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Unconstrained global optimization 1

>

>

Backto f : R" - R, i.e,, f(x1, x2,..., Xp) = f(x)

Of course need f L-c (exact definition later)

Very bad news: no algorithm can work in less than Q((LD /)") [3, p. 413]
Curse of dimensionality: not really doable unless n = 3/5/10 tops

Can make it in O((LD /&)™), multidimensional grid with small enough step:
the standard approach to hyperparameter optimization (but D, L unknown)

If f analytic, clever (spatial) B&B can give global optimum

If f black-box (typically = no derivatives), many effective heuristics

can give good (not provably optimal) solutions [8]
In both cases, complexity grows “fast” in practice as n grows

Finding good global solutions hard in practice, proving optimality even worse



Unconstrained global optimization 1

>

>

Backto f : R" - R, i.e,, f(x1, x2,..., Xp) = f(x)

Of course need f L-c (exact definition later)

Very bad news: no algorithm can work in less than Q((LD /)") [3, p. 413]
Curse of dimensionality: not really doable unless n = 3/5/10 tops

Can make it in O((LD /&)™), multidimensional grid with small enough step:
the standard approach to hyperparameter optimization (but D, L unknown)

If f analytic, clever (spatial) B&B can give global optimum

If f black-box (typically = no derivatives), many effective heuristics

can give good (not provably optimal) solutions [8]
In both cases, complexity grows “fast” in practice as n grows

Finding good global solutions hard in practice, proving optimality even worse

unless f convex = global = local



Unconstrained local optimization

>

>

Local optimization much better

Results in general surprisingly analogous to (multivariate) quadratic case:
most (but not all) convergence results are dimension-independent =

complexity does not explicitly depends on n (if it does, not exponentially)
Not completely surprising: linear / quadratic models a staple

Does not mean all local algorithms are fast:
> convergence speed may be rather low ( “badly linear” or worse)

» cost of f / derivatives computation necessarily increases with n:

for large n = 10°, even O( n?) is too much (will see)

> some dependency on n may be hidden in O(-) constants
Yet, large-scale local optimization is doable if you have derivatives

Except, derivatives in R" are significantly more complex



Outline

Gradients, Jacobians, and Hessians



Mathematically speaking: Hints of topology in R” 3

» Fundamental (easy) concept: B(x,r):={zeR": |[z—x| <r}
ball, center x € R”, radius r > 0 = points “close” to x in the chosen norm

» Euclidean norm just one member of a large family:
[ x[lp = (i |xi[P)/P p-norm, p >0

> Euclidean = || x ||2, || x|]1 := D1, | xi | (Lasso)
> limpsoe = || X|Joo :=max{|xi| : i=1,...,n}
> limpo = || xlo:=#{i : | x| >0} (not norm)

N
N2,

» Other norms 3 besides p-norm (matrix norms ...)

» Pictured S(||-|l,, 1) =8B,(0,1), p=0,1/2,1,3/2,2,3,00 (grow with p)

» The norm defines the topology of R”, but doesn't really matter:
all is “3 ball”, “V small ball”, and all norms are equivalent [9]
VI 30 << Bstoal x| <[l|z][| < Bl x| Vx,zeR"




Mathematically speaking: Limit of a sequence in R”

> Limit of sequence { x; } C R™
limiseoXxi=x = {x}—x
< Ve>03hst d(x,x)<eVi>h
< Ve>03hst x;€B(x,e)Vi>h
— limi,od(x,x)=0

» Points of { x; } eventually all come arbitrarily close to x

» Note that R” “exponentially larger” than R —
there are many more ways for { x; } — x in R” than in R

> This may lead to more tricky situations / concepts



Mathematically speaking: Continuity [4, A2] 5

» Same definitions:
> f continuous at x: {x;} = x = {f(x)} — f(x)
» f e C% continuous Vx € R"

» There are “many” different { x; } — x, the limit must be = for all
» Not sufficient to only consider “simple” sequences

X12X2
4 2
X7 + X5

> f(xl,x2):[

» Limit = “on straight lines”
V[dl y d2] € R?
lim f(di/k,d2/k)=0
k—o00

> Limit # on “curved” line
(1/k,1/Kk*)=1/4

lim f
k—o0

Exercise: Prove the two limits above



Directional /partial derivatives, gradient [2, A.4.1][4, p. 625] 6
> f:R"” — R, directional derivative at x € R" along direction d € R":
90(x) = limgyo LI — o (0)

> Scales linearly with || d | %(X) = B9%(x) (sounds familiar?) (check)
> One-sided directional derivative: lim;_q, ... = [¢x,q]:L(0)
> The derivative of the (x, d )—tomography (in 0): how can it be computed?

» Special case: partial derivative of f w.r.t. x; at x € R”

. : X, oy Xim1 Xt Xig s oy Xn ) —=F i _ of
BL(0x) = limyyg it M0 — [ 61)() = 55(x)
» The derivative of the restriction of f to x; is easy to compute: just
f'(x1, ..., Xi—1, X, Xit1, ... , Xo) treating x; for j # i as constants

» Gradient = (column) vector of all partial derivatives, “easy to compute” [6]
T
Vi(x) = [%(x),... , gxfn(x)] cR"

> f(x)=(b,x) = VIf(x)=b




Directional /partial derivatives, gradient [2, A.4.1][4, p. 625] 6

> f:R"” — R, directional derivative at x € R" along direction d € R":

%(X) = lims_s0 7f(x+tdt)4(x) = ¢, 4(0)
> Scales linearly with || d | aﬁd( x) = B9 (x) (sounds familiar?) (check)
> One-sided directional derivative: lim;_g, ... = [¢x,q]%(0)

» The derivative of the (x, d )—tomography (in 0): how can it be computed?

» Special case: partial derivative of f w.r.t. x; at x € R"

f . : F(XU oy Xim1 , Xt Xi1 s ey Xn ) —F i f
Fe(x) 1= limg o it U = (£ () = F1(x)
» The derivative of the restriction of f to x; is easy to compute: just
f'(x1, ..., Xi—1, X, Xit1, ..., Xa) treating x; for j # i as constants

> Gradient = (column) vector of all partial derivatives, “easy to compute” [6]
Vi(x) = [%(X), U2 (X)} eR"

> f(x)=ixTQx+gx = Vf(x)=Qx+gq



Differentiability in R” 7
» f differentiable at x if 3 linear function ¢( h) = (b, h) + (x) s.t.
| f(x+h)—o(h)]
im
I1All—0 Al

@ = "first order model” of f at x, the error “vanishes faster than linearly”

=0 [= ¢(0) = f(x) = c=1(x)]

v

f differentiable at x = b= Vf(x) [5, Th. 5.3.6]
— H(x) exists Vi (but <= not true)
— first-order model of f at x: Ly(z)=(Vf(x),z—x)+f(x)

v

f differentiable at x = Vf(x) gives all 2% [5, Ex 5.3.19]:
Vd e R Z(x)=(VF(x).d) (= 3)

» [5, Th. 5.3.10,Th. 5.3.7] 36 > 0 s.t. Vi g—;(z) continuous Vz € B(x, d)
= f differentiable at x = f continuous at x

> % € C° — f differentiable everywhere = f € C!
(but <%, 3 weird f differentiable with discontinuous g—)’; [5, Ex. 5.3.9])

v

(non)differentiability in R" is much weirder than in R



Non-differentiability | 8

> f(xa, xe) =[x, ]l =Pal+ x|
> f continuous everywhere (why?)
> 3d eR"s.t. #2£(0,0)

> f non differentiable in [0, 0]

Exercise: where else f is non differentiable? Prove it is not



Non-differentiability 11

X2X2
> f =172
(X17X2) Xf+X22
» Can take f(0,0)=0as
f(Xl,Xz):O

lim
[Xl 7)(2]—)[0,0]

> 345 Vd € R, but
f non differentiable in [0, 0]

Exercise: prove limy,_, f(x) =0, first “along lines” then in general

Exercise: prove all this (hint: compute [0f / Od](0, 0) for generic d = [dy, da],

prove it cannot have the form (v, d) for any v)

Exercise: alternatively, compute Vf and prove it is not continuous in [0, 0]
(hint: look at picture of Of /Ox, for directions where the limit is #)



Non-differentiability 111 10

X2 1
2
> f(x1,x)= L
L) [xi‘+x§}

» f not continuous =
not differentiable at [0, 0]

> 9£(0,0)=0 Vd € R"

> AVF, but Iv(=0) st
g =(v,d)Vd eR"

» { does nasty things on curved lines, not straight ones

Exercise: prove 2£(0,0) =0



The gradient in R” 11

» InR?, L(Ly, f(x))isa line passing by x and Vf(x)LL(Ly, f(x))



The gradient in R” 11

> InR", L(Ly, f(x))is a surface passing by x and Vf(x)LL(Ls, f(x))

2 3 2052 _ 2y 7
XT X2 2x1%; xi(xf — x5)

f =1 , Vf(x)= ,

D ) X} + x5 (x) (€ +x3)7" (€ +x3)?

10
05 ‘
05 10




The gradient in R” 11

> InR", L(Ly, f(x))is a surface passing by x and Vf(x) L L(Ly, f(x))

5 3
X1 X2 2% a (Xl =9
f(Xl X2)=m ) Vf(X): (x12—|—x22)2, ( X{ + 2)2

» f differentiable at x —

7 L(Ly, f(x)) LL(F, f(x)) LVF(x)
| —

-05




The gradient in R” 11

> InR", L(Ly, f(x))is a surface passing by x and Vf(x)LL(Ls, f(x))

2 3 2052 _ 2y 7
XT X2 2x1%; xi(xf — x5)
f =1 . Vf — ,
o) =2 rg CI= a7 o+ 2r

! > f differentiable at x —>
L(Lc, f(x)) LL(F, f(x))LVF(x)




The gradient in R” 11
> InR", L(Ly, f(x))is a surface passing by x and Vf(x) L L(Ly, f(x))

2x1%3 x2(x? — x2)
O +x3)27 (3 +x3)?

X12X2

L= Vf(x)=
x12—|—x22 (X)

f(Xl X2) =

» f differentiable at x —
VAx) L(L, f(x)) L L(f, f(x)) L VF(x)
> f differentiable at x —
o X L(f, f(x)) “smooth”




The gradient in R” 11

> InR", L(Ly, f(x))is a surface passing by x and Vf(x)LL(Ls, f(x))

X2 0 2x1%3 x2(x? — x3) T
£ _ XN Vi(x) = 2 11X = X5
Lol =g VT g ar iy
: > f differentiable at x =
L(Ly, f(x)) LL(F, f(x))LVF(x)
> f differentiable at x —
0 L(f, f(x)) “smooth”

» As x — X where f non differentiable,
L(f, f(x)) “less and less smooth”




The gradient in R” 11

> InR", L(Ly, f(x))is a surface passing by x and Vf(x)LL(Ls, f(x))

X2 0 2x1%3 x2(x? — x3) T
£ _ XN Vi(x) = 2 11X = X5
o) =gvg » VT [@ear oy
! > f differentiable at x =
L(Ly, f(x)) LL(F, f(x))LVF(x)
> f differentiable at x —
o L(f, f(x)) “smooth”

» As x — X where f non differentiable,
L(f, f(x)) “less and less smooth”

» f non differentiable at x =—
L(f, f(x)) has “kinks”

» f differentiable = all relevant objects in R™! and R" are smooth

» { non differentiable = kinks appear and things break



Derivatives of vector-valued functions, Jacobian 12

> Vector-valued function f : R" — R”, f(x)=[f(x), L(x), ..., fm(x)]

>

>

>

Partial derivative: usual stuff, except with extra index
f‘(Xla 7Xi—laxi+t7xi+l7 aXn)_ﬁ(X)

of; e 0
87,-()()_!'—% t

Jacobian := matrix of all m - n partial derivatives

g—fl(x) g—i(x) %(X) VA(x)T
of 9f ... oh VH(x)T
JF(x):= 8X1.(X) SX2_(X) | axn-(x) — :
. . . . . -
In(x) I(x) ... Zh(x) Vin(x)

= m X n matrix with gradients as rows
Will come in handy later on for constrained optimization

A special vector-valued function is particularly important already



Second order (partial) derivatives, Hessian, second-order model 13

> % :R"” - R = has partial derivatives itself

> Second order partial derivative 92f 92F O2f _
— — IR
(just do it twice) Dx0x; OxOx;  Ox2 (]

1

> Vi(x):R" - R” = has a Jacobian: Hessian (matrix) of f at x

8f 8°f 5

6712( ) e (X))  Fiae(Xx)

2 2 (x)  ZE(x) Of(x)
\V4 f(X) = JVf(X) = Ox10x2 0x3 Tt Ox,0x
82f- 82f- - a2f'

Bxlaxn(x) BXQBX,,(X) 87)<,2,(X)

O('n?) to store and (at least) compute (unless sparse), bad when n large



Second order (partial) derivatives, Hessian, second-order model 13
> % :R"” - R = has partial derivatives itself

» Second order partial derivative 92f 92F O2f

(just do it twice) Ox;0x; Oxi0x;  Ox?

1

> Vi(x):R" - R” = has a Jacobian: Hessian (matrix) of f at x

[£]"

8f 8°f 5
6x12( ) Ox20x1 ( X) Tt Ox,0x1 X)
2 2 (x)  ZE(x) Of(x)
\V4 f( X) = JVf(X) = Ox10x2 0x3 Tt Ox,0x
82f- 82f- - a2f'
Bxlaxn(x) BXQBX,,(X) 87)<,2,(X)

O('n?) to store and (at least) compute (unless sparse), bad when n large

> f(x)=(b,x) = V3f(x)=0



Second order (partial) derivatives, Hessian, second-order model 13
> % :R"” - R = has partial derivatives itself

» Second order partial derivative 92f 92F O2f
(.jUSt do it tWice) 8xjax,- 8X,'8X,' - @ -

1

[£]"

> Vi(x):R" - R” = has a Jacobian: Hessian (matrix) of f at x

8f 8°f 5
6x12( ) Ox20x1 ( X) Tt Ox,0x1 X)
2 Tra(x) 5 (x) T (x)
\V4 f( X) = JVf(X) = Ox10x2 0x3 Tt Ox,0x
82f- 82f- - a2f'
Bxlaxn(x) BXQBX,,(X) 87)<,2,(X)

O('n?) to store and (at least) compute (unless sparse), bad when n large

> f(x)=ixTQx+gx = V3(x)=Q



Second order (partial) derivatives, Hessian, second-order model 13

> % :R"” - R = has partial derivatives itself

> Second order partial derivative 92f 92F O2f _
_ _ IR
(just do it twice) Ox;0x; oxi0x;  Ox? [#]
> Vi(x):R" - R” = has a Jacobian: Hessian (matrix) of f at x
O°f O°f O°f
6x12( ) Ox00x1 ( X) Tt Ox,0x1 X)
O*f O*f O*f
V2 (x) = JVFA(x) = | aaom(X) (X))
2 ' 2 ' ’ 2 ’
gt (X) aeon (X) o 5E(x)

O('n?) to store and (at least) compute (unless sparse), bad when n large
> f(x)=ixTQx+gx = V3(x)=Q
> Second-order model = first-order model + second-order term (= better)

Qu(2) = L(2) + 3(z = x)TV2F(x)(z - x)
a (non-homogeneous) quadratic function = simple



Hessians: continuity and symmetry 14

» [5, Th.53.3] 30 >0s.t. Vze B(x,0)

°f °f : ;
axjax,-(z) and ax,-axj(z) exist and are continuous at x

2’ _ _Of — 2 ;
= axjax,-(x) = 8x,-axj(x) = V*f symmetric
= all eigenvalues of V2f(x) real

> Yet, extremely difficult to construct examples of not symmetric V2f

> f e C?:= V?f(x) continuous everywhere = 9°f /0x;0x; € C° Vi, j
= V?2f(x) symmetric everywhere and
Vf(x)e Ct = Vf(x)eC® = f(x)eC°

» (? (strictly speaking C3) is the best class ever for optimization,
but it is sometimes necessary to make do with (much) less than that



Outline

Optimality conditions



Recall: local optimality and derivatives, graphically

t(x)

> If f/(x) <0orf'(x)>0, x clearly cannot be a local minimum

15



Recall: local optimality and derivatives, graphically

H(x)

> If f/(x) <0orf'(x)>0, x clearly cannot be a local minimum

» Hence, f’(x) =0 in all local minima (hence in the global one as well)

15



Recall: local optimality and derivatives, graphically

H(x)

X

> If f'(x) <0orf'(x)>0, x clearly cannot be a local minimum
» Hence, f’(x) =0 in all local minima (hence in the global one as well)

» However, f'(x) =0 also in local (hence global) maxima

15



Recall: local optimality and derivatives, graphically

H(x)

X

> If f'(x) <0orf'(x)>0, x clearly cannot be a local minimum
» Hence, f’(x) =0 in all local minima (hence in the global one as well)

» However, f'(x) =0 also in local (hence global) maxima

...as well as in saddle points

15



First-order (necessary, local) optimality condition 16

> f differentiable at x and x local minimum = Vf(x)=0
= stationary point ( <Z, previous pictures for n = 1)

» The proof, because theorems' proofs breed algorithms
> By contradiction: x local minimum but V£ (x) #0
> Prove x not local minimum not straightforward (3 = V /):
Ve > 0 “small enough” 3z € B(x, ) s.t. f(z) < f(x)
= have to construct oco-ly many z better then x arbitrarily close to it
» Luckily all the z can be taken along a single d € R": z=x+4+ad, a >0
» Can choose d, use “best” one: steepest descent direction at x

= d with || d | =1st. 2£(x) is most negative
= the (normalised) anti-gradient —V£(x) (/|| VFf(x)])

Exercise: prove —Vf(x) /| Vf(x)|l is the steepest descent direction at x

Exercise: Why are we insisting that || d || = 1? Discuss



Mathematically speaking: Optimality condition, the proof 17

>

>

>

>

Tomography o(a ) = ¢, _vr(x)(a) (better not normalise d)
Want to prove: 3& > 0s.t. o(a) < f(x)=¢(0)Vae[0,a] (4)
Remainder of first-order model at z: R(z—x)=1(z)— Li(2)
Definition of f € C: ,Iji_r>n0 R(h)/|[h]|=0 = R(h)— 0 “faster than h — 0"
ola)=f(x—aVf(x))="f(x)+{—aVf(x), Vf(x))+ R( —aVf(x))
=f(x)—a||VF(x)|?+R(—aVf(x))
negative term linear in o + (possibly) positive “more than linear” one
Asa — 0 (= ||h=—aVf(x)| — 0), it is clear who wins:
limaso R(— aVF(x)) /[ aVF(x) | = lims o R(A) /[ A =0
= Ve >03a > 0st R(—aVf(x))/a| V(x)| <e Yae[0,a]
Take e < || Vf(x)| to get R(—aVf(x)) < a| VF(x)|?* =
pla)=f(x)—a| VA(x) >+ R(—aVf(x)) < f(x)

Proof shows: a small enough step along —Vf( x) (# 0) yields a better z



Second-order (necessary, local) optimality conditions

>

>

>

Stationary point =% local minimum: how to tell them apart?
First-order model can't, it is “flat”: need to look at curvature of f
If £ were quadratic | would know: look at eigenvalues of @ = V2f(x)

Obvious idea: approximate f with a quadratic function =
second-order model = Qc(z) = L(z) + 3(z — x)TV2f(x)(z—x)

VQ«(x)=VL(x)=Vi(x) = VQ«(x)=0 (check)
Hence, V2f(x) = 0 <= x (global) minimum of Q,
Can prove it (almost) holds for f, too:
f € C?: x local minimum = V?f(x) =0
Requires second-order Taylor's theorem [5, Th. 5.4.9]:
f(z)=L(z)+3(z—x)TV?f(x)(z—x)+ R(z—x)

with limy_o R(h) /|| h||> =0 = R(h) — O faster than “h> — 0"
= the remainder vanishes “faster than quadratically”



Mathematically speaking: 2"d-order optimality conditions, the proof 19
» By contradiction: f € C2, x local minimum but V?f(x) # 0 =
Jd st. dTV2f(x)d <0 (w.log. || d| =1)
> d = direction of negative curvature, p(a) = @y q( @)
> Second-order Taylor + Vf(x) =0 = L(z)=f(x) =
o(a)=f(x)+3a2d"V?f(x)d +R(ad)
negative quadratic term in a + (possibly) positive “more than quadratic” one
> Asa (=||h=ad]| since || d] =1) = 0, it is clear who wins:
limy—0 R(ad)/a?=limyoR(h) /| h]|?=0 =
Ve >03a>0st R(ad) <ea? Ya €0, al
> Take (0 <) e < —3d"V2f(x)d to get R(ad) < —3a?d"V?f(x)d
= p(a)=f(x)+2a?d"V?f(x)d+ R(ad)<f(x) Vaec[0, a] ¢

» In a local minimum, there cannot be directions of negative curvature:

“when the first derivative is 0, second-order effects prevail”



Second-order (sufficient, local) optimality conditions 20

» Necessary condition almost also sufficient: f € C?,
Vf(x)=0 and V2f(x)>=0 = x local minimum

» Avoids “bad case” d"V?f(x)d =0 = zero-curvature direction

= x saddle point & f”(x) = 0: would need even higher-order derivatives

> Proof: second-order Taylor f(x +d) = f(x) +3d"V?f(x)d+R(d) with
limgso R(d) /| d|?=0 = Ve >036>0st. R(d)/||d|?> —
= R(d)> —¢||d|? Vdst. | d]| <4
A > 0 min eigenvalue of V2f(x) = dTV?f(x)d > \,|/ d|?
Take e < A\, /2: then, Vd st ||d] <o
f(x+d)=Ff(x)+3dTVf(x)d+R(d) > f(x)+ 2= d|?

» It proves more than we asked: f grows “at least quadratically around x"
J6>0andy>0st f(z)>f(x)+|z—x|?> VzeB(x,d)
= strong (local) optimality



Outline

A Quick Look to Convex Functions



Convex functions

f

» f convex =

21



Convex functions

f

21

» f convex = Vx,zeR",




Convex functions

f
()

21

» f convex = Vx,zeR",




LX)

Convex functions

f

» f convex = Vx,zeR"

X

ax+(1-a)z

z

, a €10,1]

21



N

Convex functions

f

» f convex = Vx,zeR",

af(x)+ (1 —a)f(z)

X

ax+(1- )z

z

a € [0,1]

21



N

Convex functions

21

> fconvex = Vx,zeR" , ae|0,]]
af(x)+ (1 —-a)f(z) >f(ax+(1—a)z)

X

GX+(1-G)Z

z



Convex functions 21

f(x) > fconvex = Vx,zeR" , ae|0,]]
af(x)+ (1 —-a)f(z) >f(ax+(1—a)z)

» Convex =£ C! (ex. |- |l1)




Convex functions 21

f

> fconvex = Vx,zeR" , ae|0,]]
af(x)+ (1 —-a)f(z) >f(ax+(1—a)z)

» Convex =£ C! (ex. |- |l1)

» f concave = —f convex

» max{f(x): x € R"} = +oo (unless f(x) = ¢); sounds familiar?
» In fact, f quadratic convex = @ = 0

> Exactly the opposite for f concave (Q < 0): as a great man said,

“(convex) optimization is a one-sided world”
» Only f both convex and concave: linear

» How do you tell if a function is convex?



Convexity and derivatives [2, § 3.1.3, § 3.1.4] 22
> f € Cl convex < Vf monotone: (Vf(z)—Vf(x),z—x)>0 Vx, z
Exercise: Justify why that property is called “monotone”

f > f c C! convex «—




Convexity and derivatives [2, § 3.1.3, § 3.1.4] 22
> f € Cl convex < Vf monotone: (Vf(z)—Vf(x),z—x)>0 Vx, z
Exercise: Justify why that property is called “monotone”

f > f c C! convex «—




Convexity and derivatives [2, § 3.1.3, § 3.1.4] 22
> f € Cl convex < Vf monotone: (Vf(z)—Vf(x),z—x)>0 Vx, z
Exercise: Justify why that property is called “monotone”

f > f c C! convex «—
L(z)=f(x)

f(x)




Convexity and derivatives [2, § 3.1.3, § 3.1.4] 22

> f € Cl convex < Vf monotone: (Vf(z)—Vf(x),z—x)>0 Vx, z

Exercise: Justify why that property is called “monotone”

f

(X))

HV f(x)(z - x

> f c C! convex <—

L(z)=1f(x) +{VFf(x),z=—x)<f(z)

Exercise: prove = "by prime principles”



Convexity and derivatives [2, § 3.1.3, § 3.1.4] 22
> f € Cl convex < Vf monotone: (Vf(z)—Vf(x),z—x)>0 Vx, z
Exercise: Justify why that property is called “monotone”

f > f e Clconvex <—
L(z)=1f(x) +{VFf(x),z=—x)<f(z)

Exercise: prove = "by prime principles”

» Geometrically: the epigraph is an half-space
)+ FO)(z - X Y Pigrap P




Convexity and derivatives [2, § 3.1.3, § 3.1.4] 22
> f € Cl convex < Vf monotone: (Vf(z)—Vf(x),z—x)>0 Vx, z
Exercise: Justify why that property is called “monotone”

> f e Clconvex <—
L(z)=1f(x) +{VFf(x),z=—x)<f(z)

Exercise: prove = "“by prime principles”

» Geometrically: the epigraph is an half-space
that contains that of 7 (epi( Ly ) 2 epi(f))




Convexity and derivatives [2, § 3.1.3, § 3.1.4] 22
> f € Cl convex < Vf monotone: (Vf(z)—Vf(x),z—x)>0 Vx, z
Exercise: Justify why that property is called “monotone”

f > f e Clconvex <—
L(z)=1f(x) +{VFf(x),z=—x)<f(z)

Exercise: prove = "by prime principles”

» Geometrically: the epigraph is an half-space
that contains that of 7 (epi( Ly ) 2 epi(f))

— > Vf(x)=0
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Exercise: Justify why that property is called “monotone”

f > f e Clconvex <—
L(z)=1f(x) +{VFf(x),z=—x)<f(z)

Exercise: prove = "by prime principles”

» Geometrically: the epigraph is an half-space
fx)+0(z-x that contains that of f (epi( Ly ) 2 epi( f))

S — > Vf(x)=0 =
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Exercise: Justify why that property is called “monotone”

f > f e Clconvex <—
L(z)=1f(x) +{VFf(x),z=—x)<f(z)

Exercise: prove = "by prime principles”

» Geometrically: the epigraph is an half-space
f(x)+0(z-x that contains that of f (epi( Ly ) 2 epi( f))

):( — > Vf(x)=0 =
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> f € Cl convex < Vf monotone: (Vf(z)—Vf(x),z—x)>0 Vx, z
Exercise: Justify why that property is called “monotone”

f > f e Clconvex <—
L(z)=1f(x) +{VFf(x),z=—x)<f(z)

Exercise: prove = "by prime principles”

» Geometrically: the epigraph is an half-space
fix) that contains that of f (epi( Ly ) 2 epi( f))

< — P> Vf(x)=0 = f(z)>f(x) VzeR"
> f e C!convex: Vf(x)=0 <= x global minimum

> fc C% fconvex = V3f(x)=0 VxecR"

» f c C? with V2f = 7/ with 7 > 0 the best case for optimization

> Sometimes the best way to prove f convex, unless it is by construction
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> Some functions are (more or less obviously) convex:

1.

2
3
4
5.
6
7
8

f(x) = bx + c (affine) <= both convex and concave (check) [nontrivial]

. f(x) = 3x7 Qx + gx (quadratic) convex <= Q =0
. f(x)=e™ forany ae R

. restricted to x > 0, f(x) = —In(x)

restricted to x > 0, f(x) =xfora>1lora<0

F(x) = lxlp for p > 1
D f(x)=max{xi, ..., xn}

. Q € R™" symmetric, eigenvalues A\1 > X2 > ... Ay

fn( Q) =>_1, Ai (sum of m largest eigenvalues)

Exercise: Prove 3., 4. and 5.; for the latter, which a make x® convex on all R?

Exercise: is f(x) =min{xi, ..., x, } convex?
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1. f, g convex, 0, B € R, = 0f + Bg convex (non-negative combination)
2. {fi }ier (oo-ly many) convex functions = f(x) = sup;c,;{ fi(x) } convex
3. f convex = f(Ax+ b) convex (pre-composition with linear mapping)

4. f:R" — R convex, g : R — R convex increasing = g(f(x)) convex
(post-composition with increasing convex function)

5. fi, h convex = f(x)=inf{A(x1)+ (x2) : x1 +x2 = x } convex
(infimal convolution)

6. g convex = f(x)=inf{g(z) : Az =x} convex
(value function of convex constrained problem)

7. g(x,z):R"™™ = R convex = f(x)=inf{g(x,z):z€R™} convex
(partial minimization)

8. f(x) convex = p(x, u)=uf(x/u) convexon u>0
(perspective or dilation function of f)

Exercise: Prove 1. “from prime principles” (at least 2., 3. analogous)
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» n=1: f unimodal <= quasiconvex [1, Ex. 3.57] =
af(x)+ (1 —a)f(z)<max{f(x), f(z)} (??)

» f quasiconvex <= V¥ nonempty sublevel set S(f,/)={x: f(x)<l}isa
(possibly, infinite) interval (in fact a convex set, will see) [1, Th. 3.5.2]

Exercise: Prove: f convex = f quasiconvex, <= not true

> Issue: algebra of quasiconvex (not convex) functions “weaker”
> f quasiconvex, § € R, = §f quasiconvex true

» But f, g quasiconvex = f 4 g quasiconvex false

Exercise: Prove the two statements above

> No (or much weaker) Disciplined QuasiConvex Programming [7],
f “naturally” quasiconvex unlikely

» Does not mean impossible, you may be lucky, in fact NN often ~ quasiconvex
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> Multivariate global optimality very hard (exponential in theory & practice)

> Multivariate local optimality “easy” with the right (first-order) information:

f € C! (but one often has to make do with less, will see)
» Local optimization & nonlinear system Vf(x) = 0, surely nontrivial

> “f simple” (quadratic) = “Vf(x) = 0 simple” (linear system):
quadratic models are going to be useful

> However, stationary points not always local minima (may be maxima)
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>

>

Multivariate global optimality very hard (exponential in theory & practice)

Multivariate local optimality “easy” with the right (first-order) information:

f € C! (but one often has to make do with less, will see)
Local optimization ~ nonlinear system Vf( x) = 0, surely nontrivial

“f simple” (quadratic) = “Vf(x) =0 simple” (linear system):
quadratic models are going to be useful

However, stationary points not always local minima (may be maxima)

Only theoretically safe case: f convex —>

every stationary point is local = global minimum
Always keep it convex if possible, better if C!, better still if C2
For learning, local optimality is typically enough (f “not adversarial™)

Time to move to multivariate algorithms
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> Fory=1/k =0, f(diy, doy) = [d7cby® / ((diy)* + (day)*)]* — O (the
degree of the numerator is > of the min degree at the denominator, i.e., the
numerator goes to 0 faster than the denominator) however chosen d; and d,.
In the second case f(y, y?)=[y*/(y*+y*)]?=1/4 [back]

> %(X):Iimt_>0(f(x—|—t(ﬁd))—f(x))/t:
= lime_o B(F(x + (tB)d)) — F(x))/(Bt). p=Bt, t 50 = p—0
= 2 (x) =limpoo B(F(x+pd)—f(x))/p=p%(x) [back]

» In all points [0, x2]: for d =[1, 0], [0, x2],d(a) =|a|+ x| is
nondifferentiable in 0, i.e., 9f / 9d #; analogous for [x;, 0] [back]
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3 42
> Fix any [di, da]: limio f(tdy, tdh) = lim;0 % = 0. For the general

result we use the definition of limit: for any € > 0 we find § > 0
st |[[x1, ]| <6 = |[f(xa,x)| <e |[[x1, x]]|=vVx+x3 <6
implies | x| < 4. Hence,

f —-0| < < <

700,00) =01 < sl (575 ) < Pl

whenever || [x1, x2] || < J; thus, takmg d = ¢ works, proving that the limit is
indeed 0 however chosen the converging sequence. [back]

of . f(tdy, tdr)—£(0,0) t3d2d,
| — = | _taiae
a[d17d2](070) tl—r)% t t—)O t3(d2_|_d2)

= f(dy, dr), clearly not a linear function [back]

: for

of  of | 2x13 X2 (X2 — x2)
o 5X2} - [(X12+X22)2’ (O +x3)
g(x1, x2) = Of / Oxa, it is easy to check that g(«a, 0) =1 while g(0, @) =0,
i.e., the limit along the directions [1, 0] and [0, 1] is different [back]

>Vf(x17x2):[
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> Strictly speaking, defining %(O, 0) requires (0, 0), which is undefined.
However, we can take any generic direction d = [di, d2] # 0 and prove that
lima—o f(ad) = didsa* / (d3 + dfa?)? = 0 however chosen d. In fact, if
either d = 0 or di = 0 the numerator is always 0 while the denominator is not
(they cannot be both 0). If they are both nonzero, the numerator goes to 0
while the denominator goes to d3 > 0. Thus, only looking along lines it would
be safe to define (0, 0) =0 by continuity, and therefore to have

9£(0,0) =0 for all d # 0, which gives 9%(0,0) = ([0, 0], d) [back]

> We know that 2£(x) = (Vf(x), d) = | VF(x) |l d|cos(8)=
= ||VFf(x)]| cos(0) (as || d || = 1). Clearly, this number is minimum when
cos(0)is, i.e.,, # =71 = cos(#) = —1. This corresponds to d being collinear
to Vf(x) with opposite direction, i.e., d = =Vf(x) /| Vf(x)| [back]

> Because W 5ad' hence || d|| = 00 = g; — —oo (with right d) [back]
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> Qz)=Ff(x)+(VF(x),z—x)+3(z—x)"V*(x)(z—x) =
VQ«(z)=VFf(x)+ V3f(x)(z— x), thus evaluated at z = x gives Vf(x).
The derivation handily reveals that VQ,(z) is a linear (vector) function of z
that coincides with Vf(x) at z = x, i.e., it is the first-order model of Vf at x
(in fact it uses the “gradient of the gradient”, that is, the Hessian) [back]

» In the univariate case the condition is (f'(z) — f'(x))(z—x) >0,
i.e., “f’'(z)— f’(x) and z — x have the same sign”. In other words,
z>x = f'(z)>f(x)andz<x = f'(z)<f'(x), ie,fis
monotone nonincreasing  [back]

> YVae[0,1]af(z)+ )
al(f(z)—Ff(x))+f(x)>f
f(z)—f(x)>[fla(z—x)
send o — 0 to get %(x)
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» This is surprisingly nontrivial. We want to prove: f both concave and concave
(BCC) < f(x)= (b, x)+c forsome beR", ceR.
BCC = f((1 —a)x+az) [both > and < =] =(1—-a)f(x)+af(z)
fix)=(b,x)+¢c = f(l-a)x+az)=(b,(l—a)x+az)+c=
(1—a)(b, x)+a(b, z) +[(1-a)c +ac] =
(1-a)((b,x)+c)+a((b,x)+c)=(1L—a)f(x)+ af(z); note how this
crucially depends on (1 — «) + a =1, it would not be true for generic yx + 6z
For <=, define g(x) =f(x)— f(0) so that g(0) = 0. Since f is BCC, then
also g is (trivial, or see point 1. in next slide). Hence
0=g(0) = g((1— (1/2))x +(1/2)(—x)) =

= (1— (1/2))g(x) + (1/2)g(~x) = g(—x) = —g(x) (antisymmetric)

We now prove: i. g(yx) =~g(x),ii. g(x+z)=g(x)+g(z)
Fori, 0<y<1 = g(yx)=g(yx+(1—7)0)=
=78(x)+(1—7)g(0) =yg(x). If v >1, then g(x) = g((1/7)yx) =
—g((1/7)x+ (1= 1/7)0) = (1/7)g(7%) + (1~ 1/+)g(0) =
= (1/7)g(~yx); multiply both sides by 7 to get yg(x) = g(~yx). Finally, if
7 < 0 then g(yx) = g((—7)(=x)) = (—7)g((—x)) (using the previous
results with —y > 0) = (—7)(—&(x)) (using g(—x) = —g(x)) = 78(x)
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Forii., g(x+2z)=g((1/2)2x + (1/2)2z) = (1/2)g(2x ) + (1/2)(2z) =
=(1/2)2g(x)+(1/2)2(z) = g(x) + g(z) (using i. with v = 2)

i. and ii. are the alternative definition of linear function, hence 3b € R"

sit. g(x) = (b, x); thus, f(x)=g(x)+ f(0) is affine with c = f(0), as
desired [back]

> [e*]'(x) = ae®, which is positive increasing if a > 0, negative increasing if
a<0.[—In(-)](x) = —1/x, which is negative increasing. [-?]'(x) = ax®~};
for a < 0 this is negative increasing, for a > 1 this is positive increasing. Only
positive even integer a make x? convex on all R, since then ax~! is positive
increasing (as the second derivative, a(a — 1)x?~2, is always positive). [back]

> No: consider f(x;, x2) =min{x;, xp } onthelinex; +x =0 = x = —x,
i.e., min{xy, —x1 } = —| xy | which is concave (and not linear, hence it cannot
be convex) [back]
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(z)>2flax+(1—-0a)z) =

(z)] > df(ax+ (1 —a)z).
(z)>glax+(1-a)z) =

)g(z)] > Bg(ax + (1 —a)z).

Hence, d[af(x) + (1 —a)f(z)]+ Blag(x) + (1 —a)g(z)] =
=a(df(x)+Bg(x))+(1—a)(0f(z)+Bg(z)) =
0f(ax+ (1 —a)z)+ Bg(lax+ (1 —a)z) [back]

> af (x)+ (1 —a)f
dlaf(x)+(1—
ag(x)+(1-a)g
Blag(x)+ (1 -«

+

> Take x s.t. f(x) </, zst. f(z) </ and any a € [0, 1]: then, by convexity
flax+(1—-a)z)<af(x)+(1—-a)f(z)<al+(1—-a)l=1ie,
ax+(1—a)ze S(f, 1) = S(f, 1) is a (possibly, infinite) interval (in
general a convex set)
On the other hand, consider the “downward spike function centered at ¢, i.e.,
se(x)=min{|x—c|, 1}. Clearly, s. is quasiconvex: in fact, S(f, 1) =10 if
1<0,S(f,1)=[c—=1I,c+1]if0<I<1,and S(f,!)=Rifl>1
However, sy is not convex: in fact,
(1/2)50(0) + (1/2)(2) = 1/2 < 1= so( (1/2)0 + (1/2)2) = so(1) ~[back]
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> S(of, 1)={x:df(x)<I}={x:3df(x)<I1/d}=S5(f,1/d): since the
latter is an interval (convex set), the former also is
To prove <= consider f(x) =s_1(x)+ si(x) (cf. previous exercise). Clearly,
f(—1)=f(1)=0but f(x) > 0 for all other values of x, i.e.,
S(f,0)={-1,1}is not an interval [back]
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