Univariate Optimization

Antonio Frangioni

Department of Computer Science
University of Pisa
https://www.di.unipi.it/~frangio
mailto:frangio@di.unipi.it

Computational Mathematics for Learning and Data Analysis
Master in Computer Science — University of Pisa

A.Y. 2024/25

https://www.di.unipi.it/~frangio
mailto:frangio@di.unipi.it

Outline

Optimization Problems

Local optimization

Faster local optimization

Fastest local optimization

A Fleeting Glimpse to Global Optimization
Wrap up & References

Solutions

(Univariate) Optimization Problems

> X any set, f : X — R any function: optimization problem
(P) fo=min{f(x) : xe X}

> Impossible (X inaccessible cardinal, f non computable function, ...)

P> Let's start “easy”:

> X “very easy”: X =R or (even better) bounded X =[x_, x4] CR

> an (efficient, pointwise) oracle for f available:

Vx € X, f(x)is “easy to compute” (say, O(1))
> Still not easy at all, in fact impossible in general [3, p. 408]
» Too trivial for f(-) linear or quadratic, O(1) formulee

» Need to find a middle ground (one must 3)

Recall: even approximate, optimization is hard / impossible

f(x)

» Impossible because isolated minima can be anywhere [3, p. 408]

Recall: even approximate, optimization is hard / impossible

f(x)

] >

£ 1
X- X, X

» Impossible because isolated minima can be anywhere [3, p. 408]
» Does it help restricting to x € X = [x_, x| (—00 < x_ < x4 < +00)?

» No: still uncountably many points to try

Recall: even approximate, optimization is hard / impossible

f(x)

] >
T

L
L
X- X4 X

» Impossible because isolated minima can be anywhere [3, p. 408]
» Does it help restricting to x € X = [x_, x| (—00 < x_ < x4 < +00)?
» No: still uncountably many points to try

» Is it because f “jumps’?

Recall: even approximate, optimization is hard / impossible

f(x)

» Impossible because isolated minima can be anywhere [3, p. 408]
» Does it help restricting to x € X = [x_, x| (—00 < x_ < x4 < +00)?
» No: still uncountably many points to try

» Is it because f “jumps’? No, f can have isolated | spikes anywhere

Recall: even approximate, optimization is hard / impossible

f(x)

] >
T

L
L
X- X, X

» Impossible because isolated minima can be anywhere [3, p. 408]
» Does it help restricting to x € X = [x_, x| (—00 < x_ < x4 < +00)?
» No: still uncountably many points to try

» Is it because f “jumps’? No, f can have isolated | spikes anywhere

...evenon X =[x_, x;] as spikes can be aribtrarily narrow

Recall: even approximate, optimization is hard / impossible

f(x)

] >
T

L
L
X- X, X

v

Impossible because isolated minima can be anywhere [3, p. 408]

v

Does it help restricting to x € X = [x_, x| (—o0 < x_ < x4 < +00)?

v

No: still uncountably many points to try

v

Is it because f "jumps”’? No, f can have isolated | spikes anywhere

...evenon X =[x_, x;] as spikes can be aribtrarily narrow

» Making it possible = impose speed limits on the rate of change

Making optimization at least possible 3

» Impose spikes can't be arbitrarily narrow = f cannot change too fast =
f Lipschitz continuous (L-c) on X [4, p. 624]: 3L > 0 s.t.
[f(x)=f(z)| < Llx-—z| Vx,zeX

> f globally L-c = X =R, locally L-cat x = e >0st. X =[x—¢, x+¢]
» Note: L depends on X (locally L-c =% globally L-c)

> f:R — Rcontinuous at x = V{x} »x = {f(x)} — f(x) =
YVe>030>0st.ze€[x—0, x+0] = |f(z)—f(x)|<e

» continuous on X = Vx € X, just “continuous” = X =R = f € CO

» Many “simple” functions C° + continuity easily preserved:
f,geC® = f+g,f-g,max{f,g}, mn{f, g}, fg(-))eC®

> f locally L-c at x = f continuous at x (check)
Exercise: Come up with f locally L-c everywhere but not globally L-c

Exercise: Come up with f continuous but not L-c on some finite X = [x_, x4]

Lipschitz Optimization 4

> Still need to impose X = [x_, x| with D = x4 —x_ < oo (finite diameter),

otherwise isolated | spikes need not even be “very narrow”

» f L-c = one c-optimum can be found with O(LD /¢) evaluations:
uniformly sample X with step 2¢ / L [3, p. 411]

Exercise: Prove the above

» Bad news: no algorithm can work in less than Q(LD /¢) [3, p. 413]

(proof uses adversarial function, not typical in learning applications)
> steps inversely proportional to accuracy, just not doable for “small” ¢
> Even very dramatically worse if X C R"” (will see)

» No free lunch theorem says “all algorithms equally bad” [7], i.e.,

“if an algorithm is very good in some cases it has to be very bad in others”

> Also, L generally unknown and not easy to estimate (will see)
but algorithms actually require/use it

Outline

Local optimization

Local optimality 5

>

>

Even if | should stumble in x,, how do | recognize it?
Turns out this is “the really difficult thing” (cf. knowing £,)

Simpler to start with a weaker condition: x, is local minimum if

x, =argmin{ f(x) : x€ X(x.,e)=[x—¢,x +¢c]} forsomee>0
Stronger notion: strict local minimum if f(x,.)<f(z) Vz € X(x, €)\{x}
Why useful? Because “near x,, f typically has a predictable shape”

f (strictly) unimodal on X = [x_, x4 |:
» has minimum x. € X

» s (strictly) decreasing in [x— , x«] and increasing in [x«, x4 |

X, local minimum = typically 3¢ > 0 s.t. f (strictly) unimodal on X(x,, €)

Attraction Basins
> Most functions are not unimodal (although some are, will see)

A f(X)

v X

Attraction Basins

> Most functions are not unimodal (although some are, will see)

[

+F(x)

1

X

T
X-

i |
X, Xi

» But they are if you focus on the attraction basin of x, and

Attraction Basins

> Most functions are not unimodal (although some are, will see)

+F(x)

X

P i i
L i |
X- X, X4

» But they are if you focus on the attraction basin of x, and restrict there

Attraction Basins

> Most functions are not unimodal (although some are, will see)

A f(X)

X

P = 1

L

1
X. X, X4

» But they are if you focus on the attraction basin of x, and restrict there

» Unfortunately, this is true for every local optimum

Attraction Basins

> Most functions are not unimodal (although some are, will see)

f(x)

X

P i 1
L |
X_ X, X4
» But they are if you focus on the attraction basin of x, and restrict there
» Unfortunately, this is true for every local optimum
» All local optima “look the same”, comprised the global one
> Yet, this makes it finding some local optimum a lot easier
» Finding the right (global) one another matter entirely

Restricting Attraction Basins

» Once in an attraction basin, we can restrict it by

7

Restricting Attraction Basins
» Once in an attraction basin, we can restrict it by evaluating f in two points
fA(x)

: | . X
x_ xX: Xi X, X,
> [1, Th. 8.11 4+ Ex. 3.60 + Ex. 8.10]
_<xL <x) <xy

f (strictly) unimodal in [x_, x4] (minimum x,), x

7

Restricting Attraction Basins
» Once in an attraction basin, we can restrict it by evaluating f in two points
fA(x)

x_ X X1 X X,
> [1, Th. 8.11 4+ Ex. 3.60 + Ex. 8.10]
X)), x— <xL<xf < x4

f (strictly) unimodal in [x_, x4] (minimum
f(x_)>f(x) = x e[x], x4]

7

Restricting Attraction Basins
» Once in an attraction basin, we can restrict it by evaluating f in two points
fA(x)

x_ X7 X, X3 X,
> [1, Th. 8.11 4+ Ex. 3.60 + Ex. 8.10]
_ <xL <x) <xy

f (strictly) unimodal in [x_, x4] (minimum x,), x

F(X) > F(xX) = x €[, x]

Restricting Attraction Basins 7

» Once in an attraction basin, we can restrict it by evaluating f in two points

f(x)

[;
L
X_ xXZ X, X1 X4
> [1, Th. 8.11 + Ex. 3.60 + Ex. 8.10]
f (strictly) unimodal in [x_, x;] (minimum x,), x_ < x_ < x{ < x;:

F(xL)>f(xX) = x. e[x,x;] F(X)<F(X) = x €[x_, x,]

Restricting Attraction Basins 7

» Once in an attraction basin, we can restrict it by evaluating f in two points

f(x)

[;
L
X X, XI X1 X4
> [1, Th. 8.11 + Ex. 3.60 + Ex. 8.10]
f (strictly) unimodal in [x_, x;] (minimum x,), x_ < x_ < x{ < x;:

F(xL)>f(xX) = x. e[x,x;] F(X)<F(X) = x €[x_, x,]

Restricting Attraction Basins 7

» Once in an attraction basin, we can restrict it by evaluating f in two points

f(x)

[;
L
X X, XI X1 X4
> [1, Th. 8.11 + Ex. 3.60 + Ex. 8.10]
f (strictly) unimodal in [x_, x;] (minimum x,), x_ < x_ < x{ < x;:

F(xL)>f(xX) = x. e[x,x;] F(X)<F(X) = x €[x_, x,]

» By iterating this we can restrict the interval = get close to x, at will

» How should we choose x’_ and x} ?

Optimally choosing the iterates 8

> General powerful concept: optimize worst-case behaviour —
shrink the interval as quickly as possible

» Each iteration dumps either [x_, x"] or [x/ , x;], don't know which =
should be equal = select r € (1/2,1), x_ =x_+(1—-r)D, x{, =x_+rD

» Whatever the choice, new interval size = Dr < D
> Faster <= rsmaller (but >1/2) = r=1/24¢ = x, =x_+D/2+¢

» But next iteration will have two entirely different x’ , x/_ to evaluate f on

Optimally choosing the iterates 8

> General powerful concept: optimize worst-case behaviour —
shrink the interval as quickly as possible

» Each iteration dumps either [x_, x"] or [x/ , x;], don't know which =
should be equal = select r € (1/2,1), x_ =x_+(1—-r)D, x{, =x_+rD

» Whatever the choice, new interval size = Dr < D
> Faster <= rsmaller (but >1/2) = r=1/24¢ = x, =x_+D/2+¢

» But next iteration will have two entirely different x’ , x/_ to evaluate f on

» Minimize function evaluations = re-use the surviving point

»

r r
=r=(v/5-1)/2(~0.618) c1-r ~1-r
. .]»
X- XZ X5 X4
» r=1/g, g = golden ratio = (v5+1) /2~ 1618, g=1+r=1+1/g

Golden ratio search 9

» Theorems breed algorithms: golden ratio search

procedure [x_, x;] = GRS (f, x—, x4,)
x4 xo 4+ (L= r)(xg —x2); x4 = x— + r(xy — x_); compute f(x_), f(x});
while(x; —x- > §) do
if(F(x2)>f(xi))
then { x_ « x'; x_ + x}; x} + x— + r(xy — x_); compute f(x}); }
else { x4 + x}; x} + x_; x' < x- + (L —r)(x4 — x_); compute f(x");}

> After k iterations, X_’,‘_ — xk = Drk4 stops when Drk < § = stops when
k ~4.78log(D /6) (check): exponentially faster = can work with “small” §

» With r = 0.5 but two f(-)-evals it would be k ~ 6.64log(D /0) (check)

» Asymptotically optimal if no other information available [1, p. 355]
(r" = F,_/Fn_k+1, F; = Fibonacci, slightly better if n fixed beforehand)

> §#¢c but f L.c = A(x*) <ewhen k~4.78log(LD/c) (check)

Outline

Faster local optimization

To Make it go Faster, give it More Information
» Why do we need two points? To see in which direction f is decreasing

> If we could see this directly we could make it with one point = faster

10

To Make it go Faster, give it More Information 10
» Why do we need two points? To see in which direction f is decreasing

> If we could see this directly we could make it with one point = faster

> easy for linear f(x) = bx [+c]:

f(x) .
always left if b > 0,

b>0

<V

To Make it go Faster, give it More Information 10

» Why do we need two points? To see in which direction f is decreasing

> If we could see this directly we could make it with one point = faster

fix > easy for linear f(x) = bx [+c]:
() always left if b > 0, right if b< 0

\] b

—>

<V

To Make it go Faster, give it More Information 10
» Why do we need two points? To see in which direction f is decreasing

> If we could see this directly we could make it with one point = faster

> easy for linear f(x) = bx [+c]:

f(x) . . .
always left if b > 0, right if b< 0

» f nonlinear —

xXv

To Make it go Faster, give it More Information 10
» Why do we need two points? To see in which direction f is decreasing

> If we could see this directly we could make it with one point = faster

> easy for linear f(x) = bx [+c]:

f(x) . . .
always left if b > 0, right if b< 0

» f nonlinear — first-order model of f
at x: Ly(z)="Ff"(x)(z—x)+f(x)

» best linear approximation of f at x:
\ L(z)=f(z) Vze[x—¢e,x+¢]
x X for some (small) ¢ > 0

To Make it go Faster, give it More Information 10
» Why do we need two points? To see in which direction f is decreasing

> If we could see this directly we could make it with one point = faster
> easy for linear f(x) = bx [+c]:
always left if b > 0, right if b< 0

» f nonlinear — first-order model of f
at x: Ly(z)="Ff"(x)(z—x)+f(x)

S best linear approximation of f at x:
L(z)=f(z) Vze[x—¢e,x+¢]
X X for some (small) e >0

> Trusty old (first) derivative f'(x) [6, §2.3]

> f’(x) = slope of the tangent line to the graph of f in x:
f'(x)<0 = f decreasing at x,

To Make it go Faster, give it More Information 10
» Why do we need two points? To see in which direction f is decreasing

> If we could see this directly we could make it with one point = faster
> easy for linear f(x) = bx [+c]:
always left if b > 0, right if b< 0

» f nonlinear — first-order model of f
at x: Ly(z)="Ff"(x)(z—x)+f(x)

» best linear approximation of f at x:
L(z)=f(z) Vze[x—¢e,x+¢]
x X for some (small) ¢ > 0

> Trusty old (first) derivative f'(x) [6, §2.3]

> f’(x) = slope of the tangent line to the graph of f in x:
f'(x)<0 = f decreasing at x, f'(x)>0 = f increasing at x

To Make it go Faster, give it More Information 10
» Why do we need two points? To see in which direction f is decreasing

> If we could see this directly we could make it with one point = faster
> easy for linear f(x) = bx [+c]:
always left if b > 0, right if b< 0

» f nonlinear — first-order model of f
at x: Ly(z)="Ff"(x)(z—x)+f(x)

» best linear approximation of f at x:
L(z)=f(z) Vze[x—¢e,x+¢]

X X for some (small) e >0
> Trusty old (first) derivative f'(x) [6, §2.3]

> f’(x) = slope of the tangent line to the graph of f in x:
f'(x)<0 = f decreasing at x, f'(x)>0 = f increasing at x

> x,. local minimum ~ f’(x,) =0 = root of f/ = stationary point

Local optimality and derivatives, graphically

H(x)

> If f'(x) <0orf'(x)>0, x clearly cannot be a local minimum

11

Local optimality and derivatives, graphically

H(x)

> If f'(x) <0orf'(x)>0, x clearly cannot be a local minimum

» Hence, f’(x) =0 in all local minima (hence in the global one as well)

11

Local optimality and derivatives, graphically

H(x)

X

> If f'(x) <0orf'(x)>0, x clearly cannot be a local minimum
» Hence, f’(x) =0 in all local minima (hence in the global one as well)

> However, f'(x) =0 also in local (hence global) maxima

11

Local optimality and derivatives, graphically

H(x)

X

> If f'(x) <0orf'(x)>0, x clearly cannot be a local minimum
» Hence, f’(x) =0 in all local minima (hence in the global one as well)

> However, f'(x) =0 also in local (hence global) maxima

...as well as in saddle points

11

Local optimality and derivatives, graphically

tHH(x)

X

> If f'(x) <0orf'(x)>0, x clearly cannot be a local minimum
» Hence, f’(x) =0 in all local minima (hence in the global one as well)

> However, f'(x) =0 also in local (hence global) maxima

...as well as in saddle points

» How do | tell them apart? Look at f”/ =[f’]’ = second derivative

11

A polynominal example: roots of f’ are the “interesting” points 12

f(x) = géx2 19,3 _ 54X4+93 5_ 23,6 _ 121X7+72 8_QX9

6 36 + 640

L L

—1 ' ' ' ' ' ' ' ' 1 2 ' ' ' ' 3
f’(x)_%x—%% 216 3+465 4 263X5 847 6+576 7 117X8_|_

)

The sign of " (if not 0) tells apart maxima from minima 13

/ /91 648 .2 , 1860 3 115 4 1694 5 , 576 6 468 .7 _ 81.8
[f(x)]—l—s—19x—§x + 53X — 22Xt = Z + X0 — X — g x

6 31 13 37

Mathematically speaking: Derivatives [6, §2.3]
» Derivative: f'(x) =lim._o[f(x+1t)—f(x)]/t

» Easy closed-forms for most reasonable functions

14

Mathematically speaking: Derivatives [6, §2.3]
» Derivative: f'(x) =lim._o[f(x+1t)—f(x)]/t
» Easy closed-forms for most reasonable functions

f(x) > ... provided the limit is finite

14

Mathematically speaking: Derivatives [6, §2.3] 14
» Derivative: f'(x) =lim._o[f(x+1t)—f(x)]/t
» Easy closed-forms for most reasonable functions

f(x) > ... provided the limit is finite

» . .and it exists at all

Mathematically speaking: Derivatives [6, §2.3] 14
» Derivative: f'(x) =lim._o[f(x+1t)—f(x)]/t

» Easy closed-forms for most reasonable functions

f(x) > ... provided the limit is finite

» . .and it exists at all

> Left and right derivatives:

Mathematically speaking: Derivatives [6, §2.3] 14
» Derivative: f'(x) =lim._o[f(x+1t)—f(x)]/t
» Easy closed-forms for most reasonable functions

f(x) > ... provided the limit is finite
> ...and it exists at all

> Left and right derivatives:
f(x)=limeyo_ [f(x+1t)—Ff(x)]/t

Mathematically speaking: Derivatives [6, §2.3] 14
» Derivative: f'(x) =lim._o[f(x+1t)—f(x)]/t
» Easy closed-forms for most reasonable functions

f(x) > ... provided the limit is finite
> ...and it exists at all

> Left and right derivatives:
f(x)=limeyo_ [f(x+1t)—Ff(x)]/t

% fl(x) =limeo [f(x+t) — f(x)]/ ¢t

Mathematically speaking: Derivatives [6, §2.3] 14

» Derivative: f'(x) =lim._o[f(x+1t)—f(x)]/t

» Easy closed-forms for most reasonable functions
f(x) > ... provided the limit is finite
> ...and it exists at all

> Left and right derivatives:

fl(x)=limeo [f(x+1t)—Ff(x)]/t
% fi(x)=limeo, [f(x+1t)—f(x)]/t

» f differentiable at x if f/(x) 3 finite = f/(x)=f(x) (< 3 finite)

Mathematically speaking: Derivatives [6, §2.3] 14

» Derivative: f'(x) =lim._o[f(x+1t)—f(x)]/t

» Easy closed-forms for most reasonable functions
f(x) > ... provided the limit is finite
> ...and it exists at all

> Left and right derivatives:

fl(x)=limeo [f(x+1t)—Ff(x)]/t
% fi(x)=limeo, [f(x+1t)—f(x)]/t

» f differentiable at x if f/(x) 3 finite = f/(x)=f(x) (< 3 finite)

» Nondifferentiable functions happen in practice: f(x) = |x| = max{x, —x}

Mathematically speaking: Derivatives [6, §2.3] 14
» Derivative: f'(x) =lim._o[f(x+1t)—f(x)]/t

» Easy closed-forms for most reasonable functions

f'(x) > ... provided the limit is finite

» . .and it exists at all

— P Left and right derivatives:
X

fL(x)=limeo [f(x+1t)—f(x)]/t

-1 Fl(x)=limeso, [f(x+1t)—f(x)]/t

> f differentiable at x if f/(x) 3 finite = f/(x)
> Fi(x) = -

=fl(x) (<= 3 finite)
1ifx<0, f(x)=41if x>0, f(x)=777ifx=0

Mathematically speaking: Derivatives [6, §2.3] 14
» Derivative: f'(x) =lim._o[f(x+1t)—f(x)]/t
» Easy closed-forms for most reasonable functions

f(x) > ... provided the limit is finite
> ...and it exists at all

> Left and right derivatives:
fL(x) =limeso [f(x+t)—f(x)]/t
% fl(x)=limeo, [f(x+1t)—f(x)]/t

» f differentiable at x if f/(x) 3 finite = f/(x)=f(x) (< 3 finite)
» Can be as different as —oco and +oo
» f differentiable at x = f continuous at x, but <= does not hold

Exercise: Prove it

Computing derivatives [6, Ex. 2.3.1, Th. 2.3.4 / 2.3.5] 15

» Derivatives of many simple functions are known, (almost always) continuous
> [Xk]l — ka,1
> [eX] =€, [In(x)]=1/x

> [sin(x)] =cos(x) , [cos(x)] = —sin(x)

» Many functional operations (almost always) preserve differentiability
> [af(x)+ Bg(x)] = af'(x) + Bg'(x)
> [f(x)-g(x)] =f'(x) g(x)+f(x) g'(x)
> [f(x)/g(x)] =[f"(x) g(x)—f(x) &'(x)]/g(x)’
> [f(g(x))]'=1"(g(x)) &'(x) (chain rule)

» A few common functional operations don't:
max{ f(x), g(x)} . min{f(x), g(x)}

» In general automatic differentiation well-developed, available, fast [8]

= actually (writing code to) compute derivatives not our business

Differentiability & continuity 16

» f'c C’ = fe C' = f continuously differentiable = f € C°

> e =feC=FfeC = el = feC' = fe(°
» f € C! globally L-c on (open) X = |f/(x)| <L VxeX

Exercise: Prove it, is <= true?

Exercise: Formally prove 3f € C° but not L-c on some finite X = [x_, x; |

» Extreme value theorem [6, Th. 2.2.9]: f € C°% on X = [x_, x;] (closed) finite

= max{f(x):xeX}<oo , min{f(x):xeX}>—-
» f e C!on X finite (closed) = f globally L-c on X

> Best possible case ever: f € C? (actually, C3) on finite X

= both f and f’ globally L-c on X

Finding the roots of f’ functions 17

v

In simple cases, you get the answer by a closed formula (surprised?)
» f(x)=bx[+c] (linear), f/(x)=b=0 = Pxif b#0,Vxif b=0

> f(x)=ax?+ bx [+c] (quadratic, a # 0), f'(x) =2ax+ b =0 =

x = —b /2a unique minimum if a > 0, maximum if a < 0

» Generalise almost only to polynomials whose root have a closed formula
(degree 3, some degree 4)

> Little hope for most trascendental / trigonometric / mixed

unless you are very lucky

» Need an algorithm for solving nonlinear equations

Dichotomic Search 18

» ' continuous + intermediate value theorem [6, Th. 2.2.10] =
fi(x2)<O0A f(xt)>0 = Ixe[x_,xt]st f'(x)=0

» Theorems breed algorithms: dichotomic search

procedure x = DS (f, x_, x4, €)
do forever // invariant: f'(x=) < —¢, f'(x4) > ¢
x « in_middle_of(x_ , x;); compute f'(x);
if(|f(x)]| <e) then break;
if(f'(x)<0) then x_ + x;
else x; + x;

> Trivial choice: in_middle_of(x_ , x4){ return((x; +x_)/2)}

» Linear convergence with r = 0.5 < 0.618 —=
k~332log(D/d) < 4.78log(D/4) (err, who is §7)

» f’ L-c with constant L = L-smooth = k ~ 3.32log(LD /2¢) (check)

» Does it show in practice?

Dichotomic Search: finding the initial interval 19

» What if the assumption is not satisfied?

» Obvious solution:

Ax + 1, // or whatever value > 0
while(f'(x4) < —¢) do
X; ¢ x5 + Ax; Ax + 2Ax; // or whatever factor > 1

> Of course, the same “in reverse” for x_ (Ax = —1)
» Will work in practice for all “reasonable” function
» Works if f coercive: lim| o f(x) = 00

Exercise: construct an example where x; / x_ exist but are not found

> If f, = —00, x4 may — +oo “proving” unboundedness (f(xg) — —o0)
but how do you stop? (need a “finite —c0”)

Outline

Fastest local optimization

Improving the dichotomic search: interpolation [5, § 2.4] 20

» Choosing x “right in the middle" just the simplest approach:
better if x is close to x. (ideally, x = x, would stop in one iteration)

One knows a lot about f: f(x_) , f(xy) ., f'(x+) , f/(x=), let's use that
Powerful general idea: construct a model of f based on known information
Quadratic interpolation: ax? + bx + c that “agrees” with f at x,, x_

Three parameters, four conditions, something's gotta give (three cases)

vV v. v v Y

Oneway: 2ax; +b=1f'(xy), 2ax_ + b=('(x_) =

Fl) - Pl)~ f(x)
= 2(xy — x_) ’ b= Xy — X_

» Minimum solves 2ax + b = 0 (c irrelevant) =

Coxf(xg) = xy f'(x2) “method of false position”
f(xy)—f(x2) a.k.a. “"secant formula”

always in the middle between x; and x_ (check)

Exercise: develop the other cases of quadratic interpolation and discuss them

Always remember that the map is not the world 21

>

>

Very general issue: the model is an estimate =—> wrong = bad choices

In this case, the model can be "very skewed":
flxg)>—f(x2) = x=x. , fl(xp)<K-f(x) = x=x4

Can lead to very short steps = slow convergence
General remedy: never completely trust the model = regularise, stabilise, . ..

In this case: minimum guaranteed decrease o < 0.5 (safeguard)

x — max{x_ +o(xy —x_), min{xy —o(x; —x_), x}}
Worst case: linear convergence with r =1 — ¢
Hopefully (much) faster than that when the model is “right”

Does it really show in practice? And how much faster?

Improving the dichotomic search: theory & more interpolation 22

» Quadratic interpolation has superlinear convergence if started “close enough”:
[5, Th.24.1] f€ C3, f'(x,)=0and f'(x.) #0 =
36>0st. X% €[x. — 5, x +5] = {xi}—>x* Withp:(l—l—\/g)/Q
(1< p=g=~1.618 <2, don't you just love maths?)

» This proves ‘“very fast” already, but can we make it even faster?

Improving the dichotomic search: theory & more interpolation 22

>

>

>

Quadratic interpolation has superlinear convergence if started “close enough”:
[5, Th.2.41] f € C3, f'(x,)=0and f"(x.) #0 =

36>0st. X% €[x. — 5, x +5] = {xi}—>x* Withp:(1+\/§)/2
(1< p=g=~1.618 <2, don't you just love maths?)

This proves “very fast” already, but can we make it even faster?

Four conditions = can fit a cubic polynomial and use its minima

Rather tedious to write down, analyse and implement [5, § 2.4.2][4, p. 57]

Theoretically pays: cubic interpolation has quadratic convergence (p = 2)

Seems to work pretty well in practice

Exercise: (not for the faint of heart): develop cubic interpolation

Newton’s method 23

» Better model of f = f' = better guess of x, — faster
> Better model <= either more points or more (higher-order) derivatives

» Newton's method (tangent method): first-order model of ' at x’
L(x) = L(x) = (0)+ F/(x0)(x = x0) = F1(x)

Newton’s method 23

» Better model of f = ' — better guess of x, = faster
> Better model <= either more points or more (higher-order) derivatives

» Newton's method (tangent method): first-order model of ' at x’
Li(x)=L(x)=f(x")+f"(x)(x—=x")=f(x)
> I = ~ / = = 77
Solve L,(x) 0. f(x). 0 &) S
X:XI_f/(XI)/f//(XI) \lxki

WX' X

Newton’s method 23

» Better model of f = ' — better guess of x, = faster
> Better model <= either more points or more (higher-order) derivatives

» Newton's method (tangent method): first-order model of ' at x’
Li(x)=L(x)=f(x")+f"(x)(x—=x")=f(x)
> I = ~ / = = 77
Solve L,(x) 0. f(x). 0 &) S
x=x —f/(x')/ "(x') L

5 7 X
procedure x = NM (f, x, ¢) > x
while(| f'(x)| >¢) do
xx—f(x)/f"(x); //whatif f'(x)=07?

Newton’s method

>

>

>

v

v

v

v

Better model of f = f' = better guess of x, = faster
Better model <= either more points or more (higher-order) derivatives

Newton's method (tangent method): first-order model of 7’ at x’
Li(x)=L(x)=f(x")+f"(x)(x—=x")=f(x)
I. = ~ / = = 77
Solve L,(x) 0. f(x). 0 &) S
x=x —f/(x')/ "(x') L

23

Wxi

procedure x = NM (f, x, ¢)
while(| f'(x)| >¢) do
xx—f(x)/f"(x); //whatif f'(x)=07?

Alternative view (check): minimize second-order model of f at x’
Qi(x) = Qu(x) =f(x") + F(x)(x = x") + (X)(x =x")? /2
(but Newton's actually a method to solve nonlinear equations)

Converges fast (at all!) only if started “close enough” to x, [1, Th. 8.2.3]

Would require globalization (possible), will see in # context

X

Mathematically speaking: Newton’s method, the proof 24
» Second-order Taylor's formula: Vz 3w € [x, z] s.t.
f(z)—L(z) = fF"(w)(z—x)?/2 [6, Th. 2.5.4]
“the error of L, in z is (z — x)?x the value of f”” somewhere in the middle”

» Hypotheses: f € C* , f/(x,)=0and f’(x.)#0
» Thesis: 3§ > 0st. xX° € [x. — 0, x. + 0] = {x*} = x, with p=2

» Proof: x™! — x, = x' — x, + (f'(x.) — (X)) /' (x")
= [F(x) = F(x0) = () (o~ x0)]/ F(x)
Taylor's formula for f': Fw € [x', x*] s.t.
F(x) = (X)) + (X)(xe — x1) = F"(w) (3 — x7)2/2
— Xt —x, = [F"(w)) 2f"(x)(x — x.)?
3§ >0st. |’ (x)| >k >0and | f"(w)]| < k < oo (check)
Vx, we[xi =8, x+0] =[x —x| <[k /2k](x —x)?
ki(x'—x.))2k <1 =[x —x, | < |x — x| =
{x"} = x. and the convergence is quadratic

Outline

A Fleeting Glimpse to Global Optimization

How about global optimization?

» What does this all tells about global optimization?

25

How about global optimization? 25

» What does this all tells about global optimization?
Sadly, not much at all, unless strong assumptions are made

LX)

How about global optimization? 25

» What does this all tells about global optimization?
Sadly, not much at all, unless strong assumptions are made

A f(X)

X

» The obvious one would be unimodal, but not easy to verify/construct

How about global optimization? 25

» What does this all tells about global optimization?
Sadly, not much at all, unless strong assumptions are made

LX)

» Intuitively: f has local not global minima

How about global optimization? 25

» What does this all tells about global optimization?
Sadly, not much at all, unless strong assumptions are made

LX)

"l

» Intuitively: f has local not global minima = has local maxima

How about global optimization? 25

» What does this all tells about global optimization?
Sadly, not much at all, unless strong assumptions are made

LX)

X

» Intuitively: f has local not global minima = has local maxima

> Avoid it: stationary point = local minima = f'(x)=0 = "’(x) >0

How about global optimization? 25

» What does this all tells about global optimization?
Sadly, not much at all, unless strong assumptions are made

A f(X)

v X

» Intuitively: f has local not global minima == has local maxima
> Avoid it: stationary point = local minima = f'(x)=0 = "’(x)>0

> Sufficient condition: f”(x) >0Vx e R = f convex

A Very Quick Glimpse to Convexity 26

>

>

>

Convex ~ f’ is monotone nondecreasing ~ "/ > 0
Not really because convex =£ C! (even less C?), will see

Some functions are convex + a few operations preserve convexity (will see)
= the convex world is relatively large
= can construct complicated (multivariate) convex functions/sets

Plenty of theory [2] and software [10]

Many models are purposely constructed convex (SVM) so that

(global) optimization is easy
“If you have the choice, choose convex”
What if you don't and really need the global optimum?

Will only say little here, but plenty of ways to satisfy your curiosity [9]

The Spatial Branch-and-Bound Approach
> Sift through all X =[x_, x4], but using a clever guide

+H(x)

27

The Spatial Branch-and-Bound Approach 27
> Sift through all X =[x_, x4], but using a clever guide

+H(x)

r
L
X-

» Convex lower approximation f of nonconvex f on X

The Spatial Branch-and-Bound Approach 27
> Sift through all X =[x_, x4], but using a clever guide

+H(x)

r

r —
X- X
» Convex lower approximation f of nonconvex f on X

> “Easily” find local = global minimum X, giving f(x) < f. < f(Xx)

The Spatial Branch-and-Bound Approach 27
> Sift through all X =[x_, x4], but using a clever guide

+H(x)

r

X. x
» Convex lower approximation f of nonconvex f on X

> “Easily” find local = global minimum X, giving f(x) < f. < f(Xx)
> If gap f(X) — f(X) too large,

The Spatial Branch-and-Bound Approach 27
> Sift through all X =[x_, x4], but using a clever guide

+H(x)

[

t 1
X_ X4
» Convex lower approximation f of nonconvex f on X
> “Easily” find local = global minimum X, giving f(x) < f, < f(x)
> If gap f(X) — f(X) too large, partition X and iterate

The Spatial Branch-and-Bound Approach 27
> Sift through all X =[x_, x4], but using a clever guide

+H(x)

» Convex lower approximation f of nonconvex f on X

> “Easily” find local = global minimum X, giving f(x) < f. < f(Xx)
> If gap f(X) — f(X) too large, partition X and iterate

> f depends on partition, smaller partition (hopefully) = better gap

The Spatial Branch-and-Bound Approach
> Sift through all X =[x_, x4], but using a clever guide
+F(x)
‘ 1 X
L 1 gl
X_ X4

» Convex lower approximation f of nonconvex f on X
> “Easily” find local = global minimum X, giving f(x) < f, < f(x)
> If gap f(X) — f(X) too large, partition X and iterate

» If on some partition

27

The Spatial Branch-and-Bound Approach 27
> Sift through all X =[x_, x4], but using a clever guide

+H(x)

: H
L _ 1
X_ X Xy

» Convex lower approximation f of nonconvex f on X

Y X

> “Easily” find local = global minimum X, giving f(x) < f. < f(Xx)
> If gap f(X) — f(X) too large, partition X and iterate

> If on some partition f(X) > best f-value so far,

The Spatial Branch-and-Bound Approach 27
> Sift through all X =[x_, x4], but using a clever guide

+H(x)

Y X

t — 1

X- X X4
» Convex lower approximation f of nonconvex f on X
> “Easily” find local = global minimum X, giving f(x) < f, < f(x)
> If gap f(X) — f(X) too large, partition X and iterate

> If on some partition f(X) > best f-value so far, partition killed for good

Is Something Like This Efficient? 28
» In a word? Surely not in worst-case:

keep dicing and slicing X until pieces “very small" = exponential

» However, in practice it depends on:
» “how much nonconvex” f really is

> how good f is as a lower approximation of f

» Clever approach: carefully choose your nonconvexities, e.g., integer variables

Is Something Like This Efficient? 28
» In a word? Surely not in worst-case:

keep dicing and slicing X until pieces “very small" = exponential

» However, in practice it depends on:
» “how much nonconvex” f really is

> how good f is as a lower approximation of f
» Clever approach: carefully choose your nonconvexities, e.g., integer variables

> Mixed-Integer Linear Programs: all is “trivial” when integer fixed /relaxed

Is Something Like This Efficient? 28
» In a word? Surely not in worst-case:

keep dicing and slicing X until pieces “very small" = exponential

» However, in practice it depends on:
» “how much nonconvex” f really is

> how good f is as a lower approximation of f
» Clever approach: carefully choose your nonconvexities, e.g., integer variables

» Mixed-Integer Nonlinear Convex Programs: still “easy” (less so numerically)

Is Something Like This Efficient? 28
» In a word? Surely not in worst-case:

keep dicing and slicing X until pieces “very small" = exponential

» However, in practice it depends on:
» “how much nonconvex” f really is

> how good f is as a lower approximation of f
» Clever approach: carefully choose your nonconvexities, e.g., integer variables

» Mixed-Integer Nonlinear Convex Programs: still “easy” (less so numerically)

=4 always efficient, f often “bad” = bounds weak = exponential

Is Something Like This Efficient? 28
» In a word? Surely not in worst-case:

keep dicing and slicing X until pieces “very small" = exponential

» However, in practice it depends on:
» “how much nonconvex” f really is

> how good f is as a lower approximation of f
» Clever approach: carefully choose your nonconvexities, e.g., integer variables

» Mixed-Integer Nonlinear Convex Programs: still “easy” (less so numerically)

=4 always efficient, f often “bad” = bounds weak = exponential

> (Mixed-Integer) Nonlinear Nonconvex Programs: finding any f complex
> rewrite the expression of f in terms of unary/binary functions
> apply specific convexification formula for each function

» Good news: implemented in available, well-engineered solvers and

immensely less inefficient in practice than blind search

» Yet, immensely less efficient in practice than local optimization

Outline

Wrap up & References

Wrap up 29
> Global (constrained or not) optimization difficult (impossible) in general

> Local (unconstrained) optimization much easier, useful in general:

once you know how to do unconstrained you can do constrained

Wrap up 29

>

>

Global (constrained or not) optimization difficult (impossible) in general

Local (unconstrained) optimization much easier, useful in general:

once you know how to do local you can try global

Algorithms are slow / medium / fast, “nicer” problems have faster algorithms
The more continuous derivatives you have, the nicer the problem

Derivatives = first- and second-order model

f “complicated”, model looks like f (close to x) and simple

But the map is not the world, never blindly trust a model

Fundamental concepts we will use all the time, let's move to n > 1

References | 30

(1]

2]

(3]

[4]
[5]
[6]

M.S. Bazaraa, H.D. Sherali, C.M. Shetty Nonlinear Programming:
Theory and Algorithms, John Wiley & Sons, 2006

S. Boyd, L. Vandenberghe Convex Optimization,
https://web.stanford.edu/~boyd/cvxbook
Cambridge University Press, 2008

P. Hansen, B. Jaumard “Lipschitz Optimization” in Handbook of Global
Optimization — Nonconvex optimization and its applications, R. Horst
and P.M. Pardalos (Eds.), Chapter 8, 407-494, Springer, 1995

J. Nocedal, S.J. Wright, Numerical Optimization — second edition,
Springer Series in Operations Research and Financial Engineering, 2006

W. Sun, Y.-X. Yuan, Optimization Theory and Methods — Nonlinear
Programming, Springer Optimization and Its Applications, 2006

W.F. Trench, Introduction to Real Analysis https:
//ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
Free Hyperlinked Edition 2.04, December 2013

https://web.stanford.edu/~boyd/cvxbook
https://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
https://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF

References Il 31

[7] L. Serafino Optimizing Without Derivatives: What Does the No Free
Lunch Theorem Actually Say? Notices of the AMS 61(7):750-755, 2014
https://www.anms.org/notices/201407/rnoti-p750.pdf

[8] AutoDiff Org: https://www.autodiff.org
[9] Commalab: https://commalab.di.unipi.it/courses

[10] CVX: https://cvxr.com

https://www.ams.org/notices/201407/rnoti-p750.pdf
https://www.autodiff.org
https://commalab.di.unipi.it/courses
https://cvxr.com

Outline

Solutions

Solutions | 32

> Take =¢/L; then,Vy e [x—0d, x+]
[f(y)—f(x)|<Lx—y|<L5<L(e/L)=¢ [back]

» Note: we'll have a much simpler proof later, after we present the relationships
between L-c and derivatives
f(x) = x? is locally but not globally L-c; we prove this for x > 0, but the same
arguments work for x < 0 (the function is symmetric)
0>0 = 0<f(x+d)—Ff(x)=(2x+0)0 <3xd if § < x; hence, f is L-c
at x with Lipschitz constant 3x in some (right) interval around x
0>0 = f(x+3d)—1(x)=(2x+6)d > 2xJ; hence, f cannot be L-c at x
with Lipschitz constant less than 2x, and that value is not bounded as x — oo
Symmetric arguments works for left intervals (f(x) — f(x —J)) [back]

Solutions Il 33

» The standard example is f(x) = \/m which is easily verified to be
continuous and to become “infinitely steep” as x — 0, because it is the inverse
function of y = x2 (for x > 0), and x> becomes “infinitely flat” as x — 0
Again, we'll have a much simpler proof later, after we present the relationships
between L-c and derivatives; in fact, the proof is so much simpler that it is not
worth proceeding now, we just wait until we have the right tools [back]

> Let x, be any optimal solution in X; by definition it belongs to (at least) one
interval [x;, xiy1], with x;41 — x; < 2e /L. Assume that x, — x; < Xj41 — X«
(the other case is analogous); then x, — x; < e /L. Hence, L-c gives
f(xi)—f(x) <Llxi—x:| <e [back]

» Basically done this already: Drk <e = rk <e¢/D = log(rk) <
log(e/D) = klog(r)<log(e/D) = k>log(e/D)/ log(r) as
r<l = log(r)<0
Hence, k > log(D /e)/ log(1/r)=log(D/e)/(—log(r))

Now, log(1/0.618) ~ log(1.618) ~ 0.21,1/0.21 ~ 4.78 [back]

Solutions 111 34

» Golden ratio search has r =0.5: 1/ log(1/r) ~ 3.32. But each iteration of
the algorithm requires two function evaluations, so the factor is ~ 6.64: less
iterations, but more evaluations [back]

> Since f(:)is L-c, d' =[x —=x. | <6 = r'=f —f, < Ld" < L. Hence, to
get r' < e it is sufficient to ensure that d' < e/ L, whence the bound [back]

> lime o[f(x+t)—f(x)]/t=Lfinite = limeot([f(x+t)—1Ff(x)]/t)
=limisof(x+1t)—f(x)=Llimot =0 (limit of a product = product of
the limits); that <= does not hold is proven by f(x) = | x| [back]

> f()Lc = [f(x+t)—f(x)|<Lit] = |[f(x+t)—Ff(x)]/t]| <L
now just take the lim;_q
Yes, the other direction is also true: by the Mean Value Theorem [6, Theorem
2.3.9], f(z)—f(x)=1f(w)(z— x) for some w in the interval of extremes
x and z; take the | - | and use | f’(w)| < L [back]

Solutions IV 35

> Consider f(x) = v/x2, whose derivative is f'(x) = 2 /3x> (possibly written in
the more complex but algebraic-proof form (2x) / (3(x?)?/3)). Hence,
limy—o_ f'(x) = —o0 and limy_,o, f'(x) = oco. In plain words, this is because
the cubic root is the inverse function of x3, which is “flat in 0"; inverse
functions “exchange the axes”, which means that if the graph of the function is
“horizontal” as some x, then the graph of its inverse is “vertical” at the same
x, which implies f’(x) = +oo. Thus f’(+) is not bounded in any interval
around 0, and therefore f(+) is not L-c there. Of course, f'(x) is not
continuous in 0 [back]

> f/(x) =0 for some x € [x', X'|; L — c of ' gives
|0 —f(x")] <Lx—x"|and |f(X') = 0| < L|X' — x|, whence
min{ f'(x"), f(X')} < Lmin{|x — x|, |x — x|} < L5 /2 (in the worst
case, x is equidistant from the extremes); thus, the stopping criterion have to
be satisfied when § = 2¢ /L, i.e., within at most 3.32log(LD / 2¢) iterations
[back]

Solutions V 36

» For x, = Ax =1, the algorithm tries the iterates 1, 2, 4, 8, ..., i.e., 21, With
f(x)=sin(rx+3r/4) = f'(x)=mcos(mx + 3w /4) we have
f'(2) = mcos(m2 +3n/4) =mcos(3m/4) = —m/2 /2~ 222 (2" is
always even and cos(-) has period 27); that is, the algorithm always finds a
“very negative” derivative and never stops, although f(-) has plenty of local
minima. Clearly, by only very slightly changing the constants the
counterexample would break down [back]

Do (xp) = xp F(x2) =x_F(xy) = xp F(x2)+ x_f(x2) —x_f'(x_) =
x_(f'(x3)—Ff'(x=))—f'(x=)(xy —x_). Divide by f'(x;) — f’(x_) to get
x=xytoa(xy—x_)with0<a=—Ff(x_)/(f(xy)=f(x2))<1 itis
then plain to see that x_ < x < x; [back]

» A full development would not be didactical. The four conditions are
axd 4+ bxy+c=1F(xp), ax® +bx_ +c="f(x_), 2ax; +b=1(xy),
2ax_ + b = f'(x_); each three of them give a linear system with three
equations in the three unknowns a, b, ¢ that gives (not necessarily) different
solutions (mind the special cases) and therefore quadratic models [back]

Solutions VI 37

> No point to repeat [5, § 2.4.2][4, p. 57] here [back]

)+ (X) (x—x")=0 =

> 1]) Li(x) = f'(x'
x") [back]

x—xi = —f(x)/ (

> Since f(x.)#0, | f"(x.)| > 0; take e.g. ko = | f"(x.)|/2[> 0], by
continuity of f”(-) at x,, 3§ > 0s.t. |2ky — | (x)]| < ko =
| f"(x)| > ka Vx € X. Since f"'(-) is continuous, also | f"”/(-)] is, hence
ki =max{|f"(x)| : x€ X} <oo[6, Th.2.2.9] [back]

	Optimization Problems
	Local optimization
	Faster local optimization
	Fastest local optimization
	A Fleeting Glimpse to Global Optimization
	Wrap up & References
	Solutions

