Unconstrained Multivariate Optimality and Convexity

Antonio Frangioni

Department of Computer Science University of Pisa https://www.di.unipi.it/~frangio mailto:frangio@di.unipi.it

Computational Mathematics for Learning and Data Analysis Master in Computer Science – University of Pisa

A.Y. 2024/25

Outline

Unconstrained multivariate optimization

Gradients, Jacobians, and Hessians

Optimality conditions

A Quick Look to Convex Functions

Wrap up & References

Solutions

Unconstrained global optimization

- ▶ Back to $f : \mathbb{R}^n \to \mathbb{R}$, i.e., $f(x_1, x_2, \ldots, x_n) = f(x)$
- Of course need f L-c (exact definition later)
- Very bad news: no algorithm can work in less than $\Omega((LD / \varepsilon)^n)$ [3, p. 413]
- Curse of dimensionality: not really doable unless n = 3/5/10 tops
- Can make it in O((LD / ε)ⁿ), multidimensional grid with small enough step: the standard approach to hyperparameter optimization (but D, L unknown)
- If f analytic, clever (spatial) B&B can give global optimum
- If f black-box (typically => no derivatives), many effective heuristics can give good (not provably optimal) solutions [8]
- In both cases, complexity grows "fast" in practice as n grows
- Finding good global solutions hard in practice, proving optimality even worse

Unconstrained global optimization

- ▶ Back to $f : \mathbb{R}^n \to \mathbb{R}$, i.e., $f(x_1, x_2, \ldots, x_n) = f(x)$
- Of course need f L-c (exact definition later)
- Very bad news: no algorithm can work in less than $\Omega((LD / \varepsilon)^n)$ [3, p. 413]
- Curse of dimensionality: not really doable unless n = 3/5/10 tops
- Can make it in O((LD / ε)ⁿ), multidimensional grid with small enough step: the standard approach to hyperparameter optimization (but D, L unknown)
- If f analytic, clever (spatial) B&B can give global optimum
- If f black-box (typically => no derivatives), many effective heuristics can give good (not provably optimal) solutions [8]
- In both cases, complexity grows "fast" in practice as n grows
- Finding good global solutions hard in practice, proving optimality even worse unless *f* convex ⇒ global ≡ local

Unconstrained local optimization

- Local optimization much better
- Results in general surprisingly analogous to (multivariate) quadratic case: most (but not all) convergence results are dimension-independent = complexity does not explicitly depends on n (if it does, not exponentially)
- Not completely surprising: linear / quadratic models a staple
- Does not mean all local algorithms are fast:
 - convergence speed may be rather low ("badly linear" or worse)
 - ▶ cost of f / derivatives computation necessarily increases with n: for large $n \approx 10^9$, even $O(n^2)$ is too much (will see)
 - some dependency on n may be hidden in O(·) constants
- Yet, large-scale local optimization is doable if you have derivatives
- Except, derivatives in \mathbb{R}^n are significantly more complex

Outline

Unconstrained multivariate optimization

Gradients, Jacobians, and Hessians

Optimality conditions

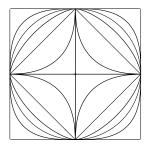
A Quick Look to Convex Functions

Wrap up & References

Solutions

Mathematically speaking: Hints of topology in \mathbb{R}^n

- Fundamental (easy) concept: B(x, r) := { z ∈ ℝⁿ : || z − x || ≤ r } ball, center x ∈ ℝⁿ, radius r > 0 = points "close" to x in the chosen norm
- ► Euclidean norm just one member of a large family: || x ||_p := (∑_{i=1}ⁿ | x_i |^p)^{1/p} p-norm, p > 0
 ► Euclidean ≡ || x ||₂, || x ||₁ := ∑_{i=1}ⁿ | x_i | (Lasso)
 ► lim_{p→∞} ≡ || x ||_∞ := max{ | x_i | : i = 1,..., n}
 ► lim_{p→0} ≡ || x ||₀ := #{i : |x_i| > 0} (not norm)



- Other norms ∃ besides p-norm (matrix norms ...)
- ▶ Pictured $S(\|\cdot\|_p, 1) \equiv \mathcal{B}_p(0, 1), p = 0, 1/2, 1, 3/2, 2, 3, \infty$ (grow with p)
- The norm defines the topology of ℝⁿ, but doesn't really matter: all is "∃ ball", "∀ small ball", and all norms are equivalent [9] ∀ || · ||, ||| · ||| ∃0 < α < β s.t. α|| x || ≤ ||| z ||| ≤ β|| x || ∀ x, z ∈ ℝⁿ

• Limit of sequence $\{x_i\} \subset \mathbb{R}^n$:

 $\lim_{i \to \infty} x_i = x \equiv \{x_i\} \to x$ $\iff \forall \varepsilon > 0 \; \exists h \text{ s.t. } d(x_i, x) \le \varepsilon \; \forall i \ge h$ $\iff \forall \varepsilon > 0 \; \exists h \text{ s.t. } x_i \in \mathcal{B}(x, \varepsilon) \; \forall i \ge h$ $\iff \lim_{i \to \infty} d(x_i, x) = 0$

- Points of { x_i } eventually all come arbitrarily close to x
- Note that ℝⁿ "exponentially larger" than ℝ ⇒ there are many more ways for { x_i } → x in ℝⁿ than in ℝ
- This may lead to more tricky situations / concepts

Mathematically speaking: Continuity [4, A2]

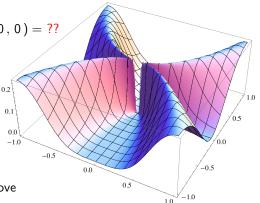
- Same definitions:
 - f continuous at x: $\{x_i\} \to x \implies \{f(x_i)\} \to f(x)$
 - $f \in C^0$: continuous $\forall x \in \mathbb{R}^n$
- There are "many" different $\{x_i\} \rightarrow x$, the limit must be = for all

Not sufficient to only consider "simple" sequences

•
$$f(x_1, x_2) = \left[\frac{x_1^2 x_2}{x_1^4 + x_2^2}\right]^2 f(0, 0) = ??$$

- ► Limit = "on straight lines" $\forall [d_1, d_2] \in \mathbb{R}^2$ $\lim_{k \to \infty} f(d_1 / k, d_2 / k) = 0$
- ► Limit \neq on "curved" line $\lim_{k \to \infty} f(1 / k, 1 / k^2) = 1 / 4$

Exercise: Prove the two limits above



Directional/partial derivatives, gradient [2, A.4.1][4, p. 625]

- ► $f : \mathbb{R}^n \to \mathbb{R}$, directional derivative at $x \in \mathbb{R}^n$ along direction $d \in \mathbb{R}^n$: $\frac{\partial f}{\partial d}(x) := \lim_{t \to 0} \frac{f(x+td) - f(x)}{t} = \varphi'_{x,d}(0)$
- ► Scales linearly with || d ||: $\frac{\partial f}{\partial \beta d}(x) = \beta \frac{\partial f}{\partial d}(x)$ (sounds familiar?) (check)
- ▶ One-sided directional derivative: $\lim_{t\to 0_{\pm}} \ldots = [\varphi_{x,d}]'_{\pm}(0)$
- The derivative of the (x, d)-tomography (in 0): how can it be computed?
- ► Special case: partial derivative of f w.r.t. x_i at $x \in \mathbb{R}^n$ $\frac{\partial f}{\partial x_i}(x) := \lim_{t \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i+t, x_{i+1}, \dots, x_n) - f(x)}{t} = [f_x^i]'(x_i) = \frac{\partial f}{\partial u'}(x)$
- The derivative of the restriction of f to x_i is easy to compute: just f'(x₁,..., x_{i-1}, x, x_{i+1},..., x_n) treating x_j for j ≠ i as constants

Gradient = (column) vector of all partial derivatives, "easy to compute" [6]
∇f(x) := [∂f/∂x₁(x), ..., ∂f/∂xₙ(x)]^T ∈ ℝⁿ
f(x) = ⟨b, x⟩ ⇒ ∇f(x) = b

Directional/partial derivatives, gradient [2, A.4.1][4, p. 625]

- ► $f : \mathbb{R}^n \to \mathbb{R}$, directional derivative at $x \in \mathbb{R}^n$ along direction $d \in \mathbb{R}^n$: $\frac{\partial f}{\partial d}(x) := \lim_{t \to 0} \frac{f(x+td) - f(x)}{t} = \varphi'_{x,d}(0)$
- ► Scales linearly with || d ||: $\frac{\partial f}{\partial \beta d}(x) = \beta \frac{\partial f}{\partial d}(x)$ (sounds familiar?) (check)
- ▶ One-sided directional derivative: $\lim_{t\to 0_{\pm}} \ldots = [\varphi_{x,d}]_{\pm}'(0)$
- The derivative of the (x, d)-tomography (in 0): how can it be computed?
- ► Special case: partial derivative of f w.r.t. x_i at $x \in \mathbb{R}^n$ $\frac{\partial f}{\partial x_i}(x) := \lim_{t \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i+t, x_{i+1}, \dots, x_n) - f(x)}{t} = [f_x^i]'(x_i) = \frac{\partial f}{\partial u^i}(x)$
- The derivative of the restriction of f to x_i is easy to compute: just f'(x₁,..., x_{i-1}, x, x_{i+1},..., x_n) treating x_j for j ≠ i as constants
- Gradient = (column) vector of all partial derivatives, "easy to compute" [6]
 ∇f(x) := [∂f/∂x₁(x), ..., ∂f/∂xₙ(x)]^T ∈ ℝⁿ
 f(x) = ½x^TQx + qx ⇒ ∇f(x) = Qx + q

Differentiability in \mathbb{R}^n

► f differentiable at x if \exists linear function $\phi(h) = \langle b, h \rangle + f(x)$ s.t. $\lim_{\|h\|\to 0} \frac{|f(x+h) - \phi(h)|}{\|h\|} = 0 \quad [\implies \phi(0) = f(x) \implies c = f(x)]$ $\varphi \equiv$ "first order model" of f at x, the error "vanishes faster than linearly"

► f differentiable at
$$x \implies b = \nabla f(x)$$
 [5, Th. 5.3.6]
 $\implies \frac{\partial f}{\partial x_i}(x)$ exists $\forall i$ (but \Leftarrow not true)
 \implies first-order model of f at x: $L_x(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle$

- ► f differentiable at $x \implies \nabla f(x)$ gives all $\frac{\partial f}{\partial d}$ [5, Ex 5.3.19]: $\forall d \in \mathbb{R}^n \quad \frac{\partial f}{\partial d}(x) = \langle \nabla f(x), d \rangle \quad (\Leftarrow \exists)$
- ► [5, Th. 5.3.10, Th. 5.3.7] $\exists \delta > 0$ s.t. $\forall i \frac{\partial f}{\partial x_i}(z)$ continuous $\forall z \in \mathcal{B}(x, \delta)$ $\implies f$ differentiable at $x \implies f$ continuous at x
- ▶ $\frac{\partial f}{\partial x_i} \in C^0 \implies f$ differentiable everywhere $\equiv f \in C^1$ (but \Leftarrow , \exists weird f differentiable with discontinuous $\frac{\partial f}{\partial x_i}$ [5, Ex. 5.3.9])
- (non)differentiability in \mathbb{R}^n is much weirder than in \mathbb{R}

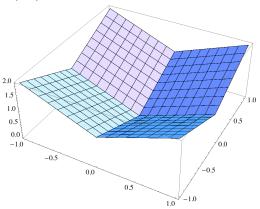
x)

Non-differentiability I

•
$$f(x_1, x_2) = ||[x_1, x_2]||_1 = |x_1| + |x_2|$$

f continuous everywhere (why?)

- ▶ $\exists d \in \mathbb{R}^n$ s.t. $\nexists \frac{\partial f}{\partial d}(0, 0)$
- ► f non differentiable in [0, 0]

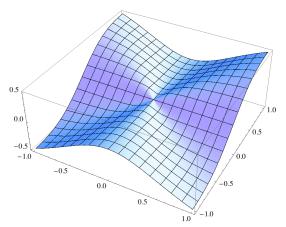


Exercise: where else f is non differentiable? Prove it is not

Non-differentiability II

•
$$f(x_1, x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2}$$

- Can take f(0, 0) = 0 as $\lim_{[x_1, x_2] \to [0, 0]} f(x_1, x_2) = 0$
- ► $\exists \frac{\partial f}{\partial d} \quad \forall d \in \mathbb{R}^n$, but f non differentiable in [0, 0]



Exercise: prove $\lim_{x\to 0} f(x) = 0$, first "along lines" then in general

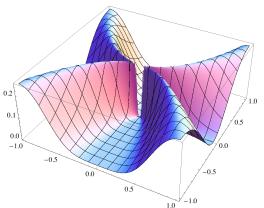
Exercise: prove all this (hint: compute $[\partial f / \partial d](0, 0)$ for generic $d = [d_1, d_2]$, prove it cannot have the form $\langle v, d \rangle$ for any v)

Exercise: alternatively, compute ∇f and prove it is not continuous in [0, 0](hint: look at picture of $\partial f / \partial x_2$ for directions where the limit is \neq)

Non-differentiability III

•
$$f(x_1, x_2) = \left[\frac{x_1^2 x_2}{x_1^4 + x_2^2}\right]^2$$

- ► f not continuous ⇒ not differentiable at [0, 0]
- $\blacktriangleright \ \frac{\partial f}{\partial d}(0, 0) = 0 \ \forall d \in \mathbb{R}^n$
- ▶ $\nexists \nabla f$, but $\exists v (= 0)$ s.t. $\frac{\partial f}{\partial d} = \langle v, d \rangle \forall d \in \mathbb{R}^n$



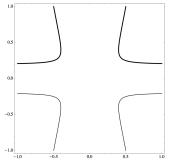
f does nasty things on curved lines, not straight ones

Exercise: prove $\frac{\partial f}{\partial d}(0, 0) = 0$

▶ In \mathbb{R}^2 , $L(L_x, f(x))$ is a line passing by x and $\nabla f(x) \perp L(L_x, f(x))$

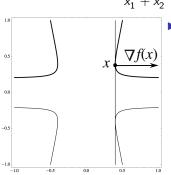
▶ In \mathbb{R}^n , $L(L_x, f(x))$ is a surface passing by x and $\nabla f(x) \perp L(L_x, f(x))$

$$f(x_1 \ x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2} \quad , \quad \nabla f(x) = \left[\frac{2x_1 x_2^3}{(x_1^2 + x_2^2)^2} \ , \ \frac{x_1^2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2} \right]^T$$



ln \mathbb{R}^n , $L(L_x, f(x))$ is a surface passing by x and $\nabla f(x) \perp L(L_x, f(x))$ $f(x_1 \ x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2} \quad , \quad \nabla f(x) = \left[\frac{2x_1 x_2^3}{(x_1^2 + x_2^2)^2}, \frac{x_1^2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2}\right]^T$

 $\nabla f(x) \models f \text{ differentiable at } x \implies L(L_x, f(x)) \perp L(f, f(x)) \perp \nabla f(x)$



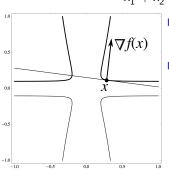
▶ In \mathbb{R}^n , $L(L_x, f(x))$ is a surface passing by x and $\nabla f(x) \perp L(L_x, f(x))$

$$f(x_{1} \ x_{2}) = \frac{x_{1}^{2} x_{2}}{x_{1}^{2} + x_{2}^{2}} , \quad \nabla f(x) = \left[\frac{2x_{1} x_{2}^{3}}{(x_{1}^{2} + x_{2}^{2})^{2}}, \frac{x_{1}^{2} (x_{1}^{2} - x_{2}^{2})}{(x_{1}^{2} + x_{2}^{2})^{2}}\right]^{T}$$

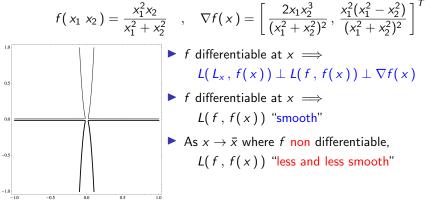
$$f \text{ differentiable at } x \implies L(L_{x}, f(x)) \perp L(f, f(x)) \perp \nabla f(x)$$

ln \mathbb{R}^n , $L(L_x, f(x))$ is a surface passing by x and $\nabla f(x) \perp L(L_x, f(x))$ $f(x_1 \ x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2} \quad , \quad \nabla f(x) = \left[\frac{2x_1 x_2^3}{(x_1^2 + x_2^2)^2}, \frac{x_1^2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2}\right]^T$ f differentiable at $x \implies$

L(f, f(x)) "smooth"



▶ In \mathbb{R}^n , $L(L_x, f(x))$ is a surface passing by x and $\nabla f(x) \perp L(L_x, f(x))$



ln \mathbb{R}^n , $L(L_x, f(x))$ is a surface passing by x and $\nabla f(x) \perp L(L_x, f(x))$ $f(x_1 \ x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2} \quad , \quad \nabla f(x) = \left[\frac{2x_1 x_2^3}{(x_1^2 + x_2^2)^2}, \frac{x_1^2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2}\right]^T$ \blacktriangleright f differentiable at x \Longrightarrow $L(L_x, f(x)) \perp L(f, f(x)) \perp \nabla f(x)$ 0.5 \blacktriangleright f differentiable at $x \implies$ L(f, f(x)) "smooth" As $x \to \overline{x}$ where f non differentiable. -0.5 L(f, f(x)) "less and less smooth" • f non differentiable at $x \implies$ -1.0 0.0 0.5 I(f, f(x)) has "kinks" -1.0 -0.5

• f differentiable \implies all relevant objects in \mathbb{R}^{n+1} and \mathbb{R}^n are smooth

• f non differentiable \implies kinks appear and things break

Derivatives of vector-valued functions, Jacobian

- ▶ Vector-valued function $f : \mathbb{R}^n \to \mathbb{R}^m$, $f(x) = [f_1(x), f_2(x), \dots, f_m(x)]$
- Partial derivative: usual stuff, except with extra index

$$\frac{\partial f_j}{\partial x_i}(x) = \lim_{t \to 0} \frac{f_j(x_1, \ldots, x_{i-1}, x_i + t, x_{i+1}, \ldots, x_n) - f_j(x)}{t}$$

• Jacobian := matrix of all $m \cdot n$ partial derivatives

$$Jf(x) := \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \dots & \frac{\partial f_1}{\partial x_n}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \dots & \frac{\partial f_2}{\partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \dots & \frac{\partial f_m}{\partial x_n}(x) \end{bmatrix} = \begin{bmatrix} \nabla f_1(x)^T \\ \nabla f_2(x)^T \\ \vdots \\ \nabla f_m(x)^T \end{bmatrix}$$

 $= m \times n$ matrix with gradients as rows

Will come in handy later on for constrained optimization

A special vector-valued function is particularly important already

- ▶ $\frac{\partial f}{\partial x_i}$: $\mathbb{R}^n \to \mathbb{R} \implies$ has partial derivatives itself
- ► Second order partial derivative (just do it twice) $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2} = [f_x^i]''$

▶ $\nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n \implies$ has a Jacobian: Hessian (matrix) of f at x

$$\nabla^{2}f(x) := J\nabla f(x) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x) \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}^{2}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x) \end{bmatrix}$$

 $O(n^2)$ to store and (at least) compute (unless sparse), bad when n large

- $\frac{\partial f}{\partial x_i}: \mathbb{R}^n \to \mathbb{R} \implies$ has partial derivatives itself
- ► Second order partial derivative (just do it twice) $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2} = [f_x^i]''$

▶ $\nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n \implies$ has a Jacobian: Hessian (matrix) of f at x

$$\nabla^{2}f(x) := J\nabla f(x) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x) \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}^{2}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x) \end{bmatrix}$$

 $O(n^2)$ to store and (at least) compute (unless sparse), bad when *n* large $f(x) = \langle b, x \rangle \implies \nabla^2 f(x) = 0$

- ▶ $\frac{\partial f}{\partial x_i}$: $\mathbb{R}^n \to \mathbb{R} \implies$ has partial derivatives itself
- ► Second order partial derivative (just do it twice) $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2} = [f_x^i]''$

▶ $\nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n \implies$ has a Jacobian: Hessian (matrix) of f at x

$$\nabla^{2}f(x) := J\nabla f(x) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x) \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}^{2}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x) \end{bmatrix}$$

 $O(n^2)$ to store and (at least) compute (unless sparse), bad when n large

$$f(x) = \frac{1}{2}x^T Q x + q x \implies \nabla^2 f(x) = Q$$

- ▶ $\frac{\partial f}{\partial x_i}$: $\mathbb{R}^n \to \mathbb{R} \implies$ has partial derivatives itself
- Second order partial derivative (just do it twice) $\frac{\partial^2 f}{\partial x_i \partial x_i} \qquad \frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2} = [f_x^i]''$

▶ $\nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n \implies$ has a Jacobian: Hessian (matrix) of f at x

$$\nabla^{2}f(x) := J\nabla f(x) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x) \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}^{2}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x) \end{bmatrix}$$

 $O(n^2)$ to store and (at least) compute (unless sparse), bad when n large

$$f(x) = \frac{1}{2}x^T Q x + q x \implies \nabla^2 f(x) = Q$$

Second-order model = first-order model + second-order term (= better) Q_x(z) = L_x(z) + ½(z − x)^T∇²f(x)(z − x) a (non-homogeneous) quadratic function ⇒ simple

Hessians: continuity and symmetry

► [5, Th. 5.3.3]
$$\exists \delta > 0$$
 s.t. $\forall z \in \mathcal{B}(x, \delta)$
 $\frac{\partial^2 f}{\partial x_j \partial x_i}(z)$ and $\frac{\partial^2 f}{\partial x_i \partial x_j}(z)$ exist and are continuous at x
 $\implies \frac{\partial^2 f}{\partial x_j \partial x_i}(x) = \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \equiv \nabla^2 f$ symmetric
 \implies all eigenvalues of $\nabla^2 f(x)$ real

- Yet, extremely difficult to construct examples of not symmetric $\nabla^2 f$
- ► $f \in C^2 := \nabla^2 f(x)$ continuous everywhere $\equiv \frac{\partial^2 f}{\partial x_j \partial x_i} \in C^0 \forall i, j$ $\implies \nabla^2 f(x)$ symmetric everywhere and $\nabla f(x) \in C^1 \implies \nabla f(x) \in C^0 \implies f(x) \in C^0$
- C² (strictly speaking C³) is the best class ever for optimization, but it is sometimes necessary to make do with (much) less than that

Outline

Unconstrained multivariate optimization

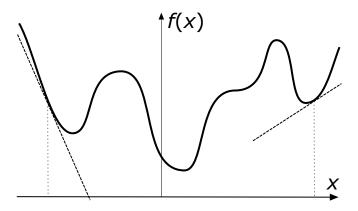
Gradients, Jacobians, and Hessians

Optimality conditions

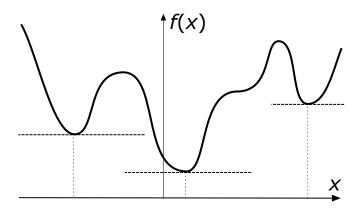
A Quick Look to Convex Functions

Wrap up & References

Solutions

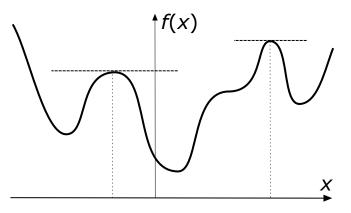


• If f'(x) < 0 or f'(x) > 0, x clearly cannot be a local minimum



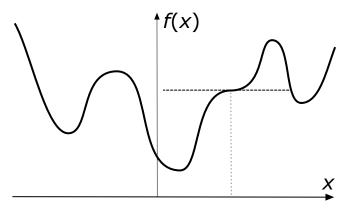
• If f'(x) < 0 or f'(x) > 0, x clearly cannot be a local minimum

• Hence, f'(x) = 0 in all local minima (hence in the global one as well)



• If f'(x) < 0 or f'(x) > 0, x clearly cannot be a local minimum

- Hence, f'(x) = 0 in all local minima (hence in the global one as well)
- However, f'(x) = 0 also in local (hence global) maxima



• If f'(x) < 0 or f'(x) > 0, x clearly cannot be a local minimum

- Hence, f'(x) = 0 in all local minima (hence in the global one as well)
- However, f'(x) = 0 also in local (hence global) maxima ... as well as in saddle points

First-order (necessary, local) optimality condition

- ▶ f differentiable at x and x local minimum $\implies \nabla f(x) = 0$ ≡ stationary point (\Leftarrow , previous pictures for n = 1)
- The proof, because theorems' proofs breed algorithms
- By contradiction: x local minimum but $\nabla f(x) \neq 0$
- ▶ Prove x not local minimum not straightforward ($\nexists \equiv \forall /$): $\forall \varepsilon > 0$ "small enough" $\exists z \in \mathcal{B}(x, \varepsilon)$ s.t. f(z) < f(x)
 - \equiv have to construct ∞ -ly many z better then x arbitrarily close to it
- Luckily all the z can be taken along a single $d \in \mathbb{R}^n$: $z = x + \alpha d$, $\alpha > 0$
- Can choose d, use "best" one: steepest descent direction at x
 - \equiv d with ||d|| = 1 s.t. $\frac{\partial f}{\partial d}(x)$ is most negative
 - \equiv the (normalised) anti-gradient $-\nabla f(x) (/ \| \nabla f(x) \|)$

Exercise: prove $-\nabla f(x) / \| \nabla f(x) \|$ is the steepest descent direction at x

Exercise: Why are we insisting that || d || = 1? Discuss

Mathematically speaking: Optimality condition, the proof

- ► Tomography $\varphi(\alpha) = \varphi_{x, -\nabla f(x)}(\alpha)$ (better not normalise d)
- ▶ Want to prove: $\exists \bar{\alpha} > 0$ s.t. $\varphi(\alpha) < f(x) = \varphi(0) \forall \alpha \in [0, \bar{\alpha}]$ (1)
- Remainder of first-order model at z: $R(z x) = f(z) L_x(z)$
- ▶ Definition of $f \in C^1$: $\lim_{h \to 0} R(h) / ||h|| = 0 \equiv R(h) \to 0$ "faster than $h \to 0$ " ▶ $c(x) = f(x) - c\nabla f(x)) = f(x) + (-c\nabla f(x)) - \nabla f(x)) + R(-c\nabla f(x))$
- $\varphi(\alpha) = f(x \alpha \nabla f(x)) = f(x) + \langle -\alpha \nabla f(x), \nabla f(x) \rangle + R(-\alpha \nabla f(x))$ = $f(x) - \alpha \| \nabla f(x) \|^2 + R(-\alpha \nabla f(x))$

negative term linear in α + (possibly) positive "more than linear" one

As
$$\alpha \to 0 \iff || h = -\alpha \nabla f(x) || \to 0$$
, it is clear who wins:

$$\lim_{\alpha \to 0} R(-\alpha \nabla f(x)) / || \alpha \nabla f(x) || = \lim_{h \to 0} R(h) / || h || = 0$$

$$\equiv \forall \varepsilon > 0 \exists \overline{\alpha} > 0 \text{ s.t. } R(-\alpha \nabla f(x)) / \alpha || \nabla f(x) || \le \varepsilon \quad \forall \alpha \in [0, \overline{\alpha}]$$

► Take
$$\varepsilon < \|\nabla f(x)\|$$
 to get $R(-\alpha \nabla f(x)) < \alpha \|\nabla f(x)\|^2 \implies$
 $\varphi(\alpha) = f(x) - \alpha \|\nabla f(x)\|^2 + R(-\alpha \nabla f(x)) < f(x)$

▶ Proof shows: a small enough step along $-\nabla f(x) \neq 0$ yields a better z

Second-order (necessary, local) optimality conditions

- ► Stationary point ⇒ local minimum: how to tell them apart?
- First-order model can't, it is "flat": need to look at curvature of f
- ▶ If f were quadratic I would know: look at eigenvalues of $Q = \nabla^2 f(x)$
- ▶ Obvious idea: approximate f with a quadratic function = second-order model = Q_x(z) = L_x(z) + ¹/₂(z - x)^T∇²f(x)(z - x)

$$\nabla Q_x(x) = \nabla L_x(x) = \nabla f(x) \Longrightarrow \nabla Q_x(x) = 0$$
 (check)

► Hence, $\nabla^2 f(x) \succeq 0 \iff x$ (global) minimum of Q_x

 $f \in C^2$: x local minimum $\implies \nabla^2 f(x) \succeq 0$

Requires second-order Taylor's theorem [5, Th. 5.4.9]:

$$f(z) = L_{x}(z) + \frac{1}{2}(z-x)^{T} \nabla^{2} f(x)(z-x) + R(z-x)$$

with $\lim_{h\to 0} R(h) / \|h\|^2 = 0 \equiv R(h) \to 0$ faster than " $h^2 \to 0$ "

 \equiv the remainder vanishes "faster than quadratically"

Mathematically speaking: 2nd-order optimality conditions, the proof 19

- ▶ By contradiction: $f \in C^2$, x local minimum but $\nabla^2 f(x) \succeq 0 \equiv \exists d$ s.t. $d^T \nabla^2 f(x) d < 0$ (w.l.o.g. ||d|| = 1)
- $d = \text{direction of negative curvature, } \varphi(\alpha) = \varphi_{x,d}(\alpha)$

► Second-order Taylor + $\nabla f(x) = 0 \equiv L_x(z) = f(x) \implies$ $\varphi(\alpha) = f(x) + \frac{1}{2}\alpha^2 d^T \nabla^2 f(x) d + R(\alpha d)$ negative quadratic term in α + (possibly) positive "more than quadratic" one

► As α (= $|| h = \alpha d ||$ since || d || = 1) $\rightarrow 0$, it is clear who wins: $\lim_{\alpha \to 0} R(\alpha d) / \alpha^{2} = \lim_{h \to 0} R(h) / || h ||^{2} = 0 \equiv$ $\forall \varepsilon > 0 \exists \overline{\alpha} > 0 \text{ s.t. } R(\alpha d) \leq \varepsilon \alpha^{2} \quad \forall \alpha \in [0, \overline{\alpha}]$

► Take (0 <) ε < $-\frac{1}{2}d^{T}\nabla^{2}f(x)d$ to get $R(\alpha d)$ < $-\frac{1}{2}\alpha^{2}d^{T}\nabla^{2}f(x)d$ $\implies \varphi(\alpha) = f(x) + \frac{1}{2}\alpha^{2}d^{T}\nabla^{2}f(x)d + R(\alpha d) < f(x) \quad \forall \alpha \in [0, \bar{\alpha}] \quad \not$

In a local minimum, there cannot be directions of negative curvature: "when the first derivative is 0, second-order effects prevail"

Second-order (sufficient, local) optimality conditions

- Necessary condition almost also sufficient: f ∈ C², ∇f(x) = 0 and ∇²f(x) ≻ 0 ⇒ x local minimum
- Avoids "bad case" d^T∇²f(x)d = 0 ≡ zero-curvature direction ≡ x saddle point ≈ f"(x) = 0: would need even higher-order derivatives
- ► Proof: second-order Taylor $f(x + d) = f(x) + \frac{1}{2}d^T \nabla^2 f(x) d + R(d)$ with $\lim_{d\to 0} R(d) / ||d||^2 = 0 \equiv \forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } R(d) / ||d||^2 \ge -\varepsilon$ $\equiv R(d) \ge -\varepsilon ||d||^2 \quad \forall d \text{ s.t. } ||d|| < \delta$ $\lambda_n > 0$ min eigenvalue of $\nabla^2 f(x) \implies d^T \nabla^2 f(x) d \ge \lambda_n ||d||^2$ Take $\varepsilon < \lambda_n / 2$: then, $\forall d \text{ s.t. } ||d|| < \delta$ $f(x + d) = f(x) + \frac{1}{2}d^T \nabla^2 f(x) d + R(d) > f(x) + \frac{\lambda_n - \varepsilon}{2} ||d||^2$
- ► It proves more than we asked: f grows "at least quadratically around x" $\exists \delta > 0 \text{ and } \gamma > 0 \text{ s.t. } f(z) \ge f(x) + \gamma || z - x ||^2 \quad \forall z \in \mathcal{B}(x, \delta)$ \equiv strong (local) optimality

Outline

Unconstrained multivariate optimization

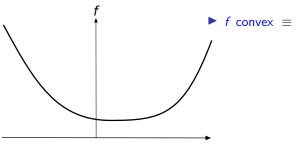
Gradients, Jacobians, and Hessians

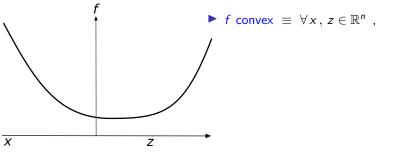
Optimality conditions

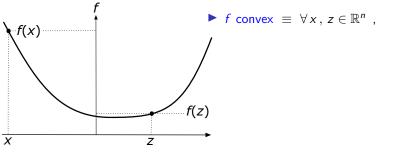
A Quick Look to Convex Functions

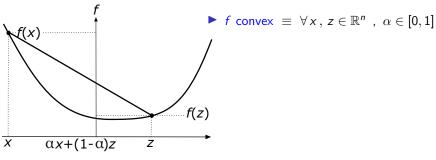
Wrap up & References

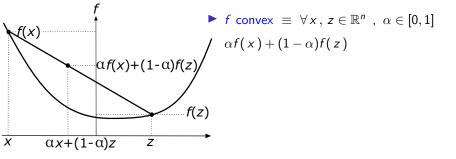
Solutions

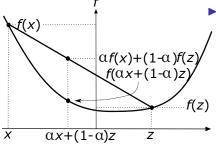


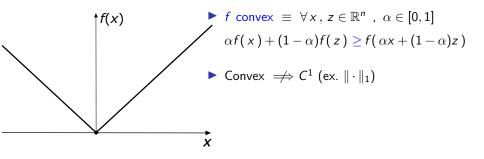


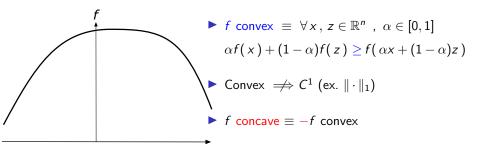








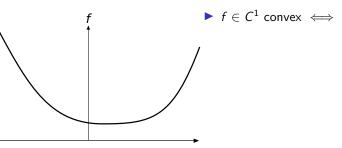




- $\max{f(x) : x \in \mathbb{R}^n} = +\infty$ (unless f(x) = c); sounds familiar?
- ▶ In fact, f quadratic convex $\equiv Q \succeq 0$
- ► Exactly the opposite for f concave (Q ≤ 0): as a great man said, "(convex) optimization is a one-sided world"
- Only f both convex and concave: linear
- How do you tell if a function is convex?

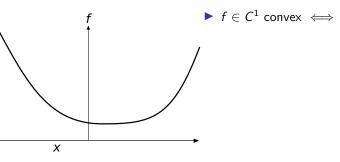
• $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$

22



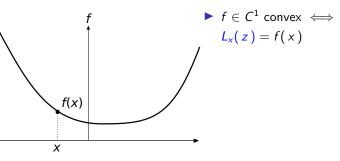
• $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$

22



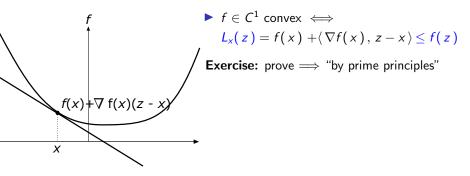
• $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$

22



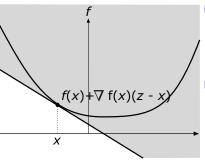
► $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$

22



► $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$

Exercise: Justify why that property is called "monotone"



f ∈ C¹ convex ⇐⇒

$$L_x(z) = f(x) + \langle \nabla f(x), z - x \rangle \leq f(z)$$

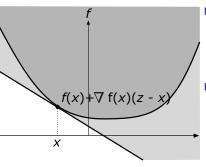
22

Exercise: prove \implies "by prime principles"

Geometrically: the epigraph is an half-space

► $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$

Exercise: Justify why that property is called "monotone"



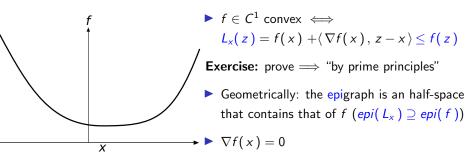
22

Exercise: prove \implies "by prime principles"

Geometrically: the epigraph is an half-space that contains that of f (epi(L_x) ⊇ epi(f))

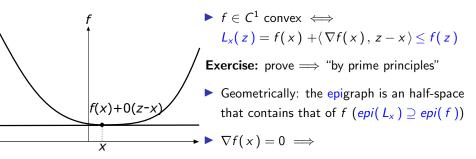
► $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$

22



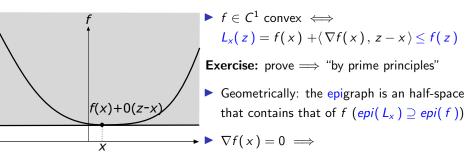
► $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$

22



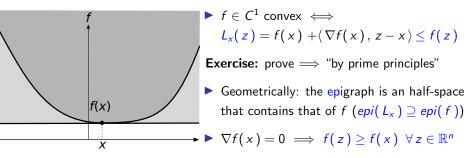
► $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$

22



► $f \in C^1$ convex $\iff \nabla f$ monotone: $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$

Exercise: Justify why that property is called "monotone"



• $f \in C^1$ convex: $\nabla f(x) = 0 \iff x$ global minimum

• $f \in C^2$: f convex $\equiv \nabla^2 f(x) \succeq 0 \quad \forall x \in \mathbb{R}^n$

• $f \in C^2$ with $\nabla^2 f \succeq \tau I$ with $\tau > 0$ the best case for optimization

Sometimes the best way to prove f convex, unless it is by construction

22

Mathematically speaking: Basic convex functions [2, § 3.1.5] 23

Some functions are (more or less obviously) convex:

1. f(x) = bx + c (affine) \iff both convex and concave (check) [nontrivial]

2.
$$f(x) = \frac{1}{2}x^T Q x + q x$$
 (quadratic) convex $\iff Q \succeq 0$

3.
$$f(x) = e^{ax}$$
 for any $a \in \mathbb{R}$

- 4. restricted to $x \ge 0$, $f(x) = -\ln(x)$
- 5. restricted to $x \ge 0$, $f(x) = x^a$ for $a \ge 1$ or $a \le 0$

6.
$$f(x) = ||x||_p$$
 for $p \ge 1$

7.
$$f(x) = \max\{x_1, \ldots, x_n\}$$

8. $Q \in \mathbb{R}^{n \times n}$ symmetric, eigenvalues $\lambda_1 \ge \lambda_2 \ge \dots \lambda_n$: $f_m(Q) = \sum_{i=1}^m \lambda_i$ (sum of *m* largest eigenvalues)

Exercise: Prove 3., 4. and 5.; for the latter, which a make x^a convex on all \mathbb{R} ?

Exercise: is $f(x) = \min\{x_1, \ldots, x_n\}$ convex?

Mathematically speaking: Convexity-preserving operations [2, § 3.2] 24

- 1. f, g convex, δ , $\beta \in \mathbb{R}_+ \implies \delta f + \beta g$ convex (non-negative combination)
- 2. $\{f_i\}_{i \in I} (\infty \text{-ly many}) \text{ convex functions } \implies f(x) = \sup_{i \in I} \{f_i(x)\} \text{ convex}$
- 3. f convex \implies f(Ax + b) convex (pre-composition with linear mapping)
- 4. $f : \mathbb{R}^n \to \mathbb{R}$ convex, $g : \mathbb{R} \to \mathbb{R}$ convex increasing $\implies g(f(x))$ convex (post-composition with increasing convex function)
- 5. $f_1, f_2 \text{ convex} \implies f(x) = \inf\{f_1(x_1) + f_2(x_2) : x_1 + x_2 = x\}$ convex (infimal convolution)
- 6. $g \text{ convex} \implies f(x) = \inf\{g(z) : Az = x\}$ convex (value function of convex constrained problem)
- 7. $g(x, z) : \mathbb{R}^{n+m} \to \mathbb{R}$ convex $\implies f(x) = \inf\{g(x, z) : z \in \mathbb{R}^m\}$ convex (partial minimization)
- 8. f(x) convex $\implies p(x, u) = uf(x/u)$ convex on u > 0(perspective or dilation function of f)

Exercise: Prove 1. "from prime principles" (at least 2., 3. analogous)

Why convex and not unimodal?

- ► n = 1: f unimodal \iff quasiconvex [1, Ex. 3.57] $\equiv \alpha f(x) + (1 \alpha) f(z) \le \max\{f(x), f(z)\}$ (??)
- F quasiconvex ⇐⇒ ∀ nonempty sublevel set S(f, l) = {x : f(x) ≤ l} is a (possibly, infinite) interval (in fact a convex set, will see) [1, Th. 3.5.2]

Exercise: Prove: f convex \implies f quasiconvex, \Leftarrow not true

- Issue: algebra of quasiconvex (not convex) functions "weaker"
- f quasiconvex, $\delta \in \mathbb{R}_+ \implies \delta f$ quasiconvex true
- But f, g quasiconvex \implies f + g quasiconvex false

Exercise: Prove the two statements above

No (or much weaker) Disciplined QuasiConvex Programming [7], f "naturally" quasiconvex unlikely

Does not mean impossible, you may be lucky, in fact NN often \approx quasiconvex

Outline

Unconstrained multivariate optimization

Gradients, Jacobians, and Hessians

Optimality conditions

A Quick Look to Convex Functions

Wrap up & References

Solutions

- Multivariate global optimality very hard (exponential in theory & practice)
- ► Multivariate local optimality "easy" with the right (first-order) information: f ∈ C¹ (but one often has to make do with less, will see)
- ▶ Local optimization \approx nonlinear system $\nabla f(x) = 0$, surely nontrivial
- *"f* simple" (quadratic) ⇒ "∇f(x) = 0 simple" (linear system): quadratic models are going to be useful
- However, stationary points not always local minima (may be maxima)

- Multivariate global optimality very hard (exponential in theory & practice)
- ► Multivariate local optimality "easy" with the right (first-order) information: f ∈ C¹ (but one often has to make do with less, will see)
- ▶ Local optimization \approx nonlinear system $\nabla f(x) = 0$, surely nontrivial
- "f simple" (quadratic) ⇒ "∇f(x) = 0 simple" (linear system): quadratic models are going to be useful
- However, stationary points not always local minima (may be maxima)
- ► Only theoretically safe case: f convex ⇒ every stationary point is local ≡ global minimum
- Always keep it convex if possible, better if C^1 , better still if C^2

- Multivariate global optimality very hard (exponential in theory & practice)
- ► Multivariate local optimality "easy" with the right (first-order) information: f ∈ C¹ (but one often has to make do with less, will see)
- ▶ Local optimization \approx nonlinear system $\nabla f(x) = 0$, surely nontrivial
- "f simple" (quadratic) ⇒ "∇f(x) = 0 simple" (linear system): quadratic models are going to be useful
- However, stationary points not always local minima (may be maxima)
- ► Only theoretically safe case: f convex ⇒ every stationary point is local ≡ global minimum
- Always keep it convex if possible, better if C^1 , better still if C^2
- ▶ For learning, local optimality is typically enough (f "not adversarial")

- Multivariate global optimality very hard (exponential in theory & practice)
- ► Multivariate local optimality "easy" with the right (first-order) information: f ∈ C¹ (but one often has to make do with less, will see)
- ▶ Local optimization \approx nonlinear system $\nabla f(x) = 0$, surely nontrivial
- "f simple" (quadratic) ⇒ "∇f(x) = 0 simple" (linear system): quadratic models are going to be useful
- However, stationary points not always local minima (may be maxima)
- ► Only theoretically safe case: f convex ⇒ every stationary point is local ≡ global minimum
- Always keep it convex if possible, better if C^1 , better still if C^2
- ▶ For learning, local optimality is typically enough (f "not adversarial")
- Time to move to multivariate algorithms

References I

- [1] M.S. Bazaraa, H.D. Sherali, C.M. Shetty *Nonlinear Programming: Theory and Algorithms*, John Wiley & Sons, 2006
- [2] S. Boyd, L. Vandenberghe Convex Optimization, https://web.stanford.edu/~boyd/cvxbook Cambridge University Press, 2008
- [3] P. Hansen, B. Jaumard "Lipschitz Optimization" in Handbook of Global Optimization – Nonconvex optimization and its applications, R. Horst and P.M. Pardalos (Eds.), Chapter 8, 407–494, Springer, 1995
- J. Nocedal, S.J. Wright, Numerical Optimization second edition, Springer Series in Operations Research and Financial Engineering, 2006
- [5] W.F. Trench, Introduction to Real Analysis https: //ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF Free Hyperlinked Edition 2.04, December 2013
- [6] AutoDiff Org: https://www.autodiff.org
- [7] CVX: https://cvxr.com

- [8] DFL: https://www.iasi.cnr.it/~liuzzi/DFL
- [9] Wikipedia Norm https://en.wikipedia.org/wiki/Norm_(mathematics)

Outline

Unconstrained multivariate optimization

Gradients, Jacobians, and Hessians

Optimality conditions

A Quick Look to Convex Functions

Wrap up & References

Solutions

Solutions I

▶ For $y = 1 / k \rightarrow 0$, $f(d_1y, d_2y) = [d_1^2 d_2 y^3 / ((d_1y)^4 + (d_2y)^2)]^2 \rightarrow 0$ (the degree of the numerator is > of the min degree at the denominator, i.e., the numerator goes to 0 faster than the denominator) however chosen d_1 and d_2 . In the second case $f(y, y^2) = [y^4 / (y^4 + y^4)]^2 = 1/4$ [back]

$$\frac{\partial f}{\partial \beta d}(x) = \lim_{t \to 0} \left(f(x + t(\beta d)) - f(x) \right) / t = \\ = \lim_{t \to 0} \beta \left(f(x + (t\beta)d) - f(x) \right) / (\beta t). \ p = \beta t, \ t \to 0 \implies p \to 0 \\ \implies \frac{\partial f}{\partial \beta d}(x) = \lim_{p \to 0} \beta \left(f(x + pd) - f(x) \right) / p = \beta \frac{\partial f}{\partial d}(x)$$
 [back]

▶ In all points $[0, x_2]$: for d = [1, 0], $\varphi[0, x_2]$, $d(\alpha) = |\alpha| + |x_2|$ is nondifferentiable in 0, i.e., $\partial f / \partial d \nexists$; analogous for $[x_1, 0]$ [back]

Solutions II

► Fix any $[d_1, d_2]$: $\lim_{t\to 0} f(td_1, td_2) = \lim_{t\to 0} \frac{t^3 d_1^2 d_2}{t^2 (d_1^2 + d_2^2)} = 0$. For the general result we use the definition of limit: for any $\varepsilon > 0$ we find $\delta > 0$ s.t. $\| [x_1, x_2] \| \le \delta \implies | f(x_1, x_2) | \le \varepsilon$. $\| [x_1, x_2] \| = \sqrt{x_1^2 + x_2^2} \le \delta$ implies $|x_2| \le \delta$. Hence,

$$|f(x_1, x_2) - 0| \le |x_2| \left(\frac{x_1^2}{x_1^2 + x_2^2}\right) \le |x_2| \le \delta$$

whenever $\|[x_1, x_2]\| \le \delta$; thus, taking $\delta = \varepsilon$ works, proving that the limit is indeed 0 however chosen the converging sequence. **[back]**

$$\frac{\partial f}{\partial [d_1, d_2]}(0, 0) = \lim_{t \to 0} \frac{f(td_1, td_2) - f(0, 0)}{t} = \lim_{t \to 0} \frac{t^3 d_1^2 d_2}{t^3 (d_1^2 + d_2^2)} = f(d_1, d_2), \text{ clearly not a linear function } [back]$$

►
$$\nabla f(x_1, x_2) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right] = \left[\frac{2x_1x_2^3}{(x_1^2 + x_2^2)^2}, \frac{x_1^2(x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2}\right];$$
 for $g(x_1, x_2) = \partial f / \partial x_2$, it is easy to check that $g(\alpha, 0) = 1$ while $g(0, \alpha) = 0$, i.e., the limit along the directions $[1, 0]$ and $[0, 1]$ is different **[back**]

Solutions III

- ▶ Strictly speaking, defining $\frac{\partial f}{\partial d}(0, 0)$ requires f(0, 0), which is undefined. However, we can take any generic direction $d = [d_1, d_2] \neq 0$ and prove that $\lim_{\alpha \to 0} f(\alpha d) = d_1^4 d_2^4 \alpha^4 / (d_2^2 + d_1^4 \alpha^2)^2 = 0$ however chosen d. In fact, if either $d_2 = 0$ or $d_1 = 0$ the numerator is always 0 while the denominator is not (they cannot be both 0). If they are both nonzero, the numerator goes to 0 while the denominator goes to $d_2^4 > 0$. Thus, only looking along lines it would be safe to define f(0, 0) = 0 by continuity, and therefore to have $\frac{\partial f}{\partial d}(0, 0) = 0$ for all $d \neq 0$, which gives $\frac{\partial f}{\partial d}(0, 0) = \langle [0, 0], d \rangle$ [back]
- ▶ We know that $\frac{\partial f}{\partial d}(x) = \langle \nabla f(x), d \rangle = \| \nabla f(x) \| \| d \| \cos(\theta) = \| \nabla f(x) \| \cos(\theta)$ (as $\| d \| = 1$). Clearly, this number is minimum when $\cos(\theta)$ is, i.e., $\theta = \pi \equiv \cos(\theta) = -1$. This corresponds to *d* being collinear to $\nabla f(x)$ with opposite direction, i.e., $d = -\nabla f(x) / \| \nabla f(x) \|$ [back]

► Because
$$\frac{\partial f}{\partial \beta d} = \beta \frac{\partial f}{\partial d}$$
, hence $|| d || \to \infty \implies \frac{\partial f}{\partial d} \to -\infty$ (with right d) [back]

Solutions IV

- ▶ $Q_x(z) = f(x) + \langle \nabla f(x), z x \rangle + \frac{1}{2}(z x)^T \nabla^2 f(x)(z x) \implies$ $\nabla Q_x(z) = \nabla f(x) + \nabla^2 f(x)(z - x)$, thus evaluated at z = x gives $\nabla f(x)$. The derivation handily reveals that $\nabla Q_x(z)$ is a linear (vector) function of zthat coincides with $\nabla f(x)$ at z = x, i.e., it is the first-order model of ∇f at x(in fact it uses the "gradient of the gradient", that is, the Hessian) [back]
- In the univariate case the condition is (f'(z) f'(x))(z x) ≥ 0, i.e., "f'(z) - f'(x) and z - x have the same sign". In other words, z ≥ x ⇒ f'(z) ≥ f'(x) and z ≤ x ⇒ f'(z) ≤ f'(x), i.e., f' is monotone nonincreasing [back]

►
$$\forall \alpha \in [0, 1] \alpha f(z) + (1 - \alpha) f(x) \ge f(\alpha z + (1 - \alpha)x) \implies$$

 $\alpha(f(z) - f(x)) + f(x) \ge f(\alpha(z - x) + x) \implies$
 $f(z) - f(x) \ge [f(\alpha(z - x) + x) - f(x)] / \alpha$
send $\alpha \to 0$ to get $\frac{\partial f}{\partial (z - x)}(x) = \langle \nabla f(x), z - x \rangle$ [back]

Solutions V

This is surprisingly nontrivial. We want to prove: f both concave and concave (BCC) \iff $f(x) = \langle b, x \rangle + c$ for some $b \in \mathbb{R}^n$, $c \in \mathbb{R}$. BCC $\equiv f((1-\alpha)x + \alpha z)$ [both \geq and $\leq \Longrightarrow$] = $(1-\alpha)f(x) + \alpha f(z)$ $f(x) = \langle b, x \rangle + c \implies f((1 - \alpha)x + \alpha z) = \langle b, (1 - \alpha)x + \alpha z \rangle + c =$ $(1-\alpha)\langle b, x \rangle + \alpha \langle b, z \rangle + [(1-\alpha)c + \alpha c] =$ $(1-\alpha)(\langle b, x \rangle + c) + \alpha(\langle b, x \rangle + c) = (1-\alpha)f(x) + \alpha f(z);$ note how this crucially depends on $(1 - \alpha) + \alpha = 1$, it would not be true for generic $\gamma x + \delta z$ For \Leftarrow , define g(x) = f(x) - f(0) so that g(0) = 0. Since f is BCC, then also g is (trivial, or see point 1. in next slide). Hence 0 = g(0) = g((1 - (1/2))x + (1/2)(-x)) = $= (1 - (1/2))g(x) + (1/2)g(-x) \implies g(-x) = -g(x)$ (antisymmetric) We now prove: i. $g(\gamma x) = \gamma g(x)$, ii. g(x+z) = g(x) + g(z)For i., $0 < \gamma < 1 \implies g(\gamma x) = g(\gamma x + (1 - \gamma)0) =$ $=\gamma g(x) + (1-\gamma)g(0) = \gamma g(x)$. If $\gamma > 1$, then $g(x) = g((1/\gamma)\gamma x) =$ $= g((1/\gamma)\gamma x + (1-1/\gamma)0) = (1/\gamma)g(\gamma x) + (1-1/\gamma)g(0) =$ $= (1/\gamma)g(\gamma x)$; multiply both sides by γ to get $\gamma g(x) = g(\gamma x)$. Finally, if $\gamma < 0$ then $g(\gamma x) = g((-\gamma)(-x)) = (-\gamma)g((-x))$ (using the previous results with $-\gamma > 0$ = $(-\gamma)(-g(x))$ (using g(-x) = -g(x)) = $\gamma g(x)$

Solutions VI

For ii., g(x + z) = g((1/2)2x + (1/2)2z) = (1/2)g(2x) + (1/2)(2z) = (1/2)2g(x) + (1/2)2(z) = g(x) + g(z) (using i. with $\gamma = 2$) i. and ii. are the alternative definition of linear function, hence $\exists b \in \mathbb{R}^n$ s.t. $g(x) = \langle b, x \rangle$; thus, f(x) = g(x) + f(0) is affine with c = f(0), as desired [back]

- [e^{a·}]'(x) = ae^{ax}, which is positive increasing if a > 0, negative increasing if a < 0. [-ln(·)]'(x) = -1/x, which is negative increasing. [·^a]'(x) = ax^{a-1}; for a < 0 this is negative increasing, for a ≥ 1 this is positive increasing. Only positive even integer a make x^a convex on all ℝ, since then ax^{a-1} is positive increasing (as the second derivative, a(a 1)x^{a-2}, is always positive). [back]
- No: consider f(x₁, x₂) = min{x₁, x₂} on the line x₁ + x₂ = 0 ≡ x₂ = -x₁, i.e., min{x₁, -x₁} = -|x₁| which is concave (and not linear, hence it cannot be convex) [back]

Solutions VII

•
$$\alpha f(x) + (1-\alpha)f(z) \ge f(\alpha x + (1-\alpha)z) \Longrightarrow$$

 $\delta[\alpha f(x) + (1-\alpha)f(z)] \ge \delta f(\alpha x + (1-\alpha)z).$
 $\alpha g(x) + (1-\alpha)g(z) \ge g(\alpha x + (1-\alpha)z) \Longrightarrow$
 $\beta[\alpha g(x) + (1-\alpha)g(z)] \ge \beta g(\alpha x + (1-\alpha)z).$
Hence, $\delta[\alpha f(x) + (1-\alpha)f(z)] + \beta[\alpha g(x) + (1-\alpha)g(z)] =$
 $= \alpha(\delta f(x) + \beta g(x)) + (1-\alpha)(\delta f(z) + \beta g(z)) \ge$
 $\delta f(\alpha x + (1-\alpha)z) + \beta g(\alpha x + (1-\alpha)z)$ [back]

► Take x s.t. $f(x) \leq l$, z s.t. $f(z) \leq l$, and any $\alpha \in [0, 1]$: then, by convexity $f(\alpha x + (1 - \alpha)z) \leq \alpha f(x) + (1 - \alpha)f(z) \leq \alpha l + (1 - \alpha)l = l$, i.e., $\alpha x + (1 - \alpha)z \in S(f, l) \implies S(f, l)$ is a (possibly, infinite) interval (in general a convex set) On the other hand, consider the "downward spike function centered at c", i.e., $s_c(x) = \min\{|x - c|, 1\}$. Clearly, s_c is quasiconvex: in fact, $S(f, l) = \emptyset$ if l < 0, S(f, l) = [c - l, c + l] if $0 \leq l < 1$, and $S(f, l) = \mathbb{R}$ if $l \geq 1$. However, s_0 is not convex: in fact, $(1/2)s_0(0) + (1/2)s_0(2) = 1/2 < 1 = s_0((1/2)0 + (1/2)2) = s_0(1)$ [back]

Solutions VIII

► $S(\delta f, I) = \{x : \delta f(x) \le I\} = \{x : \delta f(x) \le I/\delta\} = S(f, I/\delta)$: since the latter is an interval (convex set), the former also is To prove \Leftarrow consider $f(x) = s_{-1}(x) + s_1(x)$ (cf. previous exercise). Clearly, f(-1) = f(1) = 0 but f(x) > 0 for all other values of x, i.e., $S(f, 0) = \{-1, 1\}$ is not an interval [back]