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(Univariate) Optimization Problems 1

▶ X any set, f : X → R any function: optimization problem

(P) f∗ = min{ f ( x ) : x ∈ X }

▶ Impossible (X inaccessible cardinal, f non computable function, . . . )

▶ Let’s start “easy”:

▶ X “very easy”: X = R or (even better) bounded X = [ x− , x+ ] ⊂ R

▶ an (efficient, pointwise) oracle for f available:

∀ x ∈ X , f ( x ) is “easy to compute” (say, O( 1 ))

▶ Still not easy at all, in fact impossible in general [3, p. 408]

▶ Too trivial for f (·) linear or quadratic, O( 1 ) formulæ

▶ Need to find a middle ground (one must ∃)



Recall: even approximate, optimization is hard / impossible 2

x

f( x )

...

▶ Impossible because isolated minima can be anywhere [3, p. 408]

▶ Does it help restricting to x ∈ X = [ x− , x+ ] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere
. . . even on X = [ x− , x+ ] as spikes can be aribtrarily narrow

▶ Making it possible ≡ impose speed limits on the rate of change
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Making optimization at least possible 3

▶ Impose spikes can’t be arbitrarily narrow ≡ f cannot change too fast ≡
f Lipschitz continuous (L-c) on X [4, p. 624]: ∃L > 0 s.t.

| f ( x )− f ( z ) | ≤ L| x − z | ∀ x , z ∈ X

▶ f globally L-c ≡ X = R, locally L-c at x ≡ ∃ ε > 0 s.t. X = [ x − ε , x + ε ]

▶ Note: L depends on X (locally L-c ≠⇒ globally L-c)

▶ f : R→ R continuous at x ≡ ∀{ xi } → x =⇒ { f ( xi ) } → f ( x ) ≡
∀ε > 0 ∃ δ > 0 s.t. z ∈ [ x − δ , x + δ ] =⇒ | f ( z )− f ( x ) | ≤ ε

▶ continuous on X ≡ ∀x ∈ X , just “continuous” ≡ X = R ≡ f ∈ C 0

▶ Many “simple” functions C 0 + continuity easily preserved:
f , g ∈ C 0 =⇒ f + g , f · g , max{ f , g } , min{ f , g } , f (g(·)) ∈ C 0

▶ f locally L-c at x =⇒ f continuous at x (check)

Exercise: Come up with f locally L-c everywhere but not globally L-c

Exercise: Come up with f continuous but not L-c on some finite X = [ x− , x+ ]



Lipschitz Optimization 4

▶ Still need to impose X = [ x− , x+ ] with D = x+ − x− < ∞ (finite diameter),

otherwise isolated ↓ spikes need not even be “very narrow”

▶ f L-c =⇒ one ε-optimum can be found with O( LD / ε ) evaluations:

uniformly sample X with step 2ε / L [3, p. 411]

Exercise: Prove the above

▶ Bad news: no algorithm can work in less than Ω( LD / ε ) [3, p. 413]

(proof uses adversarial function, not typical in learning applications)

▶ # steps inversely proportional to accuracy, just not doable for “small” ε

▶ Even very dramatically worse if X ⊂ Rn (will see)

▶ No free lunch theorem says “all algorithms equally bad” [7], i.e.,

“if an algorithm is very good in some cases it has to be very bad in others”

▶ Also, L generally unknown and not easy to estimate (will see)

but algorithms actually require/use it
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Local optimality 5

▶ Even if I should stumble in x∗, how do I recognize it?

▶ Turns out this is “the really difficult thing” (cf. knowing f∗)

▶ Simpler to start with a weaker condition: x∗ is local minimum if

x∗ = argmin
{
f ( x ) : x ∈ X ( x∗ , ε ) = [ x∗ − ε , x∗ + ε ]

}
for some ε > 0

▶ Stronger notion: strict local minimum if f ( x∗ )< f ( z ) ∀ z ∈ X ( x∗ , ε ) \ { x∗ }

▶ Why useful? Because “near x∗, f typically has a predictable shape”

▶ f (strictly) unimodal on X = [ x− , x+ ]:

▶ has minimum x∗ ∈ X

▶ is (strictly) decreasing in [ x− , x∗ ] and increasing in [ x∗ , x+ ]

▶ x∗ local minimum =⇒ typically ∃ ε > 0 s.t. f (strictly) unimodal on X ( x∗ , ε )



Attraction Basins 6

▶ Most functions are not unimodal (although some are, will see)

f(x)

x

▶ But they are if you focus on the attraction basin of x∗ and restrict there

▶ Unfortunately, this is true for every local optimum

▶ All local optima “look the same”, comprised the global one

▶ Yet, this makes it finding some local optimum a lot easier

▶ Finding the right (global) one another matter entirely
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Restricting Attraction Basins 7

▶ Once in an attraction basin, we can restrict it by

evaluating f in two points

f(x)

x
][

x- x+x*
▶ [1, Th. 8.11 + Ex. 3.60 + Ex. 8.10]

f (strictly) unimodal in [ x− , x+ ] (minimum x∗), x− ≤ x ′− ≤ x ′+ ≤ x+:

f ( x ′− ) ≥ f ( x ′+ ) =⇒ x∗ ∈ [ x ′− , x+ ] f ( x ′− ) ≤ f ( x ′+ ) =⇒ x∗ ∈ [ x− , x ′+ ]

▶ By iterating this we can restrict the interval =⇒ get close to x∗ at will

▶ How should we choose x ′− and x ′+?
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Optimally choosing the iterates 8

▶ General powerful concept: optimize worst-case behaviour =⇒
shrink the interval as quickly as possible

▶ Each iteration dumps either [ x− , x ′− ] or [ x ′+ , x+ ], don’t know which =⇒
should be equal =⇒ select r ∈ ( 1 / 2 , 1 ), x ′− = x−+(1− r)D, x ′+ = x−+ rD

▶ Whatever the choice, new interval size = Dr < D

▶ Faster ⇐= r smaller (but > 1 / 2) ≡ r = 1 / 2 + ε ≡ x ′± = x− + D / 2± ε

▶ But next iteration will have two entirely different x ′− , x ′+ to evaluate f on

▶ Minimize function evaluations =⇒ re-use the surviving point

▶ r : 1 = (1− r) : r ≡ r · r = 1− r

≡ r = (
√
5− 1) / 2 (≈ 0.618)

x- x+

][ 1 - r
r

1 - r
x-́ x+́

r

▶ r = 1 / g , g = golden ratio = (
√
5 + 1) / 2 ≈ 1.618, g = 1 + r = 1 + 1 / g
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Golden ratio search 9

▶ Theorems breed algorithms: golden ratio search

procedure [ x− , x+ ] = GRS ( f , x− , x+ , δ )
x ′
− ← x− + (1− r)(x+ − x−); x

′
+ = x− + r(x+ − x−); compute f ( x ′

− ), f ( x ′
+ );

while( x+ − x− > δ ) do
if( f ( x ′

− ) > f ( x ′
+ ) )

then { x− ← x ′
−; x

′
− ← x ′

+; x
′
+ ← x− + r(x+ − x−); compute f ( x ′

+ ); }
else { x+ ← x ′

+; x
′
+ ← x ′

−; x
′
− ← x− + (1− r)(x+ − x−); compute f ( x ′

− );}

▶ After k iterations, xk+ − xk− = Drk+ stops when Drk ≤ δ =⇒ stops when

k ≈ 4.78 log(D / δ ) (check): exponentially faster = can work with “small” δ

▶ With r = 0.5 but two f (·)-evals it would be k ≈ 6.64 log(D / δ ) (check)

▶ Asymptotically optimal if no other information available [1, p. 355]

(rk = Fn−k/Fn−k+1, Fi = Fibonacci, slightly better if n fixed beforehand)

▶ δ ̸= ε, but f L-c =⇒ A( xk ) ≤ ε when k ≈ 4.78 log( LD / ε ) (check)
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To Make it go Faster, give it More Information 10

▶ Why do we need two points? To see in which direction f is decreasing

▶ If we could see this directly we could make it with one point =⇒ faster

f(x)

c

b > 0

x

}

▶ easy for linear f ( x ) = bx [ +c ]:

always left if b > 0, right if b < 0

▶ f nonlinear =⇒ first-order model of f

at x : Lx( z ) = f ′( x )( z − x ) + f ( x )

▶ best linear approximation of f at x :

Lx( z ) ≈ f ( z ) ∀ z ∈ [ x − ε , x + ε ]

for some (small) ε > 0

▶ Trusty old (first) derivative f ′( x ) [6, §2.3]

▶ f ′( x ) = slope of the tangent line to the graph of f in x :

f ′( x )< 0 =⇒ f decreasing at x , f ′( x )> 0 =⇒ f increasing at x

▶ x∗ local minimum ≃ f ′( x∗) = 0 ≡ root of f ′ ≡ stationary point
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f ′( x )< 0 =⇒ f decreasing at x , f ′( x )> 0 =⇒ f increasing at x

▶ x∗ local minimum ≃ f ′( x∗) = 0 ≡ root of f ′ ≡ stationary point



Local optimality and derivatives, graphically 11

f(x)

x
▶ If f ′( x ) < 0 or f ′( x ) > 0, x clearly cannot be a local minimum

▶ Hence, f ′( x ) = 0 in all local minima (hence in the global one as well)

▶ However, f ′( x ) = 0 also in local (hence global) maxima

. . . as well as in saddle points

▶ How do I tell them apart? Look at f ′′ = [ f ′ ]′ = second derivative
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A polynominal example: roots of f ′ are the “interesting” points 12
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The sign of f ′′ (if not 0) tells apart maxima from minima 13

[ f ′( x ) ]′ = 91
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Mathematically speaking: Derivatives [6, §2.3] 14

▶ Derivative: f ′( x ) = limt→0[ f ( x + t )− f ( x ) ] / t

▶ Easy closed-forms for most reasonable functions

f(x)

xx

b = ∞

▶ . . . provided the limit is finite

▶ . . . and it exists at all

▶ Left and right derivatives:

f ′−( x ) = limt→0− [ f ( x + t )− f ( x ) ] / t

f ′+( x ) = limt→0+ [ f ( x + t )− f ( x ) ] / t

▶ f differentiable at x if f ′( x ) ∃ finite ≡ f ′−( x )= f ′+( x ) (⇐= ∃ finite)

▶ dummy

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it
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▶ f differentiable at x if f ′( x ) ∃ finite ≡ f ′−( x )= f ′+( x ) (⇐= ∃ finite)

▶ Nondifferentiable functions happen in practice: f ( x ) = | x | = max{ x , −x }

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it
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Mathematically speaking: Derivatives [6, §2.3] 14

▶ Derivative: f ′( x ) = limt→0[ f ( x + t )− f ( x ) ] / t

▶ Easy closed-forms for most reasonable functions

f(x)

xx

▶ . . . provided the limit is finite

▶ . . . and it exists at all

▶ Left and right derivatives:

f ′−( x ) = limt→0− [ f ( x + t )− f ( x ) ] / t

f ′+( x ) = limt→0+ [ f ( x + t )− f ( x ) ] / t

▶ f differentiable at x if f ′( x ) ∃ finite ≡ f ′−( x )= f ′+( x ) (⇐= ∃ finite)

▶ Can be as different as −∞ and +∞

▶ f differentiable at x =⇒ f continuous at x , but ⇐= does not hold

Exercise: Prove it



Computing derivatives [6, Ex. 2.3.1, Th. 2.3.4 / 2.3.5] 15

▶ Derivatives of many simple functions are known, (almost always) continuous

▶ [ xk ]′ = kxk −1

▶ [ ex ]′ = ex , [ ln( x ) ]′ = 1 / x

▶ [ sin( x ) ]′ = cos( x ) , [ cos( x ) ]′ = − sin( x )

▶ Many functional operations (almost always) preserve differentiability

▶ [αf ( x ) + βg( x ) ]′ = αf ′( x ) + βg ′( x )

▶ [ f (x) · g( x ) ]′ = f ′( x ) · g( x ) + f ( x ) · g ′( x )

▶ [ f (x)/g( x ) ]′ = [ f ′( x ) · g( x )− f ( x ) · g ′( x ) ] / g( x )2

▶ [ f ( g( x ) ) ]′ = f ′( g( x ) ) · g ′( x ) (chain rule)

▶ A few common functional operations don’t:

max{ f ( x ) , g( x ) } , min{ f ( x ) , g( x ) }

▶ In general automatic differentiation well-developed, available, fast [8]

=⇒ actually (writing code to) compute derivatives not our business



Differentiability & continuity 16

▶ f ′ ∈ C 0 ≡ f ∈ C 1 ≡ f continuously differentiable =⇒ f ∈ C 0

▶ f ′′ ∈ C 0 ≡ f ∈ C 2 ≡ f ′ ∈ C 1 =⇒ f ′ ∈ C 0 =⇒ f ∈ C 1 =⇒ f ∈ C 0

▶ f ∈ C 1 globally L-c on (open) X =⇒ | f ′( x ) | ≤ L ∀ x ∈ X

Exercise: Prove it, is ⇐= true?

Exercise: Formally prove ∃ f ∈ C 0 but not L-c on some finite X = [ x− , x+ ]

▶ Extreme value theorem [6, Th. 2.2.9]: f ∈ C 0 on X = [ x− , x+ ] (closed) finite

=⇒ max { f ( x ) : x ∈ X }<∞ , min { f ( x ) : x ∈ X }> −∞

▶ f ∈ C 1 on X finite (closed) =⇒ f globally L-c on X

▶ Best possible case ever: f ∈ C 2 (actually, C 3) on finite X

=⇒ both f and f ′ globally L-c on X



Finding the roots of f ′ functions 17

▶ In simple cases, you get the answer by a closed formula (surprised?)

▶ f ( x ) = bx [ +c ] (linear), f ′( x ) = b = 0 =⇒ ∄ x if b ̸= 0, ∀ x if b = 0

▶ f ( x ) = ax2 + bx [ +c ] (quadratic, a ̸= 0), f ′( x ) = 2ax + b = 0 =⇒
x = −b / 2a unique minimum if a > 0, maximum if a < 0

▶ Generalise almost only to polynomials whose root have a closed formula

(degree 3, some degree 4)

▶ Little hope for most trascendental / trigonometric / mixed

unless you are very lucky

▶ Need an algorithm for solving nonlinear equations



Dichotomic Search 18

▶ f ′ continuous + intermediate value theorem [6, Th. 2.2.10] =⇒
f ′( x− ) < 0 ∧ f ′( x+ ) > 0 =⇒ ∃ x ∈ [ x− , x+ ] s.t. f ′( x ) = 0

▶ Theorems breed algorithms: dichotomic search

procedure x = DS ( f , x− , x+ , ε )
do forever // invariant: f ′( x− ) < −ε, f ′( x+ ) > ε

x ← in middle of( x− , x+ ); compute f ′( x );
if( | f ′( x ) | ≤ ε ) then break;
if( f ′( x ) < 0 ) then x− ← x ;

else x+ ← x ;

▶ Trivial choice: in middle of( x− , x+ ){ return( ( x+ + x− ) / 2 ) }

▶ Linear convergence with r = 0.5 < 0.618 =⇒
k ≈ 3.32 log(D / δ ) < 4.78 log(D / δ ) (err, who is δ?)

▶ f ′ L-c with constant L ≡ L-smooth =⇒ k ≈ 3.32 log( LD / 2ε ) (check)

▶ Does it show in practice?



Dichotomic Search: finding the initial interval 19

▶ What if the assumption is not satisfied?

▶ Obvious solution:

∆x ← 1; // or whatever value > 0
while( f ′( x+ ) ≤ −ε ) do

x+ ← x+ +∆x ; ∆x ← 2∆x ; // or whatever factor > 1

▶ Of course, the same “in reverse” for x− (∆x = −1)

▶ Will work in practice for all “reasonable” function

▶ Works if f coercive: lim| x |→∞ f ( x ) =∞

Exercise: construct an example where x+ / x− exist but are not found

▶ If f∗ = −∞, x± may → ±∞ “proving” unboundedness (f ( x± )→ −∞)

but how do you stop? (need a “finite −∞”)
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Improving the dichotomic search: interpolation [5, § 2.4] 20

▶ Choosing x “right in the middle” just the simplest approach:

better if x is close to x∗ (ideally, x = x∗ would stop in one iteration)

▶ One knows a lot about f : f ( x− ) , f ( x+ ) , f ′( x+ ) , f ′( x− ), let’s use that

▶ Powerful general idea: construct a model of f based on known information

▶ Quadratic interpolation: ax2 + bx + c that “agrees” with f at x+, x−

▶ Three parameters, four conditions, something’s gotta give (three cases)

▶ One way: 2ax+ + b = f ′( x+ ), 2ax− + b = f ′( x− ) =⇒

a =
f ′( x+ )− f ′( x− )

2(x+ − x−)
, b =

x+f
′( x− )− x−f

′( x+ )

x+ − x−

▶ Minimum solves 2ax + b = 0 (c irrelevant) ≡

x =
x−f

′( x+ )− x+f
′( x− )

f ′( x+ )− f ′( x− )

“method of false position”
a.k.a. “secant formula”

always in the middle between x+ and x− (check)

Exercise: develop the other cases of quadratic interpolation and discuss them



Always remember that the map is not the world 21

▶ Very general issue: the model is an estimate =⇒ wrong =⇒ bad choices

▶ In this case, the model can be “very skewed”:

f ′( x+ )≫ −f ′( x− ) =⇒ x ≈ x− , f ′( x+ )≪ −f ′( x− ) =⇒ x ≈ x+

▶ Can lead to very short steps =⇒ slow convergence

▶ General remedy: never completely trust the model ≡ regularise, stabilise, . . .

▶ In this case: minimum guaranteed decrease σ ≤ 0.5 (safeguard)

x ← max{ x− + σ(x+ − x−) , min{ x+ − σ(x+ − x−) , x } }

▶ Worst case: linear convergence with r = 1− σ

▶ Hopefully (much) faster than that when the model is “right”

▶ Does it really show in practice? And how much faster?



Improving the dichotomic search: theory & more interpolation 22

▶ Quadratic interpolation has superlinear convergence if started “close enough”:

[5, Th. 2.4.1] f ∈ C 3, f ′( x∗ ) = 0 and f ′′( x∗ ) ̸= 0 =⇒
∃ δ > 0 s.t. x0 ∈ [ x∗ − δ , x∗ + δ ] =⇒ { x i } → x∗ with p = (1 +

√
5) / 2

(1 < p = g ≈ 1.618 < 2, don’t you just love maths?)

▶ This proves “very fast” already, but can we make it even faster?

▶ Four conditions =⇒ can fit a cubic polynomial and use its minima

▶ Rather tedious to write down, analyse and implement [5, § 2.4.2][4, p. 57]

▶ Theoretically pays: cubic interpolation has quadratic convergence (p = 2)

▶ Seems to work pretty well in practice

Exercise: (not for the faint of heart): develop cubic interpolation
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Newton’s method 23

▶ Better model of f ≡ f ′ =⇒ better guess of x∗ =⇒ faster

▶ Better model ⇐= either more points or more (higher-order) derivatives

▶ Newton’s method (tangent method): first-order model of f ′ at x i

L′i ( x ) = L′x i ( x ) = f ′( x i ) + f ′′( x i )( x − x i ) ≈ f ′( x )

▶ Solve L′i ( x ) = 0 ≈ f ′( x ) = 0 ≡
x = x i − f ′( x i ) / f ′′( x i )

procedure x = NM ( f , x , ε )
while( | f ′( x ) | > ε ) do
x ← x − f ′( x ) / f ′′( x ); // what if f ′′( x ) = 0?

▶ Alternative view (check): minimize second-order model of f at x i

Qi ( x ) = Qx i ( x ) = f ( x i ) + f ′( x i )( x − x i ) + f ′′( x i )( x − x i )2 / 2

(but Newton’s actually a method to solve nonlinear equations)

▶ Converges fast (at all!) only if started “close enough” to x∗ [1, Th. 8.2.3]

▶ Would require globalization (possible), will see in ̸= context
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▶ Would require globalization (possible), will see in ̸= context



Mathematically speaking: Newton’s method, the proof 24

▶ Second-order Taylor’s formula: ∀ z ∃w ∈ [ x , z ] s.t.

f ( z )− Lx( z ) = f ′′(w )( z − x )2/2 [6, Th. 2.5.4]

“the error of Lx in z is ( z − x )2× the value of f ′′ somewhere in the middle”

▶ Hypotheses: f ∈ C 3 , f ′( x∗ ) = 0 and f ′′( x∗ ) ̸= 0

▶ Thesis: ∃ δ > 0 s.t. x0 ∈ [ x∗ − δ , x∗ + δ ] =⇒ { xk } → x∗ with p = 2

▶ Proof: x i+1 − x∗ = x i − x∗ + ( f ′( x∗ )− f ′( x i ) ) / f ′′( x i )

= [ f ′( x∗ )− f ′( x i )− f ′′( x i )( x∗ − x i ) ] / f ′′( x i )

Taylor’s formula for f ′: ∃w ∈ [ x i , x∗ ] s.t.

f ′( x∗ )− f ′( x i ) + f ′′( x i )( x∗ − x i ) = f ′′′(w )( x∗ − x i )2/2

=⇒ x i+1 − x∗ = [ f ′′′(w ) / 2f ′′( x i ) ]( x i − x∗ )
2

∃ δ > 0 s.t. | f ′′( x ) | ≥ k2 > 0 and | f ′′′(w ) | ≤ k1 <∞ (check)

∀ x , w ∈ [ x∗ − δ , x∗ + δ ] =⇒ | x i+1 − x∗ | ≤ [ k1 / 2k2 ]( x
i − x∗ )

2

k1( x
i − x∗ ) / 2k2 ≤ 1 =⇒ | x i+1 − x∗ | < | x i − x∗ | =⇒

{ x i } → x∗ and the convergence is quadratic
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How about global optimization? 25

▶ What does this all tells about global optimization?

Sadly, not much at all, unless strong assumptions are made

f(x)

x

▶
▶ Avoid it: stationary point =⇒ local minima ≡ f ′( x ) = 0 =⇒ f ′′( x ) ≥ 0

▶ Sufficient condition: f ′′( x ) ≥ 0 ∀ x ∈ R =⇒ f convex
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A Very Quick Glimpse to Convexity 26

▶ Convex ≃ f ′ is monotone nondecreasing ≃ f ′′ ≥ 0

▶ Not really because convex ≠⇒ C 1 (even less C 2), will see

▶ Some functions are convex + a few operations preserve convexity (will see)

=⇒ the convex world is relatively large

=⇒ can construct complicated (multivariate) convex functions/sets

▶ Plenty of theory [2] and software [10]

▶ Many models are purposely constructed convex (SVM) so that

(global) optimization is easy

▶ “If you have the choice, choose convex”

▶ What if you don’t and really need the global optimum?

▶ Will only say little here, but plenty of ways to satisfy your curiosity [9]



The Spatial Branch-and-Bound Approach 27

▶ Sift through all X = [ x− , x+ ], but using a clever guide

f(x)

x
][

x- x+

▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f ( x̄ ) ≤ f∗ ≤ f ( x̄ )

▶ If gap f ( x̄ )− f ( x̄ ) too large, partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap
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Is Something Like This Efficient? 28

▶ In a word? Surely not in worst-case:

keep dicing and slicing X until pieces “very small” =⇒ exponential

▶ However, in practice it depends on:
▶ “how much nonconvex” f really is

▶ how good f is as a lower approximation of f

▶ Clever approach: carefully choose your nonconvexities, e.g., integer variables

▶ Mixed-Integer Linear Programs: all is “trivial” when integer fixed/relaxed

≠⇒ always efficient, f often “bad” ≡ bounds weak =⇒ exponential

▶ (Mixed-Integer) Nonlinear Nonconvex Programs: finding any f complex
▶ rewrite the expression of f in terms of unary/binary functions

▶ apply specific convexification formulæ for each function

▶ Good news: implemented in available, well-engineered solvers and

immensely less inefficient in practice than blind search

▶ Yet, immensely less efficient in practice than local optimization
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Wrap up 29

▶ Global (constrained or not) optimization difficult (impossible) in general

▶ Local (unconstrained) optimization much easier, useful in general:

once you know how to do unconstrained you can do constrained

▶ Algorithms are slow / medium / fast, “nicer” problems have faster algorithms

▶ The more continuous derivatives you have, the nicer the problem

▶ Derivatives =⇒ first- and second-order model

▶ f “complicated”, model looks like f (close to x) and simple

▶ But the map is not the world, never blindly trust a model

▶ Fundamental concepts we will use all the time, let’s move to n > 1
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Solutions I 32

▶ Take δ = ε / L; then, ∀ y ∈ [ x − δ , x + δ ]
| f ( y )− f ( x ) | ≤ L| x − y | ≤ Lδ ≤ L( ε / L ) = ε [back]

▶ Note: we’ll have a much simpler proof later, after we present the relationships
between L-c and derivatives
f ( x ) = x2 is locally but not globally L-c; we prove this for x ≥ 0, but the same
arguments work for x ≤ 0 (the function is symmetric)
δ > 0 =⇒ 0 ≤ f ( x + δ )− f ( x ) = ( 2x + δ )δ ≤ 3xδ if δ ≤ x ; hence, f is L-c
at x with Lipschitz constant 3x in some (right) interval around x
δ > 0 =⇒ f ( x + δ )− f ( x ) = ( 2x + δ )δ ≥ 2xδ; hence, f cannot be L-c at x
with Lipschitz constant less than 2x , and that value is not bounded as x →∞
Symmetric arguments works for left intervals (f ( x )− f ( x − δ )) [back]



Solutions II 33

▶ The standard example is f ( x ) =
√
| x |, which is easily verified to be

continuous and to become “infinitely steep” as x → 0, because it is the inverse
function of y = x2 (for x ≥ 0), and x2 becomes “infinitely flat” as x → 0
Again, we’ll have a much simpler proof later, after we present the relationships
between L-c and derivatives; in fact, the proof is so much simpler that it is not
worth proceeding now, we just wait until we have the right tools [back]

▶ Let x∗ be any optimal solution in X ; by definition it belongs to (at least) one
interval [ xi , xi+1 ], with xi+1 − xi ≤ 2ε / L. Assume that x∗ − xi ≤ xi+1 − x∗
(the other case is analogous); then x∗ − xi ≤ ε / L. Hence, L-c gives
f ( xi )− f ( x∗ ) ≤ L| xi − x∗ | ≤ ε [back]

▶ Basically done this already: Drk < ε ≡ rk < ε/D ≡ log( rk ) <
log( ε /D ) ≡ k log( r ) < log( ε /D ) ≡ k > log( ε /D ) / log( r ) as
r < 1 =⇒ log( r ) < 0
Hence, k ≥ log(D / ε ) / log( 1 / r ) = log(D / ε ) / (− log( r ) )
Now, log( 1 / 0.618 ) ≈ log( 1.618 ) ≈ 0.21, 1 / 0.21 ≈ 4.78 [back]
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▶ Golden ratio search has r = 0.5: 1 / log( 1 / r ) ≈ 3.32. But each iteration of
the algorithm requires two function evaluations, so the factor is ≈ 6.64: less
iterations, but more evaluations [back]

▶ Since f (·) is L-c, d i = | x i − x∗ | ≤ δ =⇒ r i = f i − f∗ ≤ Ld i ≤ Lδ. Hence, to
get r i ≤ ε it is sufficient to ensure that d i ≤ ε / L, whence the bound [back]

▶ limt→0[ f ( x + t )− f ( x ) ] / t = L finite =⇒ limt→0 t( [ f ( x + t )− f ( x ) ] / t )
= limt→0 f ( x + t )− f ( x ) = L limt→0 t = 0 (limit of a product = product of
the limits); that ⇐= does not hold is proven by f ( x ) = | x | [back]

▶ f (·) L-c =⇒ | f ( x + t )− f ( x ) | ≤ L| t | ≡ | [ f ( x + t )− f ( x ) ] / t | ≤ L;
now just take the limt→0

Yes, the other direction is also true: by the Mean Value Theorem [6, Theorem
2.3.9], f ( z )− f ( x ) = f ′(w )( z − x ) for some w in the interval of extremes
x and z ; take the | · | and use | f ′(w ) | ≤ L [back]
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▶ Consider f ( x ) =
3
√
x2, whose derivative is f ′( x ) = 2 / 3x3 (possibly written in

the more complex but algebraic-proof form (2x) / (3(x2)2/3)). Hence,
limx→0− f ′( x ) = −∞ and limx→0+ f

′( x ) =∞. In plain words, this is because
the cubic root is the inverse function of x3, which is “flat in 0”; inverse
functions “exchange the axes”, which means that if the graph of the function is
“horizontal” as some x , then the graph of its inverse is “vertical” at the same
x , which implies f ′( x ) = ±∞. Thus f ′(·) is not bounded in any interval
around 0, and therefore f (·) is not L-c there. Of course, f ′( x ) is not
continuous in 0 [back]

▶ f ′( x ) = 0 for some x ∈ [ x i , x i ]; L− c of f ′ gives
| 0− f ′( x i ) | ≤ L| x − x i | and | f ′( x i )− 0 | ≤ L| x i − x |, whence
min{ f ′( x i ) , f ′( x i ) } ≤ Lmin{ | x − x i | , | x − x i | } ≤ Lδ / 2 (in the worst
case, x is equidistant from the extremes); thus, the stopping criterion have to
be satisfied when δ = 2ε / L, i.e., within at most 3.32 log( LD / 2ε ) iterations
[back]
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▶ For x+ = ∆x = 1, the algorithm tries the iterates 1, 2, 4, 8, . . . , i.e., 2i . With
f ( x ) = sin(πx + 3π / 4 ) =⇒ f ′( x ) = π cos(πx + 3π / 4 ) we have
f ′( 2i ) = π cos(π2i + 3π / 4 ) = π cos( 3π / 4 ) = −π

√
2 / 2 ≈ −2.22 (2i is

always even and cos(·) has period 2π); that is, the algorithm always finds a
“very negative” derivative and never stops, although f (·) has plenty of local
minima. Clearly, by only very slightly changing the constants the
counterexample would break down [back]

▶ x−f
′( x+ )− x+f

′( x− ) = x−f
′( x+ )− x+f

′( x− ) + x−f
′( x− )− x−f

′( x− ) =
x−( f

′( x+ )− f ′( x− ) )− f ′( x− )( x+ − x− ). Divide by f ′( x+ )− f ′( x− ) to get
x = x+ + α( x+ − x− ) with 0 ≤ α = −f ′( x− ) / ( f ′( x+ )− f ′( x− ) ) ≤ 1; it is
then plain to see that x− ≤ x ≤ x+ [back]

▶ A full development would not be didactical. The four conditions are
ax2+ + bx+ + c = f ( x+ ), ax2− + bx− + c = f ( x− ), 2ax+ + b = f ′( x+ ),
2ax− + b = f ′( x− ); each three of them give a linear system with three
equations in the three unknowns a, b, c that gives (not necessarily) different
solutions (mind the special cases) and therefore quadratic models [back]
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▶ No point to repeat [5, § 2.4.2][4, p. 57] here [back]

▶ [Qi ]
′( x ) = L′i ( x ) = f ′( x i ) + f ′′( x i )( x − x i ) = 0 ≡

x − x i = −f ′( x i ) / f ′′( x i ) [back]

▶ Since f ′′( x∗ ) ̸= 0, | f ′′( x∗ ) | > 0; take e.g. k2 = | f ′′( x∗ ) | / 2 [> 0], by
continuity of f ′′(·) at x∗, ∃ δ > 0 s.t. | 2k2 − | f ′′( x ) | | ≤ k2 =⇒
| f ′′( x ) | ≥ k2 ∀ x ∈ X . Since f ′′′(·) is continuous, also | f ′′′(·) | is, hence
k1 = max{ | f ′′′( x ) | : x ∈ X } <∞ [6, Th. 2.2.9] [back]
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