Unconstrained Multivariate Optimality and Convexity

Antonio Frangioni

Department of Computer Science University of Pisa <https://www.di.unipi.it/~frangio> <mailto:frangio@di.unipi.it>

Computational Mathematics for Learning and Data Analysis Master in Computer Science – University of Pisa

A.Y. 2024/25

Outline

[Unconstrained multivariate optimization](#page-1-0)

[Gradients, Jacobians, and Hessians](#page-5-0)

[Optimality conditions](#page-28-0)

[A Quick Look to Convex Functions](#page-38-0)

[Wrap up & References](#page-60-0)

[Solutions](#page-67-0)

Unconstrained global optimization and 1 and 1

- ▶ Back to $f: \mathbb{R}^n \to \mathbb{R}$, i.e., $f(x_1, x_2, ..., x_n) = f(x)$
- \triangleright Of course need f L-c (exact definition later)
- \triangleright Very bad news: no algorithm can work in less than Ω ((LD/ ε)ⁿ) [\[3,](#page-65-0) p. 413]
- \triangleright Curse of dimensionality: not really doable unless $n = 3/5/10$ tops
- **E** Can make it in $O((LD / \varepsilon)^n)$, multidimensional grid with small enough step: the standard approach to hyperparameter optimization (but D , L unknown)
- If f analytic, clever (spatial) B&B can give global optimum
- ▶ If f black-box (typically \implies no derivatives), many effective heuristics can give good (not provably optimal) solutions [\[8\]](#page-66-0)
- In both cases, complexity grows "fast" in practice as n grows
- Finding good global solutions hard in practice, proving optimality even worse

Unconstrained global optimization and 1 and 1

- ▶ Back to $f: \mathbb{R}^n \to \mathbb{R}$, i.e., $f(x_1, x_2, ..., x_n) = f(x)$
- \triangleright Of course need f L-c (exact definition later)
- \triangleright Very bad news: no algorithm can work in less than Ω ((LD/ ε)ⁿ) [\[3,](#page-65-0) p. 413]
- \triangleright Curse of dimensionality: not really doable unless $n = 3/5/10$ tops
- **E** Can make it in $O((LD / \varepsilon)^n)$, multidimensional grid with small enough step: the standard approach to hyperparameter optimization (but D , L unknown)
- If f analytic, clever (spatial) B&B can give global optimum
- ▶ If f black-box (typically \implies no derivatives), many effective heuristics can give good (not provably optimal) solutions [\[8\]](#page-66-0)
- In both cases, complexity grows "fast" in practice as n grows
- Finding good global solutions hard in practice, proving optimality even worse unless f convex \implies global \equiv local

Unconstrained local optimization 2

- ▶ Local optimization much better
- \triangleright Results in general surprisingly analogous to (multivariate) quadratic case: most (but not all) convergence results are dimension-independent \equiv complexity does not explicitly depends on n (if it does, not exponentially)
- Not completely surprising: linear / quadratic models a staple
- Does not mean all local algorithms are fast:
	- ▶ convergence speed may be rather low ("badly linear" or worse)
	- \triangleright cost of f / derivatives computation necessarily increases with n: for large $n\approx 10^9$, even $O($ n^2 $)$ is too much (will see)
	- ▶ some dependency on *n* may be hidden in $O(·)$ constants
- ▶ Yet, large-scale local optimization is doable if you have derivatives
- Except, derivatives in \mathbb{R}^n are significantly more complex

Outline

[Unconstrained multivariate optimization](#page-1-0)

[Gradients, Jacobians, and Hessians](#page-5-0)

[Optimality conditions](#page-28-0)

[A Quick Look to Convex Functions](#page-38-0)

[Wrap up & References](#page-60-0)

[Solutions](#page-67-0)

Mathematically speaking: Hints of topology in \mathbb{R}^n

- ▶ Fundamental (easy) concept: $\mathcal{B}(x, r) := \{ z \in \mathbb{R}^n : \| z x \| \le r \}$ ball, center $x \in \mathbb{R}^n$, radius $r > 0$ = points "close" to x in the chosen norm
- \blacktriangleright Euclidean norm just one member of a large family: $||x||_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$ p-norm, $p > 0$ ▶ Euclidean $\equiv ||x||_2$, $||x||_1 := \sum_{i=1}^n |x_i|$ (Lasso) ▶ $\lim_{p \to \infty} \equiv ||x||_{\infty} := \max\{|x_i| : i = 1, ..., n\}$ ▶ $\lim_{p\to 0}$ \equiv $||x||_0 := \#\{i : |x_i| > 0\}$ (not norm)

- Other norms \exists besides p-norm (matrix norms ...)
- ▶ Pictured $S(\|\cdot\|_p, 1) \equiv B_p(0, 1)$, $p = 0, 1/2, 1, 3/2, 2, 3, \infty$ (grow with p)
- \blacktriangleright The norm defines the topology of \mathbb{R}^n , but doesn't really matter: all is "∃ ball", "∀ small ball", and all norms are equivalent [\[9\]](#page-66-1) $\forall || \cdot ||, || || \cdot || | \exists 0 < \alpha < \beta \text{ s.t. } \alpha || x || \le || || z || || \le \beta || x || \forall x, z \in \mathbb{R}^n$

▶ Limit of sequence $\{x_i\} \subset \mathbb{R}^n$:

 $\lim_{i\to\infty} x_i = x \equiv \{x_i\} \to x$ $\iff \forall \varepsilon > 0 \ \exists h \text{ s.t. } d(x_i, x) \leq \varepsilon \ \forall i \geq h$ $\Leftrightarrow \forall \varepsilon > 0 \exists h \text{ s.t. } x_i \in \mathcal{B}(x, \varepsilon) \forall i \geq h$ \iff $\lim_{i\to\infty} d(x_i, x) = 0$

- ▶ Points of $\{x_i\}$ eventually all come arbitrarily close to x
- ▶ Note that \mathbb{R}^n "exponentially larger" than \mathbb{R} \implies there are many more ways for $\set{x_i} \to x$ in \mathbb{R}^n than in $\mathbb R$
- \blacktriangleright This may lead to more tricky situations / concepts

Mathematically speaking: Continuity [\[4,](#page-65-1) A2] 5

- ▶ Same definitions:
	- ▶ f continuous at x: $\{x_i\} \rightarrow x \implies \{f(x_i)\} \rightarrow f(x)$
	- ▶ $f \in C^0$: continuous $\forall x \in \mathbb{R}^n$
- ▶ There are "many" different $\{x_i\} \rightarrow x$, the limit must be = for all

Not sufficient to only consider "simple" sequences

$$
\blacktriangleright f(x_1, x_2) = \left[\frac{x_1^2 x_2}{x_1^4 + x_2^2}\right]^2 \quad f(0, 0) = ??
$$

- \blacktriangleright Limit = "on straight lines" \forall $[d_1, d_2] \in \mathbb{R}^2$ $\mathsf{lim}\ \ f\!\left({\left. d_1 \right/ k \,,\, d_2 \left/ \,k\,\right.}\right)=0$ $k \rightarrow \infty$
- \blacktriangleright Limit \neq on "curved" line $\lim_{k \to \infty} f(1/k, 1/k^2) = 1/4$

[Exercise:](#page-68-0) Prove the two limits above

Directional/partial derivatives, gradient [\[2,](#page-65-2) A.4.1][\[4,](#page-65-1) p. 625] 6

- ► $f: \mathbb{R}^n \to \mathbb{R}$, directional derivative at $x \in \mathbb{R}^n$ along direction $d \in \mathbb{R}^n$: $\frac{\partial f}{\partial d}(x) := \lim_{t \to 0} \frac{f(x + td) - f(x)}{t} = \varphi'_{x,d}(0)$
- ▶ Scales linearly with $|| d ||$: $\frac{\partial f}{\partial \beta d}(x) = \beta \frac{\partial f}{\partial d}(x)$ (sounds familiar?) ([check](#page-68-1))
- ▶ One-sided directional derivative: $\lim_{t\to 0_{\pm}} ... = [\varphi_{x,d}]'_{\pm}(0)$
- ▶ The derivative of the (x, d) -tomography (in 0): how can it be computed?
- ▶ Special case: partial derivative of f w.r.t. x_i at $x \in \mathbb{R}^n$ $\frac{\partial f}{\partial x_i}(x) := \lim_{t \to 0} \frac{f(x_1, ..., x_{i-1}, x_i + t, x_{i+1}, ..., x_n) - f(x)}{t} = [f^i_x]'(x_i) = \frac{\partial f}{\partial u^i}(x)$
- \blacktriangleright The derivative of the restriction of f to x_i is easy to compute: just $f'(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n)$ treating x_j for $j \neq i$ as constants

 \triangleright Gradient = (column) vector of all partial derivatives, "easy to compute" [\[6\]](#page-65-3) $\nabla f(x) := \left[\frac{\partial f}{\partial x_1}(x), \ldots, \frac{\partial f}{\partial x_n}(x) \right]^T \in \mathbb{R}^n$ \blacktriangleright $f(x) = \langle b, x \rangle \implies \nabla f(x) = b$

Directional/partial derivatives, gradient [\[2,](#page-65-2) A.4.1][\[4,](#page-65-1) p. 625] 6

- ► $f: \mathbb{R}^n \to \mathbb{R}$, directional derivative at $x \in \mathbb{R}^n$ along direction $d \in \mathbb{R}^n$: $\frac{\partial f}{\partial d}(x) := \lim_{t \to 0} \frac{f(x + td) - f(x)}{t} = \varphi'_{x,d}(0)$
- ▶ Scales linearly with $|| d ||$: $\frac{\partial f}{\partial \beta d}(x) = \beta \frac{\partial f}{\partial d}(x)$ (sounds familiar?) ([check](#page-68-1))
- ▶ One-sided directional derivative: $\lim_{t\to 0_{\pm}} ... = [\varphi_{x,d}]'_{\pm}(0)$
- ▶ The derivative of the (x, d) -tomography (in 0): how can it be computed?
- ▶ Special case: partial derivative of f w.r.t. x_i at $x \in \mathbb{R}^n$ $\frac{\partial f}{\partial x_i}(x) := \lim_{t \to 0} \frac{f(x_1, ..., x_{i-1}, x_i+t, x_{i+1}, ..., x_n) - f(x)}{t} = [f^i_x]'(x_i) = \frac{\partial f}{\partial u^i}(x)$
- \blacktriangleright The derivative of the restriction of f to x_i is easy to compute: just $f'(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n)$ treating x_j for $j \neq i$ as constants
- \triangleright Gradient = (column) vector of all partial derivatives, "easy to compute" [\[6\]](#page-65-3) $\nabla f(x) := \left[\frac{\partial f}{\partial x_1}(x), \ldots, \frac{\partial f}{\partial x_n}(x) \right]^T \in \mathbb{R}^n$ \blacktriangleright $f(x) = \frac{1}{2}x^T Qx + qx \implies \nabla f(x) = Qx + q$

Differentiability in \mathbb{R}^n

▶ f differentiable at x if \exists linear function $\phi(h) = \langle b, h \rangle + f(x)$ s.t. lim ∥ h ∥→0 $| f(x+h) - \phi(h) |$ $\frac{n}{\|h\|} = 0 \quad [\implies \phi(0) = f(x) \implies c = f(x)]$ $\varphi \equiv$ "first order model" of f at x, the error "vanishes faster than linearly"

► *f* differentiable at
$$
x \implies b = \nabla f(x)
$$
 [5, Th. 5.3.6]
\n $\implies \frac{\partial f}{\partial x_i}(x)$ exists $\forall i$ (but \Leftarrow not true)
\n \implies first-order model of *f* at *x*: $L_x(z) = \langle \nabla f(x), z - x \rangle + f(x)$

- ▶ f differentiable at $x \implies \nabla f(x)$ gives all $\frac{\partial f}{\partial d}$ [\[5,](#page-65-4) Ex 5.3.19]: $\forall d \in \mathbb{R}^n \quad \frac{\partial f}{\partial d}(x) = \langle \nabla f(x), d \rangle \quad (\Longleftarrow \exists)$
- ▶ [\[5,](#page-65-4) Th. 5.3.10,Th. 5.3.7] $\exists \delta > 0$ s.t. $\forall i \frac{\partial f}{\partial x_i}(z)$ continuous $\forall z \in \mathcal{B}(x, \delta)$ \implies f differentiable at $x \implies$ f continuous at x
- ▶ $\frac{\partial f}{\partial x_i} \in C^0 \implies f$ differentiable everywhere $\equiv f \in C^1$ (but \iff , ∃ weird f differentiable with discontinuous $\frac{\partial f}{\partial x_i}$ [\[5,](#page-65-4) Ex. 5.3.9])
- (non)differentiability in \mathbb{R}^n is much weirder than in $\mathbb R$

Non-differentiability I 8

$$
\blacktriangleright f(x_1, x_2) = \| [x_1, x_2] \|_1 = |x_1| + |x_2|
$$

- \blacktriangleright f continuous everywhere (why?)
- ▶ ∃ $d \in \mathbb{R}^n$ s.t. $\frac{d}{d} \frac{\partial f}{\partial d}(0, 0)$
- \blacktriangleright f non differentiable in $[0, 0]$

[Exercise:](#page-68-2) where else f is non differentiable? Prove it is not

Non-differentiability II 9

$$
\blacktriangleright f(x_1, x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2}
$$

► Can take
$$
f(0, 0) = 0
$$
 as
\n
$$
\lim_{\{x_1, x_2\} \to [0, 0]} f(x_1, x_2) = 0
$$

 $\blacktriangleright \exists \frac{\partial f}{\partial d} \ \forall d \in \mathbb{R}^n$, but f non differentiable in $[0, 0]$

[Exercise:](#page-69-0) prove $\lim_{x\to 0} f(x) = 0$, first "along lines" then in general

[Exercise:](#page-69-1) prove all this (hint: compute $[\partial f / \partial d]$ (0, 0) for generic $d = [d_1, d_2]$, prove it cannot have the form $\langle v, d \rangle$ for any v)

[Exercise:](#page-69-2) alternatively, compute ∇f and prove it is not continuous in [0, 0] (hint: look at picture of $\partial f / \partial x_2$ for directions where the limit is \neq)

Non-differentiability III 10

$$
\blacktriangleright f(x_1, x_2) = \left[\frac{x_1^2 x_2}{x_1^4 + x_2^2}\right]^2
$$

- ▶ f not continuous \implies not differentiable at $[0, 0]$
- $\blacktriangleright \frac{\partial f}{\partial d}(0, 0) = 0 \ \forall d \in \mathbb{R}^n$
- \blacktriangleright $\frac{1}{2} \nabla f$, but $\frac{1}{2} \nu (= 0)$ s.t. $\frac{\partial f}{\partial d} = \langle v, d \rangle$ $\forall d \in \mathbb{R}^n$

 \blacktriangleright f does nasty things on curved lines, not straight ones

[Exercise:](#page-70-0) prove $\frac{\partial f}{\partial d}(0, 0) = 0$

▶ In \mathbb{R}^2 , $L(L_x, f(x))$ is a line passing by x and $\nabla f(x) \perp L(L_x, f(x))$

▶ In \mathbb{R}^n , $L(L_x, f(x))$ is a surface passing by x and $\nabla f(x) \perp L(L_x, f(x))$

$$
f(x_1 x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2} , \quad \nabla f(x) = \left[\frac{2x_1 x_2^3}{(x_1^2 + x_2^2)^2}, \frac{x_1^2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2} \right]^T
$$

▶ In \mathbb{R}^n , $L(L_x, f(x))$ is a surface passing by x and $\nabla f(x) \perp L(L_x, f(x))$ $f(x_1 x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2}$ 3 $^{2}_{1}(x_{1}^{2})$ $\begin{smallmatrix}2\2\end{smallmatrix}$]⁷

$$
\nabla f(x) = \left[\frac{2x_1x_2^3}{(x_1^2 + x_2^2)^2}, \frac{x_1^2(x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2} \right]
$$
\n
$$
\triangleright f \text{ differentiable at } x \implies
$$
\n
$$
L(L_x, f(x)) \perp L(f, f(x)) \perp \nabla f(x)
$$

 -1.0

 -1.0

 -0.5

 0.0

 0.5

 1.0

▶ In \mathbb{R}^n , $L(L_x, f(x))$ is a surface passing by x and $\nabla f(x) \perp L(L_x, f(x))$ $\begin{smallmatrix} & & \tau \end{smallmatrix}$ $f(x_1 x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2}$ $\int_{0}^{\frac{\pi}{2}} \nabla f(x) dx = \left[\frac{2x_1x_2^3}{\sqrt{x_1^3}} \right]$ $\frac{2x_1x_2^3}{(x_1^2+x_2^2)^2}$, $\frac{x_1^2(x_1^2-x_2^2)}{(x_1^2+x_2^2)^2}$ $x_1^2 + x_2^2$ $(x_1^2 + x_2^2)^2$ 10 f differentiable at $x \implies$ $L(L_x, f(x)) \perp L(f, f(x)) \perp \nabla f(x)$ 0.5 0.0 -0.5

▶ In \mathbb{R}^n , $L(L_x, f(x))$ is a surface passing by x and $\nabla f(x) \perp L(L_x, f(x))$ $f(x_1 x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2}$ $x_1^2 + x_2^2$ $\int \nabla f(x) = \left[\frac{2x_1x_2^3}{\sqrt{2}} \right]$ $\frac{2x_1x_2^3}{(x_1^2+x_2^2)^2}$, $\frac{x_1^2(x_1^2-x_2^2)}{(x_1^2+x_2^2)^2}$ $\begin{smallmatrix} & & & \end{smallmatrix}$

- $(x_1^2 + x_2^2)^2$ ▶ f differentiable at $x \implies$ $L(L_x, f(x)) \perp L(f, f(x)) \perp \nabla f(x)$ **▶** f differentiable at $x \implies$
	- $L(f, f(x))$ "smooth"

▶ In \mathbb{R}^n , $L(L_x, f(x))$ is a surface passing by x and $\nabla f(x) \perp L(L_x, f(x))$ $\begin{smallmatrix} & & \tau \end{smallmatrix}$ $f(x_1 x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2}$ $\int_{0}^{\frac{\pi}{2}} \nabla f(x) dx = \left[\frac{2x_1x_2^3}{\sqrt{x_1^3}} \right]$ $\frac{2x_1x_2^3}{(x_1^2+x_2^2)^2}$, $\frac{x_1^2(x_1^2-x_2^2)}{(x_1^2+x_2^2)^2}$ $x_1^2 + x_2^2$ $(x_1^2 + x_2^2)^2$ 10 ▶ f differentiable at $x \implies$ $L(L_x, f(x)) \perp L(f, f(x)) \perp \nabla f(x)$ 0.5 ▶ f differentiable at $x \implies$ $L(f, f(x))$ "smooth" 00 As $x \to \overline{x}$ where f non differentiable. -0.5 $L(f, f(x))$ "less and less smooth" -1.0 -10 -0.5 0.0 0.5 1.0

▶ In \mathbb{R}^n , $L(L_x, f(x))$ is a surface passing by x and $\nabla f(x) \perp L(L_x, f(x))$ $\begin{smallmatrix} & & \tau \end{smallmatrix}$ $f(x_1 x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2}$ $\int_{0}^{\frac{\pi}{2}} \nabla f(x) dx = \left[\frac{2x_1x_2^3}{\sqrt{x_1^3}} \right]$ $\frac{2x_1x_2^3}{(x_1^2+x_2^2)^2}$, $\frac{x_1^2(x_1^2-x_2^2)}{(x_1^2+x_2^2)^2}$ $x_1^2 + x_2^2$ $(x_1^2 + x_2^2)^2$ ▶ f differentiable at $x \implies$ $L(L_x, f(x)) \perp L(f, f(x)) \perp \nabla f(x)$ $^{\circ}$ ▶ f differentiable at $x \implies$ $L(f, f(x))$ "smooth" $^{\circ}$ As $x \to \bar{x}$ where f non differentiable. -0.5 $L(f, f(x))$ "less and less smooth" ▶ f non differentiable at $x \implies$ -1.0 -0.5 0.0 0.5 $L(f, f(x))$ has "kinks"

▶ f differentiable \implies all relevant objects in \mathbb{R}^{n+1} and \mathbb{R}^n are smooth

f non differentiable \implies kinks appear and things break

Derivatives of vector-valued functions, Jacobian 12

- ▶ Vector-valued function $f : \mathbb{R}^n \to \mathbb{R}^m$, $f(x) = [f_1(x), f_2(x), ..., f_m(x)]$
- ▶ Partial derivative: usual stuff, except with extra index

$$
\frac{\partial f_j}{\partial x_i}(x) = \lim_{t\to 0}\frac{f_j(x_1,\ldots,x_{i-1},x_i+t,x_{i+1},\ldots,x_n)-f_j(x)}{t}
$$

 \blacktriangleright Jacobian := matrix of all $m \cdot n$ partial derivatives

$$
Jf(x) := \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x) \end{bmatrix} = \begin{bmatrix} \nabla f_1(x)^T \\ \nabla f_2(x)^T \\ \vdots \\ \nabla f_m(x)^T \end{bmatrix}
$$

 $= m \times n$ matrix with gradients as rows

▶ Will come in handy later on for constrained optimization

▶ A special vector-valued function is particularly important already

- ▶ $\frac{\partial f}{\partial x_i} : \mathbb{R}^n \to \mathbb{R} \implies$ has partial derivatives itself
- Second order partial derivative (just do it twice) $\partial^2 t$ ∂xj∂xⁱ $\partial^2 f$ $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2}$ ∂x_i^2 $=[f_{x}^{i}]''$

 $\blacktriangleright \nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n \implies$ has a Jacobian: Hessian (matrix) of f at x

$$
\nabla^2 f(x) := J \nabla f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \dots & \frac{\partial^2 f}{\partial x_n \partial x_1}(x) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \dots & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) & \dots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}
$$

 $O(n^2)$ to store and (at least) compute (unless sparse), bad when n large

- ▶ $\frac{\partial f}{\partial x_i} : \mathbb{R}^n \to \mathbb{R} \implies$ has partial derivatives itself
- Second order partial derivative (just do it twice) $\partial^2 t$ ∂xj∂xⁱ $\partial^2 f$ $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2}$ ∂x_i^2 $=[f_{x}^{i}]''$

 $\blacktriangleright \nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n \implies$ has a Jacobian: Hessian (matrix) of f at x

$$
\nabla^2 f(x) := J \nabla f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \dots & \frac{\partial^2 f}{\partial x_n \partial x_1}(x) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \dots & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) & \dots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}
$$

 $O(n^2)$ to store and (at least) compute (unless sparse), bad when n large \blacktriangleright $f(x) = \langle b, x \rangle \implies \nabla^2 f(x) = 0$

- ▶ $\frac{\partial f}{\partial x_i} : \mathbb{R}^n \to \mathbb{R} \implies$ has partial derivatives itself
- Second order partial derivative (just do it twice) $\partial^2 t$ ∂xj∂xⁱ $\partial^2 f$ $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2}$ ∂x_i^2 $=[f_{x}^{i}]''$

 $\blacktriangleright \nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n \implies$ has a Jacobian: Hessian (matrix) of f at x

$$
\nabla^2 f(x) := J \nabla f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \dots & \frac{\partial^2 f}{\partial x_n \partial x_1}(x) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \dots & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) & \dots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}
$$

 $O(n^2)$ to store and (at least) compute (unless sparse), bad when n large

$$
\blacktriangleright f(x) = \frac{1}{2}x^T Qx + qx \implies \nabla^2 f(x) = Q
$$

- ▶ $\frac{\partial f}{\partial x_i} : \mathbb{R}^n \to \mathbb{R} \implies$ has partial derivatives itself
- Second order partial derivative (just do it twice) $\partial^2 t$ ∂xj∂xⁱ $\partial^2 f$ $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2}$ ∂x_i^2 $=[f_{x}^{i}]''$

 $\blacktriangleright \nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n \implies$ has a Jacobian: Hessian (matrix) of f at x

$$
\nabla^2 f(x) := J \nabla f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \dots & \frac{\partial^2 f}{\partial x_n \partial x_1}(x) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \dots & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) & \dots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}
$$

 $O(n^2)$ to store and (at least) compute (unless sparse), bad when n large

$$
\blacktriangleright f(x) = \frac{1}{2}x^T Qx + qx \implies \nabla^2 f(x) = Q
$$

 $Second-order model = first-order model + second-order term (= better)$ $Q_x(z) = L_x(z) + \frac{1}{2}(z - x)^T \nabla^2 f(x) (z - x)$ a (non-homogeneous) quadratic function \implies simple

Hessians: continuity and symmetry and \sim 14

► [5, Th. 5.3.3]
$$
\exists \delta > 0
$$
 s.t. $\forall z \in \mathcal{B}(x, \delta)$
\n
$$
\frac{\partial^2 f}{\partial x_j \partial x_i}(z)
$$
 and $\frac{\partial^2 f}{\partial x_i \partial x_j}(z)$ exist and are continuous at x
\n $\implies \frac{\partial^2 f}{\partial x_j \partial x_i}(x) = \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \equiv \nabla^2 f$ symmetric
\n \implies all eigenvalues of $\nabla^2 f(x)$ real

- ▶ Yet, extremely difficult to construct examples of not symmetric $\nabla^2 t$
- ▶ $f \in C^2 := \nabla^2 f(x)$ continuous everywhere $\equiv \frac{\partial^2 f}{\partial x_j \partial x_i} \in C^0 \ \forall \ i, j$ $\implies \ \nabla^2 f(\, \mathrm{\mathsf{x}}\,)$ symmetric everywhere and $\nabla f(x) \in \mathcal{C}^1 \implies \nabla f(x) \in \mathcal{C}^0 \implies f(x) \in \mathcal{C}^0$
- \triangleright C^2 (strictly speaking C^3) is the best class ever for optimization, but it is sometimes necessary to make do with (much) less than that

Outline

[Unconstrained multivariate optimization](#page-1-0)

[Gradients, Jacobians, and Hessians](#page-5-0)

[Optimality conditions](#page-28-0)

[A Quick Look to Convex Functions](#page-38-0)

[Wrap up & References](#page-60-0)

[Solutions](#page-67-0)

Recall: local optimality and derivatives, graphically 15

If $f'(x) < 0$ or $f'(x) > 0$, x clearly cannot be a local minimum

Recall: local optimality and derivatives, graphically 15

If $f'(x) < 0$ or $f'(x) > 0$, x clearly cannot be a local minimum

Hence, $f'(x) = 0$ in all local minima (hence in the global one as well)

Recall: local optimality and derivatives, graphically and 15

If $f'(x) < 0$ or $f'(x) > 0$, x clearly cannot be a local minimum

- Hence, $f'(x) = 0$ in all local minima (hence in the global one as well)
- However, $f'(x) = 0$ also in local (hence global) maxima

Recall: local optimality and derivatives, graphically and 15

- If $f'(x) < 0$ or $f'(x) > 0$, x clearly cannot be a local minimum
- Hence, $f'(x) = 0$ in all local minima (hence in the global one as well)
- However, $f'(x) = 0$ also in local (hence global) maxima . . . as well as in saddle points

First-order (necessary, local) optimality condition 16

- ▶ f differentiable at x and x local minimum $\Rightarrow \nabla f(x) = 0$ \equiv stationary point (\Leftarrow , previous pictures for $n = 1$)
- ▶ The proof, because theorems' proofs breed algorithms
- ▶ By contradiction: x local minimum but $\nabla f(x) \neq 0$
- ▶ Prove x not local minimum not straightforward $(\nexists \equiv \forall$ /): $\forall \varepsilon > 0$ "small enough" $\exists z \in \mathcal{B}(x, \varepsilon)$ s.t. $f(z) < f(x)$
	- \equiv have to construct ∞ -ly many z better then x arbitrarily close to it
- ► Luckily all the z can be taken along a single $d \in \mathbb{R}^n$: $z = x + \alpha d$, $\alpha > 0$
- \triangleright Can choose d, use "best" one: steepest descent direction at x
	- $\equiv~d$ with $\parallel d \parallel$ $=1$ s.t. $\frac{\partial f}{\partial d}(x)$ is most negative
	- \equiv the (normalised) anti-gradient $-\nabla f(x)$ (/ $\|\nabla f(x)\|$)

[Exercise:](#page-70-1) prove $-\nabla f(x) / || \nabla f(x) ||$ is the steepest descent direction at x

[Exercise:](#page-70-2) Why are we insisting that $|| d || = 1$? Discuss

Mathematically speaking: Optimality condition, the proof 17

- ▶ Tomography $\varphi(\alpha) = \varphi_{x, -\nabla f(x)}(\alpha)$ (better not normalise d)
- ▶ Want to prove: $\exists \bar{\alpha} > 0$ s.t. $\varphi(\alpha) < f(x) = \varphi(0) \,\forall \alpha \in [0, \bar{\alpha}]$ (*f*)
- Remainder of first-order model at z: $R(z x) = f(z) L_x(z)$
- ▶ Definition of $f \in C^1$: $\lim_{h\to 0} R(h) / \|h\| = 0 \equiv R(h) \to 0$ "faster than $h \to 0$ "

$$
\varphi(\alpha) = f(x - \alpha \nabla f(x)) = f(x) + \langle -\alpha \nabla f(x), \nabla f(x) \rangle + R(-\alpha \nabla f(x))
$$

= f(x) - \alpha || \nabla f(x) ||^2 + R(-\alpha \nabla f(x))

negative term linear in α + (possibly) positive "more than linear" one

► As
$$
\alpha \to 0
$$
 (⇒ $|| h = -\alpha \nabla f(x) || \to 0$), it is clear who wins:
\n
$$
\lim_{\alpha \to 0} R(-\alpha \nabla f(x)) / || \alpha \nabla f(x) || = \lim_{h \to 0} R(h) / || h || = 0
$$
\n
$$
\equiv \forall \varepsilon > 0 \exists \bar{\alpha} > 0 \text{ s.t. } R(-\alpha \nabla f(x)) / \alpha || \nabla f(x) || \le \varepsilon \ \forall \alpha \in [0, \bar{\alpha}]
$$

$$
\blacktriangleright \text{ Take } \varepsilon < \| \nabla f(x) \| \text{ to get } R(-\alpha \nabla f(x)) < \alpha \| \nabla f(x) \|^2 \implies
$$
\n
$$
\varphi(\alpha) = f(x) - \alpha \| \nabla f(x) \|^2 + R(-\alpha \nabla f(x)) < f(x)
$$

Proof shows: a small enough step along $-\nabla f(x) (\neq 0)$ yields a better z

Second-order (necessary, local) optimality conditions 18

- ▶ Stationary point \Rightarrow local minimum: how to tell them apart?
- First-order model can't, it is "flat": need to look at curvature of f
- ▶ If f were quadratic I would know: look at eigenvalues of $Q = \nabla^2 f(x)$
- \triangleright Obvious idea: approximate f with a quadratic function = second-order model = $Q_x(z) = L_x(z) + \frac{1}{2}(z-x)^T \nabla^2 f(x)(z-x)$

$$
\blacktriangleright \nabla Q_x(x) = \nabla L_x(x) = \nabla f(x) \Longrightarrow \nabla Q_x(x) = 0 \text{ (check)}
$$

▶ Hence, $\nabla^2 f(x) \succeq 0 \iff x$ (global) minimum of Q_x

► Can prove it (almost) holds for *f*, too:

$$
f \in C^2
$$
: x local minimum $\implies \nabla^2 f(x) \succeq 0$

Requires second-order Taylor's theorem [\[5,](#page-65-4) Th. 5.4.9]:

$$
f(z) = L_x(z) + \frac{1}{2}(z-x)^T \nabla^2 f(x)(z-x) + R(z-x)
$$

with lim $_{h\rightarrow 0}$ $R(\,h\,)\,/\,\|\,h\,\|^2=0\ \equiv \ R(\,h\,)\rightarrow 0$ faster than " $h^2\rightarrow 0$ " \equiv the remainder vanishes "faster than quadratically"
Mathematically speaking: $2nd$ -order optimality conditions, the proof 19

- ▶ By contradiction: $f \in C^2$, x local minimum but $\nabla^2 f(x) \not\succeq 0 \equiv$ $\exists d$ s.t. $d^{\,T} \nabla^2 f(x) d < 0$ (w.l.o.g. $\parallel d \parallel = 1)$
- \blacktriangleright d = direction of negative curvature, $\varphi(\alpha) = \varphi_{x,d}(\alpha)$
- ▶ Second-order Taylor + $\nabla f(x) = 0 \equiv L_x(z) = f(x) \implies$ $\varphi(\alpha) = f(x) + \frac{1}{2} \alpha^2 d^T \nabla^2 f(x) d + R(\alpha d)$

negative quadratic term in α + (possibly) positive "more than quadratic" one

As α (= $|| h = \alpha d ||$ since $|| d || = 1$) \rightarrow 0, it is clear who wins: $\lim_{\alpha\rightarrow 0}$ $R($ α d $)$ $/\,$ $\alpha^2 = \lim_{h\rightarrow 0}$ $R($ h $)$ $/$ \parallel h $\parallel^2 = 0$ \equiv $\forall \varepsilon > 0 \,\exists \, \bar{\alpha} > 0$ s.t. $R(\alpha d) \leq \varepsilon \alpha^2 \,\forall \alpha \in [0, \bar{\alpha}]$

- ▶ Take $(0 <) \varepsilon < -\frac{1}{2}d^T\nabla^2 f(x) d$ to get $R(\alpha d) < -\frac{1}{2}\alpha^2 d^T \nabla^2 f(x) d$ $\implies \varphi(\alpha) = f(x) + \frac{1}{2} \alpha^2 d^T \nabla^2 f(x) d + R(\alpha d) < f(x) \quad \forall \alpha \in [0, \bar{\alpha}]$
- \blacktriangleright In a local minimum, there cannot be directions of negative curvature: "when the first derivative is 0, second-order effects prevail"

Second-order (sufficient, local) optimality conditions 20

- ▶ Necessary condition almost also sufficient: $f \in C^2$, $\nabla f(x) = 0$ and $\nabla^2 f(x) \succ 0 \implies x$ local minimum
- Avoids "bad case" $d^T \nabla^2 f(x) d = 0 \equiv$ zero-curvature direction \equiv x saddle point \approx f"(x) = 0: would need even higher-order derivatives

▶ Proof: second-order Taylor $f(x + d) = f(x) + \frac{1}{2}d^T\nabla^2 f(x) d + R(d)$ with $\lim_{d\rightarrow 0}$ $R(\,d\,)\,/\,\|\,d\,\|^2=0\ \equiv\ \forall \varepsilon>0\,\exists\,\delta>0$ s.t. $\,R(\,d\,)\,/\,\|\,d\,\|^2\geq -\varepsilon$ $\equiv\; R(\; d\;) \geq -\varepsilon \|\; d\;\|^2\; \;\forall \; d\, \text{ s.t.}\; \|\; d\;\| < \delta$ $\lambda_n > 0$ min eigenvalue of $\nabla^2 f(x) \implies d^T \nabla^2 f(x) d \geq \lambda_n \| d \|^2$ Take $\varepsilon < \lambda_n/2$: then, $\forall d$ s.t. $||d|| < \delta$ $f(x+d) = f(x) + \frac{1}{2}d^T \nabla^2 f(x) d + R(d) \ge f(x) + \frac{\lambda_n - \varepsilon}{2} || d ||^2$

It proves more than we asked: f grows "at least quadratically around x " $\exists \delta > 0$ and $\gamma > 0$ s.t. $f(z) \ge f(x) + \gamma ||z - x||^2 \ \ \forall z \in \mathcal{B}(x, \delta)$ \equiv strong (local) optimality

Outline

[Unconstrained multivariate optimization](#page-1-0)

[Gradients, Jacobians, and Hessians](#page-5-0)

[Optimality conditions](#page-28-0)

[A Quick Look to Convex Functions](#page-38-0)

[Wrap up & References](#page-60-0)

[Solutions](#page-67-0)

$$
\triangleright \quad f \text{ convex} \equiv \forall x, z \in \mathbb{R}^n \ , \ \alpha \in [0,1]
$$
\n
$$
\text{or} \ \alpha f(x) + (1-\alpha)f(z) \ge f(\alpha x + (1-\alpha)z)
$$

- ▶ max $\{f(x) : x \in \mathbb{R}^n\} = +\infty$ (unless $f(x) = c$); sounds familiar?
- ▶ In fact, f quadratic convex $\equiv Q \succeq 0$
- Exactly the opposite for f concave $(Q \preceq 0)$: as a great man said, "(convex) optimization is a one-sided world"
- \triangleright Only f both convex and concave: linear
- \blacktriangleright How do you tell if a function is convex?

▶ $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \ \forall x, z$

▶ $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \ \forall x, z$

▶ $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \ \forall x, z$

▶ $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \ \forall x, z$

▶ $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \ \forall x, z$

\n- $$
f \in C^1
$$
 convex \iff
\n- $L_x(z) = f(x) + \langle \nabla f(x), z - x \rangle \le f(z)$
\n- **Exercise:** prove \implies "by prime principles"
\n- **Geometrically:** the epigraph is an half-space
\n

▶ $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \ \forall x, z$

[Exercise:](#page-71-0) Justify why that property is called "monotone"

►
$$
f \in C^1
$$
 convex \Leftrightarrow
\n $L_x(z) = f(x) + \langle \nabla f(x), z - x \rangle \le f(z)$
\n**Exercise:** prove \implies "by prime principles"

▶ Geometrically: the epigraph is an half-space that contains that of f $\left(\frac{epi}{L_x}\right) \supseteq \frac{epi}{f}$)

▶ $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \ \forall x, z$

▶ $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \ \forall x, z$

▶ $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \ \forall x, z$

▶ $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \ \forall x, z$

[Exercise:](#page-71-0) Justify why that property is called "monotone"

► $f \in C^1$ convex: $\nabla f(x) = 0 \iff x$ global minimum

▶ $f \in C^2$: f convex $\equiv \nabla^2 f(x) \succeq 0 \quad \forall x \in \mathbb{R}^n$

▶ $f \in C^2$ with $\nabla^2 f \succeq \tau I$ with $\tau > 0$ the best case for optimization

 \triangleright Sometimes the best way to prove f convex, unless it is by construction

Mathematically speaking: Basic convex functions $[2, \S, 3.1.5]$ $[2, \S, 3.1.5]$ 23

 \triangleright Some functions are (more or less obviously) convex:

- 1. $f(x) = bx + c$ (affine) \iff both convex and concave ([check](#page-72-0)) [nontrivial]
- 2. $f(x) = \frac{1}{2}x^T Qx + qx$ (quadratic) convex $\iff Q \succeq 0$
- 3. $f(x) = e^{ax}$ for any $a \in \mathbb{R}$
- 4. restricted to $x > 0$, $f(x) = -\ln(x)$
- 5. restricted to $x \ge 0$, $f(x) = x^a$ for $a \ge 1$ or $a \le 0$

6.
$$
f(x) = ||x||_p
$$
 for $p \geq 1$

$$
7. f(x) = \max\{x_1, \ldots, x_n\}
$$

8. $Q \in \mathbb{R}^{n \times n}$ symmetric, eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_n$: $f_m(\mathcal{Q}) = \sum_{i=1}^m \lambda_i$ (sum of m largest eigenvalues)

[Exercise:](#page-73-0) Prove 3., 4. and 5.; for the latter, which a make x^a convex on all \mathbb{R} ?

[Exercise:](#page-73-1) is $f(x) = min\{x_1, \ldots, x_n\}$ convex?

Mathematically speaking: Convexity-preserving operations [\[2,](#page-65-0) § 3.2] 24

- 1. f, g convex, δ , $\beta \in \mathbb{R}_+ \implies \delta f + \beta g$ convex (non-negative combination)
- 2. { f_i }_{i∈I} (∞-ly many) convex functions \implies $f(x) = \sup_{i \in I} {f_i(x)}$ convex
- 3. f convex \implies f (Ax + b) convex (pre-composition with linear mapping)
- 4. $f : \mathbb{R}^n \to \mathbb{R}$ convex, $g : \mathbb{R} \to \mathbb{R}$ convex increasing $\implies g(f(x))$ convex (post-composition with increasing convex function)
- 5. f_1 , f_2 convex $\implies f(x) = \inf\{f_1(x_1) + f_2(x_2) : x_1 + x_2 = x\}$ convex (infimal convolution)
- 6. g convex \implies $f(x) = \inf\{g(z) : Az = x\}$ convex (value function of convex constrained problem)
- 7. $g(x, z): \mathbb{R}^{n+m} \to \mathbb{R}$ convex $\implies f(x) = \inf\{g(x, z) : z \in \mathbb{R}^m\}$ convex (partial minimization)
- 8. $f(x)$ convex $\implies p(x, u) = uf(x/u)$ convex on $u > 0$ (perspective or dilation function of f)
- **[Exercise:](#page-74-0)** Prove 1. "from prime principles" (at least 2., 3. analogous)

Why convex and not unimodal? 25

- ▶ $n = 1$: f unimodal \iff quasiconvex [\[1,](#page-65-1) Ex. 3.57] \equiv $\alpha f(x) + (1 - \alpha)f(z) \leq \max\{f(x), f(z)\}\$ (??)
- ▶ f quasiconvex \iff \forall nonempty sublevel set $S(f, l) = \{x : f(x) \le l\}$ is a (possibly, infinite) interval (in fact a convex set, will see) [\[1,](#page-65-1) Th. 3.5.2]

[Exercise:](#page-74-1) Prove: f convex \implies f quasiconvex, \Leftarrow not true

- ▶ Issue: algebra of quasiconvex (not convex) functions "weaker"
- ▶ f quasiconvex, $\delta \in \mathbb{R}_+$ \implies δf quasiconvex true
- ▶ But f, g quasiconvex \implies f + g quasiconvex false

[Exercise:](#page-75-0) Prove the two statements above

 \triangleright No (or much weaker) Disciplined QuasiConvex Programming [\[7\]](#page-65-2), f "naturally" quasiconvex unlikely

Does not mean impossible, you may be lucky, in fact NN often \approx quasiconvex

Outline

[Unconstrained multivariate optimization](#page-1-0)

[Gradients, Jacobians, and Hessians](#page-5-0)

[Optimality conditions](#page-28-0)

[A Quick Look to Convex Functions](#page-38-0)

[Wrap up & References](#page-60-0)

[Solutions](#page-67-0)

- \triangleright Multivariate global optimality very hard (exponential in theory $\&$ practice)
- Multivariate local optimality "easy" with the right (first-order) information: $f\in\mathcal{C}^1$ (but one often has to make do with less, will see)
- ▶ Local optimization \approx nonlinear system $\nabla f(x) = 0$, surely nontrivial
- ▶ "f simple" (quadratic) \implies " $\nabla f(x) = 0$ simple" (linear system): quadratic models are going to be useful
- However, stationary points not always local minima (may be maxima)

- \triangleright Multivariate global optimality very hard (exponential in theory $\&$ practice)
- \triangleright Multivariate local optimality "easy" with the right (first-order) information: $f\in\mathcal{C}^1$ (but one often has to make do with less, will see)
- ▶ Local optimization \approx nonlinear system $\nabla f(x) = 0$, surely nontrivial
- ▶ "f simple" (quadratic) \implies " $\nabla f(x) = 0$ simple" (linear system): quadratic models are going to be useful
- ▶ However, stationary points not always local minima (may be maxima)
- Only theoretically safe case: f convex \implies every stationary point is local \equiv global minimum
- Always keep it convex if possible, better if C^1 , better still if C^2

- \triangleright Multivariate global optimality very hard (exponential in theory $\&$ practice)
- \triangleright Multivariate local optimality "easy" with the right (first-order) information: $f\in\mathcal{C}^1$ (but one often has to make do with less, will see)
- ▶ Local optimization \approx nonlinear system $\nabla f(x) = 0$, surely nontrivial
- ▶ "f simple" (quadratic) \implies " $\nabla f(x) = 0$ simple" (linear system): quadratic models are going to be useful
- ▶ However, stationary points not always local minima (may be maxima)
- Only theoretically safe case: f convex \implies every stationary point is local \equiv global minimum
- Always keep it convex if possible, better if C^1 , better still if C^2
- For learning, local optimality is typically enough $(f$ "not adversarial")

- \triangleright Multivariate global optimality very hard (exponential in theory $\&$ practice)
- \triangleright Multivariate local optimality "easy" with the right (first-order) information: $f\in\mathcal{C}^1$ (but one often has to make do with less, will see)
- ▶ Local optimization \approx nonlinear system $\nabla f(x) = 0$, surely nontrivial
- ▶ "f simple" (quadratic) \implies " $\nabla f(x) = 0$ simple" (linear system): quadratic models are going to be useful
- ▶ However, stationary points not always local minima (may be maxima)
- Only theoretically safe case: f convex \implies every stationary point is local \equiv global minimum
- Always keep it convex if possible, better if C^1 , better still if C^2
- \triangleright For learning, local optimality is typically enough (f "not adversarial")
- \blacktriangleright Time to move to multivariate algorithms

References I 27

- [1] M.S. Bazaraa, H.D. Sherali, C.M. Shetty Nonlinear Programming: Theory and Algorithms, John Wiley & Sons, 2006
- [2] S. Boyd, L. Vandenberghe Convex Optimization, <https://web.stanford.edu/~boyd/cvxbook> Cambridge University Press, 2008
- [3] P. Hansen, B. Jaumard "Lipschitz Optimization" in Handbook of Global Optimization – Nonconvex optimization and its applications, R. Horst and P.M. Pardalos (Eds.), Chapter 8, 407–494, Springer, 1995
- [4] J. Nocedal, S.J. Wright, Numerical Optimization second edition, Springer Series in Operations Research and Financial Engineering, 2006
- [5] W.F. Trench, Introduction to Real Analysis [https:](https://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF) [//ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF](https://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF) Free Hyperlinked Edition 2.04, December 2013
- [6] AutoDiff Org: <https://www.autodiff.org>
- [7] CVX: <https://cvxr.com>
- [8] DFL: <https://www.iasi.cnr.it/~liuzzi/DFL>
- [9] Wikipedia Norm [https://en.wikipedia.org/wiki/Norm_\(mathematics\)](https://en.wikipedia.org/wiki/Norm_(mathematics))

Outline

[Unconstrained multivariate optimization](#page-1-0)

[Gradients, Jacobians, and Hessians](#page-5-0)

[Optimality conditions](#page-28-0)

[A Quick Look to Convex Functions](#page-38-0)

[Wrap up & References](#page-60-0)

[Solutions](#page-67-0)

Solutions I 29

▶ For $y = 1 / k \rightarrow 0$, $f(d_1y, d_2y) = [d_1^2d_2y^3 / ((d_1y)^4 + (d_2y)^2)]^2 \rightarrow 0$ (the degree of the numerator is $>$ of the min degree at the denominator, i.e., the numerator goes to 0 faster than the denominator) however chosen d_1 and d_2 . In the second case $f(\,y\,,\,y^2\,) = [\,y^4\,/\,(\,y^4 + y^4\,)\,]^2 = 1\,/\,4$ $[\,$ [[back](#page-8-0)]

$$
\triangleright \frac{\partial f}{\partial \beta d}(x) = \lim_{t \to 0} \left(f(x + t(\beta d)) - f(x) \right) / t =
$$
\n
$$
= \lim_{t \to 0} \frac{\partial f}{\partial (f(x + (t\beta)d)) - f(x))} / (\beta t). \ p = \beta t, \ t \to 0 \implies p \to 0
$$
\n
$$
\implies \frac{\partial f}{\partial \beta d}(x) = \lim_{p \to 0} \frac{\partial f}{\partial (f(x + pd) - f(x))} / p = \beta \frac{\partial f}{\partial d}(x) \quad \text{[back]}
$$

In all points $[0, x_2]$: for $d = [1, 0]$, $\varphi[0, x_2]$, $d(\alpha) = |\alpha| + |x_2|$ is nondifferentiable in 0, i.e., $\partial f / \partial d \nexists$; analogous for $[x_1, 0]$ [[back](#page-12-0)]

Solutions II 30

▶ Fix any $[d_1, d_2]$: lim_{t→0} $f(td_1, td_2) = \lim_{t\to 0} \frac{t^3d_1^2d_2}{t^2(d_1^2+d_2^2)}$ $\frac{t^{2}a_{1}a_{2}}{t^{2}(d_{1}^{2}+d_{2}^{2})}=0$. For the general result we use the definition of limit: for any $\varepsilon > 0$ we find $\delta > 0$ s.t. $\|\ [x_1, x_2] \|\leq \delta \implies |f(x_1, x_2)| \leq \varepsilon$. $\|\ [x_1, x_2] \|= \sqrt{x_1^2 + x_2^2} \leq \delta$ implies $|x_2| < \delta$. Hence,

$$
| f(x_1, x_2) - 0 | \leq |x_2| \left(\frac{x_1^2}{x_1^2 + x_2^2} \right) \leq |x_2| \leq \delta
$$

whenever $\| [x_1, x_2] \|^2 = \frac{x_1^2 + x_2^2}{x_1^2 + x_2^2} = \frac{y_1^2 + y_2^2}{x_1^2 + x_2^2}$
whenever $\| [x_1, x_2] \| \le \delta$; thus, taking $\delta = \varepsilon$ works, proving that the limit is indeed 0 however chosen the converging sequence. [[back](#page-13-0)]

$$
\sum \frac{\partial f}{\partial [d_1, d_2]}(0, 0) = \lim_{t \to 0} \frac{f(t d_1, t d_2) - f(0, 0)}{t} = \lim_{t \to 0} \frac{t^3 d_1^2 d_2}{t^3 (d_1^2 + d_2^2)} =
$$

= $f(d_1, d_2)$, clearly not a linear function [back]

$$
\triangleright \nabla f(x_1, x_2) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2} \right] = \left[\frac{2x_1x_2^3}{(x_1^2 + x_2^2)^2}, \frac{x_1^2(x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2} \right]; \text{ for }
$$
\n
$$
g(x_1, x_2) = \partial f / \partial x_2, \text{ it is easy to check that } g(\alpha, 0) = 1 \text{ while } g(0, \alpha) = 0,
$$
\n*i.e.*, the limit along the directions [1, 0] and [0, 1] is different **[back]**

Solutions III 31

- ▶ Strictly speaking, defining $\frac{\partial f}{\partial d}(0, 0)$ requires $f(0, 0)$, which is undefined. However, we can take any generic direction $d = [d_1, d_2] \neq 0$ and prove that $\lim_{\alpha\to 0} f(\alpha d\,) = d_1^4d_2^4\alpha^4/(d_2^2+d_1^4\alpha^2)^2 = 0$ however chosen d. In fact, if either $d_2 = 0$ or $d_1 = 0$ the numerator is always 0 while the denominator is not (they cannot be both 0). If they are both nonzero, the numerator goes to 0 while the denominator goes to $d_2^4 > 0$. Thus, only looking along lines it would be safe to define $f(0, 0) = 0$ by continuity, and therefore to have $\frac{\partial f}{\partial d}(0,0)=0$ for all $d\neq 0$, which gives $\frac{\partial f}{\partial d}(0,0)=\langle [0,0], d\rangle$ [[back](#page-14-0)]
- ▶ We know that $\frac{\partial f}{\partial d}(x) = \langle \nabla f(x), d \rangle = || \nabla f(x) || || d || \cos(\theta) =$ $= \|\nabla f(x)\| \cos(\theta)$ (as $\|d\| = 1$). Clearly, this number is minimum when $cos(\theta)$ is, i.e., $\theta = \pi \equiv cos(\theta) = -1$. This corresponds to d being collinear to $\nabla f(x)$ with opposite direction, i.e., $d = -\nabla f(x) / || \nabla f(x) ||$ [[back](#page-33-0)]

► Because
$$
\frac{\partial f}{\partial \beta d} = \beta \frac{\partial f}{\partial d}
$$
, hence $||d|| \to \infty \implies \frac{\partial f}{\partial d} \to -\infty$ (with right d) [back]

Solutions IV 32

- ▶ Q_x(z) = f(x) + $\langle \nabla f(x), z-x \rangle + \frac{1}{2}(z-x)^{T} \nabla^{2} f(x)(z-x)$ \implies $\nabla Q_x(z) = \nabla f(x) + \nabla^2 f(x) (z - x)$, thus evaluated at $z = x$ gives $\nabla f(x)$. The derivation handily reveals that $\nabla Q_{x}(z)$ is a linear (vector) function of z that coincides with $\nabla f(x)$ at $z = x$, i.e., it is the first-order model of ∇f at x (in fact it uses the "gradient of the gradient", that is, the Hessian) $[back]$ $[back]$ $[back]$
- ▶ In the univariate case the condition is $(f'(z) - f'(x))(z - x) \ge 0$, i.e., "f'(z) $-f'(x)$ and $z - x$ have the same sign". In other words, $z \geq x \implies f'(z) \geq f'(x)$ and $z \leq x \implies f'(z) \leq f'(x)$, i.e., f' is monotone nonincreasing [[back](#page-47-0)]

$$
\forall \alpha \in [0, 1] \alpha f(z) + (1 - \alpha) f(x) \ge f(\alpha z + (1 - \alpha)x) \implies
$$

\n
$$
\alpha(f(z) - f(x)) + f(x) \ge f(\alpha(z - x) + x) \implies
$$

\n
$$
f(z) - f(x) \ge [f(\alpha(z - x) + x) - f(x)]/\alpha
$$

\n
$$
\alpha \to 0 \text{ to get } \frac{\partial f}{\partial(z - x)}(x) = \langle \nabla f(x), z - x \rangle \quad \text{[back]}
$$
Solutions V 33

 \blacktriangleright This is surprisingly nontrivial. We want to prove: f both concave and concave $(BCC) \iff f(x) = \langle b, x \rangle + c$ for some $b \in \mathbb{R}^n$, $c \in \mathbb{R}$. $\text{BCC} \equiv f((1-\alpha)x + \alpha z)$ [both > and $\lt \implies$] = $(1-\alpha)f(x) + \alpha f(z)$ $f(x) = \langle b, x \rangle + c \implies f((1 - \alpha)x + \alpha z) = \langle b, (1 - \alpha)x + \alpha z \rangle + c =$ $(1 - \alpha)(b, x) + \alpha(b, z) + [(1 - \alpha)c + \alpha c] =$ $(1 - \alpha)(\langle b, x \rangle + c) + \alpha(\langle b, x \rangle + c) = (1 - \alpha)f(x) + \alpha f(z)$; note how this crucially depends on $(1 - \alpha) + \alpha = 1$, it would not be true for generic $\gamma x + \delta z$ For \Longleftarrow , define $g(x) = f(x) - f(0)$ so that $g(0) = 0$. Since f is BCC, then also g is (trivial, or see point 1. in next slide). Hence $0 = g(0) = g((1 - (1/2))x + (1/2)(-x)) =$ $= (1 - (1/2))g(x) + (1/2)g(-x) \implies g(-x) = -g(x)$ (antisymmetric) We now prove: i. $g(\gamma x) = \gamma g(x)$, ii. $g(x + z) = g(x) + g(z)$ For i., $0 \le \gamma \le 1 \implies g(\gamma x) = g(\gamma x + (1 - \gamma)0) =$ $=\gamma g(x) + (1 - \gamma)g(0) = \gamma g(x)$. If $\gamma > 1$, then $g(x) = g((1/\gamma)\gamma x) =$ $= g((1/\gamma)\gamma x + (1 - 1/\gamma)0) = (1/\gamma)g(\gamma x) + (1 - 1/\gamma)g(0) =$ $= (1 / \gamma)g(\gamma x)$; multiply both sides by γ to get $\gamma g(x) = g(\gamma x)$. Finally, if γ < 0 then $g(\gamma x) = g((- \gamma)(-x)) = (- \gamma)g((-x))$ (using the previous results with $-\gamma > 0$) = $(-\gamma)(-g(x))$ (using $g(-x) = -g(x)$) = $\gamma g(x)$

Solutions VI 34

For ii., $g(x + z) = g((1/2)2x + (1/2)2z) = (1/2)g(2x) + (1/2)(2z) =$ $= (1/2)2g(x) + (1/2)2(z) = g(x) + g(z)$ (using i. with $\gamma = 2$) i. and ii. are the alternative definition of linear function, hence $\exists b \in \mathbb{R}^n$ s.t. $g(x) = \langle b, x \rangle$; thus, $f(x) = g(x) + f(0)$ is affine with $c = f(0)$, as desired [**[back](#page-57-0)**]

 \blacktriangleright $[e^{a}]/(x) = ae^{ax}$, which is positive increasing if $a > 0$, negative increasing if $a < 0$. $[-\ln(\cdot)]'(x) = -1/x$, which is negative increasing. $[\cdot^a]'(x) = ax^{a-1}$; for $a < 0$ this is negative increasing, for $a \ge 1$ this is positive increasing. Only positive even integer a make x^a convex on all $\mathbb R$, since then ax^{a-1} is positive increasing (as the second derivative, $a(a-1)x^{a-2}$, is always positive). [[back](#page-57-0)]

▶ No: consider $f(x_1, x_2) = min\{x_1, x_2\}$ on the line $x_1 + x_2 = 0 \equiv x_2 = -x_1$, i.e., min $\{x_1, -x_1\} = -|x_1|$ which is concave (and not linear, hence it cannot be convex) [**[back](#page-57-0)**]

Solutions VII 35

$$
\begin{array}{ll}\n\bullet \ \ \alpha f(x) + (1 - \alpha)f(z) \ge f(\alpha x + (1 - \alpha)z) \implies \\
\delta[\alpha f(x) + (1 - \alpha)f(z)] \ge \delta f(\alpha x + (1 - \alpha)z).\n\alpha g(x) + (1 - \alpha)g(z) \ge g(\alpha x + (1 - \alpha)z) \implies \\
\beta[\alpha g(x) + (1 - \alpha)g(z)] \ge \beta g(\alpha x + (1 - \alpha)z).\n\end{array}
$$
\nHence, $\delta[\alpha f(x) + (1 - \alpha)f(z)] + \beta[\alpha g(x) + (1 - \alpha)g(z)] =$ \n
$$
= \alpha(\delta f(x) + \beta g(x)) + (1 - \alpha)(\delta f(z) + \beta g(z)) \ge \delta f(\alpha x + (1 - \alpha)z) + \beta g(\alpha x + (1 - \alpha)z) \quad \text{[back]}
$$

▶ Take x s.t. $f(x) \leq l$, z s.t. $f(z) \leq l$, and any $\alpha \in [0, 1]$: then, by convexity $f(\alpha x + (1 - \alpha)z) \leq \alpha f(x) + (1 - \alpha)f(z) \leq \alpha I + (1 - \alpha)I = I$, i.e., $\alpha x + (1 - \alpha)z \in S(f, l) \implies S(f, l)$ is a (possibly, infinite) interval (in general a convex set) On the other hand, consider the "downward spike function centered at c ", i.e., $s_c(x) = \min\{|x - c|, 1\}$. Clearly, s_c is quasiconvex: in fact, $S(f, I) = \emptyset$ if $1 < 0$, $S(f, 1) = [c - 1, c + 1]$ if $0 \le 1 < 1$, and $S(f, 1) = \mathbb{R}$ if $1 \ge 1$. However, s_0 is not convex: in fact, $(1/2)$ s₀ $(0) + (1/2)$ s₀ $(2) = 1/2 < 1 =$ s₀ $((1/2)0 + (1/2)2) =$ s₀ (1) [[back](#page-59-0)]

Solutions VIII 36

▶ $S(\delta f, I) = \{x : \delta f(x) \leq I\} = \{x : \delta f(x) \leq I/\delta\} = S(f, I/\delta)$: since the latter is an interval (convex set), the former also is To prove \iff consider $f(x) = s_{-1}(x) + s_1(x)$ (cf. previous exercise). Clearly, $f(-1) = f(1) = 0$ but $f(x) > 0$ for all other values of x, i.e., $S(f, 0) = \{-1, 1\}$ is not an interval [[back](#page-59-0)]