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Motivation I: Incremental (a.k.a. Stochastic) Gradient in ML 1

▶ I = { 1, . . . ,m }, X = [ x i ∈ Rh ]i∈I inputs, y = [ y i ∈ Rk ]i∈I outputs

▶ Arbitrarily complex predictor π( x ; w ) : Rh → Rk parametric on w ∈ Rn,

L : Rk × Rk → R loss function (could be Li ), fitting

min
{
f (w ) =

∑
i∈I [ f

i (w ) = L( y i , π( x i ; w ) ) ] : w ∈ Rn
}

▶ ∇f (w ) =
∑

i∈I ∇f i (w ): sum of the m gradients of individual f i

▶ Linear least squares: π( x ; w ) = ⟨ x , w ⟩, L = ( y , z ) = ( y − z )2 / 2 =⇒

f i (w ) = ( y i − ⟨ x i , w ⟩ )2/2 , ∇f i (w ) = −x i ( y i − ⟨ x i , w ⟩ )

▶ Each ∇f i cheap, but m large =⇒ computing “the full” ∇f costly already

▶ Intuition: x i are i.i.d. =⇒ ∇f i are =⇒ “many of them will cancel out”

=⇒ a small sample is enough to compute a close ≈ to the “true” ∇f

▶ K ⊂ I “small”, ∇f K (w ) =
∑

i∈K ∇f i (w ) = incremental gradient

▶ Cheaper but −∇f K not a descent direction, a ̸= analysis is needed
(but Heavy Ball and ACCG are not descent methods, either)



A fleeting glimpse to the analysis of Stochastic Gradient 2

▶ How to choose K? What #K should be?

▶ Apparently no better way than at random ≡ stochastic gradient

▶ Iteration with K = I “batch”, #K < m “mini batch” (often #K = 1)

▶ “Extreme” version: on-line. Observations keep coming (typically fast), have

to be used immediately one by one and immediately discarded (no memory)

▶ Results often given in terms of E(·) and of the “mean of iterates”

x̄ i = (
∑i

k=0 x
k ) / i (Cesáro average), { x̄ i } → x∗ if { x i } does

▶ With #K = 1, results rather worse than deterministic case, e.g. [1, Th. 6.3]

f ∈ C 1 and τ -convex =⇒ E( f ( x̄ i )− f∗ ) ≤ ε for i ≥ O( 1 / ε2 )

▶ Things improve as #K ↗ [1, p. 334], but iteration cost ↗ too

▶ General observation: first-order methods are “quite robust” to errors in ∇f

▶ Will come in handy presently



Motivation II: nondifferentiable regularisation 3

▶ Any ML expert would add a regularizer Ω(w ) (better in theory & practice)

min
{ ∑

i∈I L( y i , π( x i ; w ) )+µΩ(w ) : w ∈ Rn
}

µ hyper-parameter (scalarization of multi-objective), grid search . . .

▶ Standard ridge regularization: Ω(w ) = ∥w ∥22 / 2 ∈ C∞, ∇Ω(w ) = w

▶ Regularization simplifies model =⇒ better generalization (if done well)

▶ Other way to simplify model: decrease n ≡ feature selection

▶ Can kill two birds with a stone: Ω = ∥ · ∥0 very nasty function, /∈ C 0

(could be written as a Mixed-Integer Nonlinear Problem [2] . . . )

▶ Workable alternative: Ω = ∥ · ∥1 = Lasso, best convex approximation of ∥ · ∥0

▶ Increases sparsity in practice, convex, ∈ C 0 but /∈ C 1

▶ Is this a real problem? You bet.



Smooth methods fail on nonsmooth functions 4

▶ x1 = [ 3 , 2 ], y1 = 2, µ = 10 =⇒
f (w1 , w2 ) = ( 3w1 + 2w2 − 2 )2

+10( |w1 |+ |w2 | )

▶ w1 = 0 or w2 = 0 =⇒ S( f , · ) “kinky”

▶ [ | · | ]′( 0 ) undefined: −1? 1? 0?

▶ What if I choose arbitrarily?
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▶ ∃ (−)g ≈ ∇f (w ) “pointing inside S( f , f (w ) )” ≡ descent direction

▶ But many others “point outside” ≡ no descent direction

▶ A descent method with d i = −g i =⇒ αi = 0 =⇒ w i+1 = w i E

▶ Methods need not be of descent + f is convex, and this can be exploited
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A condensed introduction to Subgradients and the Subdifferential 5

f ∞ ▶ s subgradient of f

at x :

f ( z ) ≥ f ( x ) + ⟨ s , z − x ⟩ ∀ z ∈ Rn

▶ No lack of first-order information, rather
too much of it

▶ for x “on the border” of dom( f ), ∥ s ∥ → ∞

▶ s = 0 =⇒ x local ≡ global minimum

▶ However, there can be (∞-ly) many s ̸= 0 at a local ≡ global minimum

▶ ∂f ( x ) = { s ∈ Rn : s is a subgradient at x } ≡ subdifferential (a set)

▶ ∂f ( x ) = {∇f ( x ) } ⇐⇒ f differentiable at x

▶ ∂f
∂d ( x )≥ ⟨ s , d ⟩ ∀s ∈ ∂f ( x ) =⇒

d is a descent direction ⇐⇒ ⟨ s , d ⟩ < 0 ∀s ∈ ∂f ( x )

▶ s∗ = −argmin{ ∥ s ∥ : s ∈ ∂f ( x ) } = steepest descent direction

▶ x global minimum ⇐⇒ 0∈ ∂f ( x )
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Subgradient in Rn 6
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▶ f ( x1 , x2 ) = max{ x21+(x2−1)2 , x21+(x2+1)2 }
convex, nondifferentiable, x∗ = [ 0 , 0 ]

▶ if ∂f ( x ) = { g = ∇f ( x ) }, g ⊥ S( f , f ( x ) )

i.e., −g “points towards x∗”

▶ d s.t. ⟨ g , d ⟩ < 0 ≡ descent direction

▶ But if f is nondifferentiable in x

there are many different (−)g

▶ All of them are “⊥ S( f , f ( x ) )” (x = “kink point”)

▶ Not all of them are descent directions

▶ However, any (−) subgradient “points towards x∗”:
f ( x∗ ) ≥ f ( x ) + ⟨ g , x∗ − x ⟩ =⇒ ⟨ g , x∗ − x ⟩ ≤ f ( x∗ )− f ( x ) ≤ 0

▶ Enough for gradient-type approaches (but don’h hold your breath on efficiency)
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f ( x∗ ) ≥ f ( x ) + ⟨ g , x∗ − x ⟩ =⇒ ⟨ g , x∗ − x ⟩ ≤ f ( x∗ )− f ( x ) ≤ 0

▶ Enough for gradient-type approaches (but don’h hold your breath on efficiency)
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Mathematically speaking: Subdifferential calculus [6, Chap. VI] 7

▶ f : Rn → R =⇒ ∂f ( x ) a compact convex set ∀ x [6, Def. VI.1.1.4]

▶ As with ∇f , ∃ rules for “computing” ∂f , some look familiar

i α, β ∈ R+ =⇒ ∂[αf + βg ]( x ) = α∂f ( x ) + β∂g( x )

ii ∂[ f (Ax + b ) ] = AT [ ∂f ](Ax + b ) (pre-composition with linear function)

iii g : R→ R increasing =⇒ ∂[ g( f ( x ) ) ] = [ ∂g ]( f ( x ) )[ ∂f ]( x )

(post-composition with increasing convex function, “chain rule”)

iv f ( x ) = max{ f1( x ) , . . . , fm( x ) }, I ( x ) = { i : fi ( x ) = f ( x ) } =⇒
∂f ( x ) = conv(∪i∈I ( x )∂fi ( x ) ) ≈ extends to ∞-ly many [6, §VI.4.4]

v g( x , y ) : Rn+m → R, f ( x ) = inf{ g( x , y ) : y ∈ Rm } =⇒
∂f ( x ) = { s ∈ Rn : (s, 0) ∈ ∂g( x , y ) } (partial minimization)

vi f ( x ) = inf{ f1( x1 ) + f2( x2 ) : x1 + x2 = x } (infimal convolution) =⇒
∂f ( x ) = ∂f1( x1 ) ∩ ∂f2( x1 ) where x1 + x2 = x and f ( x ) = f1( x1 ) + f2( x2 )

▶ Some more complicated ones (value function, perspective, . . . [6, §VI.4.5])

Exercise: prove ⊇ in i. “from prime principles”

Exercise: compute ∂f ( x ) for f ( x ) = | x |
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(Convex) Nondifferentiable optimization is hard(er) 8

▶ Nondifferentiable optimization is orders of magnitude slower [1, Th. 3.13]

f ∈ C 1 τ -convex L-smooth O( log( 1 / ε ) )

f /∈ C 1 τ -convex L-Lipschitz Ω( L2 / ε )

f ∈ C 1 convex L-smooth O( 1 /
√
ε )

f /∈ C 1 convex L-Lipschitz Ω( L / ε2 )

▶ Furthermore, Fixed Step “cannot work” for f /∈ C 1

f(x)

xx

▶ f ( x ) = L| x |, x0 = −αL / 2

▶ g1 = −L, x1 = x0 − αg1 = αL / 2

▶ g2 = L, x2 = x1 − αg2 = −αL / 2 = x0

▶ g3 = −L, x1 = x0 − αg1 = . . .

▶ fbest − f∗ = L2α/ 2, O( L ) for α = 1 / L, and the algorithm cycles forever
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Why (convex) nondifferentiable optimization is hard(er) 9

▶ f ∈ C 1, the gradient is unique, d = −∇f ( x )
▶ f ( x + αd )< f ( x ) for all (small enough) α ≥ 0

▶ ∥ d ∥ is a two-sided proxy of A( x ): ∥ d ∥ “small” ⇐⇒ f ( x ) “close” to f∗

≡ “∥ d ∥ ≤ ε” effective stopping criterion

▶ can use Fixed Step since ∥ x i+1 − x i ∥ → 0 automatically:

∥ d i ∥ → 0 even if αi ≥ ᾱ > 0

▶ f /∈ C 1, there can be many different subgradients, d = −[ g ∈ ∂f ( x ) ]

any one of them (can’t choose, the oracle does for you)

▶ f ( x + αd ) may be ≥ f ( x ) for all α

▶ ∥ d ∥ is a one-sided proxy of A( x ):

▶ ∥ d ∥ “small” =⇒ f ( x ) “close” to f∗
▶ f ( x ) “close” to f∗ ≠⇒ ∥ d ∥ “small”

≡ “∥ d ∥ ≤ ε” ineffective stopping criterion (almost never happens)

▶ can’t use Fixed Step since ∥ d ∥ can be “big” even if x = x∗:

to ensure ∥ x i+1 − x i ∥ → 0 one has to force αi → 0 (but not too fast)
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Subgradient methods: fundamental relationships 10

▶ Any (−) subgradient “points towards x∗”
=⇒ an appropriate step along −g brings closer to x∗

=⇒ x i+1 = x i − αig i for makes sense with the right αi

▶ Fundamental relationship: ∥ x i+1 − x∗ ∥2 = ∥ x i − αig i − x∗ ∥2 =
= ∥ x i − x∗ ∥2 +2αi ⟨ g i , x∗ − x i ⟩+ (αi )2∥ g i ∥2

≤ ∥ x i − x∗ ∥2 +2αi ( f∗ − f ( xi ) )+ (αi )2∥ g i ∥2
[ < 0 ] [ > 0 ]

▶ As α↘ 0 (short step), blue term dominates =⇒ x i+1 closer to x∗ than x i

Exercise: check / justify the previous two points

▶ Short but not too short = “Diminishing–Square Summable” stepsize:

(DSS)
∑∞

i=1 α
i =∞ ∧

∑∞
i=1(α

i )2 <∞

“αi ↘ 0 but not fast enough that the series converges” (αi = 1 / i)

▶ DSS just “works”: ∀ ε > 0 ∃ i s.t. f i − f∗ ≤ ε but not ∀ h ≥ i , not monotone

▶ Incredibly robust result: αi chosen a priori, f ( x i ) not even used (only g i )
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Mathematically speaking: Convergence analysis of DSS 11

▶ Need ∥ g i ∥ ≤ L ⇐= f L-c

▶ Can do without, e.g., ∥ x i ∥ ≤ M <∞ enough, and bounding strategies ∃ [8]

▶ DSS “works”: by contradiction, f ( x i )− f∗ ≥ δ / 2 > 0 ∀i

▶ ∥ x i+1 − x∗ ∥2 ≤ ∥ x i − x∗ ∥2 + 2αi ( f∗ − f ( xi ) ) + (αi )2∥ g i ∥2

≤ ∥ x i − x∗ ∥2−δαi +L2(αi )2 [induction] =⇒

∥ xk+1 − x∗ ∥2 ≤ ∥ x1 − x∗ ∥2 +
[
vk = −δ

∑k
i=1 α

i + L2
∑k

i=1(α
i )2

]
▶

∑∞
i=1 α

i =∞ and
∑∞

i=1(α
i )2 <∞ =⇒ vk → −∞ as k →∞ =⇒

∃ k s.t. 0 ≤ ∥ xk+1 − x∗ ∥2 ≤ ∥ x1 − x∗ ∥2 + vk < 0 E

▶ Proves that ∃ x i arbitrarily close to x∗, but x
i +1 could be very far

▶ α that was “good” at iteration i can be “very bad” at i + 1

▶ No control on individual stepsizes, only on “long term average”



Polyak stepsize 12

▶ Practical convergence speed of DSS abysmal, cannot use it

▶ Look again: ∥ x i+1 − x∗ ∥2 ≤ ∥ x i − x∗ ∥2 +2αi ( f∗ − f i )+ (αi )2∥ g i ∥2

=⇒ if we knew f∗ we could estimate αi . . .

let’s pretend we do

▶ Recall: ϕ(α ) = aα2 + bα , a > 0 =⇒ α∗ = argmin{ϕ(α ) } = −b / 2a
b < 0 =⇒ ϕ(α ) < 0 ∀α ∈ ( 0 , 2α∗ )

▶ a = ∥ g i ∥2 , b = 2( f∗ − f i ) =⇒ αi
∗ = ( f i − f∗ ) / ∥ g i ∥2 [≥ 0]

▶ Polyak stepsize (PSS): αi ∈ ( 0 , 2αi
∗ ) =⇒ ∥ x i+1 − x∗ ∥2 < ∥ x i − x∗ ∥2

▶ Vastly better in practice as far as it can go = not much:

min{ f ( xh ) : h ≤ i } − f∗ ≤ L∥ x1 − x∗ ∥ /
√
i =⇒ O( 1 / ε2 )

▶ ε = 1e-3 → ε = 1e-4 =⇒ 100× iterations =⇒ ε < 1e-4 impractical
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Mathematically speaking: Efficiency of Polyak stepsize 13

▶ (PSS) =⇒ ∥ x i+1 − x∗ ∥ < ∥ x i − x∗ ∥ =⇒ ∥ x i − x∗ ∥ < ∥ x1 − x∗ ∥ <∞ ∀ i
=⇒ ∥ g i ∥ ≤ L [6, Proposition VI.6.2.2] (or just ask f L-c)

▶ αi = α∗
i =⇒ ( f i − f∗ )

2 / ∥ g i ∥2 ≤ ∥ x i − x∗ ∥2 − ∥ x i+1 − x∗ ∥2 (check)

▶ f̄ i = min{ f h : h ≤ i } record value up to iteration i

=⇒ ( f̄ i − f∗ )
2

L2
≤ ( f (x i )− f∗ )

2

∥ g i ∥2
≤ ∥ x i − x∗ ∥2 − ∥ x i+1 − x∗ ∥2

▶ Sum for i = 1, . . . , k : intermediate terms cancel out =⇒

k
( f̄ k − f∗ )

2

L2
≤ ∥ x1 − x∗ ∥2−∥ xk+1 − x∗ ∥2 ≤ ∥ x1 − x∗ ∥2

=⇒ f̄ k − f∗ ≤ L∥ x1 − x∗ ∥2 /
√
k =⇒ O( 1 / ε2 )

▶ “Good news”: Polyak would be optimal if we knew f∗, which we don’t



Target level stepsize (vanishing) [3, §3.2] 14

▶ “If you don’t know it estimate it, but be ready to revise your estimate”

procedure x = SGPTL ( f , x , imax , β , δ0 , R , ρ )
r ← 0; δ ← δ0; fref ← f̄ ← f ( x ); i ← 1;
while( i < imax ) do
g ∈ ∂f ( x ); α← β( f ( x )− ( fref − δ ) ) / ∥ g ∥2; x ← x − αg ;

if( f ( x ) ≤ fref − δ / 2 ) then { fref ← f̄ ; r ← 0; }
else if( r > R ) then { δ ← δρ; r ← 0; }

else r ← r + α∥ g ∥;
f̄ ← min{ f̄ , f ( x ) }; i ← i + 1;

▶ reference value fref− threshold δ = target level (ideally) ≈ f∗

▶ “Good improvement” =⇒ fref ↘ =⇒ target level ↘

▶ “Too many steps without improvement” =⇒ δ ↘ =⇒ target level ↗

▶ (Too) many parameters: ρ ∈ ( 0 , 1 ), β ∈ ( 0 , 2 ), δ0 > 0 (??), R > 0 (???)

▶ { f̄ i } → f∗ but no reasonable stopping criterion, just “stop after a while”

▶ Convergences, but slowly: can it be made any better?



Deflected subgradient [3] 15

▶ “Want a better direction? Use a better model!”

▶ There is no second-order information, but deflection is possible:

d i = γ ig i + ( 1− γ i )d i−1 , x i+1 = x i −αid i ≈ “conjugate subgradient”

▶ If you want theoretical convergence some funny rules are needed

▶ Stepsize-restricted ≡ deflection-first: Polyak

αi = βi ( f i − f∗ ) / ∥ d i ∥2 ∧ βi ≤ γ i

“as deflection ↗, stepsize has to ↘”

▶ Deflection-restricted ≡ stepsize-first: (DSS) +

αi−1∥ d i−1 ∥2

( f i − f∗ ) + αi−1∥ d i−1 ∥2
≤ γ i

“as f ( x i )→ f∗, deflection ↘”

▶ In both cases, target level to replace f∗ (many ugly parameters)

▶ γ i ∈ argmin{ ∥ γg i + ( 1− γ )d i−1 ∥2 : γ ∈ [ 0 , 1 ] } (closed formula)

▶ Actually helps in practice, as far as it can go = not much
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Smoothed gradient methods 16

▶ “But the speed of light is a property of the space , master!”

“OK, so let’s just change the space !” [10]

▶ Requires f ( x ) = max{ xTAz : z ∈ Z } convex (check), assumed “easy”

▶ z̄ optimal for x =⇒ Az̄ ∈ ∂f ( x ) =⇒ f /∈ C 1 (many different z̄ can ∃)

▶ Smoothed fµ( x ) = max{ xTAz −µ∥ z ∥2 / 2 : z ∈ Z } ∈ C 1 (hopefully easy)

Exercise: construct fµ for f ( x ) = | x | then plot it to see the “smoothing”

▶ Choose “small” µ = O( ε ) + “fast” minimization of fµ =⇒
“only” O( 1 / ε ), “much better” than O( 1 / ε2 )

▶ Have to pry open the black box and change it, nontrivial (if at all possible)

▶ In theory parameter-free, but several caveats

▶ Convergence in practice non that great:

constructed to optimize worst-case behaviour, gets what is constructed for
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Mathematically speaking: Analysis of smoothed gradient 17

▶ Z convex and compact, “+ϕ( z )” concave and “+h( x ) ∈ C 1” allowed

▶ fµ → f as µ→ 0 depending on K = max{ ∥ z ∥2 / 2 : z ∈ Z }
(assuming K <∞, easy, but computing it is not: convex maximization)

▶ fµ( x ) ≤ f ( x ) ≤ fµ( x ) + µK : as µ↘ 0, “argmin { fµ( x ) } → x∗”

▶ fµ L-smooth with L = ∥A ∥2 / µ [9, Th. 1] (“less and less Lipschitz” as µ↘ 0)

▶ L-smooth is O( LD /
√
ε ): f ( x i )− f∗ ≤ 2LD2 / i2 [1, Th. 3.19]

▶ Choose µ = ε / (2K ) =⇒ L = 2∥A ∥2K / ε to get

▶ fµ( x
i ) ≤ f ( x i ) ≤ fµ( x

i ) + ε / 2 =⇒ fµ,∗ ≤ f∗ ≤ fµ,∗ + ε / 2

▶ f ( x i )− f∗ ≤ ε ⇐= fµ( x
i ) + ε / 2− fµ,∗ ≤ ε ≡ fµ( x

i )− fµ,∗ ≤ ε / 2

▶ fµ( x
i )− fµ,∗ ≤ 4∥A ∥2KD2 / ( εi2 ) ≤ ε / 2

≡ 4∥A ∥2KD2 / i2 ≤ ε2 / 2 ≡
√
8K∥A ∥D / ε ≤ i

▶ Would be parameter-free but have to estimate K to choose µ (not easy)



Smoothed Gradient in practice [5] 18

▶ How does this work in practice? Consistently slowish

≈ superlinear in a doubly-logarithmic chart after a long flat leg

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

▶ Subgradients faster but flatline at ε ≈ 1e-4, smoothed does ε = 1e-6

but it requires 1e+6 iterations to get there

▶ And with ε = 1e-6 the flat leg is way longer

▶ ACCG does steps 1 / Lµ = O(µ ) = O( ε ), far too short at start

▶ Exploiting information about f∗ helps (black solid line)

Exercise: how would you exploit information about f∗? (hint: ε =⇒ εi )
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The basic idea: Cutting Plane model 19

▶ “Want a better direction? Use a better model!”

▶ But ∄ second-order information and first-order one is crap . . .

or is it?

▶ f convex =⇒ first-order information not so crap: globally valid

▶ x ⇝ oracle ⇝ f ( x ) , g ∈ ∂f ( x ) =⇒ first-order model at x

lx,f (x),g ( z ) = f ( x ) + ⟨ g , z − x ⟩≤ f ( z ) ∀ z ∈ Rn (not uniquely defined)

▶ What if I collect it all along the way and use it all?

▶ { x i } =⇒ bundle Bi = { ( xh , f h = f ( xh ) , gh ∈ ∂f ( xh ) ) }h<i

▶ f iB( x ) = max{ lh( x ) = f h+ ⟨ gh , x − xh ⟩ : ( xh , f h , gh ) ∈ Bi }≤ f ( x ) ∀ x
Cutting Plane (CP) model of f , “(1 + ε)-order” model, convex

▶ x∗ ∈ argmin{ fB( x ) }, fB( x∗ ) ≤ f∗: use x∗ as next iterate a-la Newton

▶ fB /∈ C 1 but computing x∗ a Linear Program =⇒ “easy” (if #B “small”)

min{ f iB( x ) } = min{ v : v ≥ f h + ⟨ gh , x − xh ⟩ ( xh , f h , gh ) ∈ Bi }
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The Cutting Plane algorithm 20

f

fB

x

▶ v∗ = min{ fB( x ) } master problem

▶ x∗ ∈ argmin{ fB( x ) }, v∗ = fB( x∗ ) =⇒
new ( x∗ , f ( x∗ ) , g∗ ∈ ∂f ( x∗ ) )

▶ f ( x∗ ) ≤ v∗ =⇒ x∗ optimal (check)

▶ otherwise B ← B ∪ ( x∗ , f ( x∗ ) , g∗ )
=⇒ fB becomes a “better” CP model

▶ f i = v∗,i = f iB( x∗,i ) ≤ f∗ model value, f i ↗ (check)

▶ f̄ i = min{ f h : h ≤ i } ≥ f∗ record value up to iteration i , f̄ i ↘

▶ Under appropriate assumption { f̄ i } → f∗ ← { f i } [4, Th. 1]

▶ Practical stopping criterion f̄ i − f i ≤ ε, unlike subgradient algorithm; in fact,

better than most other approaches so far, even for f ∈ C 1 (thanks convexity)

▶ But #B ↗∞ =⇒ master problem cost per iteration ↗∞

▶ Can be O( ( 1 / ε )n/2 ) [7, Ex. 1.1.2], practical convergence often horrible
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Mathematically speaking: Why the Cutting Plane algorithm works 21

▶ Not surprising: every convex function is the max of its first-order models

f ( x ) = max{ f ( z ) + ⟨ g , x − z ⟩ : z ∈ Rn , g ∈ ∂f ( z ) }

▶ Even better: can take any one g ∈ ∂f ( x ) ∀ z ∈ Rn [7, Th. XI.1.3.8]

i.e., “fire any oracle for f ” in all points of the space

▶ That is, f = fB for (uncountably) ∞-ly large B ≡ ∞-ly many x i

while we can only use finitely (in theory countably) many

▶ But we don’t need f ( x ) = fB( x ) ∀ x , only close to x∗

▶ “Algorithmic proof”: assume x∗,i ∈ B( x∗ , ε ) for any ε > 0 =⇒ still works

Exercise: prove the statement above

▶ min in the master problem (hopefully) focuses { x i } in some B( x∗ , ε )

▶ Unfortunately, not efficient at doing so, some help needed



Why the Cutting Plane algorithm works badly 22

f

fB

v*

x
x*

▶ x∗ may be very far from x∗

. . . up to infinitely far =⇒ assumptions

or some dirty trick when B is small

▶ Iterates have no locality property:

∥ x∗,i+1 − x∗,i ∥ can be very large and

does not go “smoothly” to 0

▶ Forget “fast convergence in the tail”

▶ ≈ unavoidable: linear functions have no curvature (really?),

you need very many linear functions to make a quadratic one

▶ Unless f polyhedral and “few facets active in x∗”, sometimes happens

▶ Many iterations =⇒ #B ↗ =⇒ the master problem grows costly

▶ Pruning B possible but not easy [4, Ex. 1], no a-priori bound on #B

▶ All in all, looks better than subgradient but impractical as it is



Why the Cutting Plane algorithm works badly 22
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Stabilising the Cutting Plane Model 23

▶ “If something is unstable, then stabilize it” (a.k.a. “regularize”)

f

fB

x

▶ x̄ stability center (≈ best x i so far)

▶ µ stability parameter: “how far from x̄
fB is a good model of f ” (??)

▶ Stabilized master problem (not an LP):

min{ fB( x )+µ∥ x − x̄ ∥2 / 2 }

▶ Keeps x∗ “close” to x̄
perhaps too close (µ too large)

▶ Or not close enough (µ too small) ≈≡ un-stabilized cutting plane algorithm
except always bounded below =⇒ x∗ always well-defined

Exercise: explain why the curious upside-down parabola graphically finds x∗

▶ Enforces stability ≈ trust region (∇2f ̸⪰ 0); in fact trust region version ∃

▶ Graft “poorman’s Hessian” µI onto fB =⇒ “poorman’s Newton”

▶ But how to manage x̄ and µ?
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▶ µ stability parameter: “how far from x̄
fB is a good model of f ” (??)

▶ Stabilized master problem (not an LP):

min{ fB( x )+µ∥ x − x̄ ∥2 / 2 }

▶ Keeps x∗ “close” to x̄

perhaps too close (µ too large)

▶ Or not close enough (µ too small) ≈≡ un-stabilized cutting plane algorithm
except always bounded below =⇒ x∗ always well-defined

Exercise: explain why the curious upside-down parabola graphically finds x∗
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The (Proximal) Bundle method [4] 24

procedure x = PBM ( f , x , m1 , ε , µ )
B ← { ( x , f ( x ) , g ∈ ∂f ( x ) ) };
while ( true ) do
d∗ ← argmin { fB( x + d ) + µ∥ d ∥2 / 2 };
if( µ∥ d∗ ∥ ≤ ε ) then break;
if( f ( x + d∗ )− f ( x ) ≤ m1[ fB( x + d∗ )− f ( x ) ] )
then { x ← x + d∗; possibly µ↘; } else possibly µ↗;

B ← B ∪ { ( x + d∗ , f ( x + d∗ ) , g ∈ ∂f ( x + d∗ ) ) };

▶ f ( x + d∗ )≪ f ( x ) =⇒ x ← x + d∗ (Armijo-type rule), a Serious Step (SS):
this means fB is “good”, µ↘ reasonable (try even longer steps)

▶ x unchanged a Null Step (NS): fB is “bad”, µ↗ reasonable (try shorter steps)

▶ How to increase / decrease µ? Heuristics ≡ parameters, parameters, . . .

▶ { x i } → x∗, “optimal” O( 1 / ε2 ) complexity: a lot of work but ≈ subgradient

▶ Rather different in practice: it does have “fast convergence in the tail” in
practice if fB succeeds in accruing enough information around x∗

▶ Can “compress B”: master problem cost ↘ but iterations ↗
▶ #B ≈ 2 =⇒ Bundle ≈ subgradient: need “fat” B for fast convergence



Mathematically speaking: Analysis of Bundle methods 25

▶ 0 ∈ ∂[ fB( x + · ) + µ∥ · ∥2 ]( d∗ ) / 2 =⇒ −µd∗ ∈ ∂fB( x + d∗ ) =⇒
fB( x + d∗ )− f ( x ) ≤ −µ∥ d∗ ∥2 (since fB( x ) = f ( x )) (check)

▶ Need a technical result: { f i } → f ∞ (pointwise), { x i } → x =⇒
∂f i ( x i ) ⊂ ∂f ∞( x ) + B( 0 , ε ) ∀ ε and large enough i [6, Th. VI.6.2.7]

▶ Thus: { x i } → x and { ∥ d∗,i ∥ } → 0 =⇒ 0 ∈ ∂f ( x ) (check)

▶ Easy part: ∞ SS made =⇒ either f ( x )→ −∞ or ∥ d∗ ∥ → 0 (check)
(but { x i } → x not obvious, several ways around it)

▶ Complicated part: # SS <∞ ≡ ∞ consecutive NS =⇒ ∥ d∗ ∥ → 0
(but at least here { x i } → x obvious, finitely happens)

▶ Intuitively clear: x fixed and #B ↗ =⇒ “fB → f close to x”

▶ Proof with dual (??) master problem [4] tells which ( x i , f i , g i ) can be

removed from B and that B can be “compressed” down to #B = 2

▶ #B ↘ =⇒ Bundle → subgradient: trade-off (iteration #↗ but cost ↘),

it often pays to make B as fat as you can, even with dirty tricks
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▶ Lack of continuous derivatives is un-good

▶ No surprise: lack of derivatives is double-plus-un-good

(although sometimes necessary, e.g., tuning a few hyperparameters)

▶ Nonsmooth algorithms can be trivial, very robust, and very slow

▶ Forget high accuracy unless you fight hard:

either you cheat on the function, or you work with a fat model

▶ And then the approaches are nontrivial and not-as-robust

▶ Good news: learning typically does not require high accuracy

▶ We have have repeatedly seem problems with constraints:

high time that we move to constrained optimization
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▶ v ∈ ∂f ( x ) ≡ f ( z ) ≥ f ( x ) + ⟨ v , z − x ⟩, and
w ∈ ∂g( x ) ≡ g( z ) ≥ g( x ) + ⟨w , z − x ⟩. Hence, αf ( z ) + βg( z ) ≥
≥ α[ f ( x ) + ⟨ v , z − x ⟩ ] + β[ g( x ) + ⟨ v , z − x ⟩ ] =
[αf ( x ) + βg( x ) ] + ⟨αv + βw , z − x ⟩ = [αf + βg ]( x ) + ⟨ ζ , z − x ⟩ for
ζ = αv + βw =⇒ ζ ∈ ∂[αf + βg ]( x ) [back]

▶ f ( x ) = | x | = max{ f1( x ) = x , f2( x ) = −x }, hence we can use rule iv.
x > 0 ≡ I ( x ) = { 1 } ≡ ∂f ( x ) = { f ′1 ( x ) } = { 1 }. Symmetrically,
x < 0 ≡ I ( x ) = { 2 } ≡ ∂f ( x ) = { f ′2 ( x ) } = {−1 }. Thus, f ( x ) is
differentiable ∀ x ̸= 0. However, I ( x ) = { 1 , 2 } =⇒ ∂f ( x ) =
conv( f ′1 ( 0 ) ∪ f ′2 ( 0 ) ) = conv( { 1 , −1 } ) = [−1 , 1 ], hence f ( x ) is not
differentiable in 0 [back]
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▶ The crucial relationship comes from expanding
∥ [ x i − x∗ ]− αig i ∥2 = ∥ x i − x∗ ∥2 − 2αi ⟨ x i − x∗ , g

i ⟩+ (αi )2∥ g i ∥2,
changing sign in the middle term as +2αi ⟨ x∗ − x i , g i ⟩, and then using the
subgradient inequality g i ∈ ∂f ( x i ) ≡ f ( z ) ≥ f ( x i ) + ⟨ g i , z − x i ⟩ at
z = x∗, yielding ⟨ g i , x∗ − x i ⟩ ≤ f ( x∗ )− f ( xi ) [< 0] as already recalled
Then, the quadratic function ϕ(α ) = aα2 + bα with a = ∥ g i ∥2 > 0 and
b = 2( f∗ − f ( xi ) ) < 0 notoriously has the two roots α = 0 and
α = −b / a > 0: ϕ(αi ) < 0 between the two roots, i.e.,
∀αi ∈ ( 0 , 2( f ( xi )− f∗ ) / ∥ g i ∥2 ), yielding ∥ x i+1 − x∗ ∥2 < ∥ x i − x∗ ∥2, i.e.,
the algorithm would succeed in decreasing the distance from x∗. In particular,
it is well-known that ϕ(α ) has minimum (most negative) value in the middle
of the interval, i.e., αi = ( f i − f∗ ) / ∥ g i ∥2 is the step guaranteeing the largest
decrease in the distance from x∗. The issue here is clearly that f∗ is unknown,
and therefore the “optimal” step cannot be computed [back]
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▶ In the usual ∥ x i+1 − x∗ ∥2 ≤ ∥ x i − x∗ ∥2 + 2αi ( f∗ − f i ) + (αi )2∥ g i ∥2 plug
αi = α∗

i = ( f i − f∗ ) / ∥ g i ∥2 to get ∥ x i+1 − x∗ ∥2 ≤ ∥ x i − x∗ ∥2
+2[ ( f i − f∗ ) / ∥ g i ∥2 ]( f∗ − f i ) + [ ( f i − f∗ ) / ∥ g i ∥2 ]2∥ g i ∥2 =
= ∥ x i − x∗ ∥2 − 2( f i − f∗ )

2 / ∥ g i ∥2 + ( f i − f∗ )
2 / ∥ g i ∥2 =

= ∥ x i − x∗ ∥2 − ( f i − f∗ )
2 / ∥ g i ∥2 [back]

▶ f ( x ) is the pointwise maximum of (possibly, ∞-ly many) linear functions
fz( x ), one for each z ∈ Z ; since each fz is convex, their maximum also is
[back]

▶ The first step is to write f ( x ) = | x | = max{ x , −x } =
= max{ zx : z ∈ {−1 , 1 } }. One then has to realise that “z ∈ {−1 , 1 }” can
equivalently be taken as “z ∈ [−1 , 1 ]”: in fact, for (say) x > 0 the maximum
is still attained in z = 1, as for all z < 1 one has zx < x (the case x < 0 is
symmetric). Hence, fµ( x ) = max{ zx − µz2 / 2 : z ∈ [−1 , 1 ] }. This is the
maximum of the (concave) quadratic non-homogeneous univariate function
ϕ( z ) = zx − µz2 / 2 on the interval [−1 , 1 ], that we know well how to
compute: first we write the unconstrained maximum z∗( x ) = x / µ, and then
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we project it on the interval, i.e., the maximum is max{ 1 , min{−1 , x / µ } }.
Plugging this formula into the function gives, after a bit of algebra,

fµ( x ) =

{
x2 / (2µ) if | x | ≤ µ

| x | − µ / 2 if | x | ≥ µ

Hence, fµ( x ) “has the same shape” as f ( x ) “far from 0” (i.e., for | x | ≥ µ),
in that fµ( x ) = f ( x )− µ / 2, whereas fµ( x ) is a simple quadratic function
that “approximates” the absolute value close to 0; in particular, fµ( x ) = 0. It
is easy to verify that fµ is continuous (fµ(µ ) = µ2 / (2µ) = µ / 2 = µ− µ / 2)
and differentiable (f ′µ(µ ) = µ /µ = 1), as expected since all convex functions
are continuous (on the interior of their domain) and the cardinality of the
subdifferential is that of the optimal solutions of the max problem, which
always has a unique optimal solution. Thus, fµ( x ) is indeed a “smoothed
version” of f ( x ) [back]
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▶ The crucial formula is µ = ε / (2K ); in the standard approach, ε is fixed and so
µ is =⇒ if ε is small then so µ is, which makes the algorithm perform very
small steps at the beginning (and for a long while) slowing down convergence.
A simple idea is to rather take µi = max{ f i − f∗ , ε } and just run the
algorithm with this varying µ. This results in much longer steps at the
beginning while the two will tend to behave similarly as f i → f∗. Of course,
requires either having information about f∗, which is unlikely (but not
impossible), or some form of target-level approach [back]

▶ v∗ = fB( x∗B ) ≥ f∗, and f ( x∗ ) ≥ f∗ by definition, hence f ( x∗ ) ≤ v∗ =⇒
f∗ ≤ f ( x∗ ) ≤ v∗ ≤ f∗ =⇒ f∗ = f ( x∗ ) =⇒ x∗ optimal; in fact, it is not
possible that f ( x∗ ) < v∗, so the check could just be f ( x∗ ) = v∗ (save of
course for the issue of numerical errors) [back]

▶ Since Bi+1 ⊃ Bi , it is immediate to see that f i+1
B ( x ) ≥ f iB( x ) ∀ ∈ Rn,

whence f i+1 = f i+1
B ( x∗,i+1 ) = v∗,i+1 = min{ f i+1

B ( x ) } ≥ min{ f iB( x ) } =
v∗,i = f iB( x∗,i ) = f i [back]
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▶ Consider the convex extended-value function g( x ) = f ( x ) ∀ x ∈ B( x∗ , ε ),
while g( x ) =∞ otherwise. Also, consider the variant to the Cutting Plane
algorithm in which the constraint “x ∈ B( x∗ , ε )” is added to the master
problem (which is still a Linear Problem if the ball is, say, in the ∞-norm, but
even with the Euclidean norm it becomes a problem with convex quadratic—in
fact, conic as we will see—constraints and therefore still “easy”). The
convergence proof of the Cutting Plane algorithm [4, Th. 1] allows for this
constraint in the master problem, and in fact it requires it unless B0 is “large
enough” so that the master problem is bounded below; see next slide. So, the
algorithm solves min{ g( x )} = min{ f ( x )} (the two problems obviously have
the same optimal value and an optimal solution in x∗) when all the iterates are
forced to remain in an arbitrarily small ball around x∗. Interestingly, this is not
only an abstract proof: [4, Table 1] shows that if one would actually be able to
force x∗,i ∈ B( x∗ , ε ) then the practical convergence of the Cutting Plane
algorithm would typically be faster (dramatically so when ε is small). This is
unfortunately impossible since x∗ is usually unknown, but the mechanism does
suggest the crucial idea behind the practically useful stabilisation approaches
[back]
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▶ Let s( x ) = µ∥ x − x̄ ∥2 / 2 be the stabilising term, which clearly is a parabola
with curvature µ and centred in x̄ . The optimality condition of the master
problem is 0 ∈ ∂[ fB( · ) + s( · ) ]( x∗ ) ≡ ∃g ∈ ∂fB( x∗ ) s.t. g +∇s( x∗ ) = 0
≡ g = −∇s( x∗ ). That is, the derivative of fB must be the opposite of that
of s in x∗. Of course, −∇s( x∗ ) = ∇[−s( · ) ]( x∗ ), and −s is the same
parabola “upside-down”. Hence, x∗ is the point where the upside-down
parabola and fB have the same derivative. Geometrically, this can be found by
imagining the upside-down parabola shifted by a negative constant, i.e.,
−s( x )−M, so that the value in x̄ is −M. Then, one starts with a “very
large” M > 0, so that the upside-down parabola is “pushed down a lot”, and
gradually decreases M so that it “gradually moves up”. By stopping for the
first (smallest) value of M such that the graph of −s( x )−M and that of fB
touch, which must exist (for M = 0 the two graphs surely touch), one has that
either the two derivatives are equal of fB is differentiable there, or at least
there exists a subgradient g of fB that does the requisite job (see the pictures).
Thus, the x coordinate of the point where the two meet is x∗ [back]
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▶ The first step is due to the fact (already seen in the previous exercise) that
0 ∈ ∂[ fB( x + · ) + µ∥ · ∥2 / 2 ]( d∗ ) ≡ ∃g ∈ ∂fB( x + d∗ ) s.t. g + µd∗ = 0
=⇒ −µd∗ ∈ ∂fB( x + d∗ ) since µd∗ = ∇[µ∥ · ∥2 / 2 ]( d∗ ). The second step
is just the subgradient inequality for fB evaluated in x + d∗: f ( x ) = fB( x ) ≥
≥ fB( x + d∗ ) + ⟨−µd∗ , x − ( x + d∗ ) ⟩ (properly rearranged) [back]

▶ First note that { x i } is the sequence of the stability centres, not of the iterates.
However, { x i } → x and { ∥ d∗,i ∥ } → 0 imply that { x i + d∗,i } → x as well:
both the stability centres and the iterates converge to the same point. Note
that the stability centres may or may not finitely converge, i.e., after finitely
many SS the centre may no longer be changed and only (infinitely many
consecutive) NS will be done; yet, this is immaterial for the current result.
Now, let f iB be the cutting plane model at iteration i , and f ∞B be the convex
function defined by the set B∞ containing all the infinitely many triples
( x i , f i , g i ): clearly, { f iB } → f ∞B pointwise, i.e., however fixed z ∈ Rn one
has limi→∞ f iB( z ) = limi→∞ max{ lh( z ) : h ≤ i } = sup{ l i ( z ) : i ∈ N } =
f ∞B ( z ). Thus the theorem applies. Also, since f iB( z ) ≤ f ( z ) and
f ∞B ( z ) = limi→∞ f iB( z ), then f ∞B ( z ) ≤ f ( z ), i.e., f ∞B is still a correct lower
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model of f . Now, −µd∗,i ∈ ∂f iB( x i + d∗,i ) and (again) { ∥ d∗,i ∥ } → 0: thus,
however chosen ε > 0 and δ > 0 exists g ∈ ∂f ∞B ( x ), v s.t. ∥ v ∥ ≤ δ, z
s.t. ∥ z ∥ ≤ ε and z = g + v (just wait until i is large enough so that both
∥−µd∗,i ∥ ≤ δ and ∂f iB( x i + d∗,i ) ⊂ ∂f ∞B ( x ) + B( 0 , ε ) hold). Hence,
∥ g ∥ ≤ ∥ z − v ∥ ≤ ∥ z ∥+ ∥ v ∥ ≤ ε+ δ: there are elements in ∂f ∞B ( x )
arbitrarily close to 0. But f : Rn → R is finite-valued and therefore f ∞B ≤ f is
also finite-valued, hence ∂f ∞B ( x ) is compact and therefore in particular closed:
as a consequence, 0 ∈ ∂f ∞B ( x ), i.e., x is a minimum of f ∞B . Since f ∞B ≤ f ,
f ∞B ( x ) ≤ f∗ ≤ f ( x ). Now, Bi+1 = Bi ∪{ ( x i +d∗,i , f ( x i +d∗,i ) , g i ) } =⇒
f i+1
B ( x i + d∗,i ) = f ( x i + d∗,i ). Send i →∞ to yield f ∞B ( x ) = f ( x ):
together with f ∞B ( x ) ≤ f∗ ≤ f ( x ) this gives f ∞B ( x ) = f ( x ) = f∗
In the proof µ is fixed, but it easily extends to µi bounded above by some
constant, so that { ∥ d∗,i ∥ } → 0 =⇒ {∥µid∗,i ∥ } → 0 [back]
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▶ Direct from fB( x + d∗ )− f ( x ) ≤ −µ∥ d∗ ∥2 and the SS condition
f ( x + d∗ )− f ( x ) ≤ m1[ fB( x + d∗ )− f ( x ) ]: ∥ d i,∗ ∥2 ≥ ε ∀ i =⇒
fB( x i + d i,∗ )− f ( x i ) ≤ −µε ∀ i =⇒ f ( x i + d i,∗ )− f ( x i ) ≤ −µm1ε at each
i where a SS is declared (x i+1 = x i + d i,∗). Thus, if ∞-ly many SS are
declared, f ( x i )→ −∞; conversely, if f∗ > −∞ (f is bounded below) this
cannot happen, which means that { ∥ d∗,i ∥ } → 0 must happen istead
Note that, again, this proof is using a fixed µ, but is easily extended to µi

bounded away from 0, or even µi → 0 provided that
∑∞

i=1 µ
i =∞ (with the

series actually only running on the SS iterations i) [back]
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