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Gradient method for general functions 1

▶ A way to see the algorithm: a model f i ≈ f is used to construct x i+1 from x i

▶ Simplest model: first-order one Li ( x ) = Lx i ( x ) = f ( x i ) +∇f ( x i )( x − x i )

▶ Idea: x i+1 ∈ argmin{ Li ( x ) : x ∈ Rn }

= ∅: Li unbounded below on Rn

▶ Anyway never blindly trust a model: Li only “good” in B( x i , ε ) (“small” ε)

=⇒ x i+1 “good” ≡ f ( x i+1 ) < f ( x i ) only for “small enough” αi

▶ d i = −∇f ( x ) (steepest) descent direction =⇒ (almost) same algorithm

procedure x = SDQ ( f , x , ε )
while( ∥∇f ( x ) ∥ > ε ) do
d ← −∇f ( x ); α← stepsize( f , x , d ); x ← x + αd ;

▶ stepsize(·) obviously the crucial part: how to choose it?

▶ f ( x i+1 )≫ f ( x i ) for “large” αi =⇒ too long steps bad, algorithm diverges

Exercise: Find a too large (fixed) stepsize for f ( x ) = x2 / 2
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Gradient method and “Exact” LS 2

▶ stepsize( f , x , d ) ∈ argmin{φx,d(α ) } impossible if global optimum needed

▶ Restricting to attraction basin on the right of 0 helps, but even

exact local minimum impossible in general, only approximate one feasible

▶ Recall φ ∈ C 1: φ′(α ) = ⟨∇f ( x + αd ) , d ⟩, ∇f computed anyway:

reasonable stopping criterion for “Line Search”: |φ′(α ) | ≤ ε′, but

ε′ = 0 (exact) in general not possible, how to choose it?

▶ Good news: the algorithm “works” without any L-smoothness assumption,

with ε′ := ε∥∇f ( x i ) ∥, ε that of the “outer” stopping condition

▶ Only (approximate) stationary point of φ needed =⇒
f convex/unimodal not needed (but you get what you pay for)

▶ Bad news: the LS should become more accurate as the algorithm proceeds

down to ε′ = ε2 (rather high accuracy)

▶ Good news: the LS can be very approximate “far from x∗” +

usually works well in practice with arbitrary fixed ε′



Mathematically speaking: The convergence proof 3

▶ “The gradient method with ε′ = ε∥∇f ( x i ) ∥ works”: meaning what?

▶ What is simple to prove: { x i } → x =⇒ ∥∇f ( x ) ∥ ≤ ε

“if it converges, then it does at an (approximate) stationary point”

Proof: { x i } → x and |φ′(αi ) | ≤ ε′ ∀ i =⇒

limi→∞ | ⟨∇f ( x i ) , ∇f ( x i+1 ) ⟩ | = ⟨∇f ( x ) , ∇f ( x ) ⟩ ≤ ε′

=⇒ ∥∇f ( x ) ∥ ≤ ε (check)

Exercise: This does not imply ∃ h s.t. ∥∇f ( xh ) ∥ ≤ ε (finite termination)

but almost: discuss how to get it

▶ Proving { x i } → x nontrivial in the first place

▶ Stronger & more general convergence result ∃, but they require

either conditions on f / ∇f (other than C 1) or exact LS [4, p. 206, p. 234]

▶ However, general gist: the approach should be expected to work

Exercise: what if one would want ε = 0 (“asymptotic convergence”)?



Recall the stopping criterion issue 4

▶ The stopping criterion one would want: A( x i ) ≤ ε or R( x i ) ≤ ε

▶ Issue: f∗ unknown (most often), cannot be used on-line

▶ Would need lower bound f ≤ f∗, tight at least towards termination

▶ Good estimates of f∗ “hard” to get, in general no good f available

▶ ∥∇f ( x i ) ∥ only a “proxy” of A( x i ), choosing ε non obvious

Exercise: assume we know x∗ ∈ B( x i , δ ) (which we don’t) and f convex,

find the stopping tolerance ensuring ai ≤ ε

Exercise: prove: if f is τ−convex, then ∥∇f ( x i ) ∥ ≤
√
2τε =⇒ ai ≤ ε

▶ Sometimes “relative” stopping condition ∥∇f ( x i ) ∥ ≤ ε∥∇f ( x0 ) ∥:
scale invariant + clearer what “ε = 1e-4” means

▶ Sometimes ∥∇f ∥ has a “physical” meaning that can be used

▶ In learning you don’t really care if A( x i ) or R( x i ) “very small”

(but in optimization you do, because f ( x ) can be real money)
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Inexact Line Search: Armijo 5

▶ Exact LS not needed =⇒ just need that “f i decreases enough”

f(x)

x

▶ Armijo condition: 0 < m1 < (≪) 1

(A) φ(α )≤φ( 0 ) +m1αφ
′( 0 )

▶ m1(≪ 1) of the descent promised by φ′

▶ Seems simple: α↘ 0 satisfies (A) (cf. theorem)

bad idea! too short steps can be dangerous!

▶ Example: f ( x ) = −x , d i = −f ′( x ) = 1, x0 = 0, αi = 1 / i2 → 0 =⇒
x i = −f i =

∑i
k=1 1 / k

2, { f i } → π2 / 6 ≈ 1.645 ≫ −∞ = f∗ [15]

Exercise: make the example work even if f∗ > −∞

Exercise: is it possible to detect f∗ = −∞ as for quadratic f ( x )? discuss

▶ αi → 0 possible, just “not too fast”: αi = 1 / i =⇒ { f i } → −∞ [15]
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Armijo + “not disaster” just works 6

▶ αi → 0 “too fast” dangerous, must avoid it

▶ Simple form: keep it bounded away from 0 (but arbitrarily small)

▶ αi ≥ ᾱ > 0 and (A) holds ∀ i =⇒ either { f i } → −∞ or { ∥∇f (x i ) ∥ } → 0

▶ All accumulation points of { x i } (if any) are stationary

▶ The proof, for the once (simple and informative):

−φ′
i ( 0 ) = ∥∇f (x i ) ∥2 ≥ ε > 0 and (A) hold ∀i =⇒

f i+1 ≤ f i +m1α
iφ′

i ( 0 ) ≤ f i −m1ᾱε =⇒

f i ≤ f 0 −m1ᾱεi =⇒ { f i } → −∞

▶ Don’t even need αi ≥ ᾱ > 0, just
∑∞

i=1 α
i =∞ (αi → 0 “slow enough”)

▶ But how do we ensure that αi does not get “too small”?

▶ Need add some further condition to (A)
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f i ≤ f 0 −m1ᾱεi =⇒ { f i } → −∞

▶ Don’t even need αi ≥ ᾱ > 0, just
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Inexact Line Search: (strong) Wolfe 7

f(x)

x

▶ Goldstein condition: m1 < m2 < 1

(G) φ(α )≥φ( 0 ) +m2αφ
′( 0 )

▶ Issue: (A) ∩ (G) can exclude all local minima

▶ Wolfe condition: m1 < m3 < 1

(W) φ′(α )≥m3φ
′( 0 )

▶ “The derivative has to be a bit closer to 0” (but can be ≫ 0)

▶ Strong Wolfe: (W’) |φ′(α ) | ≤m3|φ′( 0 ) | = −m3φ
′( 0 ) [ =⇒ (W) ]

▶ (A) ∩ (W) captures all local minima (& maxima)

unless m1 too close to 1 (that’s why usually m1 ≈ 0.0001)

▶ (A) ∩ (W’) ensures φ′(α ) ̸≫ 0, should do away with some local maxima

▶ But do such points always ∃? Of course they do
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Mathematically speaking: Armijo-Wolfe LS works, the proof 8

▶ φ ∈ C 1∧ φ(α ) bounded below for α ≥ 0 =⇒ ∃α s.t. (A) ∩ (W) holds

▶ Rolle’s theorem [6, Th. 2.3.8]: f : R→ R ∈ C 0 on [ a , b ], ∈ C 1 on ( a , b ),

s.t. f ( a ) = f ( b ) =⇒ ∃ c ∈ ( a , b ) s.t. f ′( c ) = 0

▶ Twisted first-order model of φ (in 0): l(α ) = φ( 0 ) +m1αφ
′( 0 )

▶ d(α ) = l(α )− φ(α ) distance between l and φ: d( 0 ) = 0,

d ′(α ) = m1φ
′( 0 )− φ′(α ), d ′( 0 ) = (m1 − 1 )φ′( 0 )> 0

▶ ∄ ᾱ > 0 s.t. d( ᾱ ) = 0 =⇒ φ unbounded below (check)

▶ Smallest ᾱ > 0 s.t. d( ᾱ ) = 0 : (A) is satisfied ∀α ∈ ( 0 , ᾱ ] (check)

▶ Rolle’s theorem: ∃α′ ∈ ( 0 , ᾱ ) s.t. d ′(α′ ) = 0 ≡ m1φ
′( 0 ) = φ′(α′ )

=⇒ m3φ
′( 0 ) < m1φ

′( 0 ) = φ′(α′ ) [m3 > m1] =⇒ (W) holds in α′

▶ α′ ∃, but how do I actually find it?
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Armijo-Wolfe LS in practice 9

▶ m1 small enough s.t. local minima are not cut =⇒
just go for the local minima and stop whenever (A) ∩ (W) / (W’) holds

≡ any univariate optimization seen in deck 2 + new stopping criterion

▶ Hard to say if m1 is small enough, although m1 = 0.0001 most often is

▶ Specialized LS can be constructed for the odd case it is not

[5, Algorithm 3.5], some more logic for the nasty cases

▶ An even simpler version: “backtracking” LS = only check (A)

procedure α = BLS (φ , α , m1 , τ ) // τ < 1
while( φ(α )>φ( 0 ) +m1αφ

′( 0 ) ) do α← τ α;

▶ Recall: ∃ᾱi > 0 s.t. (A) is satisfied ∀α ∈ ( 0 , ᾱi ]

▶ Assume α = 1 (input): BLS produces α ≥ τhi with hi ≥ min{ k : τ k ≤ ᾱi }

▶ If ᾱi ≥ ᾱ > 0 ∀ i , then ∃ h s.t. α ≥ τh ∀ i =⇒ convergence

▶ Need conditions on f (not surprising ones) to get this



Lipschitz continuity, L-smoothness 10

▶ f (globally) L-c (constant L): | f ( x )− f ( z ) | ≤ L∥ x − z ∥ ∀ x , z

▶ L-c ≡ boundedness of ∇f :
▶ f ∈ C 1, sup{ ∥∇f ( x ) ∥ } = L <∞ =⇒ f L-c (constant L)

easy to prove out of Mean Value Theorem [6, Th. 5.4.5] (check)

▶ vice-versa, f (globally) L-c (constant L) =⇒ ∥∇f ( x ) ∥ ≤ L

easy to prove “from prime principles” (check)

▶ f L-smooth on X ≡ ∇f L-c on X (constant L):

∥∇f ( x )−∇f ( z ) ∥ ≤ L∥ x − z ∥ ∀ x , z ∈ X

▶ ∇2f the “gradient” (Jacobian) of ∇f : ∇f L-c ≡ ∇2f bounded

▶ f ∈ C 2 =⇒ f L-smooth ≡
−LI ⪯ ∇2f ( x ) ⪯ LI ∀ x ≡ max{ |λ1 | , |λn | } ≤ L

▶ f ∈ C 2 convex: L-smooth ≡ 0 ⪯ ∇2f ( x ) ⪯ LI ≡ 0 ≤ λn ≤ λ1 ≤ L



Some technical results needed 11

▶ Technical result: φ′
x,d(α ) = ∂f

∂d ( x + αd ) = ⟨∇f ( x + αd ) , d ⟩

Exercise: prove “by prime principles” (definition of φ′)

Exercise: prove using the chain rule in Rn: f : Rm → Rk , g : Rn → Rm

h( x ) = f ( g( x ) ) : Rn → Rk =⇒ Jh( x ) = Jf ( g( x )) · Jg( x )
(note that Jf ∈ Rk×m, Jg ∈ Rm×n, in fact Jh ∈ Rk×m · Rm×n = Rk×n)

▶ Consequence: φ′
x,−∇f ( x )( 0 ) = ⟨∇f ( x ) , −∇f ( x ) ⟩ = −∥∇f ( x ) ∥

2 < 0

“the farther ∇f ( x ) is from 0, the steeper φ′( 0 ) is”

▶ f L-smooth =⇒ φ is [ L∥ d ∥2 ]-smooth

Exercise: Prove this “from prime principles”

▶ Intuitively: φ′( 0 ) starts large and can only decrease slowly =⇒
the stepsize cannot become too small



Convergence with Armijo-Wolfe / Backtracking LS 12

▶ Recall: ∃ smallest 0 < α′ < ᾱ s.t.

▶ (A) holds ∀α ∈ ( 0 , ᾱ ], and

▶ φ′(α′ ) = m3φ
′( 0 ) > φ′( 0 )

▶ φ is [ L∥ d ∥2 ]-smooth =⇒ α′ (and therefore ᾱ) “large”:

L∥ d ∥2(α′ − 0 ) ≥ φ′(α′ )− φ′( 0 ) > (1−m3)(−φ′( 0 )) = (1−m3)∥ d ∥2

=⇒ [ ᾱ > ]α′ > (1−m3) / L

▶ Note: (1−m3) / L < 1 / L but “of the same order of magnitude”

▶ Gradient method with AWLS or BLS converges; but how fast?

▶ In the quadratic case it depends on having or not directions of null curvature

▶ Need appropriare generalisation of the concept



Stronger forms of convexity 13

▶ Recall: f convex ≡ ∀ x ∈ Rn

αf ( x ) + (1− α)f ( z ) ≥ f (αx + (1− α)z ) ∀α ∈ [ 0 , 1 ] , z ̸= x ∈ Rn

f ∈ C 1 ≡ f ( z ) ≥ f ( x ) + ⟨∇f ( x ) , z − x ⟩ ∀ z ∈ Rn

f ∈ C 2 ≡ ∇2f ( x ) ⪰ 0

▶ f strictly convex ≡ αf ( x ) + ( 1− α )f ( z )> f (αx + ( 1− α )z ) ≡
f ( z )> f ( x ) + ⟨∇f ( x ) , z − x ⟩ [ f ∈ C 1 ] ≡ ∇2f ( x )≻ 0 [ f ∈ C 2 ]

▶ Quadratic with λn > 0 even more: “grows at least as fast as λn∥ x ∥2”

▶ f strongly convex modulus τ > 0 (τ -convex) ≡ f ( x )− τ
2 ∥ x ∥

2 convex

≡ αf ( x ) + ( 1− α )f ( z ) ≥ f (αx + ( 1− α )z )+ τ
2α( 1− α )∥ z − x ∥2

≡ f ( z ) ≥ f ( x ) + ⟨∇f ( x ) , z − x ⟩+ τ
2 ∥ z − x ∥2

≡ ∇2f ( x ) ⪰ τ I ≻ 0 (check)

▶ f ∈ C 2, L-smooth and τ -convex ≡ τ I ⪯ ∇2f ⪯ LI ≡ 0 <τ ≤ λn ≤ λ1 ≤ L

≡ eigenvalues of ∇2f bounded above and away from 0

Exercise: prove: f ∈ C 1 strictly/strongly convex has unique minimum if any



Overall: efficiency of gradient method for general functions 14

▶ Good / bad news: efficiency is ≈ the same as quadratic f

▶ f ∈ C 2, x∗ local minimum s.t. ∇2f ( x∗ )≻ 0, exact LS [5, Th. 3.4]

{ x i } → x∗ =⇒ for large enough k { f i }i≥k → f∗ linearly, with

r = ( (λ1 − λn) / (λ1 + λn) )2, λ1 and λn those of ∇2f ( x∗ )

▶ In “the tail” of the convergence process f ( x ) ≈ Qx∗( x ) “very closely”

=⇒ convergence ≈ the same as for Qx∗

▶ Crucial properties only need to hold in B( x∗ , δ ) provided { x i } → x∗,

proving it not obvious although usually happens in practice,

anyway exact LS most often (but not always) impossible

▶ Result with inexact LS is “a bit” worse: r ≈ ( 1− λn / λ1 )

“≈” depending on m1, m3 [4, p. 240]

▶ (More) inexact LS worsens convergence rate but requires less f -calls,

and this shows up in practice ≡ nontrivial trade-off
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“Extremely inexact LS”: fixed stepsize 15

▶ Fixed stepsize αi = ᾱ: simple, inexpensive but rigid

“like a marriage in a catholic country”: only one choice, better be good

▶ Important note: { x i } → x∗ (finite) =⇒ {∥ x i+1 − x i ∥ = αid i } → 0

(necessary but not sufficient (check))

▶ Using d i = −∇f ( x i ) / ∥∇f ( x i ) ∥ ≡ ∥ d i ∥ = 1 would necessarily imply

αi ↘ 0, which is not possible with fixed stepsize

▶ Luckily d i = −∇f ( x i ) (not normalised): { ∥ x i+1 − x i ∥ } → 0 ⇐=
{∇f ( x i ) } → 0, which is precisely what we want (stationary point)

▶ Still have to show: ∃ ᾱ > 0 s.t. f ( x i+1 ) = f ( x i − ᾱ∇f ( x i ) ) < f ( x i ) ∀ i?

▶ Intuitively: “if f varies ∞-ly rapidly”, then only “∞-ly short αi” are possible

▶ Crucial to bound how rapidly f (in fact, ∇f ) changes ≡ L-smoothness



Fixed stepsize with L-smoothness: first steps 16

▶ Recall: f L-smooth =⇒ φ is [ L∥ d ∥2 ]-smooth

▶ Recall: ∃ smallest 0 < α′ < ᾱ s.t.

▶ (A) holds ∀α ∈ ( 0 , ᾱ ], and

▶ φ′(α′ ) = m3φ
′( 0 ) > φ′( 0 )

▶ Recall: −φ′( 0 ) = ∥ d ∥2 = ∥∇f ( x ) ∥2

▶ Intuition: L-smoothness =⇒ φ′(·) cannot change too rapidly =⇒
∃ fixed minimal step ᾱ s.t. φ′( ᾱ ) = 0 =⇒ φ′(α )< 0 ∀α ∈ [ 0 , ᾱ )

▶ Recall d = −∇f ( x ) not normalised (fixed step ≠⇒ fixed movement)

▶ Turning the intuition into a proof requires some work



Mathematically speaking: The crucial bound 17

▶ d = −∇f ( x ) =⇒ φ′( 0 ) = −∥∇f ( x ) ∥2 = −∥ d ∥2

▶ φ [ L∥ d ∥2 ]-smooth =⇒ φ′(α ) ≤ φ′( 0 ) + L∥ d ∥2α = ∥∇f ( x ) ∥2(Lα− 1)

=⇒ φ′(α ) ≤ 0 ∀α ∈ [ 0 , ᾱ = 1 / L ) =⇒ 1 / L (fixed) proposed stepsize

▶ Issue: evaluate φ( 0 )− φ( 1 / L )

▶ Intuition: worst case for φ′ is linear φ′(α ) ≈ Lα− 1

=⇒ worst case for φ is quadratic φ(α ) ≈ (↑= derivative) Lα2/2− α

Exercise: prove using the fundamental theorem of calculus:

▶ φ = function having the worst-case derivative

▶ Final bound: φ(α )≤φ( 0 ) + ∥∇f ( x ) ∥2[ Lα2/2− α ]



The final complexity bound 18

▶ ᾱ = 1 / L =⇒ Lᾱ2/2− ᾱ = 1 / 2L =⇒
φi (αi )− φ( 0 ) = f ( x i+1 )− f ( x i ) ≤ −∥∇f ( x i ) ∥2 / 2L

▶ Can’t do better if you trust the quadratic bound (which you should not)

▶ Immediately gives the estimate of the error decrease:

ai+1 = f ( x i+1 )− f∗ ≤ ( ai = f ( x i )− f∗ )− ∥∇f (x i ) ∥2 / 2L

▶ Bad news: ai+1 ≤ ai −∆i rather than ai+1 ≤ rai =⇒ sublinear convergence

▶ Can prove: ai ≤ 2L∥ x1 − x∗ ∥2 / ( i − 1 ) =⇒ i ≥ O( LD2 / ε ) [1, Th. 3.3]

as in quadratic case with λn = 0, in fact precisely the same result

▶ O( 1 / ε ) not tight: O( 1 /
√
ε ) possible for f L-smooth (will see)

▶ But O( 1 /
√
ε ) tight: ∃ f L-smooth s.t. ∀ algorithm (and large n)

ai ≥O( LD2 / i2 ) =⇒ i ∈ Ω( 1 /
√
ε ) [1, Th. 3.14]

▶ Algorithms can only go so far with “nasty” problems

▶ Is it different “if λn > 0” ≡ τ -convex? You bet!
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Fixed stepsize: convergence rate with strong convexity 19

▶ Want to prove: with a proper choice of α, the distance to x∗ decreases (“fast”)

▶ z − x∗ = x − α∇f ( x )− x∗ = x − α∇f ( x )− x∗ + α∇f ( x∗ ) (∇f ( x∗ ) = 0)

= ( x − x∗ )− α(∇f ( x )−∇f ( x∗ ) )

▶ Mean Value Theorem [6, Th. 5.4.5] on ∇f =⇒ ∃w ∈ [ x , x∗ ] s.t.

∇f ( x )−∇f ( x∗ ) = ∇f 2(w )( x − x∗ ) =⇒
z − x∗ = ( x − x∗ )− α∇f 2(w )( x − x∗ ) = ( I − α∇f 2(w ) )( x − x∗ ) =⇒
∥ z − x∗ ∥ ≤ ∥ I − α∇f 2(w ) ∥∥ x − x∗ ∥ =⇒ minimize ∥ I − α∇f 2(w ) ∥

▶ With α = 2 / ( L+ τ ) (1 / L ≤ α < 2 / L) converges linearly:

∥ xk+1 − x∗ ∥ ≤ rk∥ x1 − x∗ ∥ with r = ( L− τ ) / ( L+ τ ) < 1

▶ κ = L / τ ≥ λ1 / λn ≥ 1 worst-case condition number of ∇2f

r = (κ− 1 ) / (κ+ 1 ) < 1 (check)

▶ A “small” difference in f makes a big difference in convergence

=⇒ properties of f more important than the algorithm

▶ All this may be rather slow, we need something better
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Mathematically speaking: Eigenvalues & matrix norms [5, A1][8, 12]20

▶ (λ , v ) eigenvalue/eigenvector pair (eep) for Q (Qv = λv):

▶ ( cλ , v ) eep for cQ, c ∈ R [ (cQ)v = c(Qv) = (cλ)v ]

▶ ( 1+λ , v ) eep for I+Q [ (I + Q)v = v + Qv = (1 + λ)v ]

▶ (λ2 , v ) eep for Q2 = QQ [ (QQ)v = Q(λv) = λ2v ], extends to Qk

▶ ∥Q ∥ = ∥Q ∥2 =
√
λ1(QTQ ) = max{ ∥Qd ∥ / ∥ d ∥ : d ̸= 0 }

Euclidean matrix norm induced by the Euclidean vector norm ∥ · ∥2 (∃ others)

▶ Consequence: ∥Qd ∥ ≤ ∥Q ∥∥ d ∥ ∀ d ∈ Rn

▶ Q symmetric =⇒ ∥Q ∥ = max{ |λ1(Q ) | , |λn(Q ) | } (check)

▶ Q ⪰ 0 (symmetric) =⇒ ∥Q ∥ = λ1(Q ) =⇒ ∥Qv ∥ ≤ λ1(Q )∥ v ∥ ∀ v ∈ Rn;

▶ ∥Q ∥2 ≤ ∥Q ∥F =
√∑

i

∑
j Q

2
ij (Frobenius Norm)



Mathematically speaking: The choice of α 21

▶ Want r = ∥ I − α∇f 2(w ) ∥ =
max{ | 1− αλ1(∇f 2(w ) ) | , | 1− αλn(∇f 2(w ) ) | }< 1 (check)

▶ The smaller γ, the faster the convergence: choose α to minimize γ

▶ α = 1 / λ1 works if λn > 0 (1− λn / λ1 < 1), but not optimal

▶ When 1− αλn ≥ 1− αλ1 ≥ 0, increasing α decreases the max

▶ When 0 ≤ αλn − 1 ≤ αλ1 − 1, decreasing α decreases the max

▶ The optimal α must be s.t. 1− αλn > 0 and 1− αλ1 < 0 =⇒
r = max{−1 + αλ1 , 1− αλn }

▶ λ1 , λn unknown in general but L ≥ λ1 , τ ≤ λn =⇒
r ≤ r̄ = max{−1 + αL , 1− ατ } (check)

▶ If one term ↑ the other ↓ so they must be equal ≡ α = 2 / ( L+ τ ) (check)

r̄ = ( L− τ ) / ( L+ τ ) = ( κ̄− 1 ) / ( κ̄+ 1 ) < 1 , with κ̄ = L / τ ≥ 1
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∞-ly many possible directions 22

▶ Outstanding assumption so far: d i = −∇f ( x i ): really needed?

▶ Crucial convergence arguments:

1. φ′
i ( 0 ) = −∥∇f ( x i ) ∥2: “far from x∗ the derivative is very negative”

2. “you can get a non-vanishing fraction of the descent promised by φ′
i ( 0 )”

≡ “exact” LS or Armijo or FS + L-smooth =⇒ αi does not → 0 “too fast”

=⇒ “significant decrease at each step unless ∥∇f ( x i ) ∥ → 0”

▶ 2. does not really depend on the chosen direction, and

∃ many other directions that ensure 1. holds (within some factor)

▶ The (parodied) twisted gradient algorithm: “d i = −∇f ( x i ) rotated by π / 4”

≡ d i = R(−∇f ( x i ) ), rotation matrix R [13]

▶ Gives φ′
i ( 0 ) = −∥∇f ( x i ) ∥2 cos(π / 4 )< 0 (check)

=⇒ convergence proofs carry forward largely unchanged

▶ Not just π / 4: θ not too close to π / 2 ≡ cos( θ ) “not too small”

▶ ∞-ly many feasible θ and ∞-ly many ̸= d for each θ ≡ ∞-ly many R



∞-ly many possible directions 22
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Convergence of general descent methods 23

▶ Descent direction ≡ ∂f
∂d i ( x

i )< 0 ≡ ⟨ d i , ∇f ( x i ) ⟩< 0 ≡ cos( θi )< 0

≡ “d i points roughly in the same direction as −∇f ( x i )”

▶ There is a whole half space of descent directions =⇒ a lot of flexibility

▶ Zoutendijk’s Theorem [5, Th. 3.2]: f ∈ C 1, f L-smooth, f∗ > −∞,

(A) ∩ (W) =⇒
∑∞

i=1 cos
2( θi )∥∇f ( x i ) ∥2 <∞

▶ Consequence:
∑∞

i=1 cos
2( θi ) =∞ =⇒ {∥∇f ( x i ) ∥ } → 0

≡ d i does not get ⊥ ∇f ( x i ) “too fast” =⇒ convergence

▶ Simple case: cos( θi ) ≥ θ̄ > 0 (bounded away from 0),

gradient method just the obvious case, cos2( θi ) = 1

▶ Very many d i to choose from, but which d i is better than −∇f ?

▶ Not clear if you only look to first-order model =⇒ have to look farther
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Newton’s method, (locally) strictly convex case 24

▶ Want a better direction = faster convergence? Use a better model!

▶ Next better model to linear (≡ gradient): quadratic

▶ ∇2f ( x i )≻ 0 =⇒ ∃ minimum of second-order model Qx i ( z ) =⇒
Newton’s direction d i = −[∇2f ( x i ) ]−1∇f ( x i ) (check)

▶ No problem with the step here, αi = 1 (the minimum ∃)
=⇒ Newton’s method: x i+1 = x i + d i (just do step αi = 1 along d i )

▶ Nonlinear equation interpretation: want to solve ∇f ( x ) = 0, write

∇f ( x ) ≈ ∇f ( x i ) +∇2f ( x i )( x − x i ) and solve linear equation instead

▶ We know Newton’s not globally convergent =⇒ has to be globalised

▶ “Easy” as ∇2f ( x i ) ≻ 0 =⇒ [∇2f ( x i ) ]−1 ≻ 0 =⇒ d i is of descent:

⟨∇f ( x i ) , d i ⟩ = −∇f ( x i )T [∇2f ( x i ) ]−1∇f ( x i )< 0

(but < 0 is not enough, we need it to be “negative enough”)



(Global) convergence of Newton’s method 25

▶ Globalised Newton’s: simply add AWLS / BLS with α0 = 1

▶ Theorem 1: f ∈ C 2 L-smooth and τ -convex =⇒ cos( θi ) ≤ −τ / L [< 0 ]

=⇒ global convergence (via Zoutendijk)

▶ Theorem 2: f ∈ C 3 , ∇f ( x∗ ) = 0 , ∇2f ( x∗ ) ≻ 0 =⇒ ∃ δ > 0 s.t.

x0 ∈ B( x∗ , δ ) =⇒ “pure” Newton’s (αi = 1) { x i } → x∗ quadratically

▶ Theorem 3: If { x i } → x∗, ∃ h s.t. αi = 1 satisfies (A) for all i ≥ h

(requires m1 ≤ 1/2, m1 > 1/2 cuts away minimum when f quadratic)

▶ “Global phase” (αi varies) + quadratically convergent “pure Newton’s phase”

▶ Pure Newton’s phase ends in O( 1 ) (≈ 6) iterations in practice

▶ If ∇2f M-smooth then global phase also “O( 1 )” [2, (9.40)]:

O(M2L2( f ( x0 )− f∗ ) / τ
5 ) (??, but quite fast in practice)



Mathematically speaking: Newton’s method, the proofs 26

▶ Theorem 1, two technical steps using ∇2f ( x i )d i = −∇f ( x i ):
▶ ⟨∇f ( x i ) , d i ⟩ = −(d i )T∇2f ( x i )d i ≤ −τ∥ d i ∥2

▶ ∥∇f ( x i ) ∥ = ∥∇2f ( x i )d i ∥ ≤ ∥∇2f ( x i ) ∥∥ d i ∥ ≤ L∥ d i ∥

=⇒ cos( θi ) = ⟨∇f ( x i ) , d i ⟩ / ( ∥∇f ( x i ) ∥∥ d i ∥ ) ≤ −τ / L

▶ Theorem 2: basically same proof as for n = 1

▶ Theorem 3 (sketch): { x i } → x∗ =⇒ ∥∇f ( x i ) ∥ → 0 =⇒ ∥ d i ∥ → 0

f ( x i + d i ) = f ( x i ) + ⟨∇f ( x i ) , d i ⟩+ 1
2 (d

i )T [∇2f ( x i ) ]d i + R( d i )

= f ( x i ) −∇f ( x i )T [∇2f ( x i ) ]−1∇f ( x i )

+ 1
2∇f ( x

i )T [∇2f ( x i ) ]−1∇f ( x i ) + R( d i )

= f ( x i )− 1
2 ∇f ( x

i )T [∇2f ( x i ) ]−1∇f ( x i ) + R( d i )

= f ( x i )+ 1
2 ⟨∇f ( x

i ) , d i ⟩+ R( d i )

φ′
x i ,d i ( 0 ) = ⟨∇f ( x i ) , d i ⟩ → 0 as d i → 0, but R( d i )→ 0 faster

=⇒ eventually R() negligible =⇒ eventually (A) holds with m1 < 1/2

Exercise: complete the sketch of the proof of Theorem 3



Interpretation: Newton = Gradient + Space dilation 27

▶ Interesting interpretation: Newton ≡ Gradient in a twisted space

▶ Holds for f ( x ) = 1
2x

TQx + qx , d = −x − Q−1q =⇒
∇f ( x + d ) = 0: Newton ends in one iteration

▶ Trick seen already: Q ≻ 0 =⇒ Q = RR, R nonsingular since Q is

▶ Bijective change of variable: z = Rx ≡ x = R−1z

▶ h( z ) = f (R−1z ) = 1
2z

T I z + qR−1z , ∇h( z ) = z + R−1q:

“in z-space, ∇2f ( x i ) looks like I” =⇒ gradient is fast

▶ In fact: g = −∇h( z ) = −z − R−1q =⇒ ∇h( z + g ) = 0 (check)

▶ Translate g from z-space to x-space:

R−1g = R−1(−z − R−1q ) = −x − Q−1q = d

▶ z = Rx not the only choice, z ≈ Rx (“very ≈”) works (will see)



Newton’s method: the nonconvex case 28

▶ Newton’s method ≡ space dilation: a linear map making ∇2f “simple”

▶ Must it necessarily be ∇2f ( x i )−1? No, especially if ∇2f ( x i )−1 ̸⪰ 0

▶ d i ← −[H i ]−1∇f ( x i ) , τ I ⪯ H i ⪯ LI , (A) ∩ (W) =⇒ global convergence

(rewrite Theorem 1 with H i in place of ∇2f ( x i ))

▶ ∇2f ̸≻ 0: choose “small” εi s.t. H i = ∇2f ( x i ) + εi I ≻ 0

▶ Any εi > − λn works (λn < 0), but numerical issues:

any double ≤ 1e-16 “is 0” (1e-16 very optimistic, at least 1e-12)

▶ Algorithmic issues: λn(∇2f ( x i ) + εI ) “very small” =⇒ axes of S(Qx i , · )
“very elongated” =⇒ “x i+1 very far from x i”, not good for a local model

▶ Simple form: ε = max{ 0 , δ − λn } for appropriately chosen smallish δ

(1e-8? 1e-4? 1e-12? hard to say in general)



Newton’s method: Hessian modifications 29

▶ Turns out ε = max{ 0 , δ − λn } solves min{ ∥H −∇2f ( x i ) ∥2 : H ⪰ δI }

▶ Can use ̸= norms: to solve min{ ∥H −∇2f ( x i ) ∥F : H ⪰ δI }
▶ compute spectral decomposition ∇2f ( x i ) = HΛHT

▶ H i = HΛ̄HT with λ̄i = max{λi , δ }

▶ In both cases, if { x i } → x∗ with ∇2f ( x∗ )⪰ δI =⇒ εi = 0 ≡
H i = ∇2f ( x i ) eventually =⇒ quadratic convergence in the tail

▶ In both cases, O( n3 ); say, compute λn + Cholesky factorization

H i = Li (Li )T , Li triangular (fastest and more stable way)

▶ Can modify factorization on the fly (diagonal < 0 =⇒ increase ε) [5, p. 52+]

▶ Whatever you do, O( n3 ) too much for large-scale (n = 104+):

something way cheaper needed, O( n2 ) or less



A different approach: Trust Region (sketch) 30

▶ Two general forms of the process: always x i+1 ← x i + αid i , but

▶ line search: first choose d i ∈ Rn (direction), then choose αi ∈ R (stepsize)

▶ trust region: first choose αi (trust radius), then choose d i

▶ ∇2f ( x i ) ̸≻ 0 =⇒ ∃ negative curvature direction along which f decreases

≡ exactly what we want when minimizing f , why excluding them?

▶ How? Q i ( z ) has no minimum . . . on Rn, but it does on a compact set

▶ Rn ⊃ T i = (compact) trust region around x i “where Qx i can be trusted”

x i+1 ∈ argmin{Q i ( z ) : z ∈ T i } a constrained problem

▶ Even worse: it is NP-hard even for simple T like B1( x i , r ) or B∞( x i , r )

. . . but not for B2( x i , r ): “round balls are simpler than kinky balls” [3]

▶ An optimization problem with quadratic constraints

▶ Which r?
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Trust Region (sketch, cont.d) 31

▶ Can use any H i ≈ ∇2f ( x i ), not necessarily ≻ 0

▶ x i+1 optimal ≡ x i+1 = x i + d i and ∃λi ≥ 0 s.t.

[H i + λi I ]d i = −∇f ( x i ) [linear] Karush-

H i + λi I ⪰ 0 [semidefinite] Khun-

λi ( r − ∥ d i ∥ ) = 0 [nonlinear] Tucker

▶ λ > 0 =⇒ like in line search with εi = λ (but here λ unknown)

▶ ∥ d i ∥ < r =⇒ λi = 0 =⇒ normal Newton step (T has no effect)

▶ { x i } → x∗ =⇒ ∥ d i ∥ → 0 =⇒ eventually λi = 0 =⇒
quadratic convergence in the tail

▶ Plenty of smart ways to find λ, x i+1 or approximate them (just as well),

[5, §4.1], but matrix factorizations may be needed =⇒ O( n3 ) again

▶ LS: first d i , then αi ; TR: first r (≈ αi ), then d i . Ultimately, similar

▶ In both cases, properly choose H i ≈ ∇2f ( x i ) to reduce the cost crucial



Quasi-Newton methods 32

▶ The space is big

▶ Superlinear convergence if “H i looks like ∇2f ( x i ) along d i” [5, Th. 3.6]

limi→∞ ∥ (H i −∇2f ( x i ) )d i ∥ / ∥ d i ∥ = 0 (don’t care elsewhere)

▶ General derivation of Quasi-Newton methods:

mi ( x ) = ⟨∇f ( x i ) , x − x i ⟩+ 1
2 ( x − x i )TH i ( x − x i ) , x i+1 = x i + αid i

▶ Having computed x i+1 and ∇f ( x i+1 ), new model

mi+1( x ) = ⟨∇f ( x i+1 ) , x − x i+1 ⟩+ 1
2 ( x − x i+1 )TH i+1( x − x i+1 )

▶ Nice properties we would like H i+1 to have:

i) H i+1 ≻ 0 (the new model is strongly convex)

ii) ∇mi+1( x i ) = ∇f ( x i ) (the new model agrees with old information)

iii) ∥H i+1 − H i ∥ “small” (the new model is not too different)

▶ ii) ≡ H i+1( x i+1 − x i ) = ∇f ( x i+1 )−∇f ( x i ) “secant equation”
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Basic Quasi-Newton formulæ 33

▶ Depending on choices at iteration i , i) ∩ ii) may not be possible

▶ Notation: s i = x i+1 − x i = αid i , y i = ∇f ( x i+1 )−∇f ( x i ) (fixed)

secant equation ≡ (S) H i+1s i = y i (check)

▶ (S) =⇒ ⟨ s i , y i ⟩ = (s i )TH i+1s i , i) ∩ ii) =⇒ ⟨ s i , y i ⟩ > 0

“curvature condition” (C) (most often written ρi = 1 / ⟨ s i , y i ⟩ > 0)

▶ s i need be properly chosen at iteration i for things to work at i + 1

▶ Quasi-Newton =⇒ d i fixed, but s i also depends on αi which is “free”

▶ Very good news: (W) =⇒ (C)

Proof: φ′(αi ) = ⟨∇f ( x i+1 ) , d i ⟩ ≥ m3φ
′( 0 ) = m3⟨∇f ( x i ) , d i ⟩ =⇒

⟨∇f ( x i+1 )−∇f ( x i ) , d i ⟩ = ⟨ y i , d i ⟩ ≥ (m3 − 1)φ′( 0 ) > 0

but s i = αid i and αi > 0 =⇒ ⟨ y i , s i ⟩ = αi ⟨ y i , d i ⟩ > 0

▶ Assuming an AWLS, (C) can always be satisfied



Quasi-Newton methods: DFP 34

▶ i) ∪ i)) ∪ iii) ≡ H i+1 = argmin { ∥H − H i ∥ : (S) , H ⪰ 0 }

▶ Appropriate “∥ · ∥” [5, p. 138]: Davidon-Fletcher-Powell formula

(DFP) H i+1 = ( I − ρiy i (s i )T )H i ( I − ρi s i (y i )T ) + ρiy i (y i )T

▶ H i+1 = rank-two correction of H i , O( n2 ) to produce H i+1 out of H i

▶ Actually need B i+1 = [H i+1 ]−1: Sherman-Morrison-Woodbury formula [16]

(SMW) [A+ abT ]−1 = A−1 − A−1abTA−1 / ( 1− bTA−1a )

=⇒ (DFP−1) B i+1 = B i + ρi s i (s i )T − B iy i (y i )TB i / (y i )TB iy i

=⇒ O( n2 ) per iteration, just matrix-vector products, no inverse

▶ This ≈ learning ∇2f out of samples of ∇f (learning2optimize)

▶ Quite efficient, but can do better



Quasi-Newton methods: BFGS 35

▶ Write (S) for B i+1: s i = B i+1y i =⇒ B i+1 = argmin { ∥B − B i ∥ : . . . }
everything is symmetric, just B ←→ H and s ←→ y

▶ Broyden-Fletcher-Goldfarb-Shanno formulæ [5, p. 139], still O( n2 ):

(BFGS) H i+1 = H i + ρiy i (y i )T − H i s i (s i )TH i / (s i )TH i s i

(BFGS) B i+1 = ( I − ρi s i (y i )T )B i ( I − ρiy i (s i )T ) + ρi s i (s i )T

= B i + ρi [ ( 1 + ρi (y i )TB iy i )s i (s i )T − (B iy i (s i )T + s i (y i )TB i ) ]

▶ Broyden family [5, § 6.3]: H i+1 = βH i+1

DFP
+ (1− β)H i+1

BFGS
, still O( n2 ).

▶ Surely satisfies (S) and H i+1 ⪰ 0 if β ∈ [ 0 , 1 ] (but ∃ feasible β /∈ [ 0 , 1 ])

▶ Flexible, good compromise between iteration cost and convergence speed,

convergence theory available [5, § 6.4] (not exactly trivial)

▶ Important choice: B0. Obvious solution B0 = δI , but which δ?

Alternative: B0 = finite difference ≈ [∇2f ( x0 ) ]−1

Exercise: Discuss how to compute a “finite difference” and how much does it cost



“Poorman’s” quasi-Newton: limited-memory BFGS 36

▶ For very large n even O( n2 ) is way too much

▶ O( n ) new information per iteration ∇f ( x i ): only keep/use last k ≪ n

▶ Limited-memory BFGS (L-BFGS): just unfold the last k iterations

B i+1 = (V i )TB iV + ρi s i (s i )T with V k = I − ρiy i (s i )T ≡

B i+1 = (V i−kV i−k+1 . . .V i )TB i−k(V i−kV i−k+1 . . .V i )+

+ ρi−k(V i−k+1 . . .V i )T s i−k(s i−k)T (V i−k+1 . . .V i )+

+ ρi−k+1(V i−k+2 . . .V i )T s i−k+1(s i−k+1)T (V i−k+2 . . .V i )+

+ . . . + ρi s i (s i )T

▶ Memory/time cost per iteration is O( kn ) [5, Algorithm 7.4], but trade-off:

convergence worsens as k ↘ (k large ≈ Newton but k small ≈ gradient)

▶ Funny tidbit: can choose B i−k arbitrarily anew at each i , but of course

it need be sparse, e.g., B i−k = γ i I with γ i = ⟨ s i , y i−1 ⟩ / ∥ y i−1 ∥2

▶ Just one of many possible large-scale quasi-Newton variants [5, Chapter 7]
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The cheaper alternative to twisting: deflecting 37

▶ Twisting ≡ d i = H i (−∇f ( x i ) ) is at least O( n2 ) by definition

(not even counting forming H i ) unless H i “very special” ≡ rather dirty tricks

▶ Cheaper alternative: deflecting ≡ d i = −∇f ( x i )+v i , O( n ) by definition

▶ But how to choose v i in the whole of Rn (cheaply)?

▶ Simple idea: v i = βid i−1, direction at previous iteration scaled by some βi (?)

▶ If v0 = 0, then d i = −[
∑i

h=1 γ
h∇f ( xh ) ] for some γ i : (opposite of)

aggregated of all past gradients ≡ “history” of computation (≈ H i in BFGS)

▶ For twisting, easy to ensure φ′
x i ,d i ( 0 )< 0 (just H i ⪰ 0)

nontrivial to choose βi that does the same (crucial . . . or not?)

▶ Will clearly happen as βi → 0 (check), but then d i → −∇f ( x i ) =⇒ slow

▶ Need better ideas, but we know one already



Outline

Gradient method for general functions

Gradient method with inexact Line Search

Gradient method with fixed stepsize

Twisted gradient methods

Newton-type methods

Deflected gradient methods

Nonlinear Conjugate gradient methods

Heavy Ball gradient methods

Wrap up & References

Solutions



Conjugate Gradient method for generic nonlinear functions 38

procedure x = NCG ( f , x , ε )
∇f − = 0;
while( ∥∇f ( x ) ∥ > ε ) do
if( ∇f − = 0 ) then d ← −∇f ( x );
else { β = ⟨ right deflection value ⟩; d ← −∇f ( x ) + βd−; }

α← LS( f , x , d ); x ← x + αd ; d− ← d ; ∇f − ← ∇f ( x );

▶ Many ̸= β-formulæ, all ≡ for quadratic f but not so here

1. Fletcher-Reeves: β i
FR = ∥∇f ( x i ) ∥2 / ∥∇f ( x i−1 ) ∥2

2. Polak-Ribière: β i
PR = ⟨∇f ( x i )−∇f ( x i−1 ) , ∇f ( x i ) ⟩ / ∥∇f ( x i−1 ) ∥2

3. Hestenes-Stiefel:

β i
HS = ⟨∇f ( x i )−∇f ( x i−1 ) , ∇f ( x i ) ⟩ / ⟨∇f ( x i )−∇f ( x i−1 ) , d i−1 ⟩

4. Dai-Yuan: β i
DY = ∥∇f ( x i ) ∥2 / ⟨∇f ( x i )−∇f ( x i−1 ) , d i−1 ⟩

▶ f quadratic + exact LS =⇒ quadratic CG ≡ n iterations (exact arithmetic)

≪ n if clustered eigenvalues . . . (e.g., properly preconditioned)

▶ LS only exact if possible (quadratic f , . . . ), otherwise AWLS



Conjugate Gradient method: convergence 39

▶ Convergence nontrivial, depends a lot on β-formula + conditions

▶ F-R requires m1 < m2 < 1/2 for (A) ∩ (W’) to work

▶ (A) ∩ (W’) ≠⇒ d i of P-R is of descent, unless βi
PR+ = max{βi

PR , 0 }
similar βi

HS+ = max{βi
HS , 0 } useful for H-S

▶ The above is a restart: from time to time, take “plain” −∇f

▶ Turns out restarts are a good idea, especially for F-R:

∥∇f ( x i ) ∥ ≪ ∥ d i ∥ ⇐⇒ cos( θi ) ≈ 0 ≡ ∇f ( x i ) ≈⊥ d i

=⇒ x i+1 ≈ x i =⇒ cos( θi+1 ) ≈ 0

=⇒ one bad step leads to many bad steps, restarting cures this

▶ In fact, restarts help a lot in proving convergence [5, p. 127], but almost a trick:

the deflection “asymptotically vanish” and the gradient does all the work

▶ Typical restart after n steps, not very nice when n large (or small)

▶ Unrestarted P-R (not using βi
PR+) does not converge for some f [5, Th. 5.8]



Conjugate Gradient method: efficiency 40

▶ Efficiency n-step quadratic [5, (5.51)]: n CG steps ≈ 1 Newton step

∥ x i+n − x∗ ∥ ≤ r∥ x i − x∗ ∥2

▶ Makes sense: “close to x∗, f (·) ≈ Qx∗(·)” +

“in n steps the CG exactly solves a quadratic function”

▶ Not very nice when n large

▶ Interesting relationships with quasi-Newton methods [5, §7.2],
hybrid versions . . .

▶ Variants surprisingly ̸= in practice; P-R or D-Y often better but varies a lot

▶ All in all: powerful approach, but not easy to manage
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“Poorman’s conjugate gradient”: Heavy Ball Gradient 41

▶ A “slightly” different process: x i+1 ← x i − αi∇f ( x i ) + βi ( x i − x i−1 )

▶ β i ( x i − x i−1 ) = “momentum term”, keep x i+1 going in same direction

▶ while −∇f ( x i ) “force” steering the trajectory towards x∗ (x i “heavy”)

▶ Large “momentum” βi =⇒ less “zig-zags” =⇒ better convergence

▶ Hard to ensure f ( x i+1 ) < f ( x i ), in fact not a f -descent algorithm

▶ But with appropriate αi , βi , a(n ≈) linear d-descent one:
d i+1 = ∥ x i+1 − x∗ ∥≈≤ r∥ x i − x∗ ∥ = d i with r = (

√
κ− 1 ) / (

√
κ+ 1 )

▶ Optimal rate [1, Th. 3.15], can’t do better (except “≈”, we’ll see why)

▶ κ = L / τ = 1000 =⇒ this r ≈ 0.938, gradient r ≈ 0.996: may seem small,

but 0.996100 = 0.6698, 0.938100 = 0.0016, and it can show in practice

▶ Geared towards αi = α, βi = β constants

(easy, inexpensive, but rigid: need to choose well)

▶ Requires specific (complicated) analysis, but main ideas seen already



Mathematically speaking: Heavy Ball analysis I 42

▶ All starts from weird-ish two-terms recurrence definition of Heavy Ball:[
x i+1 − x∗
x i − x∗

]
=

[
x i + βi ( x i − x i−1 )− αi (∇f ( x i )− ∇f ( x∗ ) )− x∗

x i − x∗

]
▶ Mean Value Theorem [6, Th. 5.4.5] applied to ∇f (·) =⇒ ∃w i ∈ [ x∗ , x

i ]

s.t ∇f ( x i )−∇f ( x∗ ) = ∇2f (w i )( x i − x∗ ) =⇒[
x i+1 − x∗
x i − x∗

]
=

[
( x i − x∗ )− αi∇2f (w i )( x i − x∗ ) + βi ( x i − x i−1 )

x i − x∗

]
=

=

[
[ I − αi∇2f (w i ) ]( x i − x∗ ) + βi ( x i − x i−1 )+βix∗ − βix∗

x i − x∗

]
=

=

[
[ I − αi∇2f (w i )+βI ]( x i − x∗ )−βi ( x i−1 − x∗ )

x i − x∗

]
=

=

[
( 1 + βi )I − αi∇2f (w i ) −βi I

I 0

] [
x i − x∗
x i−1 − x∗

]
▶ If we could find αi , βi such that

∥C i ∥ =
∣∣∣∣∣∣∣∣ [ ( 1 + βi )I − αiD i −βi I

I 0

] ∣∣∣∣∣∣∣∣ < 1 , D i = ∇2f (w i )

we would be done, but it’s not that simple: ∥C i ∥ > 1



Mathematically speaking: Heavy Ball analysis II (complicated) 43

▶ C i not symmetric, ∥C i ∥≥ ρ(C i ) = spectral radius = maxj{ |λj(C
i ) | }

(careful: λj(C
i ) can be complex, | · | not the usual absolute value)

▶ ρ(C i ) = maxj=1,...,n{ ρ(Cj ) } with

Cj =

[
1 + βi − αiλj(D ) −βi

1 0

]
∈ R2×2 (check) [nontrivial]

▶ Result: βi = max{ | 1−
√
αiτ | , | 1−

√
αiL | }2 =⇒ [extremely tedious]

ρ(C i ) ≤
√
βi = max{ | 1−

√
αiτ | , | 1−

√
αiL | } (check)

▶ α = 4 / (
√
L+
√
τ )2 =⇒

√
β = (

√
L−
√
τ ) / (

√
L+
√
τ ) < 1

1 / L ≤ α ≤ 4 / L, growing as L / τ does, β ≤ 1 (check)

▶ r =
√
β = (

√
κ− 1 ) / (

√
κ+ 1 ) optimal rate [1, Th. 3.15]

▶ This would be if we could prove linear convergence with r =
√
β,

which is almost true but not quite
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▶ Simplifying assumption: f quadratic =⇒ ∇2f costant =⇒ C i costant∣∣∣∣∣∣∣∣ [ x i+1 − x∗
x i − x∗

] ∣∣∣∣∣∣∣∣ ≤ ∥C i ∥
∣∣∣∣∣∣∣∣ [ x1 − x∗

x0 − x∗

] ∣∣∣∣∣∣∣∣ (i-th power, by recursion)

▶ Gelfand’s formula [9]: ρ(C ) = limi→∞ ∥C i ∥1 / i (er . . . eh?) =⇒
∀ ε > 0 ∃h s.t. ρ(C )− ε ≤ ∥C i ∥1 / i ≤ ρ(C ) + ε ∀ i ≥ h =⇒
∥C i ∥ ≤ ( ρ(C ) + ε )i =⇒ converges linearly if ρ(C ) + ε < 1

▶ ε arbitrary small provided h “large”: “sooner or later it starts converging”
(but it may not at the beginning)

▶ The larger h, the more the convergence rate is closer to ρ(C ):
quasi-linear convergence with rate ρ(C )

▶ Can be proven for general L-smooth τ -convex f , we’ll live to fight another day

▶ Works well in practice provided you find right α and β (nontrivial)

▶ For non-convex f converges if β ∈ [ 0 , 1 ), α ∈ ( 0 , 2(1− β) / L ) [7, p. 168]

(β “free” but α→ 0 as β → 1, and 2 / L already rather small to start with)
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▶ Can prove O( 1 / i ) error, not better than gradient
(although better in practice with properly chosen α, β)

▶ “Accelerated Gradient” has better theoretical convergence:

procedure y = ACCG ( f , x , ε )
x− ← x ; γ ← 1;
do { // warning: black magic ahead

γ− ← γ; γ ← (
√

4γ2 + γ4 − γ2 )/2; β ← γ( 1 / γ− − 1 );
y ← x + β( x − x− ); g ← ∇f ( y ); x− ← x ; x ← y − (1 / L)g ;
} while( ∥ g ∥ > ε );

≈ HB, except ∇f computed after momentum but before descent

▶ Optimal [1, Th. 3.14] O( LD2 /
√
ε ) for L-smooth only [1, Th. 3.19],

optimal linear r = (
√
κ− 1 ) / (

√
κ+ 1 ) if also τ -convex [1, Th. 3.18]

▶ Non-monotone but can be made so (two f computations per iteration)

▶ Complex theory, algorithm constructed to optimize worst-case behaviour

▶ In practice consistently slowish: carefully crafted to attain
a given convergence speed, gets what it is constructed for
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▶ Descent direction (e.g., gradient) + “reasonable” step = convergence

▶ Different practical inexact line searches, up to “no search at all”

▶ Convergence from quite bad to horrible depending on conditioning of ∇f ( x∗ )

▶ “But the conditioning of ∇f ( x∗ ) is a property of the space, master!”

“OK, so let’s just change the space!” [10]

▶ Thanks goodness, you can go (much) faster than light (warp drive)

▶ Second-order methods have vastly better convergence (↗ quadratic),

but ∇2f has to ∃, be continuous, and you have to use it

▶ Although, you can use ∇2f without ever computing it

▶ First-and-a-half-order methods provide interesting trade-offs

▶ A lot of details need be considered, numerical aspects nontrivial

▶ There is only so much you can get with first-order methods, but

do not complain, as even a smooth ∇f is not granted
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▶ f ( x ) = x2 / 2 =⇒ f ′( x ) = x =⇒ x i+1 ← x i − αx i = x i (1− α) =⇒
f ( x i+1 ) = f ( x i (1− α) ) = (1− α)2f ( x i ), hence f ( xk )rk f ( x0 ) for
r = (1− α)2. If α > 2 then r = (1− α)2 > 1 and { f i = f ( x i ) } → +∞
(exponentially fast), unless x i = 0 [back]

▶ Take αi = 1 / 2i2 ≤ 1 / 2, f ( x ) = x2 / 2− x , f ′( x ) = x − 1 =⇒
x i+1 ← x i − αi (x i − 1) = x i (1− αi ) + αi ≤ x i + αi . Take x1 = 0 to get

x i+1 ≤
∑i

k=1 α
k ; thus, x i ≤

∑∞
k=1 α

k = π2 / 12 ≈ 0.8225 < 1 = x∗ for all i ,
i.e., the algorithm stalls (long) before reaching the optimal solution [back]

▶ In a word: no. If f ( x ) is a “black box”, i.e., one can only evaluate it (and the
gradient) but has no clue about how this is done, it’s impossible to declare that
f∗ = −∞. Indeed, even for n = 1, f may decrease “for a very long time” but
then abruptly start increasing again, and there is no way of knowing whether or
not this will eventually happen. Thus, proving unboundedness is harder than
proving (local) optimality, for which ∇f ( x ) = 0 (approximately) suffices,
unless one has more control on the function’s properties such as knowing its
exact algebraic form (and even this may not be enough) [back]
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▶ Seen already: f ( x ) = −x , f ′( x ) = −1, αi = 1 / i : x i+1 − x i = αi = 1 / i → 0
as i →∞, but x i →∞ [back]

▶ By the mean value theorem, f ∈ C 1 =⇒ ∀ x , z ∃w in the segment with
extremes x and z such that f ( z )− f ( x ) = ⟨∇f (w ) , z − x ⟩ ≤
≤ ∥∇f (w ) ∥∥ z − x ∥ ≤ L∥ z − x ∥ (directly by the definition of L) [back]

▶ g = ∇f ( x ), d = g / ∥ g ∥; [ 0 ≤ ] ∥ g ∥ = ⟨ g , g ⟩ / ∥ g ∥ = ⟨ g , d ⟩ = ∂f
∂d ( x ) =

= limt→0 ( f ( x + td )− f ( x ) ) / t = limt→0 | ( f ( x + td )− f ( x ) ) / t | =
limt→0 | f ( x + td )− f ( x ) | / | t |. Since f is L-c, | f ( x + td )− f ( x ) | ≤ L| t |;
hence, ∥∇f ( x ) ∥ ≤ L [back]

▶ φ′(α ) = limt→0(φ(α+ t )− φ(α ) ) / t =
= limt→0( f ( x + (α+ t)d )− f ( x + αd) ) / t =
= limt→0( f ( [ x + αd ] + td )− f ( x + αd ) ) / t = ∂f

∂d ( x + αd ) =
(definition of directional derivative) = ⟨∇f ( x + αd ) , d ⟩ [back]
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▶ f : Rn → R, Jf ( x ) = ∇f ( x ) : Rn → Rn

g( t ) = x + td : R→ Rn, Jg( t ) = d : R→ Rn

h( t ) = f ( x + td ) = f ( g( t ) ) : R→ R
Jh( t ) = h′( t ) = Jf ( g( t )) · Jg( t ) = ⟨∇f ( x + td ) , d ⟩ [back]

▶ |φ′(α )− φ′(β ) | = | ⟨∇f ( x + αd ) , d ⟩ − ⟨∇f ( x + βd ) , d ⟩ | =
= | ⟨∇f ( x + αd )−∇f ( x + βd ) , d ⟩ | ≤
≤ ∥∇f ( x + αd )−∇f ( x + βd ) ∥∥ d ∥ ≤ (L-smoothnes)
≤ [ L∥ ( x + αd )− ( x + βd ) ∥ ]∥ d ∥ = [ L∥ d ∥2 ]|α− β | [back]

▶ Recall: “the derivative is the inverse of the integral”
f : R→ R, f ∈ C 0, F antiderivative of f if F ′( x ) = f ( x ) ∀ x ∈ R
Fundamental theorem of calculus [11] (only the needed direction):

F antiderivative of f =⇒
∫ x+
x−

f ( x )dx = F ( x+ )− F ( x− ) ∀ x− ≤ x+

Integration is monotone [11]: f ( x ) ≥ g( x ) ∀ x ∈ [ x− , x+ ] =⇒
F ( x ) =

∫ x+
x−

f ( x )dx ≥ G ( x ) =
∫ x+
x−

g( x )dx

φ′(α ) ≤ ∥∇f ( x ) ∥2(Lα− 1) =⇒ φ(α )− φ( 0 ) =
∫ α

0
φ′(β )dβ ≤
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≤ ∥∇f ( x ) ∥2
∫ α

0
[ Lβ − 1 ]dβ = ∥∇f ( x ) ∥2(A(α )− A( 0 ) )

where A(α ) = Lα2/2− α antiderivative of Lα− 1
All in all, φ(α )− φ( 0 ) ≤ ∥∇f ( x ) ∥2[ Lα2/2− α ] [back]

▶ g( x ) = f ( x )− τ
2 ∥ x ∥

2 , ∇2g( x ) = ∇2f ( x )− τ
2 I ,

λn(∇2g( x ) ) = λn(∇2f ( x ) )− τ [back]

▶ ∃ x∗ minimum of f =⇒ ∇f ( x∗ ) = 0. Pick any z ̸= x∗: for strictly convex,
f ( z ) > f ( x∗ ) + ⟨∇f ( x∗ ) , z − x∗ ⟩ = f ( x∗ ), for strongly convex, f ( z ) ≥
≥ f ( x∗ ) + ⟨∇f ( x∗ ) , z − x∗ ⟩+ τ

2 ∥ z − x∗ ∥2 > f ( x∗ ) (as ∥ z − x∗ ∥ > 0)
In fact, “f ∈ C 1” not needed: result true for nondifferentiable functions, easy
to prove when we’ll get there [back]

▶ Divide numerator and denominator by τ , use the definition of κ [back]
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▶ ∥Q ∥ =
√

λ1(QTQ ) =
√
λ1(Q2 ). The eigenvalues of Q2 are the square of

those of Q, hence their square root is the absolute value of those of Q. Clearly,
the largest of the absolute values is either that of maximum eigenvalue or that
of the minimum eigenvalue. [back]

▶ Recall in general ∥Q ∥ = max{ |λ1 | , |λn | } (only simplifies if ⪰ 0 / ⪯ 0),
and (λ , v ) eep of Q =⇒ ( 1 + cλ , v ) eep of I + cQ [back]

▶ Assuming α > 0 is chosen so that −1 + αL ≥ 0 and 1− ατ one has
L ≥ λ1 > 0 =⇒ −1 + αλ1 ≤ −1 + αL
0 < τ ≤ λn =⇒ 1− αλn ≤ 1− ατ [back]

▶ −1 + 2L / (L+ τ) = (−L− τ + 2L) / (L+ τ) = (L− τ) / (L+ τ)
1− 2τ / (L+ τ) = (L+ τ − 2τ) / (L+ τ) = (L− τ) / (L+ τ) [back]
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▶ g i = ∇f ( x i ), f∗ = min{ f ( x ) } ≥ f ( x i ) + min{ qi ( x ) }, with qi ( x ) =
= ⟨ g i , x − x i ⟩+ τ

2 ∥ x − x i ∥2 =⇒ ∇qi ( x̄ ) = 0 ≡ g i + τ( x̄ − x i ) = 0 ≡
≡ x̄ − x i = −g i / τ =⇒ g i ( x̄ ) = ⟨ g i , −g i / τ ⟩+ τ

2 ∥−g
i / τ ∥2 =

= −∥ g i ∥2 / 2τ = −∥∇f ( x i ) ∥2 / 2τ [back]

▶ limi→∞∇f ( x i ) = limi→∞∇f ( x i+1 ) = ∇f ( x ) since f ∈ C 1 ≡ ∇f ∈ C 0;
then, ⟨∇f ( x i ) , ∇f ( x i+1 ) ⟩ ≤ ε∥∇f ( x i ) ∥ =⇒ (take the limit)
∥∇f ( x ) ∥2 ≤ ε∥∇f ( x ) ∥ [back]

▶ By definition of limit, ∀ δ > 0 ∃ h s.t. ∥∇f ( xh ) ∥ ≤ ε+ δ; just use some ε̄ < ε
as close as you want (anyway, numerical accuracy is limited) [back]
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▶ The question hardly has practical sense, since ε need be (a lot) greater than
the machine precision anyway: using double (machine precision ≈ 1e-16), any
ε≪ 1e-12 is likely to be impractical. Yet, infinite-precision computation is in
principle possible (albeit slow), although one cannot expect to get a solution
with 0 accuracy in finite time and have to be content to finitely achieving any
arbitrary accuracy. For that, it would not be right to just set ε = 0, as then
even the first LS may never terminate. The obvious solution is to run the
algorithm infinitely many times, at the h-th call using some fixed εh > 0, but
having εh → 0 as h→∞. Of course, one then have to use the last iteration of
the h-th call as the starting point of the h + 1-th call, which is all the
information one needs to carry forward (unlike other approaches we’ll see, the
gradient method has “no memory” beyond the current iterate x i ) [back]

▶ Convexity implies f∗ = f ( x∗ ) ≥ f (, x i ) + ⟨∇f ( x i ) , x∗ − x i ⟩, i.e.,
⟨∇f (, x i ) , x∗ − x i ⟩ ≥ f ( x i )− f∗[≥ 0 ], hence ∥∇f ( x i ) ∥δ ≥
≥ ∥∇f ( x i ) ∥∥ x∗ − x i ∥ ≥ | ⟨∇f ( x i ) , x∗ − x i ⟩ | ≥ ai , which finally gives
∥∇f ( x i ) ∥ ≤ ε / δ =⇒ ai ≤ ε (looks familiar?) [back]
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▶ g i = ∇f ( x i ), f∗ = f ( x∗ ) ≥ f ( x i ) + ⟨ g i , x∗ − x i ⟩+ τ
2 ∥ x∗ − x i ∥2 ≡

−h( x∗ ) = −⟨ g i , x∗ − x i ⟩ − τ
2 ∥ x∗ − x i ∥2 ≥ f ( x i )− f∗ = ai . Since we don’t

know x∗, we need to overestimate the LHS, i.e., to compute
max{−h( x ) } = −min{ h( x ) }. As usual, putting ∇h( x̄ ) = 0 gives
g i + τ( x̄ − x i ) = 0 ≡ x̄ − x i = −g i / τ , whence −h( x̄ ) = ∥ g i ∥2 / (2τ). All
in all, ∥ g i ∥ ≤

√
2τε =⇒ ε ≥ ∥ g i ∥2 / (2τ) ≥ ai [back]

▶ Since d ′( 0 ) > 0 and d ′(α ) = 0 never happens for α > 0, d ′(α ) > 0 ∀α > 0;
in fact, ∃ ᾱ > 0 s.t. d ′( ᾱ ) < 0 =⇒ ∃α ∈ ( 0 , ᾱ ) s.t. d ′(α ) = 0 by the
Intermediate Value Theorem [6, Th. 2.2.10], since d ′(·) ∈ C 0. Hence d(·) is
increasing ∀α ≥ 0: since d( 0 ) = 0, d(α ) ≥ 0 ≡ l(α ) ≥ φ(α ) ∀α ≥ 0.
Since l(α )→ −∞ as α→∞, the same must happen to φ(α ) [back]

▶ Again Intermediate Value Theorem, and d(·) ∈ C 0: if there was some α < ᾱ
s.t. d( ᾱ ) < 0, then there should be a further α′ ∈ ( 0 , α ) s.t. d(α′ ) = 0,
contradicting the assumption that ᾱ is the smallest [back]
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▶ φ′
x,d(α ) = ⟨ d , ∇f ( x + αd ) ⟩, hence φ′

x,d( 0 ) = ∥ d ∥∥∇f ( x ) ∥ cos( θ ). If d
where −∇f ( x ) then θ = π, since it’s rotated by further 45 degrees (π / 2),
then either θ = 3π / 4 or θ = 5π / 4; in either case, cos( θ ) = −

√
2 / 2 =

= − cos(π / 4 ), hence φ′
x,d( 0 ) = −∥∇f ( x ) ∥2 cos(π / 4 ) [back]

▶ Q i ( d ) = f ( x i ) + ⟨∇f ( x i ) , d ⟩+ 1
2d

T∇2f ( x i )d , ∇Q i ( d i ) = 0 ≡
≡ ∇f ( x i ) +∇2f ( x i )d i ≡ d i = −[∇2f ( x i ) ]−1∇f ( x i ) [back]

▶ As in Theorem 1,a −⟨∇f ( x i ) , d i ⟩ = (d i )T∇2f ( x i )d i ≥ τ∥ d i ∥2. By Taylor’s
theorem, limd→0 R( d ) / ∥ d ∥2 = 0 ≡ ∀ ε > 0 ∃ h s.t. R( d i ) ≤ ε∥ d i ∥2
∀i ≥ h. Thus, R( d i ) ≤ ε∥ d i ∥2 ≤ (−ε / τ )⟨∇f ( x i ) , d i ⟩ Hence,
f ( x i +d i )− f ( x i ) = 1

2 ⟨∇f ( x
i ) , d i ⟩+R( d i ) ≤ ( 1

2 − ε / τ )⟨∇f ( x i ) , d i ⟩ =
( 1
2 − ε / τ )φ′

x i ,d i ( 0 ) eventually holds for all large enough i however chosen ε.

Thus, the Armijo condition f ( x i + d i )− f ( x i ) ≤ m1φ
′
x i ,d i ( 0 ) will eventually

hold at every iteration however chosen m1 < 1 / 2
This uses τ -convexity, that is required for global convergence, but one could
rather assume the milder ∇2f ( x∗ ) ≻ 0 (required anyway for quadratic
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convergence) and use λn(∇2f ( x∗ ) ) > 0 in place of τ at the cost of
complicating the argument somewhat [back]

▶ Obvious (we’ve seen it happening), but: g = −z − R−1q, z + g = −R−1q,
∇h( z + g ) = (−R−1q ) + R−1q = 0 [back]

▶ ii) ≡ ∇mi+1( x ) = ∇f ( x i+1 ) + H i+1( x − x i+1 ) =⇒
∇mi+1( x i ) = ∇f ( x i ) ≡ ∇f ( x i+1 ) + H i+1( x i − x i+1 ) = ∇f ( x i ) ≡
∇f ( x i+1 )−∇f ( x i ) = H i+1( x i+1 − x i ) ≡ (S) [back]

▶ For any f (·), a finite difference approximation of the derivative f ′( x ) can be
computed as ( f ( x + ε )− f ( x ) ) / ε for some appropriately chosen “small” ε.
Hence, this also holds for ∇2f (·), which is the Jacobian of ∇f (·). A finite
difference approximation of the i-th column of ∇2f ( x ) can be computed as
(∇f ( x + εui )−∇f ( x ) ) / ε, ui as usual the i-the vector of the canonical
basis; in other words, [ x + εui ]h = xh for all h ̸= i , while [ x + εui ]i = xi + ε.
Computing this H0 costs n + 1 gradient computations (i.e., as many gradient
computations as iterations, and n can be large), plus it needs be inverted /
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factorised which is in general O( n3 ). Finding the appropriate numerical value
for ε is nontrivial either: too large and the approximation will be bad, too small
and the numerical errors in the computation of ∇f (·) will be so large that the
noise overwhelms the signal and the approximation will be bad too [back]

▶ ∇f (·) ∈ C 0 and d i−1 fixed =⇒ limβ→0 φ
′
x i ,d i ( β )( 0 ) =

limβ→0⟨∇f ( x i ) , −∇f ( x i ) + βid i−1 ⟩ = −∥∇f ( x i ) ∥2 < 0 (otherwise the
algorithm would have stopped already) [back]

▶ The first step is diagonalization of the upper-left block. A = ( 1 + β )I − αD
has eigenvalues λ′

i = ( 1 + β )I − λi and spectral decomposition A = HΛ′HT

(λi , Hi those of D); thus,

C ′ =

[
H 0
0 H

][
A −βI
I 0

][
HT 0
0 HT

]
=

[
( 1 + β )I − αΛ −βI

I 0

]
HT = H−1 =⇒ C ′ similar to C =⇒ has the same eigenvalues [17]
Now, C ′ ⇝ C ′′ 2× 2 block diagonal by exchanges of rows and columns
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C ′′ = PC ′PT =

 C1 . . . 0
...

. . .
...

0 . . . Cn

 , Ci =

[
1 + β − αλi −β

1 0

]
∈ R2×2

P permutation matrix =⇒ PT = P−1 [14] =⇒ C ′′ similar to C ′ =⇒
eigenvalues of C the union of those of Ci [back]

▶ The eigenvalues of Ci are the roots of the characteristic polynomial p(λ ) =
det(Ci − λI ) = λ2 + ( 1 + β − αλi )λ+ β. These are extremely tedious (but
possible) to compute and write down, the use of a symbolic system is advised
(see, e.g., the screenshot below). Once this is done, it is easy (with the
symbolic system) to check that the largest of the two eigenvalues is always
≤
√
β if β ≥ ( 1−

√
αλi )

2 (and ≤ something > 1, so wo don’t care)
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Hence, β = maxi=1,...,n{ ( 1−
√
αλi )

2 } =⇒
ρ(C ) ≤

√
β = max{ | 1−

√
αiτ | , | 1−

√
αiL | } [back]
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▶ Since 0 < τ ≤ L, α = 4 / (
√
L+
√
τ )2 ≤ 4 / (

√
L )2 = 4 / L. On the other

direction, α = 4 / (
√
L+
√
τ )2 ≥ 4 / (

√
L+
√
L )2 = 4 / ( 2

√
L )2 = L. Note

that τ → 0 (very elongated level sets) =⇒ α→ 4 / L , while τ = L (perfectly
circular level sets) =⇒ α = 1 / L: the step is longer the more elongated are
the level sets. For the rest,

√
β = max{ | 1−

√
ατ | , | 1−

√
αL | } =

= max

{ ∣∣∣∣ 1−√
4τ / (

√
L+
√
τ )2

∣∣∣∣ , ∣∣∣∣ 1−√
4L / (

√
L+
√
τ )2

∣∣∣∣ } =

= max{ | (
√
L+
√
τ − 2

√
τ ) / (

√
L+
√
τ ) | ,

| (
√
L+
√
τ − 2

√
L ) / (

√
L+
√
τ ) | } =

= max{ | (
√
L−
√
τ ) / (

√
L+
√
τ ) | , | (

√
τ −
√
L ) / (

√
L+
√
τ ) | } =

= (
√
L−
√
τ ) / (

√
L+
√
τ ) ≤ 1 =⇒ β ≤ 1 [back]
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