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Unconstrained global optimization 1

▶ Back to f : Rn → R, i.e., f ( x1 , x2 , . . . , xn ) = f ( x )

▶ Of course need f L-c (exact definition later)

▶ Very bad news: no algorithm can work in less than Ω( ( LD / ε )n ) [3, p. 413]

▶ Curse of dimensionality: not really doable unless n = 3/5/10 tops

▶ Can make it in O( ( LD / ε )n ), multidimensional grid with small enough step:

the standard approach to hyperparameter optimization (but D, L unknown)

▶ If f analytic, clever (spatial) B&B can give global optimum

▶ If f black-box (typically =⇒ no derivatives), many effective heuristics

can give good (not provably optimal) solutions [8]

▶ In both cases, complexity grows “fast” in practice as n grows

▶ Finding good global solutions hard in practice, proving optimality even worse

unless f convex =⇒ global ≡ local
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Unconstrained local optimization 2

▶ Local optimization much better

▶ Results in general surprisingly analogous to (multivariate) quadratic case:

most (but not all) convergence results are dimension-independent ≡
complexity does not explicitly depends on n (if it does, not exponentially)

▶ Not completely surprising: linear / quadratic models a staple

▶ Does not mean all local algorithms are fast:

▶ convergence speed may be rather low (“badly linear” or worse)

▶ cost of f / derivatives computation necessarily increases with n:

for large n ≈ 109, even O( n2 ) is too much (will see)

▶ some dependency on n may be hidden in O(·) constants

▶ Yet, large-scale local optimization is doable if you have derivatives

▶ Except, derivatives in Rn are significantly more complex
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Mathematically speaking: Hints of topology in Rn 3

▶ Fundamental (easy) concept: B( x , r ) := { z ∈ Rn : ∥ z − x ∥ ≤ r }
ball, center x ∈ Rn, radius r > 0 = points “close” to x in the chosen norm

▶ Euclidean norm just one member of a large family:

∥ x ∥p :=
( ∑n

i=1 | xi |p )1/p p-norm, p > 0

▶ Euclidean ≡ ∥ x ∥2, ∥ x ∥1 :=
∑n

i=1 | xi | (Lasso)
▶ limp→∞ ≡ ∥ x ∥∞ := max{ | xi | : i = 1, . . . , n }
▶ limp→0 ≡ ∥ x ∥0 := #{ i : | xi | > 0 } (not norm)

▶ Other norms ∃ besides p-norm (matrix norms . . . )
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▶ Pictured S( ∥ · ∥p , 1 ) ≡ Bp( 0 , 1 ), p = 0, 1/2, 1, 3/2, 2, 3,∞ (grow with p)

▶ The norm defines the topology of Rn, but doesn’t really matter:

all is “∃ ball”, “∀ small ball”, and all norms are equivalent [9]

∀ ∥ · ∥, ||| · ||| ∃ 0 < α < β s.t. α∥ x ∥ ≤ ||| z ||| ≤ β∥ x ∥ ∀ x , z ∈ Rn



Mathematically speaking: Limit of a sequence in Rn 4

▶ Limit of sequence { xi } ⊂ Rn:

limi→∞ xi = x ≡ { xi } → x

⇐⇒ ∀ε > 0 ∃h s.t. d( xi , x ) ≤ ε ∀i ≥ h

⇐⇒ ∀ε > 0 ∃h s.t. xi ∈ B( x , ε ) ∀i ≥ h

⇐⇒ limi→∞ d( xi , x ) = 0

▶ Points of { xi } eventually all come arbitrarily close to x

▶ Note that Rn “exponentially larger” than R =⇒
there are many more ways for { xi } → x in Rn than in R

▶ This may lead to more tricky situations / concepts



Mathematically speaking: Continuity [4, A2] 5

▶ Same definitions:
▶ f continuous at x : { xi } → x =⇒ { f ( xi ) } → f ( x )

▶ f ∈ C 0: continuous ∀ x ∈ Rn

▶ There are “many” different { xi } → x , the limit must be = for all

▶ Not sufficient to only consider “simple” sequences

▶ f ( x1 , x2 ) =

[
x21 x2

x41 + x22

]2
▶ Limit = “on straight lines”

∀ [ d1 , d2 ] ∈ R2

lim
k→∞

f ( d1 / k , d2 / k ) = 0

▶ Limit ̸= on “curved” line

lim
k→∞

f ( 1 / k , 1 / k2 ) = 1 / 4

f ( 0 , 0 ) = ??

Exercise: Prove the two limits above



Directional/partial derivatives, gradient [2, A.4.1][4, p. 625] 6

▶ f : Rn → R, directional derivative at x ∈ Rn along direction d ∈ Rn:
∂f
∂d ( x ) := limt→0

f ( x + td )−f ( x )
t = φ′

x,d( 0 )

▶ Scales linearly with ∥ d ∥: ∂f
∂βd ( x ) = β ∂f

∂d ( x ) (sounds familiar?) (check)

▶ One-sided directional derivative: limt→0± . . . = [φx,d ]
′
±( 0 )

▶ The derivative of the ( x , d )−tomography (in 0): how can it be computed?

▶ Special case: partial derivative of f w.r.t. xi at x ∈ Rn

∂f
∂xi

( x ) := limt→0
f ( x1 , ... , xi−1 , xi+t , xi+1 , ... , xn )−f ( x )

t = [ f ix ]
′( xi ) = ∂f

∂ui ( x )

▶ The derivative of the restriction of f to xi is easy to compute: just

f ′( x1 , . . . , xi−1 , x , xi+1 , . . . , xn ) treating xj for j ̸= i as constants

▶ Gradient = (column) vector of all partial derivatives, “easy to compute” [6]

∇f ( x ) :=
[

∂f
∂x1

(x) , . . . , ∂f
∂xn

(x)
]T

∈ Rn

▶ f ( x ) = ⟨ b , x ⟩ =⇒ ∇f ( x ) = b
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Differentiability in Rn 7

▶ f differentiable at x if ∃ linear function ϕ( h ) = ⟨ b , h ⟩+ f ( x ) s.t.

lim
∥ h ∥→0

| f ( x + h )− ϕ( h ) |
∥ h ∥

= 0 [ =⇒ ϕ( 0 ) = f ( x ) =⇒ c = f ( x ) ]

φ ≡ “first order model” of f at x , the error “vanishes faster than linearly”

▶ f differentiable at x =⇒ b = ∇f ( x ) [5, Th. 5.3.6]

=⇒ ∂f
∂xi

( x ) exists ∀ i (but ⇐= not true)

=⇒ first-order model of f at x : Lx( z ) = ⟨∇f ( x ) , z − x ⟩+ f ( x )

▶ f differentiable at x =⇒ ∇f ( x ) gives all ∂f
∂d [5, Ex 5.3.19]:

∀d ∈ Rn ∂f
∂d ( x ) = ⟨∇f ( x ) , d ⟩ (⇐= ∃)

▶ [5, Th. 5.3.10,Th. 5.3.7] ∃ δ > 0 s.t. ∀i ∂f
∂xi

( z ) continuous ∀z ∈ B( x , δ )
=⇒ f differentiable at x =⇒ f continuous at x

▶ ∂f
∂xi

∈ C 0 =⇒ f differentiable everywhere ≡ f ∈ C 1

(but ⇍=, ∃ weird f differentiable with discontinuous ∂f
∂xi

[5, Ex. 5.3.9])

▶ (non)differentiability in Rn is much weirder than in R



Non-differentiability I 8

▶ f ( x1 , x2 ) = ∥ [ x1 , x2 ] ∥1 = | x1 |+ | x2 |

▶ f continuous everywhere (why?)

▶ ∃ d ∈ Rn s.t. ∄ ∂f
∂d ( 0 , 0 )

▶ f non differentiable in [ 0 , 0 ]

Exercise: where else f is non differentiable? Prove it is not



Non-differentiability II 9

▶ f ( x1 , x2 ) =
x21 x2

x21 + x22

▶ Can take f ( 0 , 0 ) = 0 as

lim
[ x1 , x2 ]→[ 0 , 0 ]

f ( x1 , x2 ) = 0

▶ ∃ ∂f
∂d ∀d ∈ Rn, but

f non differentiable in [ 0 , 0 ]

Exercise: prove limx→0 f ( x ) = 0, first “along lines” then in general

Exercise: prove all this (hint: compute [∂f / ∂d ]( 0 , 0 ) for generic d = [ d1 , d2 ],

prove it cannot have the form ⟨ v , d ⟩ for any v)

Exercise: alternatively, compute ∇f and prove it is not continuous in [ 0 , 0 ]

(hint: look at picture of ∂f /∂x2 for directions where the limit is ̸=)



Non-differentiability III 10

▶ f ( x1 , x2 ) =

[
x21 x2

x41 + x22

]2
▶ f not continuous =⇒

not differentiable at [ 0 , 0 ]

▶ ∂f
∂d ( 0 , 0 ) = 0 ∀d ∈ Rn

▶ ∄∇f , but ∃ v (= 0) s.t.
∂f
∂d = ⟨ v , d ⟩ ∀d ∈ Rn

▶ f does nasty things on curved lines, not straight ones

Exercise: prove ∂f
∂d ( 0 , 0 ) = 0



The gradient in Rn 11

▶ In R2, L( Lx , f ( x ) ) is a line passing by x and ∇f ( x )⊥ L( Lx , f ( x ) )

f ( x1 x2 ) =
x21 x2

x21 + x22
, ∇f ( x ) =

[
2x1x

3
2

(x21 + x22 )
2
,
x21 (x

2
1 − x22 )

(x21 + x22 )
2

]T
▶ f differentiable at x =⇒

L( Lx , f ( x ) ) ⊥ L( f , f ( x ) ) ⊥ ∇f ( x )

▶ f differentiable at x =⇒
L( f , f ( x ) ) “smooth”

▶ As x → x̄ where f non differentiable,

L( f , f ( x ) ) “less and less smooth”

▶ f non differentiable at x =⇒
L( f , f ( x ) ) has “kinks”

▶ f differentiable =⇒ all relevant objects in Rn+1 and Rn are smooth

▶ f non differentiable =⇒ kinks appear and things break
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Derivatives of vector-valued functions, Jacobian 12

▶ Vector-valued function f : Rn → Rm, f ( x ) = [ f1( x ) , f2( x ) , . . . , fm( x ) ]

▶ Partial derivative: usual stuff, except with extra index

∂fj
∂xi

( x ) = lim
t→0

fj( x1 , . . . , xi−1 , xi + t , xi+1 , . . . , xn )− fj( x )

t

▶ Jacobian := matrix of all m · n partial derivatives

Jf ( x ) :=


∂f1
∂x1

( x ) ∂f1
∂x2

( x ) . . . ∂f1
∂xn

( x )

∂f2
∂x1

( x ) ∂f2
∂x2

( x ) . . . ∂f2
∂xn

( x )
...

...
. . .

...
∂fm
∂x1

( x ) ∂fm
∂x2

( x ) . . . ∂fm
∂xn

( x )

 =


∇f1( x )

T

∇f2( x )
T

...
∇fm( x )

T


= m × n matrix with gradients as rows

▶ Will come in handy later on for constrained optimization

▶ A special vector-valued function is particularly important already



Second order (partial) derivatives, Hessian, second-order model 13

▶ ∂f
∂xi

: Rn → R =⇒ has partial derivatives itself

▶ Second order partial derivative

(just do it twice)
∂2f

∂xj∂xi

∂2f

∂xi∂xi
=

∂2f

∂x2i
= [ f ix ]

′′

▶ ∇f ( x ) : Rn → Rn =⇒ has a Jacobian: Hessian (matrix) of f at x

∇2f ( x ) := J∇f ( x ) =



∂2f
∂x2

1
( x ) ∂2f

∂x2∂x1
( x ) . . . ∂2f

∂xn∂x1
( x )

∂2f
∂x1∂x2

( x ) ∂2f
∂x2

2
( x ) . . . ∂2f

∂xn∂x2
( x )

...
...

. . .
...

∂2f
∂x1∂xn

( x ) ∂2f
∂x2∂xn

( x ) . . . ∂2f
∂x2

n
( x )


O( n2 ) to store and (at least) compute (unless sparse), bad when n large

▶
▶ Second-order model = first-order model + second-order term (= better)

Qx( z ) = Lx( z ) +
1
2 ( z − x )T∇2f ( x )( z − x )

a (non-homogeneous) quadratic function =⇒ simple
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O( n2 ) to store and (at least) compute (unless sparse), bad when n large

▶ f ( x ) = 1
2x

TQx + qx =⇒ ∇2f ( x ) = Q

▶ Second-order model = first-order model + second-order term (= better)

Qx( z ) = Lx( z ) +
1
2 ( z − x )T∇2f ( x )( z − x )

a (non-homogeneous) quadratic function =⇒ simple



Hessians: continuity and symmetry 14

▶ [5, Th. 5.3.3] ∃ δ > 0 s.t. ∀z ∈ B( x , δ )
∂2f

∂xj∂xi
( z ) and ∂2f

∂xi∂xj
( z ) exist and are continuous at x

=⇒ ∂2f
∂xj∂xi

( x ) = ∂2f
∂xi∂xj

( x ) ≡ ∇2f symmetric

=⇒ all eigenvalues of ∇2f ( x ) real

▶ Yet, extremely difficult to construct examples of not symmetric ∇2f

▶ f ∈ C 2 := ∇2f ( x ) continuous everywhere ≡ ∂2f /∂xj∂xi ∈ C 0 ∀ i , j

=⇒ ∇2f ( x ) symmetric everywhere and

∇f ( x ) ∈ C 1 =⇒ ∇f ( x ) ∈ C 0 =⇒ f ( x ) ∈ C 0

▶ C 2 (strictly speaking C 3) is the best class ever for optimization,

but it is sometimes necessary to make do with (much) less than that
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Recall: local optimality and derivatives, graphically 15

f(x)

x

▶ If f ′( x ) < 0 or f ′( x ) > 0, x clearly cannot be a local minimum

▶ Hence, f ′( x ) = 0 in all local minima (hence in the global one as well)

▶ However, f ′( x ) = 0 also in local (hence global) maxima

. . . as well as in saddle points
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First-order (necessary, local) optimality condition 16

▶ f differentiable at x and x local minimum =⇒ ∇f ( x ) = 0

≡ stationary point ( ⇍=, previous pictures for n = 1)

▶ The proof, because theorems’ proofs breed algorithms

▶ By contradiction: x local minimum but ∇f ( x ) ̸= 0

▶ Prove x not local minimum not straightforward (∄ ≡ ∀ ̸ ):
∀ε > 0 “small enough” ∃ z ∈ B( x , ε ) s.t. f ( z ) < f ( x )

≡ have to construct ∞-ly many z better then x arbitrarily close to it

▶ Luckily all the z can be taken along a single d ∈ Rn: z = x + αd , α > 0

▶ Can choose d , use “best” one: steepest descent direction at x

≡ d with ∥ d ∥ = 1 s.t. ∂f
∂d ( x ) is most negative

≡ the (normalised) anti-gradient −∇f ( x ) (/ ∥∇f ( x ) ∥)

Exercise: prove −∇f ( x ) / ∥∇f ( x ) ∥ is the steepest descent direction at x

Exercise: Why are we insisting that ∥ d ∥ = 1? Discuss



Mathematically speaking: Optimality condition, the proof 17

▶ Tomography φ(α ) = φx ,−∇f ( x )(α ) (better not normalise d)

▶ Want to prove: ∃ ᾱ > 0 s.t. φ(α ) < f ( x ) = φ( 0 ) ∀α ∈ [ 0 , ᾱ ] (E)

▶ Remainder of first-order model at z : R( z − x ) = f ( z )− Lx( z )

▶ Definition of f ∈ C 1: lim
h→0

R( h ) / ∥ h ∥ = 0 ≡ R( h ) → 0 “faster than h → 0”

▶ φ(α ) = f ( x − α∇f ( x ) ) = f ( x ) + ⟨−α∇f ( x ) , ∇f ( x ) ⟩+ R( −α∇f ( x ) )

= f ( x ) −α∥∇f ( x ) ∥2 +R(−α∇f ( x ) )

negative term linear in α + (possibly) positive “more than linear” one

▶ As α → 0 (=⇒ ∥ h = −α∇f ( x ) ∥ → 0), it is clear who wins:

limα→0 R(−α∇f ( x ) ) / ∥α∇f ( x ) ∥ = limh→0 R( h ) / ∥ h ∥ = 0

≡ ∀ε > 0 ∃ ᾱ > 0 s.t. R(−α∇f ( x ) ) /α∥∇f ( x ) ∥ ≤ ε ∀α ∈ [ 0 , ᾱ ]

▶ Take ε < ∥∇f ( x ) ∥ to get R(−α∇f ( x ) ) < α∥∇f ( x ) ∥2 =⇒

φ(α ) = f ( x )− α∥∇f ( x ) ∥2 + R(−α∇f ( x ) )< f ( x )

▶ Proof shows: a small enough step along −∇f ( x ) (̸= 0) yields a better z



Second-order (necessary, local) optimality conditions 18

▶ Stationary point ≠⇒ local minimum: how to tell them apart?

▶ First-order model can’t, it is “flat”: need to look at curvature of f

▶ If f were quadratic I would know: look at eigenvalues of Q = ∇2f ( x )

▶ Obvious idea: approximate f with a quadratic function =

second-order model = Qx( z ) = Lx( z ) +
1
2 ( z − x )T∇2f ( x )( z − x )

▶ ∇Qx( x ) = ∇Lx( x ) = ∇f ( x ) =⇒ ∇Qx( x ) = 0 (check)

▶ Hence, ∇2f ( x ) ⪰ 0 ⇐⇒ x (global) minimum of Qx

▶ Can prove it (almost) holds for f , too:

f ∈ C 2: x local minimum =⇒ ∇2f ( x ) ⪰ 0

▶ Requires second-order Taylor’s theorem [5, Th. 5.4.9]:

f ( z ) = Lx( z ) +
1
2 ( z − x )T∇2f ( x )( z − x ) + R( z − x )

with limh→0 R( h ) / ∥ h ∥2 = 0 ≡ R( h ) → 0 faster than “h2 → 0”

≡ the remainder vanishes “faster than quadratically”



Mathematically speaking: 2nd-order optimality conditions, the proof 19

▶ By contradiction: f ∈ C 2, x local minimum but ∇2f ( x ) ̸⪰ 0 ≡
∃ d s.t. dT∇2f ( x )d < 0 (w.l.o.g. ∥ d ∥ = 1)

▶ d = direction of negative curvature, φ(α ) = φx,d(α )

▶ Second-order Taylor + ∇f ( x ) = 0 ≡ Lx( z ) = f ( x ) =⇒

φ(α ) = f ( x ) + 1
2α

2dT∇2f ( x )d +R(αd )

negative quadratic term in α + (possibly) positive “more than quadratic” one

▶ As α (= ∥ h = αd ∥ since ∥ d ∥ = 1) → 0, it is clear who wins:

limα→0 R(αd ) /α2 = limh→0 R( h ) / ∥ h ∥2 = 0 ≡

∀ε > 0∃ ᾱ > 0 s.t. R(αd ) ≤ εα2 ∀α ∈ [ 0 , ᾱ ]

▶ Take (0 <) ε < − 1
2d

T∇2f ( x )d to get R(αd ) < − 1
2α

2dT∇2f ( x )d

=⇒ φ(α ) = f ( x ) + 1
2α

2dT∇2f ( x )d + R(αd )< f ( x ) ∀α ∈ [ 0 , ᾱ ] E

▶ In a local minimum, there cannot be directions of negative curvature:

“when the first derivative is 0, second-order effects prevail”



Second-order (sufficient, local) optimality conditions 20

▶ Necessary condition almost also sufficient: f ∈ C 2,

∇f ( x ) = 0 and ∇2f ( x )≻ 0 =⇒ x local minimum

▶ Avoids “bad case” dT∇2f ( x )d = 0 ≡ zero-curvature direction

≡ x saddle point ≈ f ′′( x ) = 0: would need even higher-order derivatives

▶ Proof: second-order Taylor f ( x + d ) = f ( x ) + 1
2d

T∇2f ( x )d +R( d ) with

limd→0 R( d ) / ∥ d ∥2 = 0 ≡ ∀ε > 0 ∃ δ > 0 s.t. R( d ) / ∥ d ∥2 ≥ −ε

≡ R( d ) ≥ −ε∥ d ∥2 ∀ d s.t. ∥ d ∥ < δ

λn > 0 min eigenvalue of ∇2f ( x ) =⇒ dT∇2f ( x )d ≥ λn∥ d ∥2

Take ε < λn / 2: then, ∀ d s.t. ∥ d ∥ < δ

f ( x + d ) = f ( x ) + 1
2d

T∇2f ( x )d + R( d ) ≥ f ( x ) + λn−ε
2 ∥ d ∥2

▶ It proves more than we asked: f grows “at least quadratically around x”

∃ δ > 0 and γ > 0 s.t. f ( z ) ≥ f ( x ) + γ∥ z − x ∥2 ∀ z ∈ B( x , δ )
≡ strong (local) optimality
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Convex functions 21

f
▶ f convex ≡

∀ x , z ∈ Rn , α ∈ [0, 1]

αf ( x ) + (1− α)f ( z ) ≥ f (αx + (1− α)z )

▶ Convex ≠⇒ C 1 (ex. ∥ · ∥1)

▶ f concave ≡ −f convex

▶ max{ f ( x ) : x ∈ Rn } = +∞ (unless f ( x ) = c); sounds familiar?

▶ In fact, f quadratic convex ≡ Q ⪰ 0

▶ Exactly the opposite for f concave (Q ⪯ 0): as a great man said,

“(convex) optimization is a one-sided world”

▶ Only f both convex and concave: linear

▶ How do you tell if a function is convex?
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▶ Convex ≠⇒ C 1 (ex. ∥ · ∥1)

▶ f concave ≡ −f convex

▶ max{ f ( x ) : x ∈ Rn } = +∞ (unless f ( x ) = c); sounds familiar?

▶ In fact, f quadratic convex ≡ Q ⪰ 0

▶ Exactly the opposite for f concave (Q ⪯ 0): as a great man said,

“(convex) optimization is a one-sided world”

▶ Only f both convex and concave: linear

▶ How do you tell if a function is convex?



Convexity and derivatives [2, § 3.1.3, § 3.1.4] 22

▶ f ∈ C 1 convex ⇐⇒ ∇f monotone: ⟨∇f ( z )−∇f ( x ) , z − x ⟩ ≥ 0 ∀ x , z

Exercise: Justify why that property is called “monotone”

f ▶ f ∈ C 1 convex ⇐⇒

Lx( z ) = f ( x ) +⟨∇f ( x ) , z − x ⟩≤ f ( z )

Exercise: prove =⇒ “by prime principles”

▶ Geometrically: the epigraph is an half-space

that contains that of f (epi( Lx ) ⊇ epi( f ))

▶ ∇f ( x ) = 0 =⇒ f ( z ) ≥ f ( x ) ∀ z ∈ Rn

▶ f ∈ C 1 convex: ∇f ( x ) = 0 ⇐⇒ x global minimum

▶ f ∈ C 2: f convex ≡ ∇2f ( x ) ⪰ 0 ∀ x ∈ Rn

▶ f ∈ C 2 with ∇2f ⪰ τ I with τ > 0 the best case for optimization

▶ Sometimes the best way to prove f convex, unless it is by construction
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that contains that of f (epi( Lx ) ⊇ epi( f ))

▶ ∇f ( x ) = 0 =⇒

f ( z ) ≥ f ( x ) ∀ z ∈ Rn

▶ f ∈ C 1 convex: ∇f ( x ) = 0 ⇐⇒ x global minimum

▶ f ∈ C 2: f convex ≡ ∇2f ( x ) ⪰ 0 ∀ x ∈ Rn

▶ f ∈ C 2 with ∇2f ⪰ τ I with τ > 0 the best case for optimization

▶ Sometimes the best way to prove f convex, unless it is by construction
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▶ Some functions are (more or less obviously) convex:

1. f ( x ) = bx + c (affine) ⇐⇒ both convex and concave (check) [nontrivial]

2. f ( x ) = 1
2
xTQx + qx (quadratic) convex ⇐⇒ Q ⪰ 0

3. f ( x ) = eax for any a ∈ R

4. restricted to x ≥ 0, f ( x ) = − ln( x )

5. restricted to x ≥ 0, f ( x ) = xa for a ≥ 1 or a ≤ 0

6. f ( x ) = ∥ x ∥p for p ≥ 1

7. f ( x ) = max{ x1 , . . . , xn }

8. Q ∈ Rn×n symmetric, eigenvalues λ1 ≥ λ2 ≥ . . . λn:

fm(Q ) =
∑m

i=1 λi (sum of m largest eigenvalues)

Exercise: Prove 3., 4. and 5.; for the latter, which a make xa convex on all R?

Exercise: is f ( x ) = min{ x1 , . . . , xn } convex?
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1. f , g convex, δ, β ∈ R+ =⇒ δf + βg convex (non-negative combination)

2. { fi }i∈I (∞-ly many) convex functions =⇒ f ( x ) = supi∈I{ fi ( x ) } convex

3. f convex =⇒ f (Ax + b ) convex (pre-composition with linear mapping)

4. f : Rn → R convex, g : R → R convex increasing =⇒ g( f ( x ) ) convex
(post-composition with increasing convex function)

5. f1, f2 convex =⇒ f ( x ) = inf{ f1( x1 ) + f2( x2 ) : x1 + x2 = x } convex
(infimal convolution)

6. g convex =⇒ f ( x ) = inf{ g( z ) : Az = x } convex
(value function of convex constrained problem)

7. g( x , z ) : Rn+m → R convex =⇒ f ( x ) = inf{ g( x , z ) : z ∈ Rm } convex
(partial minimization)

8. f ( x ) convex =⇒ p( x , u ) = uf ( x / u ) convex on u > 0
(perspective or dilation function of f )

Exercise: Prove 1. “from prime principles” (at least 2., 3. analogous)
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▶ n = 1: f unimodal ⇐⇒ quasiconvex [1, Ex. 3.57] ≡
αf ( x ) + (1− α)f ( z )≤ max{ f ( x ) , f ( z ) } (??)

▶ f quasiconvex ⇐⇒ ∀ nonempty sublevel set S( f , l ) = { x : f ( x )≤ l } is a

(possibly, infinite) interval (in fact a convex set, will see) [1, Th. 3.5.2]

Exercise: Prove: f convex =⇒ f quasiconvex, ⇐= not true

▶ Issue: algebra of quasiconvex (not convex) functions “weaker”

▶ f quasiconvex, δ ∈ R+ =⇒ δf quasiconvex true

▶ But f , g quasiconvex =⇒ f + g quasiconvex false

Exercise: Prove the two statements above

▶ No (or much weaker) Disciplined QuasiConvex Programming [7],

f “naturally” quasiconvex unlikely

▶ Does not mean impossible, you may be lucky, in fact NN often ≈ quasiconvex
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▶ Multivariate global optimality very hard (exponential in theory & practice)

▶ Multivariate local optimality “easy” with the right (first-order) information:

f ∈ C 1 (but one often has to make do with less, will see)

▶ Local optimization ≈ nonlinear system ∇f ( x ) = 0, surely nontrivial

▶ “f simple” (quadratic) =⇒ “∇f ( x ) = 0 simple” (linear system):

quadratic models are going to be useful

▶ However, stationary points not always local minima (may be maxima)

▶ Only theoretically safe case: f convex =⇒
every stationary point is local ≡ global minimum

▶ Always keep it convex if possible, better if C 1, better still if C 2

▶ For learning, local optimality is typically enough (f “not adversarial”)

▶ Time to move to multivariate algorithms
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▶ For y = 1 / k → 0, f ( d1y , d2y ) = [ d2
1d2y

3 / ( (d1y)
4 + (d2y)

2 ) ]2 → 0 (the
degree of the numerator is > of the min degree at the denominator, i.e., the
numerator goes to 0 faster than the denominator) however chosen d1 and d2.
In the second case f ( y , y2 ) = [ y4 / ( y4 + y4 ) ]2 = 1 / 4 [back]

▶ ∂f
∂βd ( x ) = limt→0( f ( x + t(βd) )− f ( x ) ) / t =

= limt→0 β( f ( x + (tβ)d) )− f ( x ) ) / (βt). p = βt, t → 0 =⇒ p → 0
=⇒ ∂f

∂βd ( x ) = limp→0 β( f ( x + pd )− f ( x ) ) / p = β ∂f
∂d ( x ) [back]

▶ In all points [ 0 , x2 ]: for d = [ 1 , 0 ], φ[ 0 , x2 ], d(α ) = |α |+ | x2 | is
nondifferentiable in 0, i.e., ∂f / ∂d ∄; analogous for [ x1 , 0 ] [back]
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▶ Fix any [ d1 , d2 ]: limt→0 f ( td1 , td2 ) = limt→0
t3d2

1 d2
t2(d2

1+d2
2 )

= 0. For the general

result we use the definition of limit: for any ε > 0 we find δ > 0
s.t. ∥ [ x1 , x2 ] ∥ ≤ δ =⇒ | f ( x1 , x2 ) | ≤ ε. ∥ [ x1 , x2 ] ∥ =

√
x21 + x22 ≤ δ

implies | x2 | ≤ δ. Hence,

| f ( x1 , x2 )− 0 | ≤ | x2 |
(

x21
x21 + x22

)
≤ | x2 | ≤ δ

whenever ∥ [ x1 , x2 ] ∥ ≤ δ; thus, taking δ = ε works, proving that the limit is
indeed 0 however chosen the converging sequence. [back]

▶
∂f

∂[ d1 , d2 ]
( 0 , 0 ) = lim

t→0

f ( td1 , td2 )− f (0 , 0)

t
= lim

t→0

t3d2
1d2

t3(d2
1 + d2

2 )
=

= f ( d1 , d2 ), clearly not a linear function [back]

▶ ∇f ( x1 , x2 ) =

[
∂f

∂x1
,
∂f

∂x2

]
=

[
2x1x

3
2

( x21 + x22 )
2
,
x21 ( x

2
1 − x22 )

( x21 + x22 )
2

]
; for

g( x1 , x2 ) = ∂f / ∂x2, it is easy to check that g(α , 0 ) = 1 while g( 0 , α ) = 0,
i.e., the limit along the directions [ 1 , 0 ] and [ 0 , 1 ] is different [back]
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▶ Strictly speaking, defining ∂f
∂d ( 0 , 0 ) requires f ( 0 , 0 ), which is undefined.

However, we can take any generic direction d = [ d1 , d2 ] ̸= 0 and prove that
limα→0 f (αd ) = d4

1d
4
2α

4 / ( d2
2 + d4

1α
2 )2 = 0 however chosen d . In fact, if

either d2 = 0 or d1 = 0 the numerator is always 0 while the denominator is not
(they cannot be both 0). If they are both nonzero, the numerator goes to 0
while the denominator goes to d4

2 > 0. Thus, only looking along lines it would
be safe to define f ( 0 , 0 ) = 0 by continuity, and therefore to have
∂f
∂d ( 0 , 0 ) = 0 for all d ̸= 0, which gives ∂f

∂d ( 0 , 0 ) = ⟨ [ 0 , 0 ] , d ⟩ [back]

▶ We know that ∂f
∂d ( x ) = ⟨∇f ( x ) , d ⟩ = ∥∇f ( x ) ∥∥ d ∥ cos( θ ) =

= ∥∇f ( x ) ∥ cos( θ ) (as ∥ d ∥ = 1). Clearly, this number is minimum when
cos( θ ) is, i.e., θ = π ≡ cos( θ ) = −1. This corresponds to d being collinear
to ∇f ( x ) with opposite direction, i.e., d = −∇f ( x ) / ∥∇f ( x ) ∥ [back]

▶ Because ∂f
∂βd = β ∂f

∂d , hence ∥ d ∥ → ∞ =⇒ ∂f
∂d → −∞ (with right d) [back]
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▶ Qx( z ) = f ( x ) + ⟨∇f ( x ) , z − x ⟩+ 1
2 ( z − x )T∇2f ( x )( z − x ) =⇒

∇Qx( z ) = ∇f ( x ) +∇2f ( x )( z − x ), thus evaluated at z = x gives ∇f ( x ).
The derivation handily reveals that ∇Qx( z ) is a linear (vector) function of z
that coincides with ∇f ( x ) at z = x , i.e., it is the first-order model of ∇f at x
(in fact it uses the “gradient of the gradient”, that is, the Hessian) [back]

▶ In the univariate case the condition is ( f ′( z )− f ′( x ) )( z − x ) ≥ 0,
i.e., “f ′( z )− f ′( x ) and z − x have the same sign”. In other words,
z ≥ x =⇒ f ′( z ) ≥ f ′( x ) and z ≤ x =⇒ f ′( z ) ≤ f ′( x ), i.e., f ′ is
monotone nonincreasing [back]

▶ ∀α ∈ [ 0 , 1 ] αf ( z ) + (1− α)f ( x ) ≥ f (αz + (1− α)x ) =⇒
α( f ( z )− f ( x ) ) + f ( x ) ≥ f (α( z − x ) + x ) =⇒
f ( z )− f ( x ) ≥ [ f (α( z − x ) + x )− f ( x ) ] /α
send α → 0 to get ∂f

∂( z−x ) ( x ) = ⟨∇f ( x ) , z − x ⟩ [back]
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▶ This is surprisingly nontrivial. We want to prove: f both concave and concave
(BCC) ⇐⇒ f ( x ) = ⟨ b , x ⟩+ c for some b ∈ Rn, c ∈ R.
BCC ≡ f ( (1− α)x + αz ) [both ≥ and ≤ =⇒ ] = (1− α)f ( x ) + αf ( z )
f ( x ) = ⟨ b , x ⟩+ c =⇒ f ( (1− α)x + αz ) = ⟨ b , (1− α)x + αz ⟩+ c =
(1− α)⟨ b , x ⟩+ α⟨ b , z ⟩+ [ (1− α)c + αc ] =
(1− α)(⟨ b , x ⟩+ c) + α(⟨ b , x ⟩+ c) = (1− α)f ( x ) + αf ( z ); note how this
crucially depends on (1− α) + α = 1, it would not be true for generic γx + δz
For ⇐=, define g( x ) = f ( x )− f ( 0 ) so that g( 0 ) = 0. Since f is BCC, then
also g is (trivial, or see point 1. in next slide). Hence
0 = g( 0 ) = g( (1− (1/2))x + (1/2)(−x) ) =
= (1− (1/2))g( x ) + (1/2)g(−x ) =⇒ g(−x ) = −g( x ) (antisymmetric)

We now prove: i. g( γx ) = γg( x ), ii. g( x + z ) = g( x ) + g( z )
For i., 0 ≤ γ ≤ 1 =⇒ g( γx ) = g( γx + (1− γ)0 ) =
= γg( x ) + (1− γ)g( 0 ) = γg( x ). If γ > 1, then g( x ) = g( (1 / γ)γx ) =
= g( (1 / γ)γx + (1− 1 / γ)0 ) = (1 / γ)g( γx ) + (1− 1 / γ)g( 0 ) =
= (1 / γ)g( γx ); multiply both sides by γ to get γg( x ) = g( γx ). Finally, if
γ < 0 then g( γx ) = g( (−γ)(−x) ) = (−γ)g( (−x) ) (using the previous
results with −γ > 0) = (−γ)(−g( x )) (using g(−x ) = −g( x )) = γg( x )
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For ii., g( x + z ) = g( (1/2)2x + (1/2)2z ) = (1/2)g( 2x ) + (1/2)( 2z ) =
= (1/2)2g( x ) + (1/2)2( z ) = g( x ) + g( z ) (using i. with γ = 2)
i. and ii. are the alternative definition of linear function, hence ∃ b ∈ Rn

s.t. g( x ) = ⟨ b , x ⟩; thus, f ( x ) = g( x ) + f ( 0 ) is affine with c = f ( 0 ), as
desired [back]

▶ [ ea· ]′( x ) = aeax , which is positive increasing if a > 0, negative increasing if
a < 0. [− ln(·) ]′( x ) = −1 / x , which is negative increasing. [ ·a ]′( x ) = axa−1;
for a < 0 this is negative increasing, for a ≥ 1 this is positive increasing. Only
positive even integer a make xa convex on all R, since then axa−1 is positive
increasing (as the second derivative, a(a− 1)xa−2, is always positive). [back]

▶ No: consider f ( x1 , x2 ) = min{ x1 , x2 } on the line x1 + x2 = 0 ≡ x2 = −x1,
i.e., min{ x1 , −x1 } = −| x1 | which is concave (and not linear, hence it cannot
be convex) [back]
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▶ αf ( x ) + (1− α)f ( z ) ≥ f (αx + (1− α)z ) =⇒
δ[αf ( x ) + (1− α)f ( z ) ] ≥ δf (αx + (1− α)z ).
αg( x ) + (1− α)g( z ) ≥ g(αx + (1− α)z ) =⇒
β[αg( x ) + (1− α)g( z ) ] ≥ βg(αx + (1− α)z ).
Hence, δ[αf ( x ) + (1− α)f ( z ) ] + β[αg( x ) + (1− α)g( z ) ] =
= α( δf ( x ) + βg( x ) ) + (1− α)( δf ( z ) + βg( z ) ) ≥
δf (αx + (1− α)z ) + βg(αx + (1− α)z ) [back]

▶ Take x s.t. f ( x ) ≤ l , z s.t. f ( z ) ≤ l , and any α ∈ [ 0 , 1 ]: then, by convexity
f (αx + (1− α)z ) ≤ αf ( x ) + (1− α)f ( z ) ≤ αl + (1− α)l = l , i.e.,
αx + (1− α)z ∈ S( f , l ) =⇒ S( f , l ) is a (possibly, infinite) interval (in
general a convex set)
On the other hand, consider the “downward spike function centered at c”, i.e.,
sc( x ) = min{ | x − c | , 1 }. Clearly, sc is quasiconvex: in fact, S( f , l ) = ∅ if
l < 0, S( f , l ) = [ c − l , c + l ] if 0 ≤ l < 1, and S( f , l ) = R if l ≥ 1.
However, s0 is not convex: in fact,
(1/2)s0( 0 ) + (1/2)s0( 2 ) = 1/2 < 1 = s0( (1/2)0 + (1/2)2 ) = s0( 1 ) [back]
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▶ S( δf , l ) = { x : δf ( x ) ≤ l } = { x : δf ( x ) ≤ l / δ } = S( f , l / δ ): since the
latter is an interval (convex set), the former also is
To prove ⇍= consider f ( x ) = s−1( x ) + s1( x ) (cf. previous exercise). Clearly,
f (−1 ) = f ( 1 ) = 0 but f ( x ) > 0 for all other values of x , i.e.,
S( f , 0 ) = {−1 , 1 } is not an interval [back]
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