Unconstrained Multivariate Optimality and Convexity

Antonio Frangioni

Department of Computer Science University of Pisa https://www.di.unipi.it/~frangio mailto:frangio@di.unipi.it

Computational Mathematics for Learning and Data Analysis Master in Computer Science – University of Pisa

A.Y. 2024/25

# Outline

Unconstrained multivariate optimization

Gradients, Jacobians, and Hessians

Optimality conditions

A Quick Look to Convex Functions

Wrap up & References

Solutions

#### Unconstrained global optimization

- ▶ Back to  $f : \mathbb{R}^n \to \mathbb{R}$ , i.e.,  $f(x_1, x_2, \ldots, x_n) = f(x)$
- Of course need f L-c (exact definition later)
- Very bad news: no algorithm can work in less than  $\Omega((LD / \varepsilon)^n)$  [3, p. 413]
- Curse of dimensionality: not really doable unless n = 3/5/10 tops
- Can make it in O((LD / ε)<sup>n</sup>), multidimensional grid with small enough step: the standard approach to hyperparameter optimization (but D, L unknown)
- If f analytic, clever (spatial) B&B can give global optimum
- If f black-box (typically => no derivatives), many effective heuristics can give good (not provably optimal) solutions [8]
- In both cases, complexity grows "fast" in practice as n grows
- Finding good global solutions hard in practice, proving optimality even worse

#### Unconstrained global optimization

- ▶ Back to  $f : \mathbb{R}^n \to \mathbb{R}$ , i.e.,  $f(x_1, x_2, \ldots, x_n) = f(x)$
- Of course need f L-c (exact definition later)
- Very bad news: no algorithm can work in less than  $\Omega((LD / \varepsilon)^n)$  [3, p. 413]
- Curse of dimensionality: not really doable unless n = 3/5/10 tops
- Can make it in O((LD / ε)<sup>n</sup>), multidimensional grid with small enough step: the standard approach to hyperparameter optimization (but D, L unknown)
- If f analytic, clever (spatial) B&B can give global optimum
- If f black-box (typically => no derivatives), many effective heuristics can give good (not provably optimal) solutions [8]
- In both cases, complexity grows "fast" in practice as n grows
- Finding good global solutions hard in practice, proving optimality even worse unless *f* convex ⇒ global ≡ local

## **Unconstrained local optimization**

- Local optimization much better
- Results in general surprisingly analogous to (multivariate) quadratic case: most (but not all) convergence results are dimension-independent = complexity does not explicitly depends on n (if it does, not exponentially)
- Not completely surprising: linear / quadratic models a staple
- Does not mean all local algorithms are fast:
  - convergence speed may be rather low ("badly linear" or worse)
  - ▶ cost of f / derivatives computation necessarily increases with n: for large  $n \approx 10^9$ , even  $O(n^2)$  is too much (will see)
  - some dependency on n may be hidden in O(·) constants
- Yet, large-scale local optimization is doable if you have derivatives
- Except, derivatives in  $\mathbb{R}^n$  are significantly more complex

# Outline

Unconstrained multivariate optimization

Gradients, Jacobians, and Hessians

**Optimality conditions** 

A Quick Look to Convex Functions

Wrap up & References

Solutions

### Mathematically speaking: Hints of topology in $\mathbb{R}^n$

- Fundamental (easy) concept: B(x, r) := { z ∈ ℝ<sup>n</sup> : || z − x || ≤ r } ball, center x ∈ ℝ<sup>n</sup>, radius r > 0 = points "close" to x in the chosen norm
- ► Euclidean norm just one member of a large family: || x ||<sub>p</sub> := ( ∑<sub>i=1</sub><sup>n</sup> | x<sub>i</sub> |<sup>p</sup> )<sup>1/p</sup> p-norm, p > 0
  ► Euclidean ≡ || x ||<sub>2</sub>, || x ||<sub>1</sub> := ∑<sub>i=1</sub><sup>n</sup> | x<sub>i</sub> | (Lasso)
  ► lim<sub>p→∞</sub> ≡ || x ||<sub>∞</sub> := max{ | x<sub>i</sub> | : i = 1,..., n}
  ► lim<sub>p→0</sub> ≡ || x ||<sub>0</sub> := #{i : |x<sub>i</sub>| > 0} (not norm)



- Other norms ∃ besides p-norm (matrix norms ...)
- ▶ Pictured  $S(\|\cdot\|_p, 1) \equiv \mathcal{B}_p(0, 1), p = 0, 1/2, 1, 3/2, 2, 3, \infty$  (grow with p)
- The norm defines the topology of ℝ<sup>n</sup>, but doesn't really matter: all is "∃ ball", "∀ small ball", and all norms are equivalent [9] ∀ || · ||, ||| · ||| ∃0 < α < β s.t. α|| x || ≤ ||| z ||| ≤ β|| x || ∀ x, z ∈ ℝ<sup>n</sup>

• Limit of sequence  $\{x_i\} \subset \mathbb{R}^n$ :

 $\lim_{i \to \infty} x_i = x \equiv \{x_i\} \to x$   $\iff \forall \varepsilon > 0 \; \exists h \text{ s.t. } d(x_i, x) \le \varepsilon \; \forall i \ge h$   $\iff \forall \varepsilon > 0 \; \exists h \text{ s.t. } x_i \in \mathcal{B}(x, \varepsilon) \; \forall i \ge h$   $\iff \lim_{i \to \infty} d(x_i, x) = 0$ 

- Points of { x<sub>i</sub> } eventually all come arbitrarily close to x
- Note that ℝ<sup>n</sup> "exponentially larger" than ℝ ⇒ there are many more ways for { x<sub>i</sub> } → x in ℝ<sup>n</sup> than in ℝ
- This may lead to more tricky situations / concepts

## Mathematically speaking: Continuity [4, A2]

- Same definitions:
  - f continuous at x:  $\{x_i\} \to x \implies \{f(x_i)\} \to f(x)$
  - $f \in C^0$ : continuous  $\forall x \in \mathbb{R}^n$
- There are "many" different  $\{x_i\} \rightarrow x$ , the limit must be = for all

Not sufficient to only consider "simple" sequences

• 
$$f(x_1, x_2) = \left[\frac{x_1^2 x_2}{x_1^4 + x_2^2}\right]^2 f(0, 0) = ??$$

- ► Limit = "on straight lines"  $\forall [d_1, d_2] \in \mathbb{R}^2$  $\lim_{k \to \infty} f(d_1 / k, d_2 / k) = 0$
- ► Limit  $\neq$  on "curved" line  $\lim_{k \to \infty} f(1 / k, 1 / k^2) = 1 / 4$

Exercise: Prove the two limits above



## Directional/partial derivatives, gradient [2, A.4.1][4, p. 625]

- ►  $f : \mathbb{R}^n \to \mathbb{R}$ , directional derivative at  $x \in \mathbb{R}^n$  along direction  $d \in \mathbb{R}^n$ :  $\frac{\partial f}{\partial d}(x) := \lim_{t \to 0} \frac{f(x+td) - f(x)}{t} = \varphi'_{x,d}(0)$
- ► Scales linearly with || d ||:  $\frac{\partial f}{\partial \beta d}(x) = \beta \frac{\partial f}{\partial d}(x)$  (sounds familiar?) (check)
- ▶ One-sided directional derivative:  $\lim_{t\to 0_{\pm}} \ldots = [\varphi_{x,d}]'_{\pm}(0)$
- The derivative of the (x, d)-tomography (in 0): how can it be computed?
- ► Special case: partial derivative of f w.r.t.  $x_i$  at  $x \in \mathbb{R}^n$  $\frac{\partial f}{\partial x_i}(x) := \lim_{t \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i+t, x_{i+1}, \dots, x_n) - f(x)}{t} = [f_x^i]'(x_i) = \frac{\partial f}{\partial u'}(x)$
- The derivative of the restriction of f to x<sub>i</sub> is easy to compute: just f'(x<sub>1</sub>,..., x<sub>i-1</sub>, x, x<sub>i+1</sub>,..., x<sub>n</sub>) treating x<sub>j</sub> for j ≠ i as constants

Gradient = (column) vector of all partial derivatives, "easy to compute" [6]
∇f(x) := [∂f/∂x₁(x), ..., ∂f/∂xₙ(x)]<sup>T</sup> ∈ ℝ<sup>n</sup>
f(x) = ⟨b, x⟩ ⇒ ∇f(x) = b

## Directional/partial derivatives, gradient [2, A.4.1][4, p. 625]

- ►  $f : \mathbb{R}^n \to \mathbb{R}$ , directional derivative at  $x \in \mathbb{R}^n$  along direction  $d \in \mathbb{R}^n$ :  $\frac{\partial f}{\partial d}(x) := \lim_{t \to 0} \frac{f(x+td) - f(x)}{t} = \varphi'_{x,d}(0)$
- ► Scales linearly with || d ||:  $\frac{\partial f}{\partial \beta d}(x) = \beta \frac{\partial f}{\partial d}(x)$  (sounds familiar?) (check)
- ▶ One-sided directional derivative:  $\lim_{t\to 0_{\pm}} \ldots = [\varphi_{x,d}]_{\pm}'(0)$
- The derivative of the (x, d)-tomography (in 0): how can it be computed?
- ► Special case: partial derivative of f w.r.t.  $x_i$  at  $x \in \mathbb{R}^n$  $\frac{\partial f}{\partial x_i}(x) := \lim_{t \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i+t, x_{i+1}, \dots, x_n) - f(x)}{t} = [f_x^i]'(x_i) = \frac{\partial f}{\partial u^i}(x)$
- The derivative of the restriction of f to x<sub>i</sub> is easy to compute: just f'(x<sub>1</sub>,..., x<sub>i-1</sub>, x, x<sub>i+1</sub>,..., x<sub>n</sub>) treating x<sub>j</sub> for j ≠ i as constants
- Gradient = (column) vector of all partial derivatives, "easy to compute" [6]
  ∇f(x) := [ ∂f/∂x₁(x), ..., ∂f/∂xₙ(x) ]<sup>T</sup> ∈ ℝ<sup>n</sup>
  f(x) = ½x<sup>T</sup>Qx + qx ⇒ ∇f(x) = Qx + q

#### **Differentiability in** $\mathbb{R}^n$

► f differentiable at x if  $\exists$  linear function  $\phi(h) = \langle b, h \rangle + f(x)$  s.t.  $\lim_{\|h\|\to 0} \frac{|f(x+h) - \phi(h)|}{\|h\|} = 0 \quad [\implies \phi(0) = f(x) \implies c = f(x)]$   $\varphi \equiv$  "first order model" of f at x, the error "vanishes faster than linearly"

► f differentiable at 
$$x \implies b = \nabla f(x)$$
 [5, Th. 5.3.6]  
 $\implies \frac{\partial f}{\partial x_i}(x)$  exists  $\forall i$  (but  $\Leftarrow$  not true)  
 $\implies$  first-order model of f at x:  $L_x(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle \nabla f(x), z - x \rangle + f(z) = \langle$ 

- ► f differentiable at  $x \implies \nabla f(x)$  gives all  $\frac{\partial f}{\partial d}$  [5, Ex 5.3.19]:  $\forall d \in \mathbb{R}^n \quad \frac{\partial f}{\partial d}(x) = \langle \nabla f(x), d \rangle \quad (\Leftarrow \exists)$
- ► [5, Th. 5.3.10, Th. 5.3.7]  $\exists \delta > 0$  s.t.  $\forall i \frac{\partial f}{\partial x_i}(z)$  continuous  $\forall z \in \mathcal{B}(x, \delta)$  $\implies f$  differentiable at  $x \implies f$  continuous at x
- ▶  $\frac{\partial f}{\partial x_i} \in C^0 \implies f$  differentiable everywhere  $\equiv f \in C^1$ (but  $\Leftarrow$ ,  $\exists$  weird f differentiable with discontinuous  $\frac{\partial f}{\partial x_i}$  [5, Ex. 5.3.9])
- (non)differentiability in  $\mathbb{R}^n$  is much weirder than in  $\mathbb{R}$

x)

## Non-differentiability I

• 
$$f(x_1, x_2) = ||[x_1, x_2]||_1 = |x_1| + |x_2|$$

f continuous everywhere (why?)

- ▶  $\exists d \in \mathbb{R}^n$  s.t.  $\nexists \frac{\partial f}{\partial d}(0, 0)$
- ► f non differentiable in [0, 0]



**Exercise:** where else f is non differentiable? Prove it is not

## Non-differentiability II

• 
$$f(x_1, x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2}$$

- Can take f(0, 0) = 0 as  $\lim_{[x_1, x_2] \to [0, 0]} f(x_1, x_2) = 0$
- ►  $\exists \frac{\partial f}{\partial d} \quad \forall d \in \mathbb{R}^n$ , but f non differentiable in [0, 0]



**Exercise:** prove  $\lim_{x\to 0} f(x) = 0$ , first "along lines" then in general

**Exercise:** prove all this (hint: compute  $[\partial f / \partial d](0, 0)$  for generic  $d = [d_1, d_2]$ , prove it cannot have the form  $\langle v, d \rangle$  for any v)

**Exercise:** alternatively, compute  $\nabla f$  and prove it is not continuous in [0, 0](hint: look at picture of  $\partial f / \partial x_2$  for directions where the limit is  $\neq$ )

## Non-differentiability III

• 
$$f(x_1, x_2) = \left[\frac{x_1^2 x_2}{x_1^4 + x_2^2}\right]^2$$

- ► f not continuous ⇒ not differentiable at [0, 0]
- $\blacktriangleright \ \frac{\partial f}{\partial d}(0, 0) = 0 \ \forall d \in \mathbb{R}^n$
- ▶  $\nexists \nabla f$ , but  $\exists v (= 0)$  s.t.  $\frac{\partial f}{\partial d} = \langle v, d \rangle \forall d \in \mathbb{R}^n$



f does nasty things on curved lines, not straight ones

**Exercise:** prove  $\frac{\partial f}{\partial d}(0, 0) = 0$ 

▶ In  $\mathbb{R}^2$ ,  $L(L_x, f(x))$  is a line passing by x and  $\nabla f(x) \perp L(L_x, f(x))$ 

▶ In  $\mathbb{R}^n$ ,  $L(L_x, f(x))$  is a surface passing by x and  $\nabla f(x) \perp L(L_x, f(x))$ 

$$f(x_1 \ x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2} \quad , \quad \nabla f(x) = \left[\frac{2x_1 x_2^3}{(x_1^2 + x_2^2)^2} \ , \ \frac{x_1^2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2} \right]^T$$



ln  $\mathbb{R}^n$ ,  $L(L_x, f(x))$  is a surface passing by x and  $\nabla f(x) \perp L(L_x, f(x))$  $f(x_1 \ x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2} \quad , \quad \nabla f(x) = \left[\frac{2x_1 x_2^3}{(x_1^2 + x_2^2)^2}, \frac{x_1^2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2}\right]^T$ 

 $\nabla f(x) \models f \text{ differentiable at } x \implies L(L_x, f(x)) \perp L(f, f(x)) \perp \nabla f(x)$ 



▶ In  $\mathbb{R}^n$ ,  $L(L_x, f(x))$  is a surface passing by x and  $\nabla f(x) \perp L(L_x, f(x))$ 

$$f(x_{1} \ x_{2}) = \frac{x_{1}^{2} x_{2}}{x_{1}^{2} + x_{2}^{2}} , \quad \nabla f(x) = \left[\frac{2x_{1} x_{2}^{3}}{(x_{1}^{2} + x_{2}^{2})^{2}}, \frac{x_{1}^{2} (x_{1}^{2} - x_{2}^{2})}{(x_{1}^{2} + x_{2}^{2})^{2}}\right]^{T}$$

$$f \text{ differentiable at } x \implies L(L_{x}, f(x)) \perp L(f, f(x)) \perp \nabla f(x)$$

ln  $\mathbb{R}^n$ ,  $L(L_x, f(x))$  is a surface passing by x and  $\nabla f(x) \perp L(L_x, f(x))$  $f(x_1 \ x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2} \quad , \quad \nabla f(x) = \left[\frac{2x_1 x_2^3}{(x_1^2 + x_2^2)^2}, \frac{x_1^2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2}\right]^T$ f differentiable at  $x \implies$ 

L(f, f(x)) "smooth"



▶ In  $\mathbb{R}^n$ ,  $L(L_x, f(x))$  is a surface passing by x and  $\nabla f(x) \perp L(L_x, f(x))$ 



ln  $\mathbb{R}^n$ ,  $L(L_x, f(x))$  is a surface passing by x and  $\nabla f(x) \perp L(L_x, f(x))$  $f(x_1 \ x_2) = \frac{x_1^2 x_2}{x_1^2 + x_2^2} \quad , \quad \nabla f(x) = \left[\frac{2x_1 x_2^3}{(x_1^2 + x_2^2)^2}, \frac{x_1^2 (x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2}\right]^T$  $\blacktriangleright$  f differentiable at x  $\Longrightarrow$  $L(L_x, f(x)) \perp L(f, f(x)) \perp \nabla f(x)$ 0.5  $\blacktriangleright$  f differentiable at  $x \implies$ L(f, f(x)) "smooth" As  $x \to \overline{x}$  where f non differentiable. -0.5 L(f, f(x)) "less and less smooth" • f non differentiable at  $x \implies$ -1.0 0.0 0.5 I(f, f(x)) has "kinks" -1.0 -0.5

• f differentiable  $\implies$  all relevant objects in  $\mathbb{R}^{n+1}$  and  $\mathbb{R}^n$  are smooth

• f non differentiable  $\implies$  kinks appear and things break

### Derivatives of vector-valued functions, Jacobian

- ▶ Vector-valued function  $f : \mathbb{R}^n \to \mathbb{R}^m$ ,  $f(x) = [f_1(x), f_2(x), \dots, f_m(x)]$
- Partial derivative: usual stuff, except with extra index

$$\frac{\partial f_j}{\partial x_i}(x) = \lim_{t \to 0} \frac{f_j(x_1, \ldots, x_{i-1}, x_i + t, x_{i+1}, \ldots, x_n) - f_j(x)}{t}$$

• Jacobian := matrix of all  $m \cdot n$  partial derivatives

$$Jf(x) := \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \dots & \frac{\partial f_1}{\partial x_n}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \dots & \frac{\partial f_2}{\partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \dots & \frac{\partial f_m}{\partial x_n}(x) \end{bmatrix} = \begin{bmatrix} \nabla f_1(x)^T \\ \nabla f_2(x)^T \\ \vdots \\ \nabla f_m(x)^T \end{bmatrix}$$

 $= m \times n$  matrix with gradients as rows

Will come in handy later on for constrained optimization

A special vector-valued function is particularly important already

- ▶  $\frac{\partial f}{\partial x_i}$  :  $\mathbb{R}^n \to \mathbb{R} \implies$  has partial derivatives itself
- ► Second order partial derivative (just do it twice)  $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2} = [f_x^i]''$

▶  $\nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n \implies$  has a Jacobian: Hessian (matrix) of f at x

$$\nabla^{2}f(x) := J\nabla f(x) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x) \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}^{2}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x) \end{bmatrix}$$

 $O(n^2)$  to store and (at least) compute (unless sparse), bad when n large

- $\frac{\partial f}{\partial x_i}: \mathbb{R}^n \to \mathbb{R} \implies$  has partial derivatives itself
- ► Second order partial derivative (just do it twice)  $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2} = [f_x^i]''$

▶  $\nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n \implies$  has a Jacobian: Hessian (matrix) of f at x

$$\nabla^{2}f(x) := J\nabla f(x) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x) \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}^{2}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x) \end{bmatrix}$$

 $O(n^2)$  to store and (at least) compute (unless sparse), bad when *n* large  $f(x) = \langle b, x \rangle \implies \nabla^2 f(x) = 0$ 

- ▶  $\frac{\partial f}{\partial x_i}$  :  $\mathbb{R}^n \to \mathbb{R} \implies$  has partial derivatives itself
- ► Second order partial derivative (just do it twice)  $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2} = [f_x^i]''$

▶  $\nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n \implies$  has a Jacobian: Hessian (matrix) of f at x

$$\nabla^{2}f(x) := J\nabla f(x) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x) \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}^{2}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x) \end{bmatrix}$$

 $O(n^2)$  to store and (at least) compute (unless sparse), bad when n large

$$f(x) = \frac{1}{2}x^T Q x + q x \implies \nabla^2 f(x) = Q$$

- ▶  $\frac{\partial f}{\partial x_i}$  :  $\mathbb{R}^n \to \mathbb{R} \implies$  has partial derivatives itself
- Second order partial derivative (just do it twice)  $\frac{\partial^2 f}{\partial x_i \partial x_i} \qquad \frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2} = [f_x^i]''$

▶  $\nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n \implies$  has a Jacobian: Hessian (matrix) of f at x

$$\nabla^{2}f(x) := J\nabla f(x) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x) \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}^{2}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x) \end{bmatrix}$$

 $O(n^2)$  to store and (at least) compute (unless sparse), bad when n large

$$f(x) = \frac{1}{2}x^T Q x + q x \implies \nabla^2 f(x) = Q$$

Second-order model = first-order model + second-order term (= better) Q<sub>x</sub>(z) = L<sub>x</sub>(z) + ½(z − x)<sup>T</sup>∇<sup>2</sup>f(x)(z − x) a (non-homogeneous) quadratic function ⇒ simple

#### Hessians: continuity and symmetry

► [5, Th. 5.3.3] 
$$\exists \delta > 0$$
 s.t.  $\forall z \in \mathcal{B}(x, \delta)$   
 $\frac{\partial^2 f}{\partial x_j \partial x_i}(z)$  and  $\frac{\partial^2 f}{\partial x_i \partial x_j}(z)$  exist and are continuous at  $x$   
 $\implies \frac{\partial^2 f}{\partial x_j \partial x_i}(x) = \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \equiv \nabla^2 f$  symmetric  
 $\implies$  all eigenvalues of  $\nabla^2 f(x)$  real

- Yet, extremely difficult to construct examples of not symmetric  $\nabla^2 f$
- ►  $f \in C^2 := \nabla^2 f(x)$  continuous everywhere  $\equiv \frac{\partial^2 f}{\partial x_j \partial x_i} \in C^0 \forall i, j$   $\implies \nabla^2 f(x)$  symmetric everywhere and  $\nabla f(x) \in C^1 \implies \nabla f(x) \in C^0 \implies f(x) \in C^0$
- C<sup>2</sup> (strictly speaking C<sup>3</sup>) is the best class ever for optimization, but it is sometimes necessary to make do with (much) less than that

# Outline

Unconstrained multivariate optimization

Gradients, Jacobians, and Hessians

Optimality conditions

A Quick Look to Convex Functions

Wrap up & References

Solutions



• If f'(x) < 0 or f'(x) > 0, x clearly cannot be a local minimum



• If f'(x) < 0 or f'(x) > 0, x clearly cannot be a local minimum

• Hence, f'(x) = 0 in all local minima (hence in the global one as well)



• If f'(x) < 0 or f'(x) > 0, x clearly cannot be a local minimum

- Hence, f'(x) = 0 in all local minima (hence in the global one as well)
- However, f'(x) = 0 also in local (hence global) maxima



• If f'(x) < 0 or f'(x) > 0, x clearly cannot be a local minimum

- Hence, f'(x) = 0 in all local minima (hence in the global one as well)
- However, f'(x) = 0 also in local (hence global) maxima ... as well as in saddle points

### First-order (necessary, local) optimality condition

- ▶ f differentiable at x and x local minimum  $\implies \nabla f(x) = 0$ ≡ stationary point (  $\Leftarrow$ , previous pictures for n = 1)
- The proof, because theorems' proofs breed algorithms
- By contradiction: x local minimum but  $\nabla f(x) \neq 0$
- ▶ Prove x not local minimum not straightforward ( $\nexists \equiv \forall /$ ):  $\forall \varepsilon > 0$  "small enough"  $\exists z \in \mathcal{B}(x, \varepsilon)$  s.t. f(z) < f(x)
  - $\equiv$  have to construct  $\infty$ -ly many z better then x arbitrarily close to it
- Luckily all the z can be taken along a single  $d \in \mathbb{R}^n$ :  $z = x + \alpha d$ ,  $\alpha > 0$
- Can choose d, use "best" one: steepest descent direction at x
  - $\equiv$  d with ||d|| = 1 s.t.  $\frac{\partial f}{\partial d}(x)$  is most negative
  - $\equiv$  the (normalised) anti-gradient  $-\nabla f(x) (/ \| \nabla f(x) \|)$

**Exercise:** prove  $-\nabla f(x) / \| \nabla f(x) \|$  is the steepest descent direction at x

**Exercise:** Why are we insisting that || d || = 1? Discuss

#### Mathematically speaking: Optimality condition, the proof

- ► Tomography  $\varphi(\alpha) = \varphi_{x, -\nabla f(x)}(\alpha)$  (better not normalise d)
- ▶ Want to prove:  $\exists \bar{\alpha} > 0$  s.t.  $\varphi(\alpha) < f(x) = \varphi(0) \forall \alpha \in [0, \bar{\alpha}]$  (1)
- Remainder of first-order model at z:  $R(z x) = f(z) L_x(z)$
- ▶ Definition of  $f \in C^1$ :  $\lim_{h \to 0} R(h) / ||h|| = 0 \equiv R(h) \to 0$  "faster than  $h \to 0$ " ▶  $c(x) = f(x) - c\nabla f(x)) = f(x) + (-c\nabla f(x)) - \nabla f(x)) + R(-c\nabla f(x))$
- $\varphi(\alpha) = f(x \alpha \nabla f(x)) = f(x) + \langle -\alpha \nabla f(x), \nabla f(x) \rangle + R(-\alpha \nabla f(x))$ =  $f(x) - \alpha \| \nabla f(x) \|^2 + R(-\alpha \nabla f(x))$

negative term linear in  $\alpha$  + (possibly) positive "more than linear" one

As 
$$\alpha \to 0 \iff || h = -\alpha \nabla f(x) || \to 0$$
, it is clear who wins:  

$$\lim_{\alpha \to 0} R(-\alpha \nabla f(x)) / || \alpha \nabla f(x) || = \lim_{h \to 0} R(h) / || h || = 0$$

$$\equiv \forall \varepsilon > 0 \exists \overline{\alpha} > 0 \text{ s.t. } R(-\alpha \nabla f(x)) / \alpha || \nabla f(x) || \le \varepsilon \quad \forall \alpha \in [0, \overline{\alpha}]$$

► Take 
$$\varepsilon < \|\nabla f(x)\|$$
 to get  $R(-\alpha \nabla f(x)) < \alpha \|\nabla f(x)\|^2 \implies$   
 $\varphi(\alpha) = f(x) - \alpha \|\nabla f(x)\|^2 + R(-\alpha \nabla f(x)) < f(x)$ 

▶ Proof shows: a small enough step along  $-\nabla f(x) \neq 0$  yields a better z

### Second-order (necessary, local) optimality conditions

- ► Stationary point ⇒ local minimum: how to tell them apart?
- First-order model can't, it is "flat": need to look at curvature of f
- ▶ If f were quadratic I would know: look at eigenvalues of  $Q = \nabla^2 f(x)$
- ▶ Obvious idea: approximate f with a quadratic function = second-order model = Q<sub>x</sub>(z) = L<sub>x</sub>(z) + <sup>1</sup>/<sub>2</sub>(z - x)<sup>T</sup>∇<sup>2</sup>f(x)(z - x)

$$\nabla Q_x(x) = \nabla L_x(x) = \nabla f(x) \Longrightarrow \nabla Q_x(x) = 0$$
 (check)

► Hence,  $\nabla^2 f(x) \succeq 0 \iff x$  (global) minimum of  $Q_x$ 

 $f \in C^2$ : x local minimum  $\implies \nabla^2 f(x) \succeq 0$ 

Requires second-order Taylor's theorem [5, Th. 5.4.9]:

$$f(z) = L_{x}(z) + \frac{1}{2}(z-x)^{T} \nabla^{2} f(x)(z-x) + R(z-x)$$

with  $\lim_{h\to 0} R(h) / \|h\|^2 = 0 \equiv R(h) \to 0$  faster than " $h^2 \to 0$ "

 $\equiv$  the remainder vanishes "faster than quadratically"

Mathematically speaking: 2<sup>nd</sup>-order optimality conditions, the proof 19

- ▶ By contradiction:  $f \in C^2$ , x local minimum but  $\nabla^2 f(x) \succeq 0 \equiv \exists d$  s.t.  $d^T \nabla^2 f(x) d < 0$  (w.l.o.g. ||d|| = 1)
- $d = \text{direction of negative curvature, } \varphi(\alpha) = \varphi_{x,d}(\alpha)$

► Second-order Taylor +  $\nabla f(x) = 0 \equiv L_x(z) = f(x) \implies$   $\varphi(\alpha) = f(x) + \frac{1}{2}\alpha^2 d^T \nabla^2 f(x) d + R(\alpha d)$ negative quadratic term in  $\alpha$  + (possibly) positive "more than quadratic" one

► As  $\alpha$  (=  $|| h = \alpha d ||$  since || d || = 1)  $\rightarrow 0$ , it is clear who wins:  $\lim_{\alpha \to 0} R(\alpha d) / \alpha^{2} = \lim_{h \to 0} R(h) / || h ||^{2} = 0 \equiv$   $\forall \varepsilon > 0 \exists \overline{\alpha} > 0 \text{ s.t. } R(\alpha d) \leq \varepsilon \alpha^{2} \quad \forall \alpha \in [0, \overline{\alpha}]$ 

► Take (0 <)  $\varepsilon$  <  $-\frac{1}{2}d^{T}\nabla^{2}f(x)d$  to get  $R(\alpha d)$  <  $-\frac{1}{2}\alpha^{2}d^{T}\nabla^{2}f(x)d$  $\implies \varphi(\alpha) = f(x) + \frac{1}{2}\alpha^{2}d^{T}\nabla^{2}f(x)d + R(\alpha d) < f(x) \quad \forall \alpha \in [0, \bar{\alpha}] \quad \not$ 

In a local minimum, there cannot be directions of negative curvature: "when the first derivative is 0, second-order effects prevail"

#### Second-order (sufficient, local) optimality conditions

- Necessary condition almost also sufficient: f ∈ C<sup>2</sup>, ∇f(x) = 0 and ∇<sup>2</sup>f(x) ≻ 0 ⇒ x local minimum
- Avoids "bad case" d<sup>T</sup>∇<sup>2</sup>f(x)d = 0 ≡ zero-curvature direction ≡ x saddle point ≈ f"(x) = 0: would need even higher-order derivatives
- ► Proof: second-order Taylor  $f(x + d) = f(x) + \frac{1}{2}d^T \nabla^2 f(x) d + R(d)$  with  $\lim_{d\to 0} R(d) / ||d||^2 = 0 \equiv \forall \varepsilon > 0 \exists \delta > 0 \text{ s.t. } R(d) / ||d||^2 \ge -\varepsilon$   $\equiv R(d) \ge -\varepsilon ||d||^2 \quad \forall d \text{ s.t. } ||d|| < \delta$   $\lambda_n > 0$  min eigenvalue of  $\nabla^2 f(x) \implies d^T \nabla^2 f(x) d \ge \lambda_n ||d||^2$ Take  $\varepsilon < \lambda_n / 2$ : then,  $\forall d \text{ s.t. } ||d|| < \delta$  $f(x + d) = f(x) + \frac{1}{2}d^T \nabla^2 f(x) d + R(d) > f(x) + \frac{\lambda_n - \varepsilon}{2} ||d||^2$
- ► It proves more than we asked: f grows "at least quadratically around x"  $\exists \delta > 0 \text{ and } \gamma > 0 \text{ s.t. } f(z) \ge f(x) + \gamma || z - x ||^2 \quad \forall z \in \mathcal{B}(x, \delta)$  $\equiv$  strong (local) optimality

## Outline

Unconstrained multivariate optimization

Gradients, Jacobians, and Hessians

**Optimality conditions** 

A Quick Look to Convex Functions

Wrap up & References

Solutions

















- $\max{f(x) : x \in \mathbb{R}^n} = +\infty$  (unless f(x) = c); sounds familiar?
- ▶ In fact, f quadratic convex  $\equiv Q \succeq 0$
- ► Exactly the opposite for f concave (Q ≤ 0): as a great man said, "(convex) optimization is a one-sided world"
- Only f both convex and concave: linear
- How do you tell if a function is convex?

•  $f \in C^1$  convex  $\iff \nabla f$  monotone:  $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$ 

22



•  $f \in C^1$  convex  $\iff \nabla f$  monotone:  $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$ 

22



•  $f \in C^1$  convex  $\iff \nabla f$  monotone:  $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$ 

22



►  $f \in C^1$  convex  $\iff \nabla f$  monotone:  $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$ 

22



►  $f \in C^1$  convex  $\iff \nabla f$  monotone:  $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$ 

Exercise: Justify why that property is called "monotone"



f ∈ C<sup>1</sup> convex ⇐⇒
 
$$L_x(z) = f(x) + \langle \nabla f(x), z - x \rangle \leq f(z)$$

22

**Exercise:** prove  $\implies$  "by prime principles"

Geometrically: the epigraph is an half-space

►  $f \in C^1$  convex  $\iff \nabla f$  monotone:  $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$ 

Exercise: Justify why that property is called "monotone"



22

**Exercise:** prove  $\implies$  "by prime principles"

Geometrically: the epigraph is an half-space that contains that of f (epi(L<sub>x</sub>) ⊇ epi(f))

►  $f \in C^1$  convex  $\iff \nabla f$  monotone:  $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$ 

22



►  $f \in C^1$  convex  $\iff \nabla f$  monotone:  $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$ 

22



►  $f \in C^1$  convex  $\iff \nabla f$  monotone:  $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$ 

22



►  $f \in C^1$  convex  $\iff \nabla f$  monotone:  $\langle \nabla f(z) - \nabla f(x), z - x \rangle \ge 0 \quad \forall x, z$ 

Exercise: Justify why that property is called "monotone"



•  $f \in C^1$  convex:  $\nabla f(x) = 0 \iff x$  global minimum

•  $f \in C^2$ : f convex  $\equiv \nabla^2 f(x) \succeq 0 \quad \forall x \in \mathbb{R}^n$ 

•  $f \in C^2$  with  $\nabla^2 f \succeq \tau I$  with  $\tau > 0$  the best case for optimization

Sometimes the best way to prove f convex, unless it is by construction

22

### Mathematically speaking: Basic convex functions [2, § 3.1.5] 23

Some functions are (more or less obviously) convex:

1. f(x) = bx + c (affine)  $\iff$  both convex and concave (check) [nontrivial]

2. 
$$f(x) = \frac{1}{2}x^T Q x + q x$$
 (quadratic) convex  $\iff Q \succeq 0$ 

3. 
$$f(x) = e^{ax}$$
 for any  $a \in \mathbb{R}$ 

- 4. restricted to  $x \ge 0$ ,  $f(x) = -\ln(x)$
- 5. restricted to  $x \ge 0$ ,  $f(x) = x^a$  for  $a \ge 1$  or  $a \le 0$

6. 
$$f(x) = ||x||_p$$
 for  $p \ge 1$ 

7. 
$$f(x) = \max\{x_1, \ldots, x_n\}$$

8.  $Q \in \mathbb{R}^{n \times n}$  symmetric, eigenvalues  $\lambda_1 \ge \lambda_2 \ge \dots \lambda_n$ :  $f_m(Q) = \sum_{i=1}^m \lambda_i$  (sum of *m* largest eigenvalues)

**Exercise:** Prove 3., 4. and 5.; for the latter, which a make  $x^a$  convex on all  $\mathbb{R}$ ?

**Exercise:** is  $f(x) = \min\{x_1, \ldots, x_n\}$  convex?

### Mathematically speaking: Convexity-preserving operations [2, § 3.2] 24

- 1. f, g convex,  $\delta$ ,  $\beta \in \mathbb{R}_+ \implies \delta f + \beta g$  convex (non-negative combination)
- 2.  $\{f_i\}_{i \in I} (\infty \text{-ly many}) \text{ convex functions } \implies f(x) = \sup_{i \in I} \{f_i(x)\} \text{ convex}$
- 3. f convex  $\implies$  f(Ax + b) convex (pre-composition with linear mapping)
- 4.  $f : \mathbb{R}^n \to \mathbb{R}$  convex,  $g : \mathbb{R} \to \mathbb{R}$  convex increasing  $\implies g(f(x))$  convex (post-composition with increasing convex function)
- 5.  $f_1, f_2 \text{ convex} \implies f(x) = \inf\{f_1(x_1) + f_2(x_2) : x_1 + x_2 = x\}$  convex (infimal convolution)
- 6.  $g \text{ convex} \implies f(x) = \inf\{g(z) : Az = x\}$  convex (value function of convex constrained problem)
- 7.  $g(x, z) : \mathbb{R}^{n+m} \to \mathbb{R}$  convex  $\implies f(x) = \inf\{g(x, z) : z \in \mathbb{R}^m\}$  convex (partial minimization)
- 8. f(x) convex  $\implies p(x, u) = uf(x/u)$  convex on u > 0(perspective or dilation function of f)

Exercise: Prove 1. "from prime principles" (at least 2., 3. analogous)

#### Why convex and not unimodal?

- ► n = 1: f unimodal  $\iff$  quasiconvex [1, Ex. 3.57]  $\equiv \alpha f(x) + (1 \alpha) f(z) \le \max\{f(x), f(z)\}$  (??)
- F quasiconvex ⇐⇒ ∀ nonempty sublevel set S(f, l) = {x : f(x) ≤ l} is a (possibly, infinite) interval (in fact a convex set, will see) [1, Th. 3.5.2]

**Exercise:** Prove: f convex  $\implies$  f quasiconvex,  $\Leftarrow$  not true

- Issue: algebra of quasiconvex (not convex) functions "weaker"
- f quasiconvex,  $\delta \in \mathbb{R}_+ \implies \delta f$  quasiconvex true
- But f, g quasiconvex  $\implies$  f + g quasiconvex false

**Exercise:** Prove the two statements above

No (or much weaker) Disciplined QuasiConvex Programming [7], f "naturally" quasiconvex unlikely

Does not mean impossible, you may be lucky, in fact NN often  $\approx$  quasiconvex

## Outline

Unconstrained multivariate optimization

Gradients, Jacobians, and Hessians

**Optimality conditions** 

A Quick Look to Convex Functions

Wrap up & References

Solutions

- Multivariate global optimality very hard (exponential in theory & practice)
- ► Multivariate local optimality "easy" with the right (first-order) information: f ∈ C<sup>1</sup> (but one often has to make do with less, will see)
- ▶ Local optimization  $\approx$  nonlinear system  $\nabla f(x) = 0$ , surely nontrivial
- *"f* simple" (quadratic) ⇒ "∇f(x) = 0 simple" (linear system): quadratic models are going to be useful
- However, stationary points not always local minima (may be maxima)

- Multivariate global optimality very hard (exponential in theory & practice)
- ► Multivariate local optimality "easy" with the right (first-order) information: f ∈ C<sup>1</sup> (but one often has to make do with less, will see)
- ▶ Local optimization  $\approx$  nonlinear system  $\nabla f(x) = 0$ , surely nontrivial
- "f simple" (quadratic) ⇒ "∇f(x) = 0 simple" (linear system): quadratic models are going to be useful
- However, stationary points not always local minima (may be maxima)
- ► Only theoretically safe case: f convex ⇒ every stationary point is local ≡ global minimum
- Always keep it convex if possible, better if  $C^1$ , better still if  $C^2$

- Multivariate global optimality very hard (exponential in theory & practice)
- ► Multivariate local optimality "easy" with the right (first-order) information: f ∈ C<sup>1</sup> (but one often has to make do with less, will see)
- ▶ Local optimization  $\approx$  nonlinear system  $\nabla f(x) = 0$ , surely nontrivial
- "f simple" (quadratic) ⇒ "∇f(x) = 0 simple" (linear system): quadratic models are going to be useful
- However, stationary points not always local minima (may be maxima)
- ► Only theoretically safe case: f convex ⇒ every stationary point is local ≡ global minimum
- Always keep it convex if possible, better if  $C^1$ , better still if  $C^2$
- ▶ For learning, local optimality is typically enough (f "not adversarial")

- Multivariate global optimality very hard (exponential in theory & practice)
- ► Multivariate local optimality "easy" with the right (first-order) information: f ∈ C<sup>1</sup> (but one often has to make do with less, will see)
- ▶ Local optimization  $\approx$  nonlinear system  $\nabla f(x) = 0$ , surely nontrivial
- "f simple" (quadratic) ⇒ "∇f(x) = 0 simple" (linear system): quadratic models are going to be useful
- However, stationary points not always local minima (may be maxima)
- ► Only theoretically safe case: f convex ⇒ every stationary point is local ≡ global minimum
- Always keep it convex if possible, better if  $C^1$ , better still if  $C^2$
- ▶ For learning, local optimality is typically enough (f "not adversarial")
- Time to move to multivariate algorithms

### **References** I

- [1] M.S. Bazaraa, H.D. Sherali, C.M. Shetty *Nonlinear Programming: Theory and Algorithms*, John Wiley & Sons, 2006
- [2] S. Boyd, L. Vandenberghe Convex Optimization, https://web.stanford.edu/~boyd/cvxbook Cambridge University Press, 2008
- [3] P. Hansen, B. Jaumard "Lipschitz Optimization" in Handbook of Global Optimization – Nonconvex optimization and its applications, R. Horst and P.M. Pardalos (Eds.), Chapter 8, 407–494, Springer, 1995
- J. Nocedal, S.J. Wright, Numerical Optimization second edition, Springer Series in Operations Research and Financial Engineering, 2006
- [5] W.F. Trench, Introduction to Real Analysis https: //ramanujan.math.trinity.edu/wtrench/texts/TRENCH\_REAL\_ANALYSIS.PDF Free Hyperlinked Edition 2.04, December 2013
- [6] AutoDiff Org: https://www.autodiff.org
- [7] CVX: https://cvxr.com

- [8] DFL: https://www.iasi.cnr.it/~liuzzi/DFL
- [9] Wikipedia Norm https://en.wikipedia.org/wiki/Norm\_(mathematics)

## Outline

Unconstrained multivariate optimization

Gradients, Jacobians, and Hessians

**Optimality conditions** 

A Quick Look to Convex Functions

Wrap up & References

## Solutions

### Solutions I

▶ For  $y = 1 / k \rightarrow 0$ ,  $f(d_1y, d_2y) = [d_1^2 d_2 y^3 / ((d_1y)^4 + (d_2y)^2)]^2 \rightarrow 0$  (the degree of the numerator is > of the min degree at the denominator, i.e., the numerator goes to 0 faster than the denominator) however chosen  $d_1$  and  $d_2$ . In the second case  $f(y, y^2) = [y^4 / (y^4 + y^4)]^2 = 1/4$  [back]

$$\frac{\partial f}{\partial \beta d}(x) = \lim_{t \to 0} \left( f(x + t(\beta d)) - f(x) \right) / t = \\ = \lim_{t \to 0} \beta \left( f(x + (t\beta)d) - f(x) \right) / (\beta t). \ p = \beta t, \ t \to 0 \implies p \to 0 \\ \implies \frac{\partial f}{\partial \beta d}(x) = \lim_{p \to 0} \beta \left( f(x + pd) - f(x) \right) / p = \beta \frac{\partial f}{\partial d}(x)$$
 [back]

▶ In all points  $[0, x_2]$ : for d = [1, 0],  $\varphi[0, x_2]$ ,  $d(\alpha) = |\alpha| + |x_2|$  is nondifferentiable in 0, i.e.,  $\partial f / \partial d \nexists$ ; analogous for  $[x_1, 0]$  [back]

### Solutions II

► Fix any  $[d_1, d_2]$ :  $\lim_{t\to 0} f(td_1, td_2) = \lim_{t\to 0} \frac{t^3 d_1^2 d_2}{t^2 (d_1^2 + d_2^2)} = 0$ . For the general result we use the definition of limit: for any  $\varepsilon > 0$  we find  $\delta > 0$ s.t.  $\| [x_1, x_2] \| \le \delta \implies | f(x_1, x_2) | \le \varepsilon$ .  $\| [x_1, x_2] \| = \sqrt{x_1^2 + x_2^2} \le \delta$  implies  $|x_2| \le \delta$ . Hence,

$$|f(x_1, x_2) - 0| \le |x_2| \left(\frac{x_1^2}{x_1^2 + x_2^2}\right) \le |x_2| \le \delta$$

whenever  $\|[x_1, x_2]\| \le \delta$ ; thus, taking  $\delta = \varepsilon$  works, proving that the limit is indeed 0 however chosen the converging sequence. **[back]** 

$$\frac{\partial f}{\partial [d_1, d_2]}(0, 0) = \lim_{t \to 0} \frac{f(td_1, td_2) - f(0, 0)}{t} = \lim_{t \to 0} \frac{t^3 d_1^2 d_2}{t^3 (d_1^2 + d_2^2)} = f(d_1, d_2), \text{ clearly not a linear function } [back]$$

► 
$$\nabla f(x_1, x_2) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}\right] = \left[\frac{2x_1x_2^3}{(x_1^2 + x_2^2)^2}, \frac{x_1^2(x_1^2 - x_2^2)}{(x_1^2 + x_2^2)^2}\right];$$
 for  $g(x_1, x_2) = \partial f / \partial x_2$ , it is easy to check that  $g(\alpha, 0) = 1$  while  $g(0, \alpha) = 0$ , i.e., the limit along the directions  $[1, 0]$  and  $[0, 1]$  is different **[back**]

## Solutions III

- ▶ Strictly speaking, defining  $\frac{\partial f}{\partial d}(0, 0)$  requires f(0, 0), which is undefined. However, we can take any generic direction  $d = [d_1, d_2] \neq 0$  and prove that  $\lim_{\alpha \to 0} f(\alpha d) = d_1^4 d_2^4 \alpha^4 / (d_2^2 + d_1^4 \alpha^2)^2 = 0$  however chosen d. In fact, if either  $d_2 = 0$  or  $d_1 = 0$  the numerator is always 0 while the denominator is not (they cannot be both 0). If they are both nonzero, the numerator goes to 0 while the denominator goes to  $d_2^4 > 0$ . Thus, only looking along lines it would be safe to define f(0, 0) = 0 by continuity, and therefore to have  $\frac{\partial f}{\partial d}(0, 0) = 0$  for all  $d \neq 0$ , which gives  $\frac{\partial f}{\partial d}(0, 0) = \langle [0, 0], d \rangle$  [back]
- ▶ We know that  $\frac{\partial f}{\partial d}(x) = \langle \nabla f(x), d \rangle = \| \nabla f(x) \| \| d \| \cos(\theta) = \| \nabla f(x) \| \cos(\theta)$  (as  $\| d \| = 1$ ). Clearly, this number is minimum when  $\cos(\theta)$  is, i.e.,  $\theta = \pi \equiv \cos(\theta) = -1$ . This corresponds to *d* being collinear to  $\nabla f(x)$  with opposite direction, i.e.,  $d = -\nabla f(x) / \| \nabla f(x) \|$  [back]

► Because 
$$\frac{\partial f}{\partial \beta d} = \beta \frac{\partial f}{\partial d}$$
, hence  $|| d || \to \infty \implies \frac{\partial f}{\partial d} \to -\infty$  (with right d) [back]

### Solutions IV

- ▶  $Q_x(z) = f(x) + \langle \nabla f(x), z x \rangle + \frac{1}{2}(z x)^T \nabla^2 f(x)(z x) \implies$   $\nabla Q_x(z) = \nabla f(x) + \nabla^2 f(x)(z - x)$ , thus evaluated at z = x gives  $\nabla f(x)$ . The derivation handily reveals that  $\nabla Q_x(z)$  is a linear (vector) function of zthat coincides with  $\nabla f(x)$  at z = x, i.e., it is the first-order model of  $\nabla f$  at x(in fact it uses the "gradient of the gradient", that is, the Hessian) [back]
- In the univariate case the condition is (f'(z) f'(x))(z x) ≥ 0, i.e., "f'(z) - f'(x) and z - x have the same sign". In other words, z ≥ x ⇒ f'(z) ≥ f'(x) and z ≤ x ⇒ f'(z) ≤ f'(x), i.e., f' is monotone nonincreasing [back]

► 
$$\forall \alpha \in [0, 1] \alpha f(z) + (1 - \alpha) f(x) \ge f(\alpha z + (1 - \alpha)x) \implies$$
  
 $\alpha(f(z) - f(x)) + f(x) \ge f(\alpha(z - x) + x) \implies$   
 $f(z) - f(x) \ge [f(\alpha(z - x) + x) - f(x)] / \alpha$   
send  $\alpha \to 0$  to get  $\frac{\partial f}{\partial (z - x)}(x) = \langle \nabla f(x), z - x \rangle$  [back]

### Solutions V

This is surprisingly nontrivial. We want to prove: f both concave and concave (BCC)  $\iff$   $f(x) = \langle b, x \rangle + c$  for some  $b \in \mathbb{R}^n$ ,  $c \in \mathbb{R}$ . BCC  $\equiv f((1-\alpha)x + \alpha z)$  [both  $\geq$  and  $\leq \Longrightarrow$ ] =  $(1-\alpha)f(x) + \alpha f(z)$  $f(x) = \langle b, x \rangle + c \implies f((1 - \alpha)x + \alpha z) = \langle b, (1 - \alpha)x + \alpha z \rangle + c =$  $(1-\alpha)\langle b, x \rangle + \alpha \langle b, z \rangle + [(1-\alpha)c + \alpha c] =$  $(1-\alpha)(\langle b, x \rangle + c) + \alpha(\langle b, x \rangle + c) = (1-\alpha)f(x) + \alpha f(z);$  note how this crucially depends on  $(1 - \alpha) + \alpha = 1$ , it would not be true for generic  $\gamma x + \delta z$ For  $\Leftarrow$ , define g(x) = f(x) - f(0) so that g(0) = 0. Since f is BCC, then also g is (trivial, or see point 1. in next slide). Hence 0 = g(0) = g((1 - (1/2))x + (1/2)(-x)) = $= (1 - (1/2))g(x) + (1/2)g(-x) \implies g(-x) = -g(x)$  (antisymmetric) We now prove: i.  $g(\gamma x) = \gamma g(x)$ , ii. g(x+z) = g(x) + g(z)For i.,  $0 < \gamma < 1 \implies g(\gamma x) = g(\gamma x + (1 - \gamma)0) =$  $=\gamma g(x) + (1-\gamma)g(0) = \gamma g(x)$ . If  $\gamma > 1$ , then  $g(x) = g((1/\gamma)\gamma x) =$  $= g((1/\gamma)\gamma x + (1-1/\gamma)0) = (1/\gamma)g(\gamma x) + (1-1/\gamma)g(0) =$  $= (1/\gamma)g(\gamma x)$ ; multiply both sides by  $\gamma$  to get  $\gamma g(x) = g(\gamma x)$ . Finally, if  $\gamma < 0$  then  $g(\gamma x) = g((-\gamma)(-x)) = (-\gamma)g((-x))$  (using the previous results with  $-\gamma > 0$  =  $(-\gamma)(-g(x))$  (using g(-x) = -g(x)) =  $\gamma g(x)$ 

### Solutions VI

For ii., g(x + z) = g((1/2)2x + (1/2)2z) = (1/2)g(2x) + (1/2)(2z) = (1/2)2g(x) + (1/2)2(z) = g(x) + g(z) (using i. with  $\gamma = 2$ ) i. and ii. are the alternative definition of linear function, hence  $\exists b \in \mathbb{R}^n$  s.t.  $g(x) = \langle b, x \rangle$ ; thus, f(x) = g(x) + f(0) is affine with c = f(0), as desired [back]

- [e<sup>a·</sup>]'(x) = ae<sup>ax</sup>, which is positive increasing if a > 0, negative increasing if a < 0. [-ln(·)]'(x) = -1/x, which is negative increasing. [·<sup>a</sup>]'(x) = ax<sup>a-1</sup>; for a < 0 this is negative increasing, for a ≥ 1 this is positive increasing. Only positive even integer a make x<sup>a</sup> convex on all ℝ, since then ax<sup>a-1</sup> is positive increasing (as the second derivative, a(a 1)x<sup>a-2</sup>, is always positive). [back]
- No: consider f(x<sub>1</sub>, x<sub>2</sub>) = min{x<sub>1</sub>, x<sub>2</sub>} on the line x<sub>1</sub> + x<sub>2</sub> = 0 ≡ x<sub>2</sub> = -x<sub>1</sub>, i.e., min{x<sub>1</sub>, -x<sub>1</sub>} = -|x<sub>1</sub>| which is concave (and not linear, hence it cannot be convex) [back]

#### Solutions VII

• 
$$\alpha f(x) + (1-\alpha)f(z) \ge f(\alpha x + (1-\alpha)z) \Longrightarrow$$
  
 $\delta[\alpha f(x) + (1-\alpha)f(z)] \ge \delta f(\alpha x + (1-\alpha)z).$   
 $\alpha g(x) + (1-\alpha)g(z) \ge g(\alpha x + (1-\alpha)z) \Longrightarrow$   
 $\beta[\alpha g(x) + (1-\alpha)g(z)] \ge \beta g(\alpha x + (1-\alpha)z).$   
Hence,  $\delta[\alpha f(x) + (1-\alpha)f(z)] + \beta[\alpha g(x) + (1-\alpha)g(z)] =$   
 $= \alpha(\delta f(x) + \beta g(x)) + (1-\alpha)(\delta f(z) + \beta g(z)) \ge$   
 $\delta f(\alpha x + (1-\alpha)z) + \beta g(\alpha x + (1-\alpha)z)$  [back]

► Take x s.t.  $f(x) \leq l$ , z s.t.  $f(z) \leq l$ , and any  $\alpha \in [0, 1]$ : then, by convexity  $f(\alpha x + (1 - \alpha)z) \leq \alpha f(x) + (1 - \alpha)f(z) \leq \alpha l + (1 - \alpha)l = l$ , i.e.,  $\alpha x + (1 - \alpha)z \in S(f, l) \implies S(f, l)$  is a (possibly, infinite) interval (in general a convex set) On the other hand, consider the "downward spike function centered at c", i.e.,  $s_c(x) = \min\{|x - c|, 1\}$ . Clearly,  $s_c$  is quasiconvex: in fact,  $S(f, l) = \emptyset$  if l < 0, S(f, l) = [c - l, c + l] if  $0 \leq l < 1$ , and  $S(f, l) = \mathbb{R}$  if  $l \geq 1$ . However,  $s_0$  is not convex: in fact,  $(1/2)s_0(0) + (1/2)s_0(2) = 1/2 < 1 = s_0((1/2)0 + (1/2)2) = s_0(1)$  [back]

## Solutions VIII

►  $S(\delta f, I) = \{x : \delta f(x) \le I\} = \{x : \delta f(x) \le I/\delta\} = S(f, I/\delta)$ : since the latter is an interval (convex set), the former also is To prove  $\Leftarrow$  consider  $f(x) = s_{-1}(x) + s_1(x)$  (cf. previous exercise). Clearly, f(-1) = f(1) = 0 but f(x) > 0 for all other values of x, i.e.,  $S(f, 0) = \{-1, 1\}$  is not an interval [back]