
Univariate Optimization

Antonio Frangioni

Department of Computer Science
University of Pisa

https://www.di.unipi.it/~frangio

mailto:frangio@di.unipi.it

Computational Mathematics for Learning and Data Analysis
Master in Computer Science – University of Pisa

A.Y. 2024/25

https://www.di.unipi.it/~frangio
mailto:frangio@di.unipi.it

Outline

Optimization Problems

Local optimization

Faster local optimization

Fastest local optimization

A Fleeting Glimpse to Global Optimization

Wrap up & References

Solutions

(Univariate) Optimization Problems 1

▶ X any set, f : X → R any function: optimization problem

(P) f∗ = min{ f (x) : x ∈ X }

▶ Impossible (X inaccessible cardinal, f non computable function, . . .)

▶ Let’s start “easy”:

▶ X “very easy”: X = R or (even better) bounded X = [x− , x+] ⊂ R

▶ an (efficient, pointwise) oracle for f available:

∀ x ∈ X , f (x) is “easy to compute” (say, O(1))

▶ Still not easy at all, in fact impossible in general [3, p. 408]

▶ Too trivial for f (·) linear or quadratic, O(1) formulæ

▶ Need to find a middle ground (one must ∃)

Recall: even approximate, optimization is hard / impossible 2

x

f(x)

...

▶ Impossible because isolated minima can be anywhere [3, p. 408]

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere
. . . even on X = [x− , x+] as spikes can be aribtrarily narrow

▶ Making it possible ≡ impose speed limits on the rate of change

Recall: even approximate, optimization is hard / impossible 2

x

f(x)

x- x+

][

▶ Impossible because isolated minima can be anywhere [3, p. 408]

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere
. . . even on X = [x− , x+] as spikes can be aribtrarily narrow

▶ Making it possible ≡ impose speed limits on the rate of change

Recall: even approximate, optimization is hard / impossible 2

x

f(x)

x- x+

][

▶ Impossible because isolated minima can be anywhere [3, p. 408]

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”?

No, f can have isolated ↓ spikes anywhere
. . . even on X = [x− , x+] as spikes can be aribtrarily narrow

▶ Making it possible ≡ impose speed limits on the rate of change

Recall: even approximate, optimization is hard / impossible 2

x

f(x)
...

▶ Impossible because isolated minima can be anywhere [3, p. 408]

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

. . . even on X = [x− , x+] as spikes can be aribtrarily narrow

▶ Making it possible ≡ impose speed limits on the rate of change

Recall: even approximate, optimization is hard / impossible 2

x

f(x)

x- x+

][

▶ Impossible because isolated minima can be anywhere [3, p. 408]

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere
. . . even on X = [x− , x+] as spikes can be aribtrarily narrow

▶ Making it possible ≡ impose speed limits on the rate of change

Recall: even approximate, optimization is hard / impossible 2

x

f(x)

x- x+

][

▶ Impossible because isolated minima can be anywhere [3, p. 408]

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere
. . . even on X = [x− , x+] as spikes can be aribtrarily narrow

▶ Making it possible ≡ impose speed limits on the rate of change

Making optimization at least possible 3

▶ Impose spikes can’t be arbitrarily narrow ≡ f cannot change too fast ≡
f Lipschitz continuous (L-c) on X [4, p. 624]: ∃L > 0 s.t.

| f (x)− f (z) | ≤ L| x − z | ∀ x , z ∈ X

▶ f globally L-c ≡ X = R, locally L-c at x ≡ ∃ ε > 0 s.t. X = [x − ε , x + ε]

▶ Note: L depends on X (locally L-c ≠⇒ globally L-c)

▶ f : R→ R continuous at x ≡ ∀{ xi } → x =⇒ { f (xi) } → f (x) ≡
∀ε > 0 ∃ δ > 0 s.t. z ∈ [x − δ , x + δ] =⇒ | f (z)− f (x) | ≤ ε

▶ continuous on X ≡ ∀x ∈ X , just “continuous” ≡ X = R ≡ f ∈ C 0

▶ Many “simple” functions C 0 + continuity easily preserved:
f , g ∈ C 0 =⇒ f + g , f · g , max{ f , g } , min{ f , g } , f (g(·)) ∈ C 0

▶ f locally L-c at x =⇒ f continuous at x (check)

Exercise: Come up with f locally L-c everywhere but not globally L-c

Exercise: Come up with f continuous but not L-c on some finite X = [x− , x+]

Lipschitz Optimization 4

▶ Still need to impose X = [x− , x+] with D = x+ − x− < ∞ (finite diameter),

otherwise isolated ↓ spikes need not even be “very narrow”

▶ f L-c =⇒ one ε-optimum can be found with O(LD / ε) evaluations:

uniformly sample X with step 2ε / L [3, p. 411]

Exercise: Prove the above

▶ Bad news: no algorithm can work in less than Ω(LD / ε) [3, p. 413]

(proof uses adversarial function, not typical in learning applications)

▶ # steps inversely proportional to accuracy, just not doable for “small” ε

▶ Even very dramatically worse if X ⊂ Rn (will see)

▶ No free lunch theorem says “all algorithms equally bad” [7], i.e.,

“if an algorithm is very good in some cases it has to be very bad in others”

▶ Also, L generally unknown and not easy to estimate (will see)

but algorithms actually require/use it

Outline

Optimization Problems

Local optimization

Faster local optimization

Fastest local optimization

A Fleeting Glimpse to Global Optimization

Wrap up & References

Solutions

Local optimality 5

▶ Even if I should stumble in x∗, how do I recognize it?

▶ Turns out this is “the really difficult thing” (cf. knowing f∗)

▶ Simpler to start with a weaker condition: x∗ is local minimum if

x∗ = argmin
{
f (x) : x ∈ X (x∗ , ε) = [x∗ − ε , x∗ + ε]

}
for some ε > 0

▶ Stronger notion: strict local minimum if f (x∗)< f (z) ∀ z ∈ X (x∗ , ε) \ { x∗ }

▶ Why useful? Because “near x∗, f typically has a predictable shape”

▶ f (strictly) unimodal on X = [x− , x+]:

▶ has minimum x∗ ∈ X

▶ is (strictly) decreasing in [x− , x∗] and increasing in [x∗ , x+]

▶ x∗ local minimum =⇒ typically ∃ ε > 0 s.t. f (strictly) unimodal on X (x∗ , ε)

Attraction Basins 6

▶ Most functions are not unimodal (although some are, will see)

f(x)

x

▶ But they are if you focus on the attraction basin of x∗ and restrict there

▶ Unfortunately, this is true for every local optimum

▶ All local optima “look the same”, comprised the global one

▶ Yet, this makes it finding some local optimum a lot easier

▶ Finding the right (global) one another matter entirely

Attraction Basins 6

▶ Most functions are not unimodal (although some are, will see)

f(x)

x
][

x- x+x*
▶ But they are if you focus on the attraction basin of x∗ and

restrict there

▶ Unfortunately, this is true for every local optimum

▶ All local optima “look the same”, comprised the global one

▶ Yet, this makes it finding some local optimum a lot easier

▶ Finding the right (global) one another matter entirely

Attraction Basins 6

▶ Most functions are not unimodal (although some are, will see)

f(x)

x
][

x- x+x*
▶ But they are if you focus on the attraction basin of x∗ and restrict there

▶ Unfortunately, this is true for every local optimum

▶ All local optima “look the same”, comprised the global one

▶ Yet, this makes it finding some local optimum a lot easier

▶ Finding the right (global) one another matter entirely

Attraction Basins 6

▶ Most functions are not unimodal (although some are, will see)

f(x)

x
][

x- x+x*
▶ But they are if you focus on the attraction basin of x∗ and restrict there

▶ Unfortunately, this is true for every local optimum

▶ All local optima “look the same”, comprised the global one

▶ Yet, this makes it finding some local optimum a lot easier

▶ Finding the right (global) one another matter entirely

Attraction Basins 6

▶ Most functions are not unimodal (although some are, will see)

f(x)

x
][

x- x+x*
▶ But they are if you focus on the attraction basin of x∗ and restrict there

▶ Unfortunately, this is true for every local optimum

▶ All local optima “look the same”, comprised the global one

▶ Yet, this makes it finding some local optimum a lot easier

▶ Finding the right (global) one another matter entirely

Restricting Attraction Basins 7

▶ Once in an attraction basin, we can restrict it by

evaluating f in two points

f(x)

x
][

x- x+x*
▶ [1, Th. 8.11 + Ex. 3.60 + Ex. 8.10]

f (strictly) unimodal in [x− , x+] (minimum x∗), x− ≤ x ′− ≤ x ′+ ≤ x+:

f (x ′−) ≥ f (x ′+) =⇒ x∗ ∈ [x ′− , x+] f (x ′−) ≤ f (x ′+) =⇒ x∗ ∈ [x− , x ′+]

▶ By iterating this we can restrict the interval =⇒ get close to x∗ at will

▶ How should we choose x ′− and x ′+?

Restricting Attraction Basins 7

▶ Once in an attraction basin, we can restrict it by evaluating f in two points

f(x)

x
][

x- x+x*x-́ x+́
▶ [1, Th. 8.11 + Ex. 3.60 + Ex. 8.10]

f (strictly) unimodal in [x− , x+] (minimum x∗), x− ≤ x ′− ≤ x ′+ ≤ x+:

f (x ′−) ≥ f (x ′+) =⇒ x∗ ∈ [x ′− , x+] f (x ′−) ≤ f (x ′+) =⇒ x∗ ∈ [x− , x ′+]

▶ By iterating this we can restrict the interval =⇒ get close to x∗ at will

▶ How should we choose x ′− and x ′+?

Restricting Attraction Basins 7

▶ Once in an attraction basin, we can restrict it by evaluating f in two points

f(x)

x
][

x- x+x*x-́ x+́
▶ [1, Th. 8.11 + Ex. 3.60 + Ex. 8.10]

f (strictly) unimodal in [x− , x+] (minimum x∗), x− ≤ x ′− ≤ x ′+ ≤ x+:

f (x ′−) ≥ f (x ′+) =⇒ x∗ ∈ [x ′− , x+]

f (x ′−) ≤ f (x ′+) =⇒ x∗ ∈ [x− , x ′+]

▶ By iterating this we can restrict the interval =⇒ get close to x∗ at will

▶ How should we choose x ′− and x ′+?

Restricting Attraction Basins 7

▶ Once in an attraction basin, we can restrict it by evaluating f in two points

f(x)

x
][

x- x+x*x-́ x+́
▶ [1, Th. 8.11 + Ex. 3.60 + Ex. 8.10]

f (strictly) unimodal in [x− , x+] (minimum x∗), x− ≤ x ′− ≤ x ′+ ≤ x+:

f (x ′−) ≥ f (x ′+) =⇒ x∗ ∈ [x ′− , x+]

f (x ′−) ≤ f (x ′+) =⇒ x∗ ∈ [x− , x ′+]

▶ By iterating this we can restrict the interval =⇒ get close to x∗ at will

▶ How should we choose x ′− and x ′+?

Restricting Attraction Basins 7

▶ Once in an attraction basin, we can restrict it by evaluating f in two points

f(x)

x
][

x- x+x*x-́ x+́
▶ [1, Th. 8.11 + Ex. 3.60 + Ex. 8.10]

f (strictly) unimodal in [x− , x+] (minimum x∗), x− ≤ x ′− ≤ x ′+ ≤ x+:

f (x ′−) ≥ f (x ′+) =⇒ x∗ ∈ [x ′− , x+] f (x ′−) ≤ f (x ′+) =⇒ x∗ ∈ [x− , x ′+]

▶ By iterating this we can restrict the interval =⇒ get close to x∗ at will

▶ How should we choose x ′− and x ′+?

Restricting Attraction Basins 7

▶ Once in an attraction basin, we can restrict it by evaluating f in two points

f(x)

x
][

x- x+x* x-́ x+́
▶ [1, Th. 8.11 + Ex. 3.60 + Ex. 8.10]

f (strictly) unimodal in [x− , x+] (minimum x∗), x− ≤ x ′− ≤ x ′+ ≤ x+:

f (x ′−) ≥ f (x ′+) =⇒ x∗ ∈ [x ′− , x+] f (x ′−) ≤ f (x ′+) =⇒ x∗ ∈ [x− , x ′+]

▶ By iterating this we can restrict the interval =⇒ get close to x∗ at will

▶ How should we choose x ′− and x ′+?

Restricting Attraction Basins 7

▶ Once in an attraction basin, we can restrict it by evaluating f in two points

f(x)

x
][

x- x+x* x-́ x+́
▶ [1, Th. 8.11 + Ex. 3.60 + Ex. 8.10]

f (strictly) unimodal in [x− , x+] (minimum x∗), x− ≤ x ′− ≤ x ′+ ≤ x+:

f (x ′−) ≥ f (x ′+) =⇒ x∗ ∈ [x ′− , x+] f (x ′−) ≤ f (x ′+) =⇒ x∗ ∈ [x− , x ′+]

▶ By iterating this we can restrict the interval =⇒ get close to x∗ at will

▶ How should we choose x ′− and x ′+?

Optimally choosing the iterates 8

▶ General powerful concept: optimize worst-case behaviour =⇒
shrink the interval as quickly as possible

▶ Each iteration dumps either [x− , x ′−] or [x ′+ , x+], don’t know which =⇒
should be equal =⇒ select r ∈ (1 / 2 , 1), x ′− = x−+(1− r)D, x ′+ = x−+ rD

▶ Whatever the choice, new interval size = Dr < D

▶ Faster ⇐= r smaller (but > 1 / 2) ≡ r = 1 / 2 + ε ≡ x ′± = x− + D / 2± ε

▶ But next iteration will have two entirely different x ′− , x ′+ to evaluate f on

▶ Minimize function evaluations =⇒ re-use the surviving point

▶ r : 1 = (1− r) : r ≡ r · r = 1− r

≡ r = (
√
5− 1) / 2 (≈ 0.618)

x- x+

][1 - r
r

1 - r
x-́ x+́

r

▶ r = 1 / g , g = golden ratio = (
√
5 + 1) / 2 ≈ 1.618, g = 1 + r = 1 + 1 / g

Optimally choosing the iterates 8

▶ General powerful concept: optimize worst-case behaviour =⇒
shrink the interval as quickly as possible

▶ Each iteration dumps either [x− , x ′−] or [x ′+ , x+], don’t know which =⇒
should be equal =⇒ select r ∈ (1 / 2 , 1), x ′− = x−+(1− r)D, x ′+ = x−+ rD

▶ Whatever the choice, new interval size = Dr < D

▶ Faster ⇐= r smaller (but > 1 / 2) ≡ r = 1 / 2 + ε ≡ x ′± = x− + D / 2± ε

▶ But next iteration will have two entirely different x ′− , x ′+ to evaluate f on

▶ Minimize function evaluations =⇒ re-use the surviving point

▶ r : 1 = (1− r) : r ≡ r · r = 1− r

≡ r = (
√
5− 1) / 2 (≈ 0.618)

x- x+

][1 - r
r

1 - r
x-́ x+́

r

▶ r = 1 / g , g = golden ratio = (
√
5 + 1) / 2 ≈ 1.618, g = 1 + r = 1 + 1 / g

Golden ratio search 9

▶ Theorems breed algorithms: golden ratio search

procedure [x− , x+] = GRS (f , x− , x+ , δ)
x ′
− ← x− + (1− r)(x+ − x−); x

′
+ = x− + r(x+ − x−); compute f (x ′

−), f (x ′
+);

while(x+ − x− > δ) do
if(f (x ′

−) > f (x ′
+))

then { x− ← x ′
−; x

′
− ← x ′

+; x
′
+ ← x− + r(x+ − x−); compute f (x ′

+); }
else { x+ ← x ′

+; x
′
+ ← x ′

−; x
′
− ← x− + (1− r)(x+ − x−); compute f (x ′

−);}

▶ After k iterations, xk+ − xk− = Drk+ stops when Drk ≤ δ =⇒ stops when

k ≈ 4.78 log(D / δ) (check): exponentially faster = can work with “small” δ

▶ With r = 0.5 but two f (·)-evals it would be k ≈ 6.64 log(D / δ) (check)

▶ Asymptotically optimal if no other information available [1, p. 355]

(rk = Fn−k/Fn−k+1, Fi = Fibonacci, slightly better if n fixed beforehand)

▶ δ ̸= ε, but f L-c =⇒ A(xk) ≤ ε when k ≈ 4.78 log(LD / ε) (check)

Outline

Optimization Problems

Local optimization

Faster local optimization

Fastest local optimization

A Fleeting Glimpse to Global Optimization

Wrap up & References

Solutions

To Make it go Faster, give it More Information 10

▶ Why do we need two points? To see in which direction f is decreasing

▶ If we could see this directly we could make it with one point =⇒ faster

f(x)

c

b > 0

x

}

▶ easy for linear f (x) = bx [+c]:

always left if b > 0, right if b < 0

▶ f nonlinear =⇒ first-order model of f

at x : Lx(z) = f ′(x)(z − x) + f (x)

▶ best linear approximation of f at x :

Lx(z) ≈ f (z) ∀ z ∈ [x − ε , x + ε]

for some (small) ε > 0

▶ Trusty old (first) derivative f ′(x) [6, §2.3]

▶ f ′(x) = slope of the tangent line to the graph of f in x :

f ′(x)< 0 =⇒ f decreasing at x , f ′(x)> 0 =⇒ f increasing at x

▶ x∗ local minimum ≃ f ′(x∗) = 0 ≡ root of f ′ ≡ stationary point

To Make it go Faster, give it More Information 10

▶ Why do we need two points? To see in which direction f is decreasing

▶ If we could see this directly we could make it with one point =⇒ faster

f(x)

c

b > 0

x

}

▶ easy for linear f (x) = bx [+c]:

always left if b > 0,

right if b < 0

▶ f nonlinear =⇒ first-order model of f

at x : Lx(z) = f ′(x)(z − x) + f (x)

▶ best linear approximation of f at x :

Lx(z) ≈ f (z) ∀ z ∈ [x − ε , x + ε]

for some (small) ε > 0

▶ Trusty old (first) derivative f ′(x) [6, §2.3]

▶ f ′(x) = slope of the tangent line to the graph of f in x :

f ′(x)< 0 =⇒ f decreasing at x , f ′(x)> 0 =⇒ f increasing at x

▶ x∗ local minimum ≃ f ′(x∗) = 0 ≡ root of f ′ ≡ stationary point

To Make it go Faster, give it More Information 10

▶ Why do we need two points? To see in which direction f is decreasing

▶ If we could see this directly we could make it with one point =⇒ faster

f(x)

c

b < 0

x

}

▶ easy for linear f (x) = bx [+c]:

always left if b > 0, right if b < 0

▶ f nonlinear =⇒ first-order model of f

at x : Lx(z) = f ′(x)(z − x) + f (x)

▶ best linear approximation of f at x :

Lx(z) ≈ f (z) ∀ z ∈ [x − ε , x + ε]

for some (small) ε > 0

▶ Trusty old (first) derivative f ′(x) [6, §2.3]

▶ f ′(x) = slope of the tangent line to the graph of f in x :

f ′(x)< 0 =⇒ f decreasing at x , f ′(x)> 0 =⇒ f increasing at x

▶ x∗ local minimum ≃ f ′(x∗) = 0 ≡ root of f ′ ≡ stationary point

To Make it go Faster, give it More Information 10

▶ Why do we need two points? To see in which direction f is decreasing

▶ If we could see this directly we could make it with one point =⇒ faster

f(x)

x

▶ easy for linear f (x) = bx [+c]:

always left if b > 0, right if b < 0

▶ f nonlinear =⇒

first-order model of f

at x : Lx(z) = f ′(x)(z − x) + f (x)

▶ best linear approximation of f at x :

Lx(z) ≈ f (z) ∀ z ∈ [x − ε , x + ε]

for some (small) ε > 0

▶ Trusty old (first) derivative f ′(x) [6, §2.3]

▶ f ′(x) = slope of the tangent line to the graph of f in x :

f ′(x)< 0 =⇒ f decreasing at x , f ′(x)> 0 =⇒ f increasing at x

▶ x∗ local minimum ≃ f ′(x∗) = 0 ≡ root of f ′ ≡ stationary point

To Make it go Faster, give it More Information 10

▶ Why do we need two points? To see in which direction f is decreasing

▶ If we could see this directly we could make it with one point =⇒ faster

f(x)

xx

▶ easy for linear f (x) = bx [+c]:

always left if b > 0, right if b < 0

▶ f nonlinear =⇒ first-order model of f

at x : Lx(z) = f ′(x)(z − x) + f (x)

▶ best linear approximation of f at x :

Lx(z) ≈ f (z) ∀ z ∈ [x − ε , x + ε]

for some (small) ε > 0

▶ Trusty old (first) derivative f ′(x) [6, §2.3]

▶ f ′(x) = slope of the tangent line to the graph of f in x :

f ′(x)< 0 =⇒ f decreasing at x , f ′(x)> 0 =⇒ f increasing at x

▶ x∗ local minimum ≃ f ′(x∗) = 0 ≡ root of f ′ ≡ stationary point

To Make it go Faster, give it More Information 10

▶ Why do we need two points? To see in which direction f is decreasing

▶ If we could see this directly we could make it with one point =⇒ faster

f(x)

xx

▶ easy for linear f (x) = bx [+c]:

always left if b > 0, right if b < 0

▶ f nonlinear =⇒ first-order model of f

at x : Lx(z) = f ′(x)(z − x) + f (x)

▶ best linear approximation of f at x :

Lx(z) ≈ f (z) ∀ z ∈ [x − ε , x + ε]

for some (small) ε > 0

▶ Trusty old (first) derivative f ′(x) [6, §2.3]

▶ f ′(x) = slope of the tangent line to the graph of f in x :

f ′(x)< 0 =⇒ f decreasing at x ,

f ′(x)> 0 =⇒ f increasing at x

▶ x∗ local minimum ≃ f ′(x∗) = 0 ≡ root of f ′ ≡ stationary point

To Make it go Faster, give it More Information 10

▶ Why do we need two points? To see in which direction f is decreasing

▶ If we could see this directly we could make it with one point =⇒ faster

f(x)

xx

▶ easy for linear f (x) = bx [+c]:

always left if b > 0, right if b < 0

▶ f nonlinear =⇒ first-order model of f

at x : Lx(z) = f ′(x)(z − x) + f (x)

▶ best linear approximation of f at x :

Lx(z) ≈ f (z) ∀ z ∈ [x − ε , x + ε]

for some (small) ε > 0

▶ Trusty old (first) derivative f ′(x) [6, §2.3]

▶ f ′(x) = slope of the tangent line to the graph of f in x :

f ′(x)< 0 =⇒ f decreasing at x , f ′(x)> 0 =⇒ f increasing at x

▶ x∗ local minimum ≃ f ′(x∗) = 0 ≡ root of f ′ ≡ stationary point

To Make it go Faster, give it More Information 10

▶ Why do we need two points? To see in which direction f is decreasing

▶ If we could see this directly we could make it with one point =⇒ faster

f(x)

xx

▶ easy for linear f (x) = bx [+c]:

always left if b > 0, right if b < 0

▶ f nonlinear =⇒ first-order model of f

at x : Lx(z) = f ′(x)(z − x) + f (x)

▶ best linear approximation of f at x :

Lx(z) ≈ f (z) ∀ z ∈ [x − ε , x + ε]

for some (small) ε > 0

▶ Trusty old (first) derivative f ′(x) [6, §2.3]

▶ f ′(x) = slope of the tangent line to the graph of f in x :

f ′(x)< 0 =⇒ f decreasing at x , f ′(x)> 0 =⇒ f increasing at x

▶ x∗ local minimum ≃ f ′(x∗) = 0 ≡ root of f ′ ≡ stationary point

Local optimality and derivatives, graphically 11

f(x)

x
▶ If f ′(x) < 0 or f ′(x) > 0, x clearly cannot be a local minimum

▶ Hence, f ′(x) = 0 in all local minima (hence in the global one as well)

▶ However, f ′(x) = 0 also in local (hence global) maxima

. . . as well as in saddle points

▶ How do I tell them apart? Look at f ′′ = [f ′]′ = second derivative

Local optimality and derivatives, graphically 11

f(x)

x
▶ If f ′(x) < 0 or f ′(x) > 0, x clearly cannot be a local minimum

▶ Hence, f ′(x) = 0 in all local minima (hence in the global one as well)

▶ However, f ′(x) = 0 also in local (hence global) maxima

. . . as well as in saddle points

▶ How do I tell them apart? Look at f ′′ = [f ′]′ = second derivative

Local optimality and derivatives, graphically 11

f(x)

x
▶ If f ′(x) < 0 or f ′(x) > 0, x clearly cannot be a local minimum

▶ Hence, f ′(x) = 0 in all local minima (hence in the global one as well)

▶ However, f ′(x) = 0 also in local (hence global) maxima

. . . as well as in saddle points

▶ How do I tell them apart? Look at f ′′ = [f ′]′ = second derivative

Local optimality and derivatives, graphically 11

f(x)

x
▶ If f ′(x) < 0 or f ′(x) > 0, x clearly cannot be a local minimum

▶ Hence, f ′(x) = 0 in all local minima (hence in the global one as well)

▶ However, f ′(x) = 0 also in local (hence global) maxima

. . . as well as in saddle points

▶ How do I tell them apart? Look at f ′′ = [f ′]′ = second derivative

Local optimality and derivatives, graphically 11

f(x)

x
▶ If f ′(x) < 0 or f ′(x) > 0, x clearly cannot be a local minimum

▶ Hence, f ′(x) = 0 in all local minima (hence in the global one as well)

▶ However, f ′(x) = 0 also in local (hence global) maxima

. . . as well as in saddle points

▶ How do I tell them apart? Look at f ′′ = [f ′]′ = second derivative

A polynominal example: roots of f ′ are the “interesting” points 12

f (x) = 91
30x

2 − 19
6 x

3 − 54
25x

4 + 93
23x

5 − 23
36x

6 − 121
93 x

7 + 72
91x

8 − 13
74x

9 + 9
640x

10

-1 1 2 3

0.5

1.0

1.5

2.0

2.5

f ′(x) = 91
15x −

19
2 x

2 − 216
25 x

3 + 465
23 x

4 − 23
6 x

5 − 847
93 x

6 + 576
91 x

7 − 117
74 x

8 + 9
64x

9

-1 1 2 3

-4

-2

2

4

The sign of f ′′ (if not 0) tells apart maxima from minima 13

[f ′(x)]′ = 91
15 − 19x − 648

25 x
2 + 1860

23 x3 − 115
6 x4 − 1694

31 x5 + 576
13 x

6 − 468
37 x

7 − 81
64x

8

-1 1 2 3

0.5

1.0

1.5

2.0

2.5

-1 1 2 3

-4

-2

2

4

-1 1 2 3

-10

-5

5

10

15

20

Mathematically speaking: Derivatives [6, §2.3] 14

▶ Derivative: f ′(x) = limt→0[f (x + t)− f (x)] / t

▶ Easy closed-forms for most reasonable functions

f(x)

xx

b = ∞

▶ . . . provided the limit is finite

▶ . . . and it exists at all

▶ Left and right derivatives:

f ′−(x) = limt→0− [f (x + t)− f (x)] / t

f ′+(x) = limt→0+ [f (x + t)− f (x)] / t

▶ f differentiable at x if f ′(x) ∃ finite ≡ f ′−(x)= f ′+(x) (⇐= ∃ finite)

▶ dummy

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it

Mathematically speaking: Derivatives [6, §2.3] 14

▶ Derivative: f ′(x) = limt→0[f (x + t)− f (x)] / t

▶ Easy closed-forms for most reasonable functions

f(x)

xx

b = ∞

▶ . . . provided the limit is finite

▶ . . . and it exists at all

▶ Left and right derivatives:

f ′−(x) = limt→0− [f (x + t)− f (x)] / t

f ′+(x) = limt→0+ [f (x + t)− f (x)] / t

▶ f differentiable at x if f ′(x) ∃ finite ≡ f ′−(x)= f ′+(x) (⇐= ∃ finite)

▶ dummy

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it

Mathematically speaking: Derivatives [6, §2.3] 14

▶ Derivative: f ′(x) = limt→0[f (x + t)− f (x)] / t

▶ Easy closed-forms for most reasonable functions

f(x)

xx

▶ . . . provided the limit is finite

▶ . . . and it exists at all

▶ Left and right derivatives:

f ′−(x) = limt→0− [f (x + t)− f (x)] / t

f ′+(x) = limt→0+ [f (x + t)− f (x)] / t

▶ f differentiable at x if f ′(x) ∃ finite ≡ f ′−(x)= f ′+(x) (⇐= ∃ finite)

▶ dummy

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it

Mathematically speaking: Derivatives [6, §2.3] 14

▶ Derivative: f ′(x) = limt→0[f (x + t)− f (x)] / t

▶ Easy closed-forms for most reasonable functions

f(x)

xx

▶ . . . provided the limit is finite

▶ . . . and it exists at all

▶ Left and right derivatives:

f ′−(x) = limt→0− [f (x + t)− f (x)] / t

f ′+(x) = limt→0+ [f (x + t)− f (x)] / t

▶ f differentiable at x if f ′(x) ∃ finite ≡ f ′−(x)= f ′+(x) (⇐= ∃ finite)

▶ dummy

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it

Mathematically speaking: Derivatives [6, §2.3] 14

▶ Derivative: f ′(x) = limt→0[f (x + t)− f (x)] / t

▶ Easy closed-forms for most reasonable functions

f(x)

xx

▶ . . . provided the limit is finite

▶ . . . and it exists at all

▶ Left and right derivatives:

f ′−(x) = limt→0− [f (x + t)− f (x)] / t

f ′+(x) = limt→0+ [f (x + t)− f (x)] / t

▶ f differentiable at x if f ′(x) ∃ finite ≡ f ′−(x)= f ′+(x) (⇐= ∃ finite)

▶ dummy

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it

Mathematically speaking: Derivatives [6, §2.3] 14

▶ Derivative: f ′(x) = limt→0[f (x + t)− f (x)] / t

▶ Easy closed-forms for most reasonable functions

f(x)

xx

▶ . . . provided the limit is finite

▶ . . . and it exists at all

▶ Left and right derivatives:

f ′−(x) = limt→0− [f (x + t)− f (x)] / t

f ′+(x) = limt→0+ [f (x + t)− f (x)] / t

▶ f differentiable at x if f ′(x) ∃ finite ≡ f ′−(x)= f ′+(x) (⇐= ∃ finite)

▶ dummy

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it

Mathematically speaking: Derivatives [6, §2.3] 14

▶ Derivative: f ′(x) = limt→0[f (x + t)− f (x)] / t

▶ Easy closed-forms for most reasonable functions

f(x)

xx

▶ . . . provided the limit is finite

▶ . . . and it exists at all

▶ Left and right derivatives:

f ′−(x) = limt→0− [f (x + t)− f (x)] / t

f ′+(x) = limt→0+ [f (x + t)− f (x)] / t

▶ f differentiable at x if f ′(x) ∃ finite ≡ f ′−(x)= f ′+(x) (⇐= ∃ finite)

▶ dummy

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it

Mathematically speaking: Derivatives [6, §2.3] 14

▶ Derivative: f ′(x) = limt→0[f (x + t)− f (x)] / t

▶ Easy closed-forms for most reasonable functions

f(x)

xx

▶ . . . provided the limit is finite

▶ . . . and it exists at all

▶ Left and right derivatives:

f ′−(x) = limt→0− [f (x + t)− f (x)] / t

f ′+(x) = limt→0+ [f (x + t)− f (x)] / t

▶ f differentiable at x if f ′(x) ∃ finite ≡ f ′−(x)= f ′+(x) (⇐= ∃ finite)

▶ Nondifferentiable functions happen in practice: f (x) = | x | = max{ x , −x }

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it

Mathematically speaking: Derivatives [6, §2.3] 14

▶ Derivative: f ′(x) = limt→0[f (x + t)− f (x)] / t

▶ Easy closed-forms for most reasonable functions

f'(x)

x

-1

1

▶ . . . provided the limit is finite

▶ . . . and it exists at all

▶ Left and right derivatives:

f ′−(x) = limt→0− [f (x + t)− f (x)] / t

f ′+(x) = limt→0+ [f (x + t)− f (x)] / t

▶ f differentiable at x if f ′(x) ∃ finite ≡ f ′−(x)= f ′+(x) (⇐= ∃ finite)

▶ f ′(x) = −1 if x < 0, f ′(x) = +1 if x > 0, f ′(x) = ??? if x = 0

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it

Mathematically speaking: Derivatives [6, §2.3] 14

▶ Derivative: f ′(x) = limt→0[f (x + t)− f (x)] / t

▶ Easy closed-forms for most reasonable functions

f(x)

xx

▶ . . . provided the limit is finite

▶ . . . and it exists at all

▶ Left and right derivatives:

f ′−(x) = limt→0− [f (x + t)− f (x)] / t

f ′+(x) = limt→0+ [f (x + t)− f (x)] / t

▶ f differentiable at x if f ′(x) ∃ finite ≡ f ′−(x)= f ′+(x) (⇐= ∃ finite)

▶ Can be as different as −∞ and +∞

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it

Computing derivatives [6, Ex. 2.3.1, Th. 2.3.4 / 2.3.5] 15

▶ Derivatives of many simple functions are known, (almost always) continuous

▶ [xk]′ = kxk −1

▶ [ex]′ = ex , [ln(x)]′ = 1 / x

▶ [sin(x)]′ = cos(x) , [cos(x)]′ = − sin(x)

▶ Many functional operations (almost always) preserve differentiability

▶ [αf (x) + βg(x)]′ = αf ′(x) + βg ′(x)

▶ [f (x) · g(x)]′ = f ′(x) · g(x) + f (x) · g ′(x)

▶ [f (x)/g(x)]′ = [f ′(x) · g(x)− f (x) · g ′(x)] / g(x)2

▶ [f (g(x))]′ = f ′(g(x)) · g ′(x) (chain rule)

▶ A few common functional operations don’t:

max{ f (x) , g(x) } , min{ f (x) , g(x) }

▶ In general automatic differentiation well-developed, available, fast [8]

=⇒ actually (writing code to) compute derivatives not our business

Differentiability & continuity 16

▶ f ′ ∈ C 0 ≡ f ∈ C 1 ≡ f continuously differentiable =⇒ f ∈ C 0

▶ f ′′ ∈ C 0 ≡ f ∈ C 2 ≡ f ′ ∈ C 1 =⇒ f ′ ∈ C 0 =⇒ f ∈ C 1 =⇒ f ∈ C 0

▶ f ∈ C 1 globally L-c on (open) X =⇒ | f ′(x) | ≤ L ∀ x ∈ X

Exercise: Prove it, is ⇐= true?

Exercise: Formally prove ∃ f ∈ C 0 but not L-c on some finite X = [x− , x+]

▶ Extreme value theorem [6, Th. 2.2.9]: f ∈ C 0 on X = [x− , x+] (closed) finite

=⇒ max { f (x) : x ∈ X }<∞ , min { f (x) : x ∈ X }> −∞

▶ f ∈ C 1 on X finite (closed) =⇒ f globally L-c on X

▶ Best possible case ever: f ∈ C 2 (actually, C 3) on finite X

=⇒ both f and f ′ globally L-c on X

Finding the roots of f ′ functions 17

▶ In simple cases, you get the answer by a closed formula (surprised?)

▶ f (x) = bx [+c] (linear), f ′(x) = b = 0 =⇒ ∄ x if b ̸= 0, ∀ x if b = 0

▶ f (x) = ax2 + bx [+c] (quadratic, a ̸= 0), f ′(x) = 2ax + b = 0 =⇒
x = −b / 2a unique minimum if a > 0, maximum if a < 0

▶ Generalise almost only to polynomials whose root have a closed formula

(degree 3, some degree 4)

▶ Little hope for most trascendental / trigonometric / mixed

unless you are very lucky

▶ Need an algorithm for solving nonlinear equations

Dichotomic Search 18

▶ f ′ continuous + intermediate value theorem [6, Th. 2.2.10] =⇒
f ′(x−) < 0 ∧ f ′(x+) > 0 =⇒ ∃ x ∈ [x− , x+] s.t. f ′(x) = 0

▶ Theorems breed algorithms: dichotomic search

procedure x = DS (f , x− , x+ , ε)
do forever // invariant: f ′(x−) < −ε, f ′(x+) > ε

x ← in middle of(x− , x+); compute f ′(x);
if(| f ′(x) | ≤ ε) then break;
if(f ′(x) < 0) then x− ← x ;

else x+ ← x ;

▶ Trivial choice: in middle of(x− , x+){ return((x+ + x−) / 2) }

▶ Linear convergence with r = 0.5 < 0.618 =⇒
k ≈ 3.32 log(D / δ) < 4.78 log(D / δ) (err, who is δ?)

▶ f ′ L-c with constant L ≡ L-smooth =⇒ k ≈ 3.32 log(LD / 2ε) (check)

▶ Does it show in practice?

Dichotomic Search: finding the initial interval 19

▶ What if the assumption is not satisfied?

▶ Obvious solution:

∆x ← 1; // or whatever value > 0
while(f ′(x+) ≤ −ε) do

x+ ← x+ +∆x ; ∆x ← 2∆x ; // or whatever factor > 1

▶ Of course, the same “in reverse” for x− (∆x = −1)

▶ Will work in practice for all “reasonable” function

▶ Works if f coercive: lim| x |→∞ f (x) =∞

Exercise: construct an example where x+ / x− exist but are not found

▶ If f∗ = −∞, x± may → ±∞ “proving” unboundedness (f (x±)→ −∞)

but how do you stop? (need a “finite −∞”)

Outline

Optimization Problems

Local optimization

Faster local optimization

Fastest local optimization

A Fleeting Glimpse to Global Optimization

Wrap up & References

Solutions

Improving the dichotomic search: interpolation [5, § 2.4] 20

▶ Choosing x “right in the middle” just the simplest approach:

better if x is close to x∗ (ideally, x = x∗ would stop in one iteration)

▶ One knows a lot about f : f (x−) , f (x+) , f ′(x+) , f ′(x−), let’s use that

▶ Powerful general idea: construct a model of f based on known information

▶ Quadratic interpolation: ax2 + bx + c that “agrees” with f at x+, x−

▶ Three parameters, four conditions, something’s gotta give (three cases)

▶ One way: 2ax+ + b = f ′(x+), 2ax− + b = f ′(x−) =⇒

a =
f ′(x+)− f ′(x−)

2(x+ − x−)
, b =

x+f
′(x−)− x−f

′(x+)

x+ − x−

▶ Minimum solves 2ax + b = 0 (c irrelevant) ≡

x =
x−f

′(x+)− x+f
′(x−)

f ′(x+)− f ′(x−)

“method of false position”
a.k.a. “secant formula”

always in the middle between x+ and x− (check)

Exercise: develop the other cases of quadratic interpolation and discuss them

Always remember that the map is not the world 21

▶ Very general issue: the model is an estimate =⇒ wrong =⇒ bad choices

▶ In this case, the model can be “very skewed”:

f ′(x+)≫ −f ′(x−) =⇒ x ≈ x− , f ′(x+)≪ −f ′(x−) =⇒ x ≈ x+

▶ Can lead to very short steps =⇒ slow convergence

▶ General remedy: never completely trust the model ≡ regularise, stabilise, . . .

▶ In this case: minimum guaranteed decrease σ ≤ 0.5 (safeguard)

x ← max{ x− + σ(x+ − x−) , min{ x+ − σ(x+ − x−) , x } }

▶ Worst case: linear convergence with r = 1− σ

▶ Hopefully (much) faster than that when the model is “right”

▶ Does it really show in practice? And how much faster?

Improving the dichotomic search: theory & more interpolation 22

▶ Quadratic interpolation has superlinear convergence if started “close enough”:

[5, Th. 2.4.1] f ∈ C 3, f ′(x∗) = 0 and f ′′(x∗) ̸= 0 =⇒
∃ δ > 0 s.t. x0 ∈ [x∗ − δ , x∗ + δ] =⇒ { x i } → x∗ with p = (1 +

√
5) / 2

(1 < p = g ≈ 1.618 < 2, don’t you just love maths?)

▶ This proves “very fast” already, but can we make it even faster?

▶ Four conditions =⇒ can fit a cubic polynomial and use its minima

▶ Rather tedious to write down, analyse and implement [5, § 2.4.2][4, p. 57]

▶ Theoretically pays: cubic interpolation has quadratic convergence (p = 2)

▶ Seems to work pretty well in practice

Exercise: (not for the faint of heart): develop cubic interpolation

Improving the dichotomic search: theory & more interpolation 22

▶ Quadratic interpolation has superlinear convergence if started “close enough”:

[5, Th. 2.4.1] f ∈ C 3, f ′(x∗) = 0 and f ′′(x∗) ̸= 0 =⇒
∃ δ > 0 s.t. x0 ∈ [x∗ − δ , x∗ + δ] =⇒ { x i } → x∗ with p = (1 +

√
5) / 2

(1 < p = g ≈ 1.618 < 2, don’t you just love maths?)

▶ This proves “very fast” already, but can we make it even faster?

▶ Four conditions =⇒ can fit a cubic polynomial and use its minima

▶ Rather tedious to write down, analyse and implement [5, § 2.4.2][4, p. 57]

▶ Theoretically pays: cubic interpolation has quadratic convergence (p = 2)

▶ Seems to work pretty well in practice

Exercise: (not for the faint of heart): develop cubic interpolation

Newton’s method 23

▶ Better model of f ≡ f ′ =⇒ better guess of x∗ =⇒ faster

▶ Better model ⇐= either more points or more (higher-order) derivatives

▶ Newton’s method (tangent method): first-order model of f ′ at x i

L′i (x) = L′x i (x) = f ′(x i) + f ′′(x i)(x − x i) ≈ f ′(x)

▶ Solve L′i (x) = 0 ≈ f ′(x) = 0 ≡
x = x i − f ′(x i) / f ′′(x i)

procedure x = NM (f , x , ε)
while(| f ′(x) | > ε) do
x ← x − f ′(x) / f ′′(x); // what if f ′′(x) = 0?

▶ Alternative view (check): minimize second-order model of f at x i

Qi (x) = Qx i (x) = f (x i) + f ′(x i)(x − x i) + f ′′(x i)(x − x i)2 / 2

(but Newton’s actually a method to solve nonlinear equations)

▶ Converges fast (at all!) only if started “close enough” to x∗ [1, Th. 8.2.3]

▶ Would require globalization (possible), will see in ̸= context

Newton’s method 23

▶ Better model of f ≡ f ′ =⇒ better guess of x∗ =⇒ faster

▶ Better model ⇐= either more points or more (higher-order) derivatives

▶ Newton’s method (tangent method): first-order model of f ′ at x i

L′i (x) = L′x i (x) = f ′(x i) + f ′′(x i)(x − x i) ≈ f ′(x)

▶ Solve L′i (x) = 0 ≈ f ′(x) = 0 ≡
x = x i − f ′(x i) / f ′′(x i)

f'(x)

xxixi+1

x
(x)iL'

procedure x = NM (f , x , ε)
while(| f ′(x) | > ε) do
x ← x − f ′(x) / f ′′(x); // what if f ′′(x) = 0?

▶ Alternative view (check): minimize second-order model of f at x i

Qi (x) = Qx i (x) = f (x i) + f ′(x i)(x − x i) + f ′′(x i)(x − x i)2 / 2

(but Newton’s actually a method to solve nonlinear equations)

▶ Converges fast (at all!) only if started “close enough” to x∗ [1, Th. 8.2.3]

▶ Would require globalization (possible), will see in ̸= context

Newton’s method 23

▶ Better model of f ≡ f ′ =⇒ better guess of x∗ =⇒ faster

▶ Better model ⇐= either more points or more (higher-order) derivatives

▶ Newton’s method (tangent method): first-order model of f ′ at x i

L′i (x) = L′x i (x) = f ′(x i) + f ′′(x i)(x − x i) ≈ f ′(x)

▶ Solve L′i (x) = 0 ≈ f ′(x) = 0 ≡
x = x i − f ′(x i) / f ′′(x i)

f'(x)

xxixi+1

x
(x)iL'

procedure x = NM (f , x , ε)
while(| f ′(x) | > ε) do
x ← x − f ′(x) / f ′′(x); // what if f ′′(x) = 0?

▶ Alternative view (check): minimize second-order model of f at x i

Qi (x) = Qx i (x) = f (x i) + f ′(x i)(x − x i) + f ′′(x i)(x − x i)2 / 2

(but Newton’s actually a method to solve nonlinear equations)

▶ Converges fast (at all!) only if started “close enough” to x∗ [1, Th. 8.2.3]

▶ Would require globalization (possible), will see in ̸= context

Newton’s method 23

▶ Better model of f ≡ f ′ =⇒ better guess of x∗ =⇒ faster

▶ Better model ⇐= either more points or more (higher-order) derivatives

▶ Newton’s method (tangent method): first-order model of f ′ at x i

L′i (x) = L′x i (x) = f ′(x i) + f ′′(x i)(x − x i) ≈ f ′(x)

▶ Solve L′i (x) = 0 ≈ f ′(x) = 0 ≡
x = x i − f ′(x i) / f ′′(x i)

f'(x)

xxixi+1

x
(x)iL'

procedure x = NM (f , x , ε)
while(| f ′(x) | > ε) do
x ← x − f ′(x) / f ′′(x); // what if f ′′(x) = 0?

▶ Alternative view (check): minimize second-order model of f at x i

Qi (x) = Qx i (x) = f (x i) + f ′(x i)(x − x i) + f ′′(x i)(x − x i)2 / 2

(but Newton’s actually a method to solve nonlinear equations)

▶ Converges fast (at all!) only if started “close enough” to x∗ [1, Th. 8.2.3]

▶ Would require globalization (possible), will see in ̸= context

Mathematically speaking: Newton’s method, the proof 24

▶ Second-order Taylor’s formula: ∀ z ∃w ∈ [x , z] s.t.

f (z)− Lx(z) = f ′′(w)(z − x)2/2 [6, Th. 2.5.4]

“the error of Lx in z is (z − x)2× the value of f ′′ somewhere in the middle”

▶ Hypotheses: f ∈ C 3 , f ′(x∗) = 0 and f ′′(x∗) ̸= 0

▶ Thesis: ∃ δ > 0 s.t. x0 ∈ [x∗ − δ , x∗ + δ] =⇒ { xk } → x∗ with p = 2

▶ Proof: x i+1 − x∗ = x i − x∗ + (f ′(x∗)− f ′(x i)) / f ′′(x i)

= [f ′(x∗)− f ′(x i)− f ′′(x i)(x∗ − x i)] / f ′′(x i)

Taylor’s formula for f ′: ∃w ∈ [x i , x∗] s.t.

f ′(x∗)− f ′(x i) + f ′′(x i)(x∗ − x i) = f ′′′(w)(x∗ − x i)2/2

=⇒ x i+1 − x∗ = [f ′′′(w) / 2f ′′(x i)](x i − x∗)
2

∃ δ > 0 s.t. | f ′′(x) | ≥ k2 > 0 and | f ′′′(w) | ≤ k1 <∞ (check)

∀ x , w ∈ [x∗ − δ , x∗ + δ] =⇒ | x i+1 − x∗ | ≤ [k1 / 2k2](x
i − x∗)

2

k1(x
i − x∗) / 2k2 ≤ 1 =⇒ | x i+1 − x∗ | < | x i − x∗ | =⇒

{ x i } → x∗ and the convergence is quadratic

Outline

Optimization Problems

Local optimization

Faster local optimization

Fastest local optimization

A Fleeting Glimpse to Global Optimization

Wrap up & References

Solutions

How about global optimization? 25

▶ What does this all tells about global optimization?

Sadly, not much at all, unless strong assumptions are made

f(x)

x

▶
▶ Avoid it: stationary point =⇒ local minima ≡ f ′(x) = 0 =⇒ f ′′(x) ≥ 0

▶ Sufficient condition: f ′′(x) ≥ 0 ∀ x ∈ R =⇒ f convex

How about global optimization? 25

▶ What does this all tells about global optimization?

Sadly, not much at all, unless strong assumptions are made

f(x)

x

▶
▶ Avoid it: stationary point =⇒ local minima ≡ f ′(x) = 0 =⇒ f ′′(x) ≥ 0

▶ Sufficient condition: f ′′(x) ≥ 0 ∀ x ∈ R =⇒ f convex

How about global optimization? 25

▶ What does this all tells about global optimization?

Sadly, not much at all, unless strong assumptions are made

f(x)

x

▶ The obvious one would be unimodal, but not easy to verify/construct

▶ Avoid it: stationary point =⇒ local minima ≡ f ′(x) = 0 =⇒ f ′′(x) ≥ 0

▶ Sufficient condition: f ′′(x) ≥ 0 ∀ x ∈ R =⇒ f convex

How about global optimization? 25

▶ What does this all tells about global optimization?

Sadly, not much at all, unless strong assumptions are made

f(x)

x
▶ Intuitively: f has local not global minima

=⇒ has local maxima

▶ Avoid it: stationary point =⇒ local minima ≡ f ′(x) = 0 =⇒ f ′′(x) ≥ 0

▶ Sufficient condition: f ′′(x) ≥ 0 ∀ x ∈ R =⇒ f convex

How about global optimization? 25

▶ What does this all tells about global optimization?

Sadly, not much at all, unless strong assumptions are made

f(x)

x
▶ Intuitively: f has local not global minima =⇒ has local maxima

▶ Avoid it: stationary point =⇒ local minima ≡ f ′(x) = 0 =⇒ f ′′(x) ≥ 0

▶ Sufficient condition: f ′′(x) ≥ 0 ∀ x ∈ R =⇒ f convex

How about global optimization? 25

▶ What does this all tells about global optimization?

Sadly, not much at all, unless strong assumptions are made

f(x)

x
▶ Intuitively: f has local not global minima =⇒ has local maxima

▶ Avoid it: stationary point =⇒ local minima ≡ f ′(x) = 0 =⇒ f ′′(x) ≥ 0

▶ Sufficient condition: f ′′(x) ≥ 0 ∀ x ∈ R =⇒ f convex

How about global optimization? 25

▶ What does this all tells about global optimization?

Sadly, not much at all, unless strong assumptions are made

f(x)

x

▶ Intuitively: f has local not global minima =⇒ has local maxima

▶ Avoid it: stationary point =⇒ local minima ≡ f ′(x) = 0 =⇒ f ′′(x) ≥ 0

▶ Sufficient condition: f ′′(x) ≥ 0 ∀ x ∈ R =⇒ f convex

A Very Quick Glimpse to Convexity 26

▶ Convex ≃ f ′ is monotone nondecreasing ≃ f ′′ ≥ 0

▶ Not really because convex ≠⇒ C 1 (even less C 2), will see

▶ Some functions are convex + a few operations preserve convexity (will see)

=⇒ the convex world is relatively large

=⇒ can construct complicated (multivariate) convex functions/sets

▶ Plenty of theory [2] and software [10]

▶ Many models are purposely constructed convex (SVM) so that

(global) optimization is easy

▶ “If you have the choice, choose convex”

▶ What if you don’t and really need the global optimum?

▶ Will only say little here, but plenty of ways to satisfy your curiosity [9]

The Spatial Branch-and-Bound Approach 27

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+

▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap

The Spatial Branch-and-Bound Approach 27

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+
▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap

The Spatial Branch-and-Bound Approach 27

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+x

f(x)

f(x)

▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap

The Spatial Branch-and-Bound Approach 27

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x

gap

][
x- x+x

f(x)

f(x)
{

▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large,

partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap

The Spatial Branch-and-Bound Approach 27

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+
▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap

The Spatial Branch-and-Bound Approach 27

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+

f(x)f(x)

x
▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap

The Spatial Branch-and-Bound Approach 27

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+
▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ If on some partition

f (x̄) ≥ best f -value so far, partition killed for good

The Spatial Branch-and-Bound Approach 27

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+x

fbest

f(x)

▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ If on some partition f (x̄) ≥ best f -value so far,

partition killed for good

The Spatial Branch-and-Bound Approach 27

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+x

fbest

f(x)

▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ If on some partition f (x̄) ≥ best f -value so far, partition killed for good

Is Something Like This Efficient? 28

▶ In a word? Surely not in worst-case:

keep dicing and slicing X until pieces “very small” =⇒ exponential

▶ However, in practice it depends on:
▶ “how much nonconvex” f really is

▶ how good f is as a lower approximation of f

▶ Clever approach: carefully choose your nonconvexities, e.g., integer variables

▶ Mixed-Integer Linear Programs: all is “trivial” when integer fixed/relaxed

≠⇒ always efficient, f often “bad” ≡ bounds weak =⇒ exponential

▶ (Mixed-Integer) Nonlinear Nonconvex Programs: finding any f complex
▶ rewrite the expression of f in terms of unary/binary functions

▶ apply specific convexification formulæ for each function

▶ Good news: implemented in available, well-engineered solvers and

immensely less inefficient in practice than blind search

▶ Yet, immensely less efficient in practice than local optimization

Is Something Like This Efficient? 28

▶ In a word? Surely not in worst-case:

keep dicing and slicing X until pieces “very small” =⇒ exponential

▶ However, in practice it depends on:
▶ “how much nonconvex” f really is

▶ how good f is as a lower approximation of f

▶ Clever approach: carefully choose your nonconvexities, e.g., integer variables

▶ Mixed-Integer Linear Programs: all is “trivial” when integer fixed/relaxed

≠⇒ always efficient, f often “bad” ≡ bounds weak =⇒ exponential

▶ (Mixed-Integer) Nonlinear Nonconvex Programs: finding any f complex
▶ rewrite the expression of f in terms of unary/binary functions

▶ apply specific convexification formulæ for each function

▶ Good news: implemented in available, well-engineered solvers and

immensely less inefficient in practice than blind search

▶ Yet, immensely less efficient in practice than local optimization

Is Something Like This Efficient? 28

▶ In a word? Surely not in worst-case:

keep dicing and slicing X until pieces “very small” =⇒ exponential

▶ However, in practice it depends on:
▶ “how much nonconvex” f really is

▶ how good f is as a lower approximation of f

▶ Clever approach: carefully choose your nonconvexities, e.g., integer variables

▶ Mixed-Integer Nonlinear Convex Programs: still “easy” (less so numerically)

≠⇒ always efficient, f often “bad” ≡ bounds weak =⇒ exponential

▶ (Mixed-Integer) Nonlinear Nonconvex Programs: finding any f complex
▶ rewrite the expression of f in terms of unary/binary functions

▶ apply specific convexification formulæ for each function

▶ Good news: implemented in available, well-engineered solvers and

immensely less inefficient in practice than blind search

▶ Yet, immensely less efficient in practice than local optimization

Is Something Like This Efficient? 28

▶ In a word? Surely not in worst-case:

keep dicing and slicing X until pieces “very small” =⇒ exponential

▶ However, in practice it depends on:
▶ “how much nonconvex” f really is

▶ how good f is as a lower approximation of f

▶ Clever approach: carefully choose your nonconvexities, e.g., integer variables

▶ Mixed-Integer Nonlinear Convex Programs: still “easy” (less so numerically)

≠⇒ always efficient, f often “bad” ≡ bounds weak =⇒ exponential

▶ (Mixed-Integer) Nonlinear Nonconvex Programs: finding any f complex
▶ rewrite the expression of f in terms of unary/binary functions

▶ apply specific convexification formulæ for each function

▶ Good news: implemented in available, well-engineered solvers and

immensely less inefficient in practice than blind search

▶ Yet, immensely less efficient in practice than local optimization

Is Something Like This Efficient? 28

▶ In a word? Surely not in worst-case:

keep dicing and slicing X until pieces “very small” =⇒ exponential

▶ However, in practice it depends on:
▶ “how much nonconvex” f really is

▶ how good f is as a lower approximation of f

▶ Clever approach: carefully choose your nonconvexities, e.g., integer variables

▶ Mixed-Integer Nonlinear Convex Programs: still “easy” (less so numerically)

≠⇒ always efficient, f often “bad” ≡ bounds weak =⇒ exponential

▶ (Mixed-Integer) Nonlinear Nonconvex Programs: finding any f complex
▶ rewrite the expression of f in terms of unary/binary functions

▶ apply specific convexification formulæ for each function

▶ Good news: implemented in available, well-engineered solvers and

immensely less inefficient in practice than blind search

▶ Yet, immensely less efficient in practice than local optimization

Outline

Optimization Problems

Local optimization

Faster local optimization

Fastest local optimization

A Fleeting Glimpse to Global Optimization

Wrap up & References

Solutions

Wrap up 29

▶ Global (constrained or not) optimization difficult (impossible) in general

▶ Local (unconstrained) optimization much easier, useful in general:

once you know how to do unconstrained you can do constrained

▶ Algorithms are slow / medium / fast, “nicer” problems have faster algorithms

▶ The more continuous derivatives you have, the nicer the problem

▶ Derivatives =⇒ first- and second-order model

▶ f “complicated”, model looks like f (close to x) and simple

▶ But the map is not the world, never blindly trust a model

▶ Fundamental concepts we will use all the time, let’s move to n > 1

Wrap up 29

▶ Global (constrained or not) optimization difficult (impossible) in general

▶ Local (unconstrained) optimization much easier, useful in general:

once you know how to do local you can try global

▶ Algorithms are slow / medium / fast, “nicer” problems have faster algorithms

▶ The more continuous derivatives you have, the nicer the problem

▶ Derivatives =⇒ first- and second-order model

▶ f “complicated”, model looks like f (close to x) and simple

▶ But the map is not the world, never blindly trust a model

▶ Fundamental concepts we will use all the time, let’s move to n > 1

References I 30

[1] M.S. Bazaraa, H.D. Sherali, C.M. Shetty Nonlinear Programming:
Theory and Algorithms, John Wiley & Sons, 2006

[2] S. Boyd, L. Vandenberghe Convex Optimization,
https://web.stanford.edu/~boyd/cvxbook

Cambridge University Press, 2008

[3] P. Hansen, B. Jaumard “Lipschitz Optimization” in Handbook of Global
Optimization – Nonconvex optimization and its applications, R. Horst
and P.M. Pardalos (Eds.), Chapter 8, 407–494, Springer, 1995

[4] J. Nocedal, S.J. Wright, Numerical Optimization – second edition,
Springer Series in Operations Research and Financial Engineering, 2006

[5] W. Sun, Y.-X. Yuan, Optimization Theory and Methods – Nonlinear
Programming, Springer Optimization and Its Applications, 2006

[6] W.F. Trench, Introduction to Real Analysis https:

//ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF

Free Hyperlinked Edition 2.04, December 2013

https://web.stanford.edu/~boyd/cvxbook
https://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
https://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF

References II 31

[7] L. Serafino Optimizing Without Derivatives: What Does the No Free
Lunch Theorem Actually Say? Notices of the AMS 61(7):750–755, 2014
https://www.ams.org/notices/201407/rnoti-p750.pdf

[8] AutoDiff Org: https://www.autodiff.org

[9] CommaLab: https://commalab.di.unipi.it/courses

[10] CVX: https://cvxr.com

https://www.ams.org/notices/201407/rnoti-p750.pdf
https://www.autodiff.org
https://commalab.di.unipi.it/courses
https://cvxr.com

Outline

Optimization Problems

Local optimization

Faster local optimization

Fastest local optimization

A Fleeting Glimpse to Global Optimization

Wrap up & References

Solutions

Solutions I 32

▶ Take δ = ε / L; then, ∀ y ∈ [x − δ , x + δ]
| f (y)− f (x) | ≤ L| x − y | ≤ Lδ ≤ L(ε / L) = ε [back]

▶ Note: we’ll have a much simpler proof later, after we present the relationships
between L-c and derivatives
f (x) = x2 is locally but not globally L-c; we prove this for x ≥ 0, but the same
arguments work for x ≤ 0 (the function is symmetric)
δ > 0 =⇒ 0 ≤ f (x + δ)− f (x) = (2x + δ)δ ≤ 3xδ if δ ≤ x ; hence, f is L-c
at x with Lipschitz constant 3x in some (right) interval around x
δ > 0 =⇒ f (x + δ)− f (x) = (2x + δ)δ ≥ 2xδ; hence, f cannot be L-c at x
with Lipschitz constant less than 2x , and that value is not bounded as x →∞
Symmetric arguments works for left intervals (f (x)− f (x − δ)) [back]

Solutions II 33

▶ The standard example is f (x) =
√
| x |, which is easily verified to be

continuous and to become “infinitely steep” as x → 0, because it is the inverse
function of y = x2 (for x ≥ 0), and x2 becomes “infinitely flat” as x → 0
Again, we’ll have a much simpler proof later, after we present the relationships
between L-c and derivatives; in fact, the proof is so much simpler that it is not
worth proceeding now, we just wait until we have the right tools [back]

▶ Let x∗ be any optimal solution in X ; by definition it belongs to (at least) one
interval [xi , xi+1], with xi+1 − xi ≤ 2ε / L. Assume that x∗ − xi ≤ xi+1 − x∗
(the other case is analogous); then x∗ − xi ≤ ε / L. Hence, L-c gives
f (xi)− f (x∗) ≤ L| xi − x∗ | ≤ ε [back]

▶ Basically done this already: Drk < ε ≡ rk < ε/D ≡ log(rk) <
log(ε /D) ≡ k log(r) < log(ε /D) ≡ k > log(ε /D) / log(r) as
r < 1 =⇒ log(r) < 0
Hence, k ≥ log(D / ε) / log(1 / r) = log(D / ε) / (− log(r))
Now, log(1 / 0.618) ≈ log(1.618) ≈ 0.21, 1 / 0.21 ≈ 4.78 [back]

Solutions III 34

▶ Golden ratio search has r = 0.5: 1 / log(1 / r) ≈ 3.32. But each iteration of
the algorithm requires two function evaluations, so the factor is ≈ 6.64: less
iterations, but more evaluations [back]

▶ Since f (·) is L-c, d i = | x i − x∗ | ≤ δ =⇒ r i = f i − f∗ ≤ Ld i ≤ Lδ. Hence, to
get r i ≤ ε it is sufficient to ensure that d i ≤ ε / L, whence the bound [back]

▶ limt→0[f (x + t)− f (x)] / t = L finite =⇒ limt→0 t([f (x + t)− f (x)] / t)
= limt→0 f (x + t)− f (x) = L limt→0 t = 0 (limit of a product = product of
the limits); that ⇐= does not hold is proven by f (x) = | x | [back]

▶ f (·) L-c =⇒ | f (x + t)− f (x) | ≤ L| t | ≡ | [f (x + t)− f (x)] / t | ≤ L;
now just take the limt→0

Yes, the other direction is also true: by the Mean Value Theorem [6, Theorem
2.3.9], f (z)− f (x) = f ′(w)(z − x) for some w in the interval of extremes
x and z ; take the | · | and use | f ′(w) | ≤ L [back]

Solutions IV 35

▶ Consider f (x) =
3
√
x2, whose derivative is f ′(x) = 2 / 3x3 (possibly written in

the more complex but algebraic-proof form (2x) / (3(x2)2/3)). Hence,
limx→0− f ′(x) = −∞ and limx→0+ f

′(x) =∞. In plain words, this is because
the cubic root is the inverse function of x3, which is “flat in 0”; inverse
functions “exchange the axes”, which means that if the graph of the function is
“horizontal” as some x , then the graph of its inverse is “vertical” at the same
x , which implies f ′(x) = ±∞. Thus f ′(·) is not bounded in any interval
around 0, and therefore f (·) is not L-c there. Of course, f ′(x) is not
continuous in 0 [back]

▶ f ′(x) = 0 for some x ∈ [x i , x i]; L− c of f ′ gives
| 0− f ′(x i) | ≤ L| x − x i | and | f ′(x i)− 0 | ≤ L| x i − x |, whence
min{ f ′(x i) , f ′(x i) } ≤ Lmin{ | x − x i | , | x − x i | } ≤ Lδ / 2 (in the worst
case, x is equidistant from the extremes); thus, the stopping criterion have to
be satisfied when δ = 2ε / L, i.e., within at most 3.32 log(LD / 2ε) iterations
[back]

Solutions V 36

▶ For x+ = ∆x = 1, the algorithm tries the iterates 1, 2, 4, 8, . . . , i.e., 2i . With
f (x) = sin(πx + 3π / 4) =⇒ f ′(x) = π cos(πx + 3π / 4) we have
f ′(2i) = π cos(π2i + 3π / 4) = π cos(3π / 4) = −π

√
2 / 2 ≈ −2.22 (2i is

always even and cos(·) has period 2π); that is, the algorithm always finds a
“very negative” derivative and never stops, although f (·) has plenty of local
minima. Clearly, by only very slightly changing the constants the
counterexample would break down [back]

▶ x−f
′(x+)− x+f

′(x−) = x−f
′(x+)− x+f

′(x−) + x−f
′(x−)− x−f

′(x−) =
x−(f

′(x+)− f ′(x−))− f ′(x−)(x+ − x−). Divide by f ′(x+)− f ′(x−) to get
x = x+ + α(x+ − x−) with 0 ≤ α = −f ′(x−) / (f ′(x+)− f ′(x−)) ≤ 1; it is
then plain to see that x− ≤ x ≤ x+ [back]

▶ A full development would not be didactical. The four conditions are
ax2+ + bx+ + c = f (x+), ax2− + bx− + c = f (x−), 2ax+ + b = f ′(x+),
2ax− + b = f ′(x−); each three of them give a linear system with three
equations in the three unknowns a, b, c that gives (not necessarily) different
solutions (mind the special cases) and therefore quadratic models [back]

Solutions VI 37

▶ No point to repeat [5, § 2.4.2][4, p. 57] here [back]

▶ [Qi]
′(x) = L′i (x) = f ′(x i) + f ′′(x i)(x − x i) = 0 ≡

x − x i = −f ′(x i) / f ′′(x i) [back]

▶ Since f ′′(x∗) ̸= 0, | f ′′(x∗) | > 0; take e.g. k2 = | f ′′(x∗) | / 2 [> 0], by
continuity of f ′′(·) at x∗, ∃ δ > 0 s.t. | 2k2 − | f ′′(x) | | ≤ k2 =⇒
| f ′′(x) | ≥ k2 ∀ x ∈ X . Since f ′′′(·) is continuous, also | f ′′′(·) | is, hence
k1 = max{ | f ′′′(x) | : x ∈ X } <∞ [6, Th. 2.2.9] [back]

	Optimization Problems
	Local optimization
	Faster local optimization
	Fastest local optimization
	A Fleeting Glimpse to Global Optimization
	Wrap up & References
	Solutions

