^{4}}{((g^{i})^{T}Qg^{i})((g^{i})^{T}Q^{-1}g^{i})}\right) [\text{back}]$$

65

▶ Recall
$$1/\lambda_n \ge ... \ge 1/\lambda_1 > 0$$
 eigenvalues of Q^{-1} ; from the usual $\lambda_n ||x||^2 \le x^T Qx \le \lambda_1 ||x||^2$ (applied to Q^{-1} as well) one has $||g||^2/g^T Qg \ge 1/\lambda_1$ and $||g||^2/g^T Q^{-1}g \ge 1/[1/\lambda_n]$ [back]

▶
$$r^k v_1 \le \varepsilon \equiv r^k \le \varepsilon / v^1 \equiv \log(r^k) \le \log(\varepsilon / v^1)$$
 (log monotone) $\equiv k \log(r) \le \log(\varepsilon / v^1)$ (property of log); since $r < 1$, $\log(r) < 0$, giving $k \ge \log(\varepsilon / v^1) / \log(r) = [-\log(\varepsilon / v^1)] / [-\log(r)] = \log(v^1 / \varepsilon) / \log(1/r) = \log(v^1 / \varepsilon) [1 / \log(1/r)]$ [back]

▶ This requires a bit of elementary calculus. The derivative of $\ln(x)$ is 1/x. The first-order Taylor approximation is $f(x + \delta) \approx f(x) + f'(x)\delta$ for $\delta \approx 0$. Applied to $\ln(\cdot)$ with x = 1 gives $\ln(1 + \delta) \approx \delta$, whence $1/\ln(1/r) = 1/\ln(1 + (1 - r)/r) = r/(1 - r)$. But $\log_a(x) = \log_b(x)/\log_b(a)$, hence $\ln(x) = \log_e(x) = \log_{10}(x)/\log_{10}(e) \approx \log(x)/0.43 \approx 2.3\log(x)$, i.e., $\ln(x) \in O(\log(x))$ [back]

Solutions XI

►
$$\lambda_1 \| x^i - x_* \|^2 \ge (x_i - x_*)^T Q(x_i - x_*) = 2a^i \equiv \| x^i - x_* \| \ge \sqrt{2a^i / \lambda_1},$$

hence $d^i \le \varepsilon \implies a^i \le \lambda_1 \varepsilon^2 / 2$ [back]

- ► $a^i = \frac{1}{2} (x^i x_*)^T Q(x^i x_*) = \frac{1}{2} \langle g^i, x^i x_* \rangle \leq \frac{1}{2} ||g^i||| ||x^i x_*||$. On the other hand, $||g^i||^2 = (x^i x_*)^T Q^T Q(x^i x_*) \geq \lambda_n^2 ||x^i x_*||^2$ (recall λ_n^2 eigenvalue of Q^2 , clearly the smallest), i.e., $||g^i|| \geq \lambda_n ||x^i x_*||$. Hence, $||g^i|| \leq \sqrt{2\lambda_n\varepsilon} \implies \varepsilon \geq \frac{1}{2\lambda_n} ||g^i||^2 \geq \frac{1}{2} ||g^i|| ||x^i x_*|| \geq a^i$ [back]
- ▶ If $f_* = -\infty$, $f_i \to -\infty$ is OK (minimising sequence) but $a^i = a^{i+1} = \infty$ and therefore their ratio is not well-defined. Since f is continuous, $\{d^i\} \to 0 \Longrightarrow \{a^i\} \to 0$, but the converse need not happen in general: say, $\{x^{2i}\} \to x'_*$ and $\{x^{2i+1}\} \to x''_*$ with $x'_* \neq x''_*$ optimal solutions **[back]**
- Simply, lim_{x→0} x^p / x = lim_{x→0} x^{p-1} = 0: the numerator goes to 0 faster than the denominator [back]