
Constrained Multivariate Optimality
and Duality

Antonio Frangioni

Department of Computer Science
University of Pisa

https://www.di.unipi.it/~frangio

mailto:frangio@di.unipi.it

Computational Mathematics for Learning and Data Analysis
Master in Computer Science – University of Pisa

A.Y. 2024/25

https://www.di.unipi.it/~frangio
mailto:frangio@di.unipi.it

Outline

Constrained optimization

First-order optimality conditions, geometric version

First-order optimality conditions, algebraic version

A fleeting glimpse to second-order optimality conditions

Lagrangian duality

Specialized duals

Ex-post motivations

Wrap up & References

Solutions

Constrained optimization 1

▶ Finally back to the full (P) f∗ = min{ f (x) : x ∈ X }, X ⊂ Rn

▶ “Abstract” constraint x ∈ X , implementation discussed later

▶ x∗ ∈ X s.t. f (x∗) ≤ f (x) ∀ x ∈ X : optimal solution ≡ global optimum

▶ Constraints can be hidden in the objective: ıX : Rn → R̄ indicator function of X

ıX (x) =

{
0 if x ∈ X
∞ if x /∈ X

(convex ⇐⇒ X is, but extended-valued)

=⇒ (P) ≡ min{ fX (x) = f (x) + ıX (x) } (essential objective)

▶ A very bad idea: ıX /∈ C 0 =⇒ ferociously /∈ C 1

▶ Conversely, objective “complex” → “simple” by “hiding it in the constraints”

(P) ≡ min{ v : v ≥ f (x) , x ∈ X } (a trick we have ≈ seen already)

▶ Sometimes useful, but “nonlinear objectives easier than nonlinear constraints”

(Local) minima vs. optima 2

▶ Note that X = ∅ =⇒ v(P) = +∞ (= inf ∅): solving (P) three ̸= things

i) . . . ii) . . . iii) constructively proving X = ∅ (how??)

▶ (Almost) never happens in ML, so we will forget about it (but the issue ∃):
the model is our choice, we choose it simple & nice & nonempty if we can

▶ Global optimum obviously hard, hence x∗ local optimum ≡ solves

min{ f (x) : x ∈ B(x∗ , ε) ∩ X } for some ε > 0

▶ Important concept: x ∈ int(X) (interior) ≡ ∃B(x , ε) ⊆ X (ε > 0)

▶ x∗ ∈ int(X) =⇒ local optimum ≡ local minimum =⇒ ∇f (x∗) = 0

▶ Constrained (local) optimality conditions ̸= “∇f (x) = 0”

only if x /∈ int(X) ⇐⇒ x ∈ ∂X (boundary)

▶ Concept intimately tied with X closed / open (glanced about previously)

(Local) minima vs. optima 2

▶ Note that X = ∅ =⇒ v(P) = +∞ (= inf ∅): solving (P) three ̸= things

i) . . . ii) . . . iii) constructively proving X = ∅ (how??)

▶ (Almost) never happens in ML, so we will forget about it (but the issue ∃):
the model is our choice, we choose it simple & nice & nonempty if we can

▶ Global optimum obviously hard, hence x∗ local optimum ≡ solves

min{ f (x) : x ∈ B(x∗ , ε) ∩ X } for some ε > 0

▶ Important concept: x ∈ int(X) (interior) ≡ ∃B(x , ε) ⊆ X (ε > 0)

▶ x∗ ∈ int(X) =⇒ local optimum ≡ local minimum =⇒ ∇f (x∗) = 0

▶ Constrained (local) optimality conditions ̸= “∇f (x) = 0”

only if x /∈ int(X) ⇐⇒ x ∈ ∂X (boundary)

▶ Concept intimately tied with X closed / open (glanced about previously)

(Local) minima vs. optima 2

▶ Note that X = ∅ =⇒ v(P) = +∞ (= inf ∅): solving (P) three ̸= things

i) . . . ii) . . . iii) constructively proving X = ∅ (how??)

▶ (Almost) never happens in ML, so we will forget about it (but the issue ∃):
the model is our choice, we choose it simple & nice & nonempty if we can

▶ Global optimum obviously hard, hence x∗ local optimum ≡ solves

min{ f (x) : x ∈ B(x∗ , ε) ∩ X } for some ε > 0

▶ Important concept: x ∈ int(X) (interior) ≡ ∃B(x , ε) ⊆ X (ε > 0)

▶ x∗ ∈ int(X) =⇒ local optimum ≡ local minimum =⇒ ∇f (x∗) = 0

▶ Constrained (local) optimality conditions ̸= “∇f (x) = 0”

only if x /∈ int(X) ⇐⇒ x ∈ ∂X (boundary)

▶ Concept intimately tied with X closed / open (glanced about previously)

(Local) minima vs. optima 2

▶ Note that X = ∅ =⇒ v(P) = +∞ (= inf ∅): solving (P) three ̸= things

i) . . . ii) . . . iii) constructively proving X = ∅ (how??)

▶ (Almost) never happens in ML, so we will forget about it (but the issue ∃):
the model is our choice, we choose it simple & nice & nonempty if we can

▶ Global optimum obviously hard, hence x∗ local optimum ≡ solves

min{ f (x) : x ∈ B(x∗ , ε) ∩ X } for some ε > 0

▶ Important concept: x ∈ int(X) (interior) ≡ ∃B(x , ε) ⊆ X (ε > 0)

▶ x∗ ∈ int(X) =⇒ local optimum ≡ local minimum =⇒ ∇f (x∗) = 0

▶ Constrained (local) optimality conditions ̸= “∇f (x) = 0”

only if x /∈ int(X) ⇐⇒ x ∈ ∂X (boundary)

▶ Concept intimately tied with X closed / open (glanced about previously)

Mathematically speaking: Open / closed sets [9, p. 525] 3

▶ Given S ⊆ Rn, interior/boundary points of S :

▶ x ∈ int(S) ≡ interior of S ≡ ∃ r > 0 s.t. B(x , r) ⊆ S

▶ x ∈ ∂S ≡ boundary of S ≡ ∀ r > 0∃w , z ∈ B(x , r) s.t. w ∈ S ∧ z /∈ S

note: x ∈ int(S) =⇒ x ∈ S , but x ∈ ∂S ≠⇒ x ∈ S

▶ S open if S = int(S): “I have no points on the boundary”

▶ cl(S) ≡ closure of S ≡ int(S) ∪ ∂S : “me and my boundary”

▶ S ⊆ Rn closed if S = cl(S): “all points on my boundary are mine”

≡ Rn \ S open: “my complement owns none of my boundary”

▶ int(S) ̸= ∅ =⇒ S full dimensional

▶ Sometimes, relative interior useful . . .

Mathematically speaking: Algebra of open / closed sets [9, p. 526] 4

▶ S closed ⇐⇒ ∀S ⊃ { xi } → x =⇒ x ∈ S

all limit points of sequences in S are in S

▶ Algebra of open/closed sets:

▶ { Si } (infinitely many) open sets =⇒
⋃

i Si open

▶ S1 and S2 open =⇒ S1 ∩ S2 open

▶ { Si } (infinitely many) closed sets =⇒
⋂

i Si closed

▶ S1 and S2 closed =⇒ S1 ∪ S2 closed

Exercise: prove Rn and ∅ are both closed and open

Exercise: exhibit a set that is neither open nor closed

Exercise: { Si } (infinitely many) open sets =⇒
⋂

i Si open: true?

Exercise: { Si } (infinitely many) closed sets =⇒
⋃

i Si closed: true?

Outline

Constrained optimization

First-order optimality conditions, geometric version

First-order optimality conditions, algebraic version

A fleeting glimpse to second-order optimality conditions

Lagrangian duality

Specialized duals

Ex-post motivations

Wrap up & References

Solutions

The Tangent Cone [8, § 12.2] 5

▶ Crucial object: TX (x) = tangent cone of X at x ={
d ∈ Rn : ∃ { zi ∈ X } → x ∧ { ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti

}
x

X

▶ Er . . . what? Simpler than it seems

▶ Zoom to x very closely, then
X looks a cone: zoom out, this is TX (x)

▶ Tangent Cone Condition:

(TCC) ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ TX (x)

▶ x local optimum =⇒ (TCC)

Exercise: C cone ≡ x ∈ C =⇒ αx ∈ C ∀α > 0; prove TX (x) is a cone

▶ (TCC) ≠⇒ local optimum (will see why), even less global optimum

▶ Unless X ⊆ x + TX (x) ⇐= X convex, let’s see it in details

The Tangent Cone [8, § 12.2] 5

▶ Crucial object: TX (x) = tangent cone of X at x ={
d ∈ Rn : ∃ { zi ∈ X } → x ∧ { ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti

}
x

X

▶ Er . . . what? Simpler than it seems

▶ Zoom to x very closely, then
X looks a cone: zoom out, this is TX (x)

▶ Tangent Cone Condition:

(TCC) ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ TX (x)

▶ x local optimum =⇒ (TCC)

Exercise: C cone ≡ x ∈ C =⇒ αx ∈ C ∀α > 0; prove TX (x) is a cone

▶ (TCC) ≠⇒ local optimum (will see why), even less global optimum

▶ Unless X ⊆ x + TX (x) ⇐= X convex, let’s see it in details

The Tangent Cone [8, § 12.2] 5

▶ Crucial object: TX (x) = tangent cone of X at x ={
d ∈ Rn : ∃ { zi ∈ X } → x ∧ { ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti

}
x

X

▶ Er . . . what? Simpler than it seems

▶ Zoom to x

very closely, then
X looks a cone: zoom out, this is TX (x)

▶ Tangent Cone Condition:

(TCC) ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ TX (x)

▶ x local optimum =⇒ (TCC)

Exercise: C cone ≡ x ∈ C =⇒ αx ∈ C ∀α > 0; prove TX (x) is a cone

▶ (TCC) ≠⇒ local optimum (will see why), even less global optimum

▶ Unless X ⊆ x + TX (x) ⇐= X convex, let’s see it in details

The Tangent Cone [8, § 12.2] 5

▶ Crucial object: TX (x) = tangent cone of X at x ={
d ∈ Rn : ∃ { zi ∈ X } → x ∧ { ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti

}
x

X

▶ Er . . . what? Simpler than it seems

▶ Zoom to x very closely, then

X looks a cone: zoom out, this is TX (x)

▶ Tangent Cone Condition:

(TCC) ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ TX (x)

▶ x local optimum =⇒ (TCC)

Exercise: C cone ≡ x ∈ C =⇒ αx ∈ C ∀α > 0; prove TX (x) is a cone

▶ (TCC) ≠⇒ local optimum (will see why), even less global optimum

▶ Unless X ⊆ x + TX (x) ⇐= X convex, let’s see it in details

The Tangent Cone [8, § 12.2] 5

▶ Crucial object: TX (x) = tangent cone of X at x ={
d ∈ Rn : ∃ { zi ∈ X } → x ∧ { ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti

}
x

X TX(x)

▶ Er . . . what? Simpler than it seems

▶ Zoom to x very closely, then
X looks a cone:

zoom out, this is TX (x)

▶ Tangent Cone Condition:

(TCC) ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ TX (x)

▶ x local optimum =⇒ (TCC)

Exercise: C cone ≡ x ∈ C =⇒ αx ∈ C ∀α > 0; prove TX (x) is a cone

▶ (TCC) ≠⇒ local optimum (will see why), even less global optimum

▶ Unless X ⊆ x + TX (x) ⇐= X convex, let’s see it in details

The Tangent Cone [8, § 12.2] 5

▶ Crucial object: TX (x) = tangent cone of X at x ={
d ∈ Rn : ∃ { zi ∈ X } → x ∧ { ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti

}
x

X TX(x)

▶ Er . . . what? Simpler than it seems

▶ Zoom to x very closely, then
X looks a cone: zoom out,

this is TX (x)

▶ Tangent Cone Condition:

(TCC) ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ TX (x)

▶ x local optimum =⇒ (TCC)

Exercise: C cone ≡ x ∈ C =⇒ αx ∈ C ∀α > 0; prove TX (x) is a cone

▶ (TCC) ≠⇒ local optimum (will see why), even less global optimum

▶ Unless X ⊆ x + TX (x) ⇐= X convex, let’s see it in details

The Tangent Cone [8, § 12.2] 5

▶ Crucial object: TX (x) = tangent cone of X at x ={
d ∈ Rn : ∃ { zi ∈ X } → x ∧ { ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti

}
x

X

TX(x)

▶ Er . . . what? Simpler than it seems

▶ Zoom to x very closely, then
X looks a cone: zoom out, this is TX (x)

▶ Tangent Cone Condition:

(TCC) ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ TX (x)

▶ x local optimum =⇒ (TCC)

Exercise: C cone ≡ x ∈ C =⇒ αx ∈ C ∀α > 0; prove TX (x) is a cone

▶ (TCC) ≠⇒ local optimum (will see why), even less global optimum

▶ Unless X ⊆ x + TX (x) ⇐= X convex, let’s see it in details

The Tangent Cone [8, § 12.2] 5

▶ Crucial object: TX (x) = tangent cone of X at x ={
d ∈ Rn : ∃ { zi ∈ X } → x ∧ { ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti

}
x

X

TX(x)

f(x)

▶ Er . . . what? Simpler than it seems

▶ Zoom to x very closely, then
X looks a cone: zoom out, this is TX (x)

▶ Tangent Cone Condition:

(TCC) ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ TX (x)

▶ x local optimum =⇒ (TCC)

Exercise: C cone ≡ x ∈ C =⇒ αx ∈ C ∀α > 0; prove TX (x) is a cone

▶ (TCC) ≠⇒ local optimum (will see why), even less global optimum

▶ Unless X ⊆ x + TX (x) ⇐= X convex, let’s see it in details

The Tangent Cone [8, § 12.2] 5

▶ Crucial object: TX (x) = tangent cone of X at x ={
d ∈ Rn : ∃ { zi ∈ X } → x ∧ { ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti

}
x

X

TX(x)

x*

f(x*)
f(x)

▶ Er . . . what? Simpler than it seems

▶ Zoom to x very closely, then
X looks a cone: zoom out, this is TX (x)

▶ Tangent Cone Condition:

(TCC) ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ TX (x)

▶ x local optimum =⇒ (TCC)

Exercise: C cone ≡ x ∈ C =⇒ αx ∈ C ∀α > 0; prove TX (x) is a cone

▶ (TCC) ≠⇒ local optimum (will see why), even less global optimum

▶ Unless X ⊆ x + TX (x) ⇐= X convex, let’s see it in details

The Tangent Cone [8, § 12.2] 5

▶ Crucial object: TX (x) = tangent cone of X at x ={
d ∈ Rn : ∃ { zi ∈ X } → x ∧ { ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti

}
x

X

▶ Er . . . what? Simpler than it seems

▶ Zoom to x very closely, then
X looks a cone: zoom out, this is TX (x)

▶ Tangent Cone Condition:

(TCC) ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ TX (x)

▶ x local optimum =⇒ (TCC)

Exercise: C cone ≡ x ∈ C =⇒ αx ∈ C ∀α > 0; prove TX (x) is a cone

▶ (TCC) ≠⇒ local optimum (will see why), even less global optimum

▶ Unless X

⊆ x + TX (x) ⇐= X convex, let’s see it in details

The Tangent Cone [8, § 12.2] 5

▶ Crucial object: TX (x) = tangent cone of X at x ={
d ∈ Rn : ∃ { zi ∈ X } → x ∧ { ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti

}
x

X

TX(x)

▶ Er . . . what? Simpler than it seems

▶ Zoom to x very closely, then
X looks a cone: zoom out, this is TX (x)

▶ Tangent Cone Condition:

(TCC) ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ TX (x)

▶ x local optimum =⇒ (TCC)

Exercise: C cone ≡ x ∈ C =⇒ αx ∈ C ∀α > 0; prove TX (x) is a cone

▶ (TCC) ≠⇒ local optimum (will see why), even less global optimum

▶ Unless X ⊆ x + TX (x)

⇐= X convex, let’s see it in details

The Tangent Cone [8, § 12.2] 5

▶ Crucial object: TX (x) = tangent cone of X at x ={
d ∈ Rn : ∃ { zi ∈ X } → x ∧ { ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti

}
x

X

TX(x)

▶ Er . . . what? Simpler than it seems

▶ Zoom to x very closely, then
X looks a cone: zoom out, this is TX (x)

▶ Tangent Cone Condition:

(TCC) ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ TX (x)

▶ x local optimum =⇒ (TCC)

Exercise: C cone ≡ x ∈ C =⇒ αx ∈ C ∀α > 0; prove TX (x) is a cone

▶ (TCC) ≠⇒ local optimum (will see why), even less global optimum

▶ Unless X ⊆ x + TX (x) ⇐= X convex, let’s see it in details

Mathematically speaking: Necessary optimality condition, the proof 6

▶ Prove: x local optimum =⇒ (TCC)

▶ By contradiction: x local optimum but ∃ d ∈ TX (x) s.t. ⟨∇f (x) , d ⟩ < 0

d ̸= 0 and TX (x) a cone =⇒ w.l.o.g. ∥ d ∥ = 1. d ∈ TX (x) ≡

∃X ⊃ { zi } → x , { ti } → 0 s.t. limi→∞ d − (zi − x) / ti = 0 =⇒

limi→∞ ti = limi→∞ ∥ zi − x ∥ (ti and ∥ zi − x ∥ “→ 0 at the same speed”)

First-order Taylor: f (zi)− f (x) = ⟨∇f (x) , zi − x ⟩+ R(zi − x)

with lim∥ h ∥→0 R(h) / ∥ h ∥ = 0

Crucial step: zi − x ≈ d and ⟨∇f (x) , d ⟩ < 0 =⇒ ⟨∇f (x) , zi − x ⟩ < 0

and → 0 “as fast as zi → x”, while R(zi − x)→ 0 “faster than zi → x”

=⇒ eventually f (zi)− f (x) < 0 (check) [a bit tedious]

{ zi } → x =⇒ ∀ (small) ε > 0 ∃ zi ∈ X ∩ B(x∗ , ε) s.t. f (zi) < f (x) E

▶ TX (x) carefully defined to make the proof work

(but as it is, the definition in unwieldy and unworkable)

Convex sets [2, Chap. 2] 7

x

z

▶ x , z ∈ Rn,

{w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

x

z

▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

x

z

▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C

conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

x

z

▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

x

z

▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

x

z

▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

x z ▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

x z ▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

x
z

▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t.

conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

x
z

▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

x z

▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected

=⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

x z

▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be

“completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed”

to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Convex sets [2, Chap. 2] 7

▶ x , z ∈ Rn, {w = αx + (1− α)z : α ∈ [0 , 1] }

= conv(x , z) = segment joining x and z

▶ C ⊂ Rn convex: ∀ x , z ∈ C conv(x , z) ⊆ C

▶ C nonconvex: ∃ x , z ∈ C s.t. conv(x , z) ̸⊆ C

▶ Convex is rare: non-connected =⇒ nonconvex

▶ Every nonconvex set can be “completed” to a convex set (convex hull):

conv(S) =
⋃
{ conv(x , z) : x , z ∈ S } =

⋂
{C : C is convex ∧ C ⊇ S }

= “iterated convex hull of all x , z ∈ S” = smallest convex set containing S

▶ C convex ⇐⇒ C = conv(C): a convex set is equal to its convex hull

Exercise: prove: epi(f) = { (v , x) : v ≥ f (x) } convex ⇐⇒ f convex

▶ f convex =⇒ S(f , v) convex ∀ v (⇍=) (check)

▶ How do you tell if a set is convex?

Mathematically speaking: Basic convex sets [2, §. 2.2] 8

▶ A few sets are “obviously” convex:

i Convex hull of a finite set of points = convex polytope =

conv
(
{ x1 , . . . , xk }

)
=

{
x =

∑k
i=1 αixi :

∑k
i=1 αi = 1 , αi ≥ 0 ∀ i

}
ii Affine hyperplane H = { x ∈ Rn : ax = b } = level set of linear function

iii Affine subspace S = { x ∈ Rn : ax ≤ b } = sublevel set of linear function

iv Ellipsoid E(Q , x , r) = { z ∈ Rn : (z − x)TQ(z − x) ≤ r } with Q ⪰ 0

= sublevel set of convex quadratic function

v Ball in p-norm, p ≥ 1, Bp(x , r) = { z ∈ Rn : ∥ z − x ∥p ≤ r }

▶ Some interesting convex sets are cones:

i Conical hull of a finite set of directions = polyhedral cone =

cone
(
{ d1 , . . . , dk }

)
=

{
d =

∑k
i=1 µidi : µi ≥ 0 ∀ i

}
ii Lorentz (ice-cream) cone L =

{
x ∈ Rn : xn ≥

√∑n−1
i=1 x2

i

}
iii Cone of positive semidefinite matrices S+ =

{
Q ∈ Rn×n : Q ⪰ 0

}
Exercise: prove that Rn

+ is a convex cone in two different ways

Exercise: provide an example of a non-convex cone

Mathematically speaking: Convexity-preserving operations [2, §. 2.2] 9

i {Ci }i∈I a (possibly ∞) family of convex sets =⇒ C =
⋂

i∈I Ci convex

ii C1 , . . . , Ck convex ⇐⇒ C1 × . . .× Ck convex

iii C convex =⇒ A(C) = { x = Az + b : z ∈ C } convex
(image under a linear mapping, e.g., scaling, translation, rotation)

iv C convex =⇒ A−1(C) = { x : Ax + b ∈ C } convex
(inverse image under a linear mapping)

v C1 and C2 convex, α1 , α2 ∈ R =⇒
α1C1 + α2C2 = { x = α1x1 + α2x2 : x1 ∈ C1 , x2 ∈ C2 } convex

vi C ⊆ Rn = Rm × Rk convex =⇒
i C(z) = { x ∈ Rm : (x , z) ∈ C } convex (slice)

ii C 1 = { x ∈ Rm : ∃ z ∈ Rk s.t. (x , z) ∈ C } convex (shadow)

vii C convex =⇒ int(C) and cl(C) convex

Exercise: prove i., iii. and iv. “from prime principles”, then v.

Tangent cone & feasible directions [8, §12.2, § 12.4][1, p. 174] 10

▶ Feasible direction d of X at x : ∃ ε̄ > 0 s.t. x + ε̄d ∈ X

▶ FX (x) = cone of feasible directions of X at x : X ⊆ x + FX (x) (check)

▶ X convex, d ∈ FX (x) =⇒ x + εd ∈ X ∀ε ∈ [0 , ε̄]

▶ X convex =⇒ FX (x) ⊆ TX (x) (in fact FX (x) ≈ TX (x)

“save possibly for the borders”) =⇒ X ⊆ x + TX (x) (check)

Exercise: for X nonconvex, “FX much larger than TX”: illustrate

▶ x∗ global optimum =⇒ x∗ local optimum =⇒ (TCC) (no matter f , X)

▶ (P) convex ≡ X convex, f convex on X : (TCC) =⇒ x∗ global optimum

Exercise: prove, discuss if ∇f (x) can be replaced by g ∈ ∂f (x) when f /∈ C 1

▶ (TCC) sufficient in the convex case, always necessary

Why it is not always sufficient 11

x

X

TX(x)

x*

f(x*)
f(x)

▶ Obvious for global: x local minimum

but ∃ better one somewhere else

▶ Less obvious for local:

min{ x2 : x2 ≥ x31 }

x = [0 , 0], ∇f (x) = [0 , 1],

TX (x) = { [x1 , x2] : x2 ≥ 0 }

▶ (TCC) holds but x not minimum

▶ ∃ better x ′ arbitrarily close to x , but not along a straight line

(and derivatives “only look at straight lines”)

▶ Clearly due to nonconvexity: x a “saddle point of ∂X”

Why it is not always sufficient 11

▶ Obvious for global: x local minimum

but ∃ better one somewhere else

▶ Less obvious for local:

min{ x2 : x2 ≥ x31 }

x = [0 , 0], ∇f (x) = [0 , 1],

TX (x) = { [x1 , x2] : x2 ≥ 0 }

▶ (TCC) holds but x not minimum

▶ ∃ better x ′ arbitrarily close to x , but not along a straight line

(and derivatives “only look at straight lines”)

▶ Clearly due to nonconvexity: x a “saddle point of ∂X”

Why it is not always sufficient 11

x

f(x)

▶ Obvious for global: x local minimum

but ∃ better one somewhere else

▶ Less obvious for local:

min{ x2 : x2 ≥ x31 }

x = [0 , 0], ∇f (x) = [0 , 1],

TX (x) = { [x1 , x2] : x2 ≥ 0 }

▶ (TCC) holds but x not minimum

▶ ∃ better x ′ arbitrarily close to x , but not along a straight line

(and derivatives “only look at straight lines”)

▶ Clearly due to nonconvexity: x a “saddle point of ∂X”

Why it is not always sufficient 11

x

f(x)

▶ Obvious for global: x local minimum

but ∃ better one somewhere else

▶ Less obvious for local:

min{ x2 : x2 ≥ x31 }

x = [0 , 0], ∇f (x) = [0 , 1],

TX (x) = { [x1 , x2] : x2 ≥ 0 }

▶ (TCC) holds but x not minimum

▶ ∃ better x ′ arbitrarily close to x , but not along a straight line

(and derivatives “only look at straight lines”)

▶ Clearly due to nonconvexity: x a “saddle point of ∂X”

Say “hi” to the stationary point of constrained case 12

▶ All in all: (TCC) ≡ “stationary point of constrained case”

▶ Clearly ∇f (x) = 0 =⇒ ⟨∇f (x) , d ⟩=0 ∀ d ∈ Rn =⇒ (TCC)

a (feasible) local minimum is a local optimum regardless X

▶ Conversely, x ∈ int(X) =⇒ TX (x) = FX (x) = Rn (check), hence

(TCC) ≡ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ Rn ≡ ∇f (x) = 0 (check)

the only way for x ∈ int(X) to be a local optimum is to be a local minimum

▶ In fact, f , X convex =⇒ (TCC) ≡ ∄ feasible descent directions:

X = Rn =⇒ every direction is feasible, hence only descent matters

▶ “x satisfies (TCC)” direct constrained generalisation of “x stationary point”

▶ Necessary, not sufficient, but the only one you can reasonably check

▶ But how to compute TX (x) / test (TCC) in practice? Prove something ∄??

▶ How to characterize TX depends on how you characterize X

Say “hi” to the stationary point of constrained case 12

▶ All in all: (TCC) ≡ “stationary point of constrained case”

▶ Clearly ∇f (x) = 0 =⇒ ⟨∇f (x) , d ⟩=0 ∀ d ∈ Rn =⇒ (TCC)

a (feasible) local minimum is a local optimum regardless X

▶ Conversely, x ∈ int(X) =⇒ TX (x) = FX (x) = Rn (check), hence

(TCC) ≡ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ Rn ≡ ∇f (x) = 0 (check)

the only way for x ∈ int(X) to be a local optimum is to be a local minimum

▶ In fact, f , X convex =⇒ (TCC) ≡ ∄ feasible descent directions:

X = Rn =⇒ every direction is feasible, hence only descent matters

▶ “x satisfies (TCC)” direct constrained generalisation of “x stationary point”

▶ Necessary, not sufficient, but the only one you can reasonably check

▶ But how to compute TX (x) / test (TCC) in practice? Prove something ∄??

▶ How to characterize TX depends on how you characterize X

Say “hi” to the stationary point of constrained case 12

▶ All in all: (TCC) ≡ “stationary point of constrained case”

▶ Clearly ∇f (x) = 0 =⇒ ⟨∇f (x) , d ⟩=0 ∀ d ∈ Rn =⇒ (TCC)

a (feasible) local minimum is a local optimum regardless X

▶ Conversely, x ∈ int(X) =⇒ TX (x) = FX (x) = Rn (check), hence

(TCC) ≡ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ Rn ≡ ∇f (x) = 0 (check)

the only way for x ∈ int(X) to be a local optimum is to be a local minimum

▶ In fact, f , X convex =⇒ (TCC) ≡ ∄ feasible descent directions:

X = Rn =⇒ every direction is feasible, hence only descent matters

▶ “x satisfies (TCC)” direct constrained generalisation of “x stationary point”

▶ Necessary, not sufficient, but the only one you can reasonably check

▶ But how to compute TX (x) / test (TCC) in practice? Prove something ∄??

▶ How to characterize TX depends on how you characterize X

Say “hi” to the stationary point of constrained case 12

▶ All in all: (TCC) ≡ “stationary point of constrained case”

▶ Clearly ∇f (x) = 0 =⇒ ⟨∇f (x) , d ⟩=0 ∀ d ∈ Rn =⇒ (TCC)

a (feasible) local minimum is a local optimum regardless X

▶ Conversely, x ∈ int(X) =⇒ TX (x) = FX (x) = Rn (check), hence

(TCC) ≡ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ Rn ≡ ∇f (x) = 0 (check)

the only way for x ∈ int(X) to be a local optimum is to be a local minimum

▶ In fact, f , X convex =⇒ (TCC) ≡ ∄ feasible descent directions:

X = Rn =⇒ every direction is feasible, hence only descent matters

▶ “x satisfies (TCC)” direct constrained generalisation of “x stationary point”

▶ Necessary, not sufficient, but the only one you can reasonably check

▶ But how to compute TX (x) / test (TCC) in practice? Prove something ∄??

▶ How to characterize TX depends on how you characterize X

Say “hi” to the stationary point of constrained case 12

▶ All in all: (TCC) ≡ “stationary point of constrained case”

▶ Clearly ∇f (x) = 0 =⇒ ⟨∇f (x) , d ⟩=0 ∀ d ∈ Rn =⇒ (TCC)

a (feasible) local minimum is a local optimum regardless X

▶ Conversely, x ∈ int(X) =⇒ TX (x) = FX (x) = Rn (check), hence

(TCC) ≡ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ Rn ≡ ∇f (x) = 0 (check)

the only way for x ∈ int(X) to be a local optimum is to be a local minimum

▶ In fact, f , X convex =⇒ (TCC) ≡ ∄ feasible descent directions:

X = Rn =⇒ every direction is feasible, hence only descent matters

▶ “x satisfies (TCC)” direct constrained generalisation of “x stationary point”

▶ Necessary, not sufficient, but the only one you can reasonably check

▶ But how to compute TX (x) / test (TCC) in practice? Prove something ∄??

▶ How to characterize TX depends on how you characterize X

Outline

Constrained optimization

First-order optimality conditions, geometric version

First-order optimality conditions, algebraic version

A fleeting glimpse to second-order optimality conditions

Lagrangian duality

Specialized duals

Ex-post motivations

Wrap up & References

Solutions

Describing a set via functions 13

▶ The most used way to describe a set is via (more than) one function(s)

▶ The obvious way: inequality constraint f (x)≤ δ ≡ sublevel set S(f , δ)

equality constraint f (x)= δ ≡ level set L(f , δ)

▶ For convenience “δ hidden in f ” =⇒ f (x) ≤ 0 , f (x) = 0

▶ What if one rather wants f (x)≥ 0? Simply − f (x) ≤ 0

▶ Usually multiple constraints: “f1(x) ≤ 0 , f2(x) ≤ 0” ≡ logical conjunction

(“first condition and second condition”) ≡ intersection of (sub)level sets

▶ (One of the) standard form(s) of constrained nonlinear optimization:

X =
{
x ∈ Rn : gi (x) ≤ 0 i ∈ I , hj(x) = 0 j ∈ J

}
I = set of inequality constraints, J = set of equality constraints

▶ Compact version via vector-valued functions

G (x) = [gi (x)]i∈I : Rn → R#I , H(x) = [hi (x)]i∈J : Rn → R#J

X =
{
x ∈ Rn : G (x) ≤ 0 , H(x) = 0

}

A(nother) quick glimpse to reformulations 14

▶ Very important concept: there are many different ways to express the same X

▶ Often choosing the right formulation crucial for being able to solve a problem

▶ We will not see this here, but a few trivial observations useful

▶ Could always assume #J = 0 (no equality constraints)

hj(x) = 0 ≡ hj(x) ≤ 0 , −hj(x) ≤ 0

(one equality constraint is equivalent to two “opposite” inequalities)

▶ Could always assume #I = 1 (one single inequality constraint)

G (x) ≤ 0 ≡ max{ gi (x) : i ∈ I } = g(x) ≤ 0

▶ Useful to simplify notation, but almost never for implementation:

exploit the structure of X / the constraints when is there

▶ Reformulations can be bad: max{ g1 , g2 } /∈ C 1 even if g1 ∈ C 1 , g2 ∈ C 1

Convex Sets out of Convex Functions 15

▶ Convexity of X important, how can I be sure of it?

▶ Sublevel sets of convex functions are convex

=⇒ gi (x) ≤ 0 with gi convex “good”

▶ gi (x)≥ 0 not convex if gi is, typically “badly so” (reverse convex)

▶ gi (x)≥ 0 convex if gi concave, but gi (x)≤ 0 then is not

▶ As a great man said: “convex optimization is a one-sided world”

▶ gi (x)= 0 convex only if gi (x)≤ 0 convex and gi (x)≥ 0 convex

≡ gi is both convex and concave ≡ gi is linear (affine)

▶ Want a convex X? All equality constraints must be linear (affine)

▶ Linear constraints very important, let’s give them a very good look

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

⟨Ai , x ⟩+ bi ≤ 0

half-space (half-plane)

full-dimensional ≡ interior ∃

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

⟨Ai , x ⟩+ bi ≤ 0

half-space (half-plane)

full-dimensional ≡ interior ∃

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

⟨Ai , x ⟩+ bi = 0 ≡
hyperplane (plane, line)

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

-A1

⟨Ai , x ⟩+ bi = 0 ≡
hyperplane (plane, line)

≡ ⟨Ai , x ⟩+ bi ≤ 0 ,

⟨−Ai , x ⟩+ bi ≤ 0

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

⟨Ai , x ⟩+ bi = 0 ≡
hyperplane (plane, line)

not full-dimensional:

dimension = n − 1

interior ∄

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

⟨Ai , x ⟩+ bi = 0 ≡
hyperplane (plane, line)

not full-dimensional:

dimension = n − 1

interior ∄
boundary of half-space

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A2

k equality constraints

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A2

k equality constraints

(affine) subspace

dimension ≤ n − k

=⇒ k ≤ n

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A2 A3

k equality constraints

(affine) subspace

dimension ≤ n − k

=⇒ k ≤ n

unless linearly dependent

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A2 A3

k equality constraints

(affine) subspace

dimension ≤ n − k

=⇒ k ≤ n

unless linearly dependent

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A4

A2 A3

k equality constraints

(affine) subspace

dimension ≤ n − k

=⇒ k ≤ n

unless linearly dependent

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A4

A2 A3

k equality constraints

(affine) subspace

dimension ≤ n − k

=⇒ k ≤ n

unless linearly dependent

which can make it empty

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

k inequality constraints

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A2

k inequality constraints

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A2

k inequality constraints

polyhedral cone

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A2 A3

k inequality constraints

polyhedral cone

until k ≤ n

unless linearly dependent

and having the same solution

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A2 A3

k inequality constraints

polyhedral cone

until k ≤ n

unless linearly dependent

and having the same solution

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A2 A3

k inequality constraints

polyhedral cone

full dimensional

interior ∃

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A2 A3

A6

k inequality constraints

polyhedral cone

full dimensional

interior ∃
unless implicit equalities

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A2 A3

A6

k inequality constraints

polyhedral cone

full dimensional

interior ∃
unless implicit equalities

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A2 A3

k > n inequality constraints

(and not dependent “right”)

convex polyhedron

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A4

A2 A3

k > n inequality constraints

(and not dependent “right”)

convex polyhedron

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A4

A2 A3

k > n inequality constraints

(and not dependent “right”)

convex polyhedron

unbounded

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A4

A2 A3

k > n inequality constraints

(and not dependent “right”)

convex polyhedron

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A5

A4

A2 A3

k > n inequality constraints

(and not dependent “right”)

convex polyhedron

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A5

A4

A2 A3

k > n inequality constraints

(and not dependent “right”)

convex polyhedron

bounded

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A5

A4

A2 A3

k > n inequality constraints

(and not dependent “right”)

convex polyhedron

implicit (or explicit)

equalities =⇒

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A5

A4

A2 A3

A6

k > n inequality constraints

(and not dependent “right”)

convex polyhedron

implicit (or explicit)

equalities =⇒

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A5

A4

A2 A3

A6

k > n inequality constraints

(and not dependent “right”)

convex polyhedron

implicit (or explicit)

equalities =⇒
non full-dimensional

interior ∄

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A5

A4

A2 A3

A6

k > n inequality constraints

(and not dependent “right”)

convex polyhedron

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A5A7

A4

A2 A3

A6

k > n inequality constraints

(and not dependent “right”)

convex polyhedron

“too many constraints”

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A5A7

A4

A2 A3

A6

k > n inequality constraints

(and not dependent “right”)

convex polyhedron

“too many constraints”

=⇒ empty

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear constraints: a quick glimpse to polyhedra 16

▶ gi (x) = ⟨Ai , x ⟩+ bi linear (affine), ∇gi (x) = Ai ⊥ S(gi , ·)

A1

A5A7

A4

A2 A3

A6

▶ Polyhedra are easy: find if solution ∃ ≡ optimize a linear function upon is P

▶ If they have “few” constraint, or an efficient separation oracle

Linear equality constraints [7, §11.3] 17

▶ Simple case, linear equality constraints: (P) min{ f (x) : Ax = b }
▶ x ∈ X ≡ x ∈ ∂X , plus “∂X looks the same everywhere”

Ax
 =

 b ▶ S(f , ·) and X = { x ∈ Rn : Ax = b }

▶ optimum touches inner level set

▶ FX (x) = { d ∈ Rn : Ad = 0 } ∀ x :
for any z ∈ X , necessarily z − x = d ⊥ A

▶ (TCC) ≡ ⟨∇f (x) , d ⟩=0 ∀d ∈ F , as

d ∈ F =⇒ −d ∈ F :

d ⊥ A and ∇f (x) ⊥ d =⇒ ∇f (x) ∥ A

▶ “∇f (x) ∥ A” ≡ ∇f (x) ∈ range(A) ≡ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ “Poorman’s KKT conditions”: Ax = b ∧ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ µ first example of dual variables: to prove x optimal you have to find µ

▶ f convex =⇒ (P-KKT) sufficient for global optimality (check)

Linear equality constraints [7, §11.3] 17

▶ Simple case, linear equality constraints: (P) min{ f (x) : Ax = b }
▶ x ∈ X ≡ x ∈ ∂X , plus “∂X looks the same everywhere”

Ax
 =

 b

x

▶ S(f , ·) and X = { x ∈ Rn : Ax = b }

▶ optimum touches inner level set

▶ FX (x) = { d ∈ Rn : Ad = 0 } ∀ x :
for any z ∈ X , necessarily z − x = d ⊥ A

▶ (TCC) ≡ ⟨∇f (x) , d ⟩=0 ∀d ∈ F , as

d ∈ F =⇒ −d ∈ F :

d ⊥ A and ∇f (x) ⊥ d =⇒ ∇f (x) ∥ A

▶ “∇f (x) ∥ A” ≡ ∇f (x) ∈ range(A) ≡ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ “Poorman’s KKT conditions”: Ax = b ∧ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ µ first example of dual variables: to prove x optimal you have to find µ

▶ f convex =⇒ (P-KKT) sufficient for global optimality (check)

Linear equality constraints [7, §11.3] 17

▶ Simple case, linear equality constraints: (P) min{ f (x) : Ax = b }
▶ x ∈ X ≡ x ∈ ∂X , plus “∂X looks the same everywhere”

Ax
 =

 b

x

A

z

▶ S(f , ·) and X = { x ∈ Rn : Ax = b }

▶ optimum touches inner level set

▶ FX (x) = { d ∈ Rn : Ad = 0 } ∀ x :
for any z ∈ X ,

necessarily z − x = d ⊥ A

▶ (TCC) ≡ ⟨∇f (x) , d ⟩=0 ∀d ∈ F , as

d ∈ F =⇒ −d ∈ F :

d ⊥ A and ∇f (x) ⊥ d =⇒ ∇f (x) ∥ A

▶ “∇f (x) ∥ A” ≡ ∇f (x) ∈ range(A) ≡ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ “Poorman’s KKT conditions”: Ax = b ∧ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ µ first example of dual variables: to prove x optimal you have to find µ

▶ f convex =⇒ (P-KKT) sufficient for global optimality (check)

Linear equality constraints [7, §11.3] 17

▶ Simple case, linear equality constraints: (P) min{ f (x) : Ax = b }
▶ x ∈ X ≡ x ∈ ∂X , plus “∂X looks the same everywhere”

Ax
 =

 b

x

A

z

d

▶ S(f , ·) and X = { x ∈ Rn : Ax = b }

▶ optimum touches inner level set

▶ FX (x) = { d ∈ Rn : Ad = 0 } ∀ x :
for any z ∈ X , necessarily z − x = d ⊥ A

▶ (TCC) ≡ ⟨∇f (x) , d ⟩=0 ∀d ∈ F , as

d ∈ F =⇒ −d ∈ F :

d ⊥ A and ∇f (x) ⊥ d =⇒ ∇f (x) ∥ A

▶ “∇f (x) ∥ A” ≡ ∇f (x) ∈ range(A) ≡ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ “Poorman’s KKT conditions”: Ax = b ∧ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ µ first example of dual variables: to prove x optimal you have to find µ

▶ f convex =⇒ (P-KKT) sufficient for global optimality (check)

Linear equality constraints [7, §11.3] 17

▶ Simple case, linear equality constraints: (P) min{ f (x) : Ax = b }
▶ x ∈ X ≡ x ∈ ∂X , plus “∂X looks the same everywhere”

Ax
 =

 b

x

f(x)
d

▶ S(f , ·) and X = { x ∈ Rn : Ax = b }

▶ optimum touches inner level set

▶ FX (x) = { d ∈ Rn : Ad = 0 } ∀ x :
for any z ∈ X , necessarily z − x = d ⊥ A

▶ (TCC) ≡ ⟨∇f (x) , d ⟩=0 ∀d ∈ F , as

d ∈ F =⇒

−d ∈ F :

d ⊥ A and ∇f (x) ⊥ d =⇒ ∇f (x) ∥ A

▶ “∇f (x) ∥ A” ≡ ∇f (x) ∈ range(A) ≡ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ “Poorman’s KKT conditions”: Ax = b ∧ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ µ first example of dual variables: to prove x optimal you have to find µ

▶ f convex =⇒ (P-KKT) sufficient for global optimality (check)

Linear equality constraints [7, §11.3] 17

▶ Simple case, linear equality constraints: (P) min{ f (x) : Ax = b }
▶ x ∈ X ≡ x ∈ ∂X , plus “∂X looks the same everywhere”

Ax
 =

 b

x

f(x)
d

-d

▶ S(f , ·) and X = { x ∈ Rn : Ax = b }

▶ optimum touches inner level set

▶ FX (x) = { d ∈ Rn : Ad = 0 } ∀ x :
for any z ∈ X , necessarily z − x = d ⊥ A

▶ (TCC) ≡ ⟨∇f (x) , d ⟩=0 ∀d ∈ F , as

d ∈ F =⇒ −d ∈ F :

d ⊥ A and ∇f (x) ⊥ d =⇒

∇f (x) ∥ A

▶ “∇f (x) ∥ A” ≡ ∇f (x) ∈ range(A) ≡ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ “Poorman’s KKT conditions”: Ax = b ∧ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ µ first example of dual variables: to prove x optimal you have to find µ

▶ f convex =⇒ (P-KKT) sufficient for global optimality (check)

Linear equality constraints [7, §11.3] 17

▶ Simple case, linear equality constraints: (P) min{ f (x) : Ax = b }
▶ x ∈ X ≡ x ∈ ∂X , plus “∂X looks the same everywhere”

Ax
 =

 b

x

f(x)

A

▶ S(f , ·) and X = { x ∈ Rn : Ax = b }

▶ optimum touches inner level set

▶ FX (x) = { d ∈ Rn : Ad = 0 } ∀ x :
for any z ∈ X , necessarily z − x = d ⊥ A

▶ (TCC) ≡ ⟨∇f (x) , d ⟩=0 ∀d ∈ F , as

d ∈ F =⇒ −d ∈ F :

d ⊥ A and ∇f (x) ⊥ d =⇒ ∇f (x) ∥ A

▶ “∇f (x) ∥ A” ≡ ∇f (x) ∈ range(A) ≡ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ “Poorman’s KKT conditions”: Ax = b ∧ ∃µ ∈ Rm s.t. ∇f (x) = µA

▶ µ first example of dual variables: to prove x optimal you have to find µ

▶ f convex =⇒ (P-KKT) sufficient for global optimality (check)

Mathematically speaking: Derivation via the reduced problem 18

▶ A ∈ Rm×n with rank(A) = m< n ≡ rows of A linearly independent

=⇒ A = [AB , AN] with det(AB) ̸= 0

=⇒ x = [xB , xN] so that Ax = b ≡ xB = A−1
B (b − ANxN)

“m linear constraints kill m degrees of freedom ≡ m variables”

Exercise: why “rows of A linearly independent” makes sense? discuss

▶ (P) ≡ reduced problem (R) min{ r(xN) = f (DxN + d) : xN ∈ Rn−m }

D =

[
−A−1

B AN

I

]
, d =

[
A−1
B b
0

]
, AD = 0 (check)

▶ ∇r(xN) = DT∇f (DxN + d), x∗N optimal for (R) ≡ ∇r(x∗N) = 0

▶ AD = 0 =⇒ ∀µ ∈ Rm, zT = µA =⇒ zTD = 0 ≡ DT z = 0

▶ x∗N =⇒ x∗ = [x∗B , x
∗
N] = [A−1

B (b − ANx
∗
N) , x∗N] always feasible

∃µ ∈ Rm s.t. µA = ∇f (x∗) =⇒ r(x∗N) = DT∇f (x∗) = 0

i.e., ∇r(x∗N) = 0 ≡ (P-KKT) Ax = b ∧ ∃µ ∈ Rm s.t. µA = ∇f (x)
▶ Can be a feasible algorithmic strategy

Exercise: solve min{ 2x2 + w2 + z2 : x + z = 1 , x + w − z = 2 } via (R)

Nonlinear inequalities: first-order feasible direction cone [8, §12.2] 19

▶ TX (x) = TX∩B(x , ε)(x): only what happens as xi → x matters

=⇒ if x /∈ ∂S(gi , 0) then constraint gi (·) ≤ 0 has no impact on TX (x)

▶ gi ∈ C 0: x ∈ ∂S(gi , 0) =⇒ gi (x) = 0, although ⇍= (check)

▶ Active constraints at x ∈ X : A(x) = { i ∈ I : gi (x) = 0 } ⊆ I
“easy proxy” of x ∈ ∂S(gi , 0) ≡ constraint gi (·) ≤ 0 impacts TX (x)

▶ First-order feasible direction cone at x ∈ X : DX (x) ={
d ∈ Rn : ⟨∇gi (x) , d ⟩ ≤ 0 i ∈ A(x) , ⟨∇hj(x) , d ⟩ = 0 j ∈ J

}
={

d ∈ Rn : (JGA(x)(x))d ≤ 0 , (JH(x))d = 0
}

x

X

▶ A(x) ≡ zoom very close to x

▶ Each i ∈ A(x) defines “a part of ∂X”

▶ ∇gi (x) ⊥ ∂X at x

▶ Each one separately =⇒ intersection

▶ DX (x) ⊇ TX (x) but can be ̸=

Nonlinear inequalities: first-order feasible direction cone [8, §12.2] 19

▶ TX (x) = TX∩B(x , ε)(x): only what happens as xi → x matters

=⇒ if x /∈ ∂S(gi , 0) then constraint gi (·) ≤ 0 has no impact on TX (x)

▶ gi ∈ C 0: x ∈ ∂S(gi , 0) =⇒ gi (x) = 0, although ⇍= (check)

▶ Active constraints at x ∈ X : A(x) = { i ∈ I : gi (x) = 0 } ⊆ I
“easy proxy” of x ∈ ∂S(gi , 0) ≡ constraint gi (·) ≤ 0 impacts TX (x)

▶ First-order feasible direction cone at x ∈ X : DX (x) ={
d ∈ Rn : ⟨∇gi (x) , d ⟩ ≤ 0 i ∈ A(x) , ⟨∇hj(x) , d ⟩ = 0 j ∈ J

}
={

d ∈ Rn : (JGA(x)(x))d ≤ 0 , (JH(x))d = 0
}

x

▶ A(x) ≡ zoom very close to x

▶ Each i ∈ A(x) defines “a part of ∂X”

▶ ∇gi (x) ⊥ ∂X at x

▶ Each one separately =⇒ intersection

▶ DX (x) ⊇ TX (x) but can be ̸=

Nonlinear inequalities: first-order feasible direction cone [8, §12.2] 19

▶ TX (x) = TX∩B(x , ε)(x): only what happens as xi → x matters

=⇒ if x /∈ ∂S(gi , 0) then constraint gi (·) ≤ 0 has no impact on TX (x)

▶ gi ∈ C 0: x ∈ ∂S(gi , 0) =⇒ gi (x) = 0, although ⇍= (check)

▶ Active constraints at x ∈ X : A(x) = { i ∈ I : gi (x) = 0 } ⊆ I
“easy proxy” of x ∈ ∂S(gi , 0) ≡ constraint gi (·) ≤ 0 impacts TX (x)

▶ First-order feasible direction cone at x ∈ X : DX (x) ={
d ∈ Rn : ⟨∇gi (x) , d ⟩ ≤ 0 i ∈ A(x) , ⟨∇hj(x) , d ⟩ = 0 j ∈ J

}
={

d ∈ Rn : (JGA(x)(x))d ≤ 0 , (JH(x))d = 0
}

g1(x) ≤ 0

g1(x)

x

▶ A(x) ≡ zoom very close to x

▶ Each i ∈ A(x) defines “a part of ∂X”

▶ ∇gi (x) ⊥ ∂X at x

▶ Each one separately =⇒ intersection

▶ DX (x) ⊇ TX (x) but can be ̸=

Nonlinear inequalities: first-order feasible direction cone [8, §12.2] 19

▶ TX (x) = TX∩B(x , ε)(x): only what happens as xi → x matters

=⇒ if x /∈ ∂S(gi , 0) then constraint gi (·) ≤ 0 has no impact on TX (x)

▶ gi ∈ C 0: x ∈ ∂S(gi , 0) =⇒ gi (x) = 0, although ⇍= (check)

▶ Active constraints at x ∈ X : A(x) = { i ∈ I : gi (x) = 0 } ⊆ I
“easy proxy” of x ∈ ∂S(gi , 0) ≡ constraint gi (·) ≤ 0 impacts TX (x)

▶ First-order feasible direction cone at x ∈ X : DX (x) ={
d ∈ Rn : ⟨∇gi (x) , d ⟩ ≤ 0 i ∈ A(x) , ⟨∇hj(x) , d ⟩ = 0 j ∈ J

}
={

d ∈ Rn : (JGA(x)(x))d ≤ 0 , (JH(x))d = 0
}

g2(x) ≤ 0

x

g2(x) ▶ A(x) ≡ zoom very close to x

▶ Each i ∈ A(x) defines “a part of ∂X”

▶ ∇gi (x) ⊥ ∂X at x

▶ Each one separately =⇒

intersection

▶ DX (x) ⊇ TX (x) but can be ̸=

Nonlinear inequalities: first-order feasible direction cone [8, §12.2] 19

▶ TX (x) = TX∩B(x , ε)(x): only what happens as xi → x matters

=⇒ if x /∈ ∂S(gi , 0) then constraint gi (·) ≤ 0 has no impact on TX (x)

▶ gi ∈ C 0: x ∈ ∂S(gi , 0) =⇒ gi (x) = 0, although ⇍= (check)

▶ Active constraints at x ∈ X : A(x) = { i ∈ I : gi (x) = 0 } ⊆ I
“easy proxy” of x ∈ ∂S(gi , 0) ≡ constraint gi (·) ≤ 0 impacts TX (x)

▶ First-order feasible direction cone at x ∈ X : DX (x) ={
d ∈ Rn : ⟨∇gi (x) , d ⟩ ≤ 0 i ∈ A(x) , ⟨∇hj(x) , d ⟩ = 0 j ∈ J

}
={

d ∈ Rn : (JGA(x)(x))d ≤ 0 , (JH(x))d = 0
}

x

X

g1(x) g2(x) ▶ A(x) ≡ zoom very close to x

▶ Each i ∈ A(x) defines “a part of ∂X”

▶ ∇gi (x) ⊥ ∂X at x

▶ Each one separately =⇒ intersection

▶ DX (x) ⊇ TX (x) but can be ̸=

Nonlinear inequalities: first-order feasible direction cone [8, §12.2] 19

▶ TX (x) = TX∩B(x , ε)(x): only what happens as xi → x matters

=⇒ if x /∈ ∂S(gi , 0) then constraint gi (·) ≤ 0 has no impact on TX (x)

▶ gi ∈ C 0: x ∈ ∂S(gi , 0) =⇒ gi (x) = 0, although ⇍= (check)

▶ Active constraints at x ∈ X : A(x) = { i ∈ I : gi (x) = 0 } ⊆ I
“easy proxy” of x ∈ ∂S(gi , 0) ≡ constraint gi (·) ≤ 0 impacts TX (x)

▶ First-order feasible direction cone at x ∈ X : DX (x) ={
d ∈ Rn : ⟨∇gi (x) , d ⟩ ≤ 0 i ∈ A(x) , ⟨∇hj(x) , d ⟩ = 0 j ∈ J

}
={

d ∈ Rn : (JGA(x)(x))d ≤ 0 , (JH(x))d = 0
}

x

X DX(x)

g1(x) g2(x) ▶ A(x) ≡ zoom very close to x

▶ Each i ∈ A(x) defines “a part of ∂X”

▶ ∇gi (x) ⊥ ∂X at x

▶ Each one separately =⇒ intersection

▶ DX (x) ⊇ TX (x) but can be ̸=

When DX ̸= TX [8, p. 320] 20

▶ gi ∈ C 1 =⇒ DX (x) ⊇ TX (x) [8, Lemma 12.2.(i)] (proof easy, just Taylor)

▶ DX (x) can be strictly larger than TX (x) in pathological cases

g1(x)

▶ min{ . . . : x21 +(x2−1)2−1 ≤ 0 ,

x2 ≤ 0 }

=⇒ X = { x = [0 , 0] }

▶ DX (x) = { [x1 , x2] : x2 = 0 }

▶ TX (x) = { [0 , 0] }

Exercise: Check the counter-example in details

▶ A very stupid way to write X = { [0 , 0] }, have to avoid it

▶ Note that everything is convex, so convexity won’t help this time

When DX ̸= TX [8, p. 320] 20

▶ gi ∈ C 1 =⇒ DX (x) ⊇ TX (x) [8, Lemma 12.2.(i)] (proof easy, just Taylor)

▶ DX (x) can be strictly larger than TX (x) in pathological cases

g2(x)

▶ min{ . . . : x21 +(x2−1)2−1 ≤ 0 , x2 ≤ 0 }

=⇒ X = { x = [0 , 0] }

▶ DX (x) = { [x1 , x2] : x2 = 0 }

▶ TX (x) = { [0 , 0] }

Exercise: Check the counter-example in details

▶ A very stupid way to write X = { [0 , 0] }, have to avoid it

▶ Note that everything is convex, so convexity won’t help this time

When DX ̸= TX [8, p. 320] 20

▶ gi ∈ C 1 =⇒ DX (x) ⊇ TX (x) [8, Lemma 12.2.(i)] (proof easy, just Taylor)

▶ DX (x) can be strictly larger than TX (x) in pathological cases

g2(x)

g1(x)

▶ min{ . . . : x21 +(x2−1)2−1 ≤ 0 , x2 ≤ 0 }

=⇒ X = { x = [0 , 0] }

▶ DX (x) = { [x1 , x2] : x2 = 0 }

▶ TX (x) = { [0 , 0] }

Exercise: Check the counter-example in details

▶ A very stupid way to write X = { [0 , 0] }, have to avoid it

▶ Note that everything is convex, so convexity won’t help this time

Mathematically speaking: Constraint qualifications [8, §12.6] 21

▶ Several conditions known ≡ constraint qualifications:

a) Affine constraints (AffC): gi and hj affine ∀ i ∈ I and j ∈ J =⇒
TX (x) = DX (x) ∀ x ∈ X

b) Slater’s condition (SlaC): gi convex ∀ i ∈ I , hj affine ∀ j ∈ J
∃ x̄ ∈ X s.t. gi (x̄)< 0 ∀ i ∈ I =⇒ TX (x) = DX (x) ∀ x ∈ X

c) Linear independence (LinI): x̄ ∈ X ∧ the vectors{
∇gi (x̄) : i ∈ A(x̄)

}
∪

{
∇hj(x̄) : j ∈ J

}
all linearly independent from each other =⇒ TX (x̄) = DX (x̄)

▶ Weaker form of (SlaC): ∃ x̄ ∈ X s.t. gi (x̄) < 0 ∀i ∈ I not affine ≡
“in the interior of the feasible region of the nonlinear inequalities”

▶ Our counter-example fail all three (obviously)

▶ Wrap up: (AffC) ∨ ([w]SlaC) ∨ (LinI) =⇒
x local optimum =⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ DX (x)

▶ How do I check something like this? ∀ d . . . ??

Farkas’ lemma: a tale of two cones [8, p. 326] 22

▶ DX is a polyhedral cone: C = { d ∈ Rn : Ad ≤ 0 } for some A ∈ Rk×n

[what about J ? (check)] “very close by, ∂X looks like a polyhedron”

A2A1

▶ Dual cone: C∗ = { c =
∑k

i=1 λiAi : λ ≥ 0 }

▶ Farkas’ lemma: ∀ c ∈ Rn

either ∃λ ≥ 0 s.t. c = λTA =
∑k

i=1 λiAi

or ∃ d s.t. Ad ≤ 0 ∧ ⟨ c , d ⟩ > 0

(one and only one of these is true)

▶ ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C, c ∈ C∗ (check) actually a ̸= definition:

polar cone C◦ = { c ∈ Rn : ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C }= C∗ =⇒

Farkas’ lemma ≡ either c ∈ C∗ , or c /∈ C∗

Exercise: Farkas’ lemma the father of all separation results: x /∈ X (convex)

=⇒ ∃ an hyperplane that separates x from X . Discuss.

Farkas’ lemma: a tale of two cones [8, p. 326] 22

▶ DX is a polyhedral cone: C = { d ∈ Rn : Ad ≤ 0 } for some A ∈ Rk×n

[what about J ? (check)] “very close by, ∂X looks like a polyhedron”

A2A1

▶ Dual cone: C∗ = { c =
∑k

i=1 λiAi : λ ≥ 0 }

▶ Farkas’ lemma: ∀ c ∈ Rn

either ∃λ ≥ 0 s.t. c = λTA =
∑k

i=1 λiAi

or ∃ d s.t. Ad ≤ 0 ∧ ⟨ c , d ⟩ > 0

(one and only one of these is true)

▶ ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C, c ∈ C∗ (check) actually a ̸= definition:

polar cone C◦ = { c ∈ Rn : ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C }= C∗ =⇒

Farkas’ lemma ≡ either c ∈ C∗ , or c /∈ C∗

Exercise: Farkas’ lemma the father of all separation results: x /∈ X (convex)

=⇒ ∃ an hyperplane that separates x from X . Discuss.

Farkas’ lemma: a tale of two cones [8, p. 326] 22

▶ DX is a polyhedral cone: C = { d ∈ Rn : Ad ≤ 0 } for some A ∈ Rk×n

[what about J ? (check)] “very close by, ∂X looks like a polyhedron”

A2A1

▶ Dual cone: C∗ = { c =
∑k

i=1 λiAi : λ ≥ 0 }

▶ Farkas’ lemma:

∀ c ∈ Rn

either ∃λ ≥ 0 s.t. c = λTA =
∑k

i=1 λiAi

or ∃ d s.t. Ad ≤ 0 ∧ ⟨ c , d ⟩ > 0

(one and only one of these is true)

▶ ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C, c ∈ C∗ (check) actually a ̸= definition:

polar cone C◦ = { c ∈ Rn : ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C }= C∗ =⇒

Farkas’ lemma ≡ either c ∈ C∗ , or c /∈ C∗

Exercise: Farkas’ lemma the father of all separation results: x /∈ X (convex)

=⇒ ∃ an hyperplane that separates x from X . Discuss.

Farkas’ lemma: a tale of two cones [8, p. 326] 22

▶ DX is a polyhedral cone: C = { d ∈ Rn : Ad ≤ 0 } for some A ∈ Rk×n

[what about J ? (check)] “very close by, ∂X looks like a polyhedron”

A2A1

c

A22

A1 1

▶ Dual cone: C∗ = { c =
∑k

i=1 λiAi : λ ≥ 0 }

▶ Farkas’ lemma: ∀ c ∈ Rn

either ∃λ ≥ 0 s.t. c = λTA =
∑k

i=1 λiAi

or ∃ d s.t. Ad ≤ 0 ∧ ⟨ c , d ⟩ > 0

(one and only one of these is true)

▶ ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C, c ∈ C∗ (check) actually a ̸= definition:

polar cone C◦ = { c ∈ Rn : ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C }= C∗ =⇒

Farkas’ lemma ≡ either c ∈ C∗ , or c /∈ C∗

Exercise: Farkas’ lemma the father of all separation results: x /∈ X (convex)

=⇒ ∃ an hyperplane that separates x from X . Discuss.

Farkas’ lemma: a tale of two cones [8, p. 326] 22

▶ DX is a polyhedral cone: C = { d ∈ Rn : Ad ≤ 0 } for some A ∈ Rk×n

[what about J ? (check)] “very close by, ∂X looks like a polyhedron”

A2A1

c

d

▶ Dual cone: C∗ = { c =
∑k

i=1 λiAi : λ ≥ 0 }

▶ Farkas’ lemma: ∀ c ∈ Rn

either ∃λ ≥ 0 s.t. c = λTA =
∑k

i=1 λiAi

or ∃ d s.t. Ad ≤ 0 ∧ ⟨ c , d ⟩ > 0

(one and only one of these is true)

▶ ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C, c ∈ C∗ (check) actually a ̸= definition:

polar cone C◦ = { c ∈ Rn : ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C }= C∗ =⇒

Farkas’ lemma ≡ either c ∈ C∗ , or c /∈ C∗

Exercise: Farkas’ lemma the father of all separation results: x /∈ X (convex)

=⇒ ∃ an hyperplane that separates x from X . Discuss.

Farkas’ lemma: a tale of two cones [8, p. 326] 22

▶ DX is a polyhedral cone: C = { d ∈ Rn : Ad ≤ 0 } for some A ∈ Rk×n

[what about J ? (check)] “very close by, ∂X looks like a polyhedron”

A2A1

c

d

▶ Dual cone: C∗ = { c =
∑k

i=1 λiAi : λ ≥ 0 }

▶ Farkas’ lemma: ∀ c ∈ Rn

either ∃λ ≥ 0 s.t. c = λTA =
∑k

i=1 λiAi

or ∃ d s.t. Ad ≤ 0 ∧ ⟨ c , d ⟩ > 0

(one and only one of these is true)

▶ ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C, c ∈ C∗ (check) actually a ̸= definition:

polar cone C◦ = { c ∈ Rn : ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C }= C∗ =⇒

Farkas’ lemma ≡ either c ∈ C∗ , or c /∈ C∗

Exercise: Farkas’ lemma the father of all separation results: x /∈ X (convex)

=⇒ ∃ an hyperplane that separates x from X . Discuss.

Farkas’ lemma: a tale of two cones [8, p. 326] 22

▶ DX is a polyhedral cone: C = { d ∈ Rn : Ad ≤ 0 } for some A ∈ Rk×n

[what about J ? (check)] “very close by, ∂X looks like a polyhedron”

A2A1

d

c

▶ Dual cone: C∗ = { c =
∑k

i=1 λiAi : λ ≥ 0 }

▶ Farkas’ lemma: ∀ c ∈ Rn

either ∃λ ≥ 0 s.t. c = λTA =
∑k

i=1 λiAi

or ∃ d s.t. Ad ≤ 0 ∧ ⟨ c , d ⟩ > 0

(one and only one of these is true)

▶ ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C, c ∈ C∗ (check) actually a ̸= definition:

polar cone C◦ = { c ∈ Rn : ⟨ c , d ⟩ ≤ 0 ∀ d ∈ C }= C∗ =⇒

Farkas’ lemma ≡ either c ∈ C∗ , or c /∈ C∗

Exercise: Farkas’ lemma the father of all separation results: x /∈ X (convex)

=⇒ ∃ an hyperplane that separates x from X . Discuss.

Farkas’ lemma → KKT [8, §12.3][7, p. 342] 23

▶ (CQ ∧) x∗ optimum =⇒ ⟨∇f (x∗) , d ⟩ ≥ 0 ∀ d s.t.

⟨∇gi (x∗) , d ⟩≤ 0 i ∈ A(x∗) , ⟨∇hj(x∗) , d ⟩=0 j ∈ J

≡ ∃λ ∈ R#A(x∗)
+ and µ ∈ R#J s.t.

∇f (x∗) +
∑

i∈A(x∗) λi∇gi (x∗) +
∑

j∈J µj∇hj(x∗) = 0 (GC)

Exercise: check details: why the sign of ∇f (x∗)? Why µ ̸≥ 0?

▶ Constructive way to prove necessary condition: find λ and µ

▶ Karush-Kuhn-Tucker conditions: ∃λ ∈ R#I
+ and µ ∈ R#J s.t.

gi (x) ≤ 0 i ∈ I , hj(x) = 0 j ∈ J (KKT-F)

∇f (x) +
∑

i∈I λi∇gi (x) +
∑

j∈J µj∇hj(x) = 0 (KKT-G)∑
i∈I λigi (x) = 0 (KKT-CS)

▶ (KKT-CS) = Complementary Slackness ≡ λigi (x) = 0 ∀ i ∈ I

Exercise: prove the statement above and explain where (KKT-CS) comes from

Farkas’ lemma → KKT [8, §12.3][7, p. 342] 23

▶ (CQ ∧) x∗ optimum =⇒ ⟨∇f (x∗) , d ⟩ ≥ 0 ∀ d s.t.

⟨∇gi (x∗) , d ⟩≤ 0 i ∈ A(x∗) , ⟨∇hj(x∗) , d ⟩=0 j ∈ J

≡ ∃λ ∈ R#A(x∗)
+ and µ ∈ R#J s.t.

∇f (x∗) +
∑

i∈A(x∗) λi∇gi (x∗) +
∑

j∈J µj∇hj(x∗) = 0 (GC)

Exercise: check details: why the sign of ∇f (x∗)? Why µ ̸≥ 0?

▶ Constructive way to prove necessary condition: find λ and µ

▶ Karush-Kuhn-Tucker conditions: ∃λ ∈ R#I
+ and µ ∈ R#J s.t.

gi (x) ≤ 0 i ∈ I , hj(x) = 0 j ∈ J (KKT-F)

∇f (x) +
∑

i∈I λi∇gi (x) +
∑

j∈J µj∇hj(x) = 0 (KKT-G)∑
i∈I λigi (x) = 0 (KKT-CS)

▶ (KKT-CS) = Complementary Slackness ≡ λigi (x) = 0 ∀ i ∈ I

Exercise: prove the statement above and explain where (KKT-CS) comes from

The Karush-Kuhn-Tucker Theorem 24

▶ KKT Theorem: TX (x) = DX (x) ∧ x local optimum =⇒ (KKT)

▶ Optimization ≡ solving systems of nonlinear equations and inequalities

g2(x)

g1(x)

▶ TX (x) = DX (x) crucial: counter-example

min{ x1 : x21 + (x2 − 1)2 − 1 ≤ 0 , x2 ≤ 0 }
(x optimum but (KKT) do not hold)

▶ Condition not necessary: counter-example

min{ x1 : x21 + x22 ≥ 1 } , x = [1 , 0]

(∇f cannot tell maxima from minima)

▶ Only safe case: no maxima ≡ (P) convex problem: f convex on X ,

X convex ⇐= gi (x) convex ∀i ∈ I , hj(x) affine ∀j ∈ J

▶ For (P) convex, (KKT) =⇒ x global optimum:

(KKT) =⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ DX (x) and DX (x) ⊇ TX (x) ⊇ FX (x)

=⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ FX (x) =⇒ x global optimum

The Karush-Kuhn-Tucker Theorem 24

▶ KKT Theorem: TX (x) = DX (x) ∧ x local optimum =⇒ (KKT)

▶ Optimization ≡ solving systems of nonlinear equations and inequalities

g2(x)

g1(x)

▶ TX (x) = DX (x) crucial: counter-example

min{ x1 : x21 + (x2 − 1)2 − 1 ≤ 0 , x2 ≤ 0 }

(x optimum but (KKT) do not hold)

▶ Condition not necessary: counter-example

min{ x1 : x21 + x22 ≥ 1 } , x = [1 , 0]

(∇f cannot tell maxima from minima)

▶ Only safe case: no maxima ≡ (P) convex problem: f convex on X ,

X convex ⇐= gi (x) convex ∀i ∈ I , hj(x) affine ∀j ∈ J

▶ For (P) convex, (KKT) =⇒ x global optimum:

(KKT) =⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ DX (x) and DX (x) ⊇ TX (x) ⊇ FX (x)

=⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ FX (x) =⇒ x global optimum

The Karush-Kuhn-Tucker Theorem 24

▶ KKT Theorem: TX (x) = DX (x) ∧ x local optimum =⇒ (KKT)

▶ Optimization ≡ solving systems of nonlinear equations and inequalities

g2(x)

g1(x)

f(x)

▶ TX (x) = DX (x) crucial: counter-example

min{ x1 : x21 + (x2 − 1)2 − 1 ≤ 0 , x2 ≤ 0 }

(x optimum but (KKT) do not hold)

▶ Condition not necessary: counter-example

min{ x1 : x21 + x22 ≥ 1 } , x = [1 , 0]

(∇f cannot tell maxima from minima)

▶ Only safe case: no maxima ≡ (P) convex problem: f convex on X ,

X convex ⇐= gi (x) convex ∀i ∈ I , hj(x) affine ∀j ∈ J

▶ For (P) convex, (KKT) =⇒ x global optimum:

(KKT) =⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ DX (x) and DX (x) ⊇ TX (x) ⊇ FX (x)

=⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ FX (x) =⇒ x global optimum

The Karush-Kuhn-Tucker Theorem 24

▶ KKT Theorem: TX (x) = DX (x) ∧ x local optimum =⇒ (KKT)

▶ Optimization ≡ solving systems of nonlinear equations and inequalities

g2(x)

g1(x)

d f(x)

▶ TX (x) = DX (x) crucial: counter-example

min{ x1 : x21 + (x2 − 1)2 − 1 ≤ 0 , x2 ≤ 0 }
(x optimum but (KKT) do not hold)

▶ Condition not necessary: counter-example

min{ x1 : x21 + x22 ≥ 1 } , x = [1 , 0]

(∇f cannot tell maxima from minima)

▶ Only safe case: no maxima ≡ (P) convex problem: f convex on X ,

X convex ⇐= gi (x) convex ∀i ∈ I , hj(x) affine ∀j ∈ J

▶ For (P) convex, (KKT) =⇒ x global optimum:

(KKT) =⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ DX (x) and DX (x) ⊇ TX (x) ⊇ FX (x)

=⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ FX (x) =⇒ x global optimum

The Karush-Kuhn-Tucker Theorem 24

▶ KKT Theorem: TX (x) = DX (x) ∧ x local optimum =⇒ (KKT)

▶ Optimization ≡ solving systems of nonlinear equations and inequalities

g(x) f(x)

▶ TX (x) = DX (x) crucial: counter-example

min{ x1 : x21 + (x2 − 1)2 − 1 ≤ 0 , x2 ≤ 0 }
(x optimum but (KKT) do not hold)

▶ Condition not necessary: counter-example

min{ x1 : x21 + x22 ≥ 1 } , x = [1 , 0]

(∇f cannot tell maxima from minima)

▶ Only safe case: no maxima ≡ (P) convex problem: f convex on X ,

X convex ⇐= gi (x) convex ∀i ∈ I , hj(x) affine ∀j ∈ J

▶ For (P) convex, (KKT) =⇒ x global optimum:

(KKT) =⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ DX (x) and DX (x) ⊇ TX (x) ⊇ FX (x)

=⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ FX (x) =⇒ x global optimum

The Karush-Kuhn-Tucker Theorem 24

▶ KKT Theorem: TX (x) = DX (x) ∧ x local optimum =⇒ (KKT)

▶ Optimization ≡ solving systems of nonlinear equations and inequalities

g(x) f(x)

▶ TX (x) = DX (x) crucial: counter-example

min{ x1 : x21 + (x2 − 1)2 − 1 ≤ 0 , x2 ≤ 0 }
(x optimum but (KKT) do not hold)

▶ Condition not necessary: counter-example

min{ x1 : x21 + x22 ≥ 1 } , x = [1 , 0]

(∇f cannot tell maxima from minima)

▶ Only safe case: no maxima ≡ (P) convex problem: f convex on X ,

X convex ⇐= gi (x) convex ∀i ∈ I , hj(x) affine ∀j ∈ J

▶ For (P) convex, (KKT) =⇒ x global optimum:

(KKT) =⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ DX (x) and DX (x) ⊇ TX (x) ⊇ FX (x)

=⇒ ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ FX (x) =⇒ x global optimum

Outline

Constrained optimization

First-order optimality conditions, geometric version

First-order optimality conditions, algebraic version

A fleeting glimpse to second-order optimality conditions

Lagrangian duality

Specialized duals

Ex-post motivations

Wrap up & References

Solutions

Towards second-order optimality conditions [8, §12.5][7, p. 344] 25

▶ (P) not convex ≡ (KKT) not sufficient =⇒ have to use second-order

▶ But clearly cannot be just “∇2f (x∗) ⪰ 0”

▶ Fundamental concept: Lagrangian function

L(x ; λ , µ) = f (x) +
∑

i∈I λigi (x) +
∑

j∈J µjhj(x)

x variables, λ and µ parameters

▶ Fundamental observation: (x , λ , µ) satisfies (KKT-G) ≡

∇L(x ; λ , µ) = 0 (gradient on x alone)

=⇒ x stationary point of L(· ; λ , µ)

▶ When is stationary point also a minimum?

▶ One might guess “∇2L(x ; λ , µ) ⪰ 0” to be the answer:

almost, but not quite

Mathematically speaking: Second-order optimality conditions 26

▶ Assume (x , λ , µ) satisfies (KKT): critical cone ⊆ Rn

C (x ; λ , µ) =

d ∈ Rn :

⟨∇gi (x) , d ⟩ = 0 i ∈ A(x) s.t. λ∗i > 0

⟨∇gi (x) , d ⟩ ≤ 0 i ∈ A(x) s.t. λ∗i = 0

⟨∇hj(x) , d ⟩ = 0 i ∈ J

▶ (x , λ , µ) satisfies (KKT) ∧ x satisfies (LinI): x local optimum =⇒

dT∇2L(x ; λ , µ)d ≥ 0 ∀ d ∈ C (x ; λ , µ)

“the Hessian of the Lagrangian function is ⪰ 0 on the critical cone”

▶ (x ; λ , µ) satisfies (KKT) ∧ ∇2L(x ; λ , µ) ≻ 0 on C (x , λ , µ)

=⇒ x local optimum (sufficient)

▶ Conditions for unconstrained optimization a special case (check)

▶ Hardly anybody cares

Outline

Constrained optimization

First-order optimality conditions, geometric version

First-order optimality conditions, algebraic version

A fleeting glimpse to second-order optimality conditions

Lagrangian duality

Specialized duals

Ex-post motivations

Wrap up & References

Solutions

Lagrangian relaxation [8, §12.9][7, §11.9][6, Chap. XII] 27

▶ Lagrangian function interesting object: objective and constraints together

▶ (KKT-G) ≡ x stationary point of L(·) for the right λ ≥ 0 and µ

▶ Assume we know the right λ ≥ 0 and µ: can we find x?

▶ Natural idea: solve the Lagrangian relaxation

(Rλ,µ) ψ(λ , µ) = minx
{
L(x ; λ , µ) : x ∈ Rn

}

▶ Er . . . “relaxation”? This a Yoga course now perchance?

▶ (P) min{ f (x) : x ∈ X }, relaxation = another optimization problem

carefully constructed in order to provide a lower bound on ν(P)

▶ (P) min{ f (x) : x ∈ X } a relaxation of (P) =⇒ ν(P) ≤ ν(P) if

i) X ⊇ X , ii) f (x) ≤ f (x) ∀ x ∈ X

▶ (Rλ,µ) is a relaxation of (P) ∀λ ≥ 0 and µ (check) =⇒
weak duality: ∀ x ∈ X , ψ(λ , µ) ≤ ν(P) ≤ f (x)

▶ But how do I choose λ ≥ 0 and µ?

Lagrangian relaxation [8, §12.9][7, §11.9][6, Chap. XII] 27

▶ Lagrangian function interesting object: objective and constraints together

▶ (KKT-G) ≡ x stationary point of L(·) for the right λ ≥ 0 and µ

▶ Assume we know the right λ ≥ 0 and µ: can we find x?

▶ Natural idea: solve the Lagrangian relaxation

(Rλ,µ) ψ(λ , µ) = minx
{
L(x ; λ , µ) : x ∈ Rn

}

▶ Er . . . “relaxation”? This a Yoga course now perchance?

▶ (P) min{ f (x) : x ∈ X }, relaxation = another optimization problem

carefully constructed in order to provide a lower bound on ν(P)

▶ (P) min{ f (x) : x ∈ X } a relaxation of (P) =⇒ ν(P) ≤ ν(P) if

i) X ⊇ X , ii) f (x) ≤ f (x) ∀ x ∈ X

▶ (Rλ,µ) is a relaxation of (P) ∀λ ≥ 0 and µ (check) =⇒
weak duality: ∀ x ∈ X , ψ(λ , µ) ≤ ν(P) ≤ f (x)

▶ But how do I choose λ ≥ 0 and µ?

Lagrangian relaxation [8, §12.9][7, §11.9][6, Chap. XII] 27

▶ Lagrangian function interesting object: objective and constraints together

▶ (KKT-G) ≡ x stationary point of L(·) for the right λ ≥ 0 and µ

▶ Assume we know the right λ ≥ 0 and µ: can we find x?

▶ Natural idea: solve the Lagrangian relaxation

(Rλ,µ) ψ(λ , µ) = minx
{
L(x ; λ , µ) : x ∈ Rn

}
▶ Er . . . “relaxation”? This a Yoga course now perchance?

▶ (P) min{ f (x) : x ∈ X }, relaxation = another optimization problem

carefully constructed in order to provide a lower bound on ν(P)

▶ (P) min{ f (x) : x ∈ X } a relaxation of (P) =⇒ ν(P) ≤ ν(P) if

i) X ⊇ X , ii) f (x) ≤ f (x) ∀ x ∈ X

▶ (Rλ,µ) is a relaxation of (P) ∀λ ≥ 0 and µ (check) =⇒
weak duality: ∀ x ∈ X , ψ(λ , µ) ≤ ν(P) ≤ f (x)

▶ But how do I choose λ ≥ 0 and µ?

Lagrangian relaxation [8, §12.9][7, §11.9][6, Chap. XII] 27

▶ Lagrangian function interesting object: objective and constraints together

▶ (KKT-G) ≡ x stationary point of L(·) for the right λ ≥ 0 and µ

▶ Assume we know the right λ ≥ 0 and µ: can we find x?

▶ Natural idea: solve the Lagrangian relaxation

(Rλ,µ) ψ(λ , µ) = minx
{
L(x ; λ , µ) : x ∈ Rn

}

▶ Er . . . “relaxation”? This a Yoga course now perchance?

▶ (P) min{ f (x) : x ∈ X }, relaxation = another optimization problem

carefully constructed in order to provide a lower bound on ν(P)

▶ (P) min{ f (x) : x ∈ X } a relaxation of (P) =⇒ ν(P) ≤ ν(P) if

i) X ⊇ X , ii) f (x) ≤ f (x) ∀ x ∈ X

▶ (Rλ,µ) is a relaxation of (P) ∀λ ≥ 0 and µ (check) =⇒
weak duality: ∀ x ∈ X , ψ(λ , µ) ≤ ν(P) ≤ f (x)

▶ But how do I choose λ ≥ 0 and µ?

Lagrangian relaxation [8, §12.9][7, §11.9][6, Chap. XII] 27

▶ Lagrangian function interesting object: objective and constraints together

▶ (KKT-G) ≡ x stationary point of L(·) for the right λ ≥ 0 and µ

▶ Assume we know the right λ ≥ 0 and µ: can we find x?

▶ Natural idea: solve the Lagrangian relaxation

(Rλ,µ) ψ(λ , µ) = minx
{
L(x ; λ , µ) : x ∈ Rn

}

▶ Er . . . “relaxation”? This a Yoga course now perchance?

▶ (P) min{ f (x) : x ∈ X }, relaxation = another optimization problem

carefully constructed in order to provide a lower bound on ν(P)

▶ (P) min{ f (x) : x ∈ X } a relaxation of (P) =⇒ ν(P) ≤ ν(P) if

i) X ⊇ X , ii) f (x) ≤ f (x) ∀ x ∈ X

▶ (Rλ,µ) is a relaxation of (P) ∀λ ≥ 0 and µ (check) =⇒
weak duality: ∀ x ∈ X , ψ(λ , µ) ≤ ν(P) ≤ f (x)

▶ But how do I choose λ ≥ 0 and µ?

The Lagrangian dual 28

▶ Dual function ψ is nice-ish:

1. often easy to compute: (Rλ,µ) unconstrained problem

2. ψ concave (check), but note that ψ(λ , µ) = −∞ happens

3. x̄ optimal in (Rλ,µ) =⇒ [G(x̄) , H(x̄)] ∈ ∂ψ(λ , µ) [6, Prop. XII.2.2.2]

4. ψ /∈ C 1 even if f , gi , hj ∈ C 1, but x̄ unique optimal solution to (Rλ,µ)

=⇒ ψ is differentiable in (λ , µ), ∇ψ(λ , µ) = [G(x̄) , H(x̄)] [6, p. 156]

▶ 1. – 3. =⇒ ψ “easy” to maximize =⇒ Lagrangian dual of (P):

(D) max{ψ(λ , µ) : λ ∈ R|I|
+ , µ ∈ R|J | }

a convex program (not unconstrained, but constraints very easy: λ ≥ 0)

that gives a lower bound ν(D) ≤ ν(P) even if (P) not convex

▶ No free lunch: ψ(·) = ν(Rλ,µ) need be solved to global optimality and

not (necessarily) convex, but if you can do that everything works

even if (P) “ferociously conconvex” (e.g., x ∈ Zn constraints)

▶ How good is the bound ν(D)? When is ν(D) = ν(P) (“strong duality”)?

Strong Duality ⇐= Convexity [7, p. 352][8, Th. 12.12] 29

▶ Not always, but yes if (P) convex (and regular)

▶ (P) convex, x∗ optimum, TX (x∗) = DX (x∗) =⇒ ν(D) = ν(P)

under regularity, convex programs always have strong duality

▶ Under further conditions, solving (D) actually solves (P) [8, Th. 12.13]:

(Rλ∗,µ∗) has unique minumum x∗ =⇒ x∗ optimum of (P)

Exercise: Suggest conditions on (P) so that (Rλ∗,µ∗) has unique miniumum

▶ (Rλ∗,µ∗) has multiple minima =⇒ not all optimal (not even feasible)

but recovering x∗ from (λ∗ , µ∗) most often doable (will see soon)

▶ Duality a powerful alternative for solving constrained convex problems

▶ Duality fundamental to compute valid lower bounds for nonconvex problems

Mathematically speaking: Strong duality & convexity 30

▶ Counter-example: min{−x2 : 0 ≤ x ≤ 1 }
L(x , λ) = −x2 + λ1(x − 1)− λ2x , ψ(λ) = minx∈R L(x , λ)

ψ(λ) = −∞ ∀λ ∈ R2
+ =⇒ ν(D) = −∞ < ν(P) = −1

▶ Note: x∗ = 1, λ1∗ = 2, λ2∗ = 0 =⇒ −2x∗ + λ1∗ − λ2∗ = 0 ≡ KKT,

but x∗ maximum of (Rλ∗,µ∗) (stationary, not minumum)

▶ Counter-example is nonconvex, convexity (and regularity) does help here

▶ (P) convex, x∗ optimum, TX (x∗) = DX (x∗) =⇒ ν(D) = ν(P)

Proof: Since x∗ optimum, necessary conditions hold

but TX (x∗) = DX (x∗) =⇒ ∃ [λ∗ , µ∗] satisfying KKT with x∗

Claim: [λ∗ , µ∗] optimal solution to (D), and ν(D) = ν(P)

x∗ stationary for (Rλ∗,µ∗) + everything convex =⇒ x∗ optimal =⇒
ν(D) ≥ ψ(λ∗ , µ∗) = L(x∗ ; λ∗ , µ∗) = f (x∗) = ν(D) ≥ ν(P)

Exercise: prove x∗ stationary and L(x∗ ; λ
∗ , µ∗) = f (x∗)

Economic interpretation of the optimal dual solution 31

▶ (P) min{ f (x) : G (x) ≤ 0 } convex and regular, ∃ dual optimal solution λ∗

▶ (P) = (P0), where (Pr) ϕ(r) = min{ f (x) : G (x) ≤ r } : Rm → R

▶ Every gi (x) ≤ 0 is a resource limiting my output = the money I can save:

how much money would it save me to have ε more of resource i?

▶ ϕ(·) convex [6, p. 179], −λ∗ ∈ ∂ϕ(0) ≡ ϕ(v)− ϕ(0) ≥ −⟨ v , λ∗ ⟩ (check)

▶ Consider v = ui = buying one more unit of resource i and nothing else

▶ (KKT-CS) ≡ resource i not fully used =⇒ λi∗ = 0 ≡ ϕ(ui) ≥ ϕ(0):
any more of resource i cannot decrease v(P), has no value to me

▶ λi∗ > 0 =⇒ ϕ(ui) ≥ ϕ(0)−λi∗: v(P) decreases at most λi∗ (may be less)

=⇒ maximum price I should buy at (“shadow price”) = value of resource i

▶ Useful for sensitivity analysis: what happens if my data is (a bit) wrong

▶ Useful to economists (who would love the world being convex, but it’s not)

▶ Very useful for algorithms, will see

Outline

Constrained optimization

First-order optimality conditions, geometric version

First-order optimality conditions, algebraic version

A fleeting glimpse to second-order optimality conditions

Lagrangian duality

Specialized duals

Ex-post motivations

Wrap up & References

Solutions

Lagrangian duals of Linear Programs [8, Ex. 12.11][6, §XII.3.3] 32

▶ Cumbersome max / min in Lagrangian dual simplifies to max in special cases

▶ Linear Program (P) min{ cx : Ax ≥ b } =⇒

Lagrangian function L(x ; λ) = cx + λ(b − Ax) = λb + (c − λA)x =⇒

Lagrangian relaxation (Rλ) λb +min{ (c − λA)x : x ∈ Rn } so simple it can

be solved by closed formula ψ(λ) = ν(Rλ) =

{
−∞ if c − λA ̸= 0

λb if c − λA = 0

▶ (D) max {ψ(λ) : λ ≥ 0 } = max
{
λb : λA = c , λ ≥ 0

}
a ̸= Linear Program (variables ←→ constraints) with the same data

Exercise: what is the dual of (D)?

Exercise: what if (P) min{ cx : Ax ≥ b , x ≥ 0 }? what if it has any form?

▶ Strong duality ≡ ν(D) = ν(P) (almost) always holds

Exercise: prove last statement. Why “almost”? Can ν(D) > ν(P) happen?

Lagrangian duals of Quadratic Programs [8, Ex. 12.12][6, §XII.3.4] 33

1. Very simple Quadratic Program (QP): (P) min
{

1
2∥ x ∥

2
2 : Ax = b

}
▶ Lagrangian function: L(x ; µ) = 1

2
∥ x ∥22 + µ(Ax − b) =

= −µb + [Rµ(x) =
1
2
∥ x ∥22 + (µA)x] (singling out what depends on x)

▶ Dual function ψ(µ) = minx∈Rn L(x ; µ) = −µb +minx∈Rn{Rµ(x) }
∇Rµ(x) = x + µA = 0 ⇐⇒ x = −µA =⇒ ψ(µ) = − 1

2
µT (AAT)µ− µb

▶ (D) max
{
− 1

2
µT (AAT)µ− µb : µ ∈ Rm

}
(an unconstrained QP)

2. Strictly convex QP: Q ≻ 0, (P) min
{

1
2x

TQx + qx : Ax ≥ b
}

▶ Strong duality ≡ ν(D) = ν(P) (almost) always holds with

(D) max
{
λb − 1

2
vTQ−1v : λA− v = q , λ ≥ 0

}
Exercise: prove last (P)⇝ (D). What would change if (P) had Ax = b?

Exercise: compute (D) when “some variables are not quadratic”: x = [z , w],

objective 1
2z

TQz + qz + pw with Q ≻ 0, constraints Az + Ew ≥ b

Exercise: compute (D) when Q ⪰ 0 but is singular: what would happen if Q≻≺ 0?

Conic Programs [2, §4.6][11][12] 34

▶ Conic Program: (P) min{ cx : Ax ≥K b }
where x ≥K y ≡ x − y ∈ K with K pointed convex cone, e.g.

▶ K = Rn
+ ≡ sign constraints ≡ Linear Program

▶ K = L =
{
x ∈ Rn : xn ≥

√∑n−1
i=1 x2

i

}
≡ Second-Order Cone Program

▶ K = S+ = {Q ∈ Rn×n : Q ⪰ 0 } ≡ “⪰” constraints ≡ SemiDefinite Program

or any combination of the three

▶ Exceedingly smart idea: everything is linear, but the cone is not

≡ a nonlinear program disguised as a linear one

▶ Any LP and convex QP is a SOCP, vice-versa is not true

Exercise: prove ∥ x ∥22 / s ≤ t ≡
∣∣∣∣ [x , (t − s) / 2]

∣∣∣∣ ≤ (t + s) / 2,

discuss why it proves the above statement

▶ Any SOCP is a SDP, vice-versa is not true

Exercise: prove any SOCP is a SDP, vice-versa not true easy to see, hard to prove

General Conic Dual 35

▶ Conic Dual: (D) max{λb : λA = c , λ ≥KD 0 }

where KD = { z : ⟨ z , v ⟩ ≥ 0 ∀ v ∈ K } dual cone
(̸= definition from before, actually KD = −K◦)

▶ Another Conic Program with the same data (but ̸= cone)

▶ Except all three cones above are self-dual: KD = K

“the angle at the vertex of the cone is 90 degrees”

Exercise: prove (P) ⇝ (D) for general Conic Programs

▶ Strong duality not always holds, constraint qualification needed

one of the constraints is nonlinear, even if it does not look so

SOCP Dual, SDP Dual 36

▶ “Explicit form” of SOCP: min
{
cx : ∥Dix − di ∥ ≤ pix − qi i = 1, . . . ,m

}
“explicit data” Di , di , pi , qi (any LP is a SOCP: Di = 0, di = 0)

▶ SOCP Dual written in terms of explicit data:

max
{ ∑m

i=1 λidi + νiqi :
∑m

i=1 λiDi + νipi = c , ∥λi ∥ ≤ νi i = 1, . . . ,m
}

▶ “Explicit form” of SDP: min
{
cx :

∑n
i=1 xiA

i ⪰B
}

Ai , B ∈ Rk×k , k possibly ̸= n, symmetric but not necessarily ⪰ 0

▶ SDP Dual written in terms of explicit data:

max
{
⟨B , Λ ⟩ : ⟨Ai , Λ ⟩ = ci i = 1, . . . , n , Λ⪰ 0 , Λ ∈ Rk×k

}
where ⟨A , B ⟩ =

∑
i

∑
j AijBij (Frobenius scalar product)

▶ Close to (but not exactly) “take LP duality and replace ≥ with the other cone”

▶ In all cases, formal algebraic rules that can be automated [10, 12]

Outline

Constrained optimization

First-order optimality conditions, geometric version

First-order optimality conditions, algebraic version

A fleeting glimpse to second-order optimality conditions

Lagrangian duality

Specialized duals

Ex-post motivations

Wrap up & References

Solutions

Ex-post motivation I: Proximal Bundle Method 37

▶ Nondifferentiable optimization, Proximal Bundle Method recall:

▶ { x i } =⇒ bundle Bi = { (xh , f h = f (xh) , gh ∈ ∂f (xh)) }h<i

▶ f iB(x) = max{ f h + ⟨ gh , x − xh ⟩ : (xh , f h , gh) ∈ Bi }, (CP) model f iB ≤ f

▶ stabilized (translated) master problem min{ fB(x̄ + d)− f (x̄) + µ∥ d ∥2 / 2 }

▶ f h − f (x̄) + ⟨ gh , x − xh ⟩ = [f h − f (x̄) + ⟨ gh , x̄ − xh ⟩] + ⟨ gh , x − x̄ ⟩ =
⟨ gh , d ⟩ − αh, αh = f (x̄)− f h − ⟨ gh , x̄ − xh ⟩≥ 0 linearization error w.r.t. x̄

▶ (PMB,x̄,µ) min
{
v + µ∥ d ∥2 / 2 ; v ≥ ⟨ gh , d ⟩ − αh h ∈ B

}
⇝

(DMB,x̄,µ) [−] min
{
1 / (2µ)∥

∑
h∈B ghθh ∥2 +

∑
h∈B αhθh : θ ∈ Θ }

with Θ = { θ ∈ R#B
+ :

∑
h∈B θh = 1 } unitary simplex (convex)

▶ θ∗ optimal for (DMB,x̄,µ) , z∗ =
∑

h∈B ghθ∗h , σ∗ =
∑

h∈B αhθ∗h [≥ 0] =⇒
[v∗ , d∗] = [−(1 / µ)∥ z∗ ∥ − σ∗ , −(1 / µ)z∗] optimal for (PMB,x̄,µ)

Exercise: prove the statements above

Why the dual is useful in Proximal Bundle Methods [5, §3] 38

▶ Solving (DMB,x̄,µ) may be faster than solving (PMB,x̄,µ) [3]

▶ θ∗h = 0 =⇒ (gh , αh) can be eliminated from B without losing convergence

▶ (z∗ , σ∗) is added to B =⇒ everything else can be eliminated

▶ B = { (z∗ , σ∗) } “poorman’s bundle” =⇒ Proximal Bundle ≈ subgradient

≡ slow but with a working stopping criterion (in theory)

▶ Exact stopping condition (extends to approximate): d∗ = 0 ∧ v∗ = 0

≡ z∗ = θ∗G = 0 , σ∗ = 0 ≡ αh = 0 ∀ h s.t. σ∗
h > 0

▶ Lagrangian case with H(x) = Ax − b only: d∗ = 0 =⇒ all xh s.t. θ∗h > 0

are optimal for (Rλ∗) =⇒ x∗ =
∑

h∈B xhθ∗h is optimal for (P)

▶ Extends to nonlinear G (x) ≤ 0 & to ε-optimal (∥ d∗ ∥ ≤ δ , σ∗ ≤ ε)

Exercise: prove the statements above

▶ Solving (D) completely equivalent to solving (P) in the convex case,

otherwise solving a convexified relaxation (possibly “tight”) [4]

Ex-post motivation II: Support Vector Machine / Regression 39

▶ Usual (scalar) learning setup: I = { 1, . . . ,m } set of samples ≡
X = [x i ∈ Rh]i∈I inputs, y = [y i ∈ R1]i∈I outputs, “explain” y from X

▶ y i ∈ { 1 , −1 } ≡ classification: Support Vector Machine (SVM)

minw ,b

{
∥w ∥2 + C [L(w , b) =

∑
i∈I max{ 1− y i (⟨w , x i ⟩ − b) , 0 }]

}
hyperparameter C weighs empiric loss against margin = regularization

▶ L =⇒ objective convex but nondifferentiable

▶ Extends to y i arbitrary ≡ Support Vector Regression (SVR)

minw ,b

{
∥w ∥2 + C [Lε(w , b) =

∑
i∈I max{ | ⟨w , x i ⟩ − b− y i | − ε , 0 }]

}
further hyperparameter ε controlling the “insensitivity tube”
(two hyperparameters is not megl che one, grid search cost = grid size2)

▶ Lε =⇒ objective still convex but nondifferentiable

▶ Very specific nondifferentiability: max of linear functions (recall smoothing)

▶ Linear constraints can be better than a nondifferentiable objective

Ex-post motivation II: Support Vector Machine / Regression 40

▶ Reformulation of SVM / SVR as a QP via “slack variables” ξi

(SVM-P) minw ,b,ξ

{
1
2∥w ∥

2 + C
∑

i∈I ξi : y i (wx i − b) ≥ 1− ξi , ξi ≥ 0 i ∈ I
}

(SVR-P) minw ,b,ξ
1
2∥w ∥

2 + C
∑

i∈I ξi

wx i − b − y i − ε ≤ ξi , −wx i + b + y i − ε ≤ ξi , ξi ≥ 0 i ∈ I

▶ Corresponding quadratic duals (check)

(SVM-D) maxα
∑

i∈I αi − 1
2

∑
i∈I

∑
j∈I αiy

i ⟨ x i , x j ⟩y jαj∑
i∈I y

iαi = 0

0 ≤ αi ≤ C i ∈ I

(SVR-D) maxα
∑

i∈I y
iαi − ε

∑
i∈I |αi | − 1

2

∑
i∈I

∑
j∈I αi ⟨ x i , x j ⟩αj∑

i∈I αi = 0

− C ≤ αi ≤ C i ∈ I

▶ Primal-dual relationships: w∗ =
∑

i∈I α
∗
i [y

i]x i =⇒ classification / regression

of new x̄ with ⟨w∗ , x̄ ⟩ − b∗ =
∑

i∈I α
∗
i [y

i]⟨ x̄ , x i ⟩− b∗

Exercise: prove how to compute w∗, b∗ from α∗, discuss why “support vector”

SVM / SVR: the problem, and the solution 41

▶ (Approximate) linear separability

rare, (approximate) linear regression weak

▶ Idea: embed in larger space nonlinearly, then linear function may work

▶ Doing this effectivey (how to embed) and efficiently nontrivial

SVM / SVR: the problem, and the solution 41

▶ (Approximate) linear separability rare, (approximate) linear regression weak

▶ Idea: embed in larger space nonlinearly, then linear function may work

▶ Doing this effectivey (how to embed) and efficiently nontrivial

SVM / SVR: the problem, and the solution 41

▶ (Approximate) linear separability rare, (approximate) linear regression weak

▶ Idea: embed in larger space

nonlinearly, then linear function may work

▶ Doing this effectivey (how to embed) and efficiently nontrivial

SVM / SVR: the problem, and the solution 41

▶ (Approximate) linear separability rare, (approximate) linear regression weak

▶ Idea: embed in larger space

nonlinearly, then linear function may work

▶ Doing this effectivey (how to embed) and efficiently nontrivial

SVM / SVR: the problem, and the solution 41

▶ (Approximate) linear separability rare, (approximate) linear regression weak

▶ Idea: embed in larger space nonlinearly, then

linear function may work

▶ Doing this effectivey (how to embed) and efficiently nontrivial

SVM / SVR: the problem, and the solution 41

▶ (Approximate) linear separability rare, (approximate) linear regression weak

▶ Idea: embed in larger space nonlinearly, then linear function may work

▶ Doing this effectivey (how to embed) and efficiently nontrivial

SVM / SVR: the problem, and the solution 41

▶ (Approximate) linear separability rare, (approximate) linear regression weak

▶ Idea: embed in larger space nonlinearly, then linear function may work

▶ Doing this effectivey (how to embed) and efficiently nontrivial

Embedding SVM / SVR in a larger space 42

▶ ϕ : Rh (input space) → F feature space, x i → ϕ(x i)

▶ If F = Rk for k > h, could just re-do (SVM-P) / (SVR-P) in Rk

▶ k≫ h good (larger ≡ easier to linearly fit / separate) and

bad: fitting cost now scales with k rather than h

▶ Example: w →W = [Q , q] and ⟨w , x ⟩ → xTQx + qx

ellipsoidal separation (not really, Q ⪰ 0 not guaranteed)

▶ Linear?? Indeed: x → F = [xxT , x] and xTQx + qx = ⟨W , F ⟩
nonlinearity in mapping ϕ, then linear once in F

▶ A good thing: nonlinearity on the data (fixed), then problem “easy”

▶ Issue: k ∈ O(h2), cost grows significantly

▶ Even worse: ϕ(·) ≡ terms of polynomial of degree > 2 (check)

▶ Even worse: one may want F to be ∞-dimensional

Embedding SVM / SVR in a larger space 42

▶ ϕ : Rh (input space) → F feature space, x i → ϕ(x i)

▶ If F = Rk for k > h, could just re-do (SVM-P) / (SVR-P) in Rk

▶ k≫ h good (larger ≡ easier to linearly fit / separate) and

bad: fitting cost now scales with k rather than h

▶ Example: w →W = [Q , q] and ⟨w , x ⟩ → xTQx + qx

ellipsoidal separation (not really, Q ⪰ 0 not guaranteed)

▶ Linear??

Indeed: x → F = [xxT , x] and xTQx + qx = ⟨W , F ⟩
nonlinearity in mapping ϕ, then linear once in F

▶ A good thing: nonlinearity on the data (fixed), then problem “easy”

▶ Issue: k ∈ O(h2), cost grows significantly

▶ Even worse: ϕ(·) ≡ terms of polynomial of degree > 2 (check)

▶ Even worse: one may want F to be ∞-dimensional

Embedding SVM / SVR in a larger space 42

▶ ϕ : Rh (input space) → F feature space, x i → ϕ(x i)

▶ If F = Rk for k > h, could just re-do (SVM-P) / (SVR-P) in Rk

▶ k≫ h good (larger ≡ easier to linearly fit / separate) and

bad: fitting cost now scales with k rather than h

▶ Example: w →W = [Q , q] and ⟨w , x ⟩ → xTQx + qx

ellipsoidal separation (not really, Q ⪰ 0 not guaranteed)

▶ Linear?? Indeed: x → F = [xxT , x] and xTQx + qx = ⟨W , F ⟩
nonlinearity in mapping ϕ, then linear once in F

▶ A good thing: nonlinearity on the data (fixed), then problem “easy”

▶ Issue: k ∈ O(h2), cost grows significantly

▶ Even worse: ϕ(·) ≡ terms of polynomial of degree > 2 (check)

▶ Even worse: one may want F to be ∞-dimensional

Embedding SVM / SVR in a larger space 42

▶ ϕ : Rh (input space) → F feature space, x i → ϕ(x i)

▶ If F = Rk for k > h, could just re-do (SVM-P) / (SVR-P) in Rk

▶ k≫ h good (larger ≡ easier to linearly fit / separate) and

bad: fitting cost now scales with k rather than h

▶ Example: w →W = [Q , q] and ⟨w , x ⟩ → xTQx + qx

ellipsoidal separation (not really, Q ⪰ 0 not guaranteed)

▶ Linear?? Indeed: x → F = [xxT , x] and xTQx + qx = ⟨W , F ⟩
nonlinearity in mapping ϕ, then linear once in F

▶ A good thing: nonlinearity on the data (fixed), then problem “easy”

▶ Issue: k ∈ O(h2), cost grows significantly

▶ Even worse: ϕ(·) ≡ terms of polynomial of degree > 2 (check)

▶ Even worse: one may want F to be ∞-dimensional

Why the dual is really useful in SVM / SVR: the kernel trick 43

▶ (SVM/R-D) require kernel function κ(x i , x j) = ⟨ϕ(x i) , ϕ(x j) ⟩ ∀ i , j

▶ Classify / interpolate new x̄ requires computing ⟨ϕ(w∗) , ϕ(x̄) ⟩ =
= ⟨

∑
i∈I α

∗
i ϕ(x

i) , ϕ(x̄) ⟩ =
∑

i∈I α
∗
i ⟨ϕ(x i) , ϕ(x̄) ⟩ =

∑
i∈I α

∗
i κ(x

i , x̄)

whatever ∞-dimensional vector space F is (general properties of ⟨ · , · ⟩)
=⇒ can use κ(·, ·) for everything, no need to ever compute ϕ(·)

▶ One κ computation for each support vector x i s.t. α∗
i > 0 (possibly ≪ | I |)

▶ Incredibly clever kernel trick: very large F s.t. κ is efficient

▶ κ kernel function for some vector space F ⇐⇒
∫
κ(x , z)g(x)g(z)dxdz ≥ 0

∀ g(·) s.t.
∫
g(x)2dx is finite (Mercier condition), e.g.

▶ Polynomial Kernel (PK): κ(x , z) = (⟨ x , z ⟩+ 1)k (any k)

▶ Gaussian Kernel (GK): κ(x , z) = e−∥ x−z ∥2 / (2σ2) (any σ)

▶ Sigmoid Kernel (SK): κ(x , z) = tanh(σ⟨ x , z ⟩+ δ) (some σ, δ and X)

▶ Many specialised kernels for specific data (trees, graphs, strings, . . .),
SVR + GK approximates ∞-ly well any f (∈ C 0, on [x− , x+]) if #X =∞

Exercise: discuss why, at least in one dimension, this is not surprising

Outline

Constrained optimization

First-order optimality conditions, geometric version

First-order optimality conditions, algebraic version

A fleeting glimpse to second-order optimality conditions

Lagrangian duality

Specialized duals

Ex-post motivations

Wrap up & References

Solutions

Wrap up 44

▶ Constrained optimality conditions direct generalization of unconstrained ones

▶ Constraints ⇝ some very specific algorithmic issues (will see):

▶ Lagrangian multipliers ≡ (possibly, many) “more variables” (m ≫ n)

▶ identifying “the right” A ⊂ I, exponential set of candidates
▶ (KKT-CS) “very nonlinear” even if everything else (f , gi , hj) linear

▶ Lagrangian multipliers ⇝ Lagrangian duality: powerful, but max / min

▶ Convex ⇝ strong duality, nonconvex ⇝ relaxation (and ψ “difficult”)

▶ Sometimes “ψ very easy”, can do away with x =⇒ problem only in λ, µ

▶ Sometimes (D) easier than (P) (e.g., m≪ n)

▶ LP / QP / Conic duality important special cases, easy to use

▶ Dual information can be extremely useful for algorithms & applications

▶ Convex ⇝ algorithms can work in primal space, dual space or both

▶ Have you said “algorithms”? Yup, let’s move on!

References I 45

[1] M.S. Bazaraa, H.D. Sherali, C.M. Shetty Nonlinear Programming:
Theory and Algorithms, John Wiley & Sons, 2006

[2] S. Boyd, L. Vandenberghe Convex Optimization,
https://web.stanford.edu/~boyd/cvxbook

Cambridge University Press, 2008

[3] A. Frangioni “Solving Semidefinite Quadratic Problems Within
Nonsmooth Optimization Algorithms”
http://pages.di.unipi.it/frangio/abstracts.html#COR96

Computers & Operations Research 23(11), 1099–1118, 1996

[4] A. Frangioni “About Lagrangian Methods in Integer Optimization”
http://pages.di.unipi.it/frangio/abstracts.html#AOR05

Annals of Operations Research 139, 163–193, 2005

https://web.stanford.edu/~boyd/cvxbook
http://pages.di.unipi.it/frangio/abstracts.html#COR96
http://pages.di.unipi.it/frangio/abstracts.html#AOR05

References II 46

[5] A. Frangioni ‘̀Standard Bundle Methods: Untrusted Models and Duality”
http://pages.di.unipi.it/frangio/abstracts.html#NDOB in
Numerical Nonsmooth Optimization: State of the Art Algorithms,
A.M. Bagirov, M. Gaudioso, N. Karmitsa, M. Mäkelä, S. Taheri (Eds.),
61–116, Springer, 2020

[6] J.-B. Hiriart-Urruty, C. Lemaréchal Convex Analysis and Minimization
Algorithms II, Springer-Verlag, 1993

[7] D.G. Luenberger, Y. Ye Linear and Nonlinear Programming, Springer
International Series in Operations Research & Management Science, 2008

[8] J. Nocedal, S.J. Wright, Numerical Optimization – second edition,
Springer Series in Operations Research and Financial Engineering, 2006.

[9] W.F. Trench, Introduction to Real Analysis
http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF

Free Hyperlinked Edition 2.04, December 2013.

[10] CVX: http://cvxr.com

http://pages.di.unipi.it/frangio/abstracts.html#NDOB
http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_REAL_ANALYSIS.PDF
http://cvxr.com

References III 47

[11] J. Dahl Conic optimization
https://docs.mosek.com/slides/2017/aau/conic-opt.pdf, 2017

[12] YALMIP Tutorials https://yalmip.github.io/tutorials

[13] Wikipedia – Universal Approximation Theorem https:

//en.wikipedia.org/wiki/Universal_approximation_theorem

https://docs.mosek.com/slides/2017/aau/conic-opt.pdf
https://yalmip.github.io/tutorials
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Universal_approximation_theorem

Outline

Constrained optimization

First-order optimality conditions, geometric version

First-order optimality conditions, algebraic version

A fleeting glimpse to second-order optimality conditions

Lagrangian duality

Specialized duals

Ex-post motivations

Wrap up & References

Solutions

Solutions I 48

▶ It is obvious that Rn = int(Rn), hence Rn is open. Also, there is no x such
that B(x , r) ⊆ ∅, hence int(∅) = ∅, thus ∅ is also open. Clearly,
S = Rn =⇒ ∂S = ∅ since ∄ z /∈ S ; similarly, S = ∅ =⇒ ∂S = ∅ since
∄w ∈ S . Thus, for both sets S = int(S) and ∂S = ∅, thus
cl(S) =int(S) ∪ ∂S = S ∪ ∅ = S , i.e, they are both closed [back]

▶ Trivial: S = [0 , 1). 0 ∈ ∂S and 0 ∈ S =⇒ S ̸= int(S) (not open), but
1 ∈ ∂S =⇒ cl(S) = [0 , 1] ̸= S (not closed) [back]

▶ No: consider Si = (−1 / i , 1). Each Si is open, but their intersection for
i = 1, . . . ,∞ is S = [0 , 1), which is not [back]

▶ No: consider Si = [0 , 1− 1 / i]. Each Si is closed, but their union for
i = 1, . . . ,∞ is S = [0 , 1), which is not [back]

Solutions II 49

▶ Take any d ∈ TX (x) and the corresponding two sequences { zi ∈ X } → x and
{ ti > 0 } → 0 s.t. d = limi→∞(zi − x) / ti . For any α > 0 set t̄i = ti /α > 0:
clearly { t̄i } → 0 and limi→∞(zi − x) / t̄i = α[limi→∞(zi − x) / ti] = αd
=⇒ αd ∈ TX (x) [back]

▶ Since ⟨∇f (x) , d ⟩ < 0 =⇒ d ̸= 0 and TX (x) is a cone, w.l.o.g. we can
assume ∥ d ∥ = 1. It must be zi ̸= x for all large enough i : in fact, due to
limi→∞ d − (zi − x) / ti = 0, eventually ∥ zi − x ∥ / ti ≥ ∥ d ∥ − γ = 1− γ
however chosen γ > 0; hence, for γ = 1 / 2 one has ∥ zi − x ∥ / ti ≥ 1 / 2 > 0,
that is incompatible with zi = xi =⇒ ∥ zi − x ∥ = 0. From now on, all i have
to be intended large enough that zi ̸= xi
This and f (zi)− f (x) = ⟨∇f (x) , zi − x ⟩+R(zi − x) gives f (zi)− f (x) =
∥ zi − x ∥[⟨∇f (x) , (zi − x) / ∥ zi − x ∥ ⟩+ R(zi − x) / ∥ zi − x ∥]. Now,
vi = (zi − x) / ∥ zi − x ∥ clearly has ∥ vi ∥ = 1, and it is “collinear in the limit”
with d . Indeed, using again limi→∞ d − (zi − x) / ti = 0, one has
limi→∞[cos(θi) = ⟨ d , vi ⟩ / (∥ d ∥∥ vi ∥)] = limi→∞⟨ d , zi − x / ∥ zi − x ∥ ⟩ =
limi→∞⟨ d , (zi − x) / ti ⟩ / ∥ (zi − x) / ti ∥ = ∥ d ∥2 / ∥ d ∥ = 1. Hence,
{ vi } → d (in the limit they are collinear, and have the same norm).

Solutions III 50

Hence, ⟨∇f (x) , vi ⟩ ≤ ⟨∇f (x) , d ⟩+ ε for large enough i and any ε > 0.
Since ⟨∇f (x) , d ⟩ < 0, take ε = −⟨∇f (x) , d ⟩ / 2 to get that ∃ h
s.t. ⟨∇f (x) , vi ⟩ ≤ −ε / 2 < 0 ∀ i ≥ h.
Thus, in the sum ri = ⟨∇f (x) , vi ⟩+ R(zi − x) / ∥ zi − x ∥], the first term is
eventually ≤ −ε / 2 < 0. But due to the property of the remainder term R(·),
the second term → 0 as i →∞ (=⇒ ∥ zi − x ∥ → 0). Hence, eventually
ri ≤ −ε / 4 < 0. This finally proves that for all large enough i ,
f (zi)− f (x) = ∥ zi − x ∥ri < 0 (recall that eventually zi ̸= x) [back]

▶ f convex ≡ f (αx + (1− α)z) ≤ αf (x) + (1− α)f (z); thus, (v , x) ∈
epi(f) ≡ v ≥ f (x) and (w , z) ∈ epi(f) ≡ w ≥ f (z) =⇒
αv + (1− α)w ≥ αf (x) + (1− α)f (z) ≥ f (αx + (1− α)z), i.e.,
α(v , x) + (1− α)(w , z) ∈ epi(f), i.e., epi(f) convex
For ⇐=, f (x) = min{ v : (v , x) ∈ epi(f) }, thus epi(f) convex =⇒
α(f (x) , x) + (1− α)(f (z) , z) ∈ epi(f) =⇒ f (αx + (1− α)z) =
= min{ v : (v , αx + (1− α)z) ∈ epi(f) } ≤ αf (x) + (1− α)f (z) [back]

Solutions IV 51

▶ f convex ≡ f (αx + (1− α)z) ≤ αf (x) + (1− α)f (z); thus, f (x) ≤ v and
f (z) ≤ v =⇒ f (αx+(1−α)z) ≤ αf (x)+(1−α)f (z) ≤ αv+(1−α)v = v ,
i.e., x ∈ S(f , v) and z ∈ S(f , v) =⇒ αx + (1− α)z ∈ S(f , v) ≡
S(f , v) convex
For ⇍=, f s.t. S(f , v) convex ∀ v is quasi-convex. We have already seen in
the univariate case that ∃ quasi-convex functions that are not convex [back]

▶ “from prime principles”. x ≥ 0 and α ≥ 0 =⇒ αx ≥ 0, i.e., Rn
+ is a cone;

furthermore, x ≥ 0 and z ≥ 0 =⇒ αx + (1− α)z ≥ 0, i.e., Rn
+ is convex

Alternatively, Rn
+ = cone

(
{ u1 , . . . , un }

)
, ui for i = 1, . . . , n being the

canonical basis of Rn, as it is immediate to verify [back]

▶ Consider C = { x1x2 ≥ 0 : (x1 , x2) ∈ R2 }. It is easy to verify that
C = R2

+ ∪ R2
−, i.e, it is the union of the positive and negative hortants in R2.

Obviously x1x2 ≥ 0 =⇒ (αx1)(αx2) = α2x1x2 ≥ 0, hence C is a cone. But
C is not convex: in fact, (0 , 2) ∈ C and (−2 , 0) ∈ C , but
1
2 (0 , 2) +

1
2 (−2 , 0) = (−1 , 1) /∈ C , as −1 · 1 = −1 < 0 [back]

Solutions V 52

▶ For i., x ∈ C and z ∈ C imply that x ∈ Ci and z ∈ Ci ∀ i , which implies that
αz + (1− α)w ∈ Ci ∀ i (as they all are convex) and therefore ∈ C
Affine mappings are “very convenient” for convexity, because
A[αz + (1− α)w] + b = αAz + (1− α)Aw + [αb + (1− α)b] =
α[Az + b] + (1− α)[Aw + b]. That is, even if an affine function is not linear,
when making a convex combination (as opposed to a generic linear one) the
affine term b can be conveniently managed so that an affine mapping behaves
as a linear one under convex combinations. This immediately proves convexity
for iii., i.e., z ∈ C and w ∈ C =⇒ αz + (1− α)w ∈ C , plus Az + b ∈ A(C)
and Az + b ∈ A(C) =⇒ α[Az + b] + (1− α)[Aw + b] =
A[αz + (1− α)w] + b ∈ A(C), i.e., A(C) is convex
iv. is analogous: x ∈ C and z ∈ C =⇒ αx + (1− α)w ∈ C and
Ax + b ∈ A−1(C), Az + b ∈ A−1(C), hence α[Ax + b] + (1− α)[Az + b] =
= A[αx + (1− α)z] + b ∈ A−1(C), i.e., A−1(C) is convex
ii. and iii. immediately imply v. since αx is a linear mapping and x = z +w is a
linear mapping from Rn+n → Rn [back]

Solutions VI 53

▶ d ∈ FX (x) ≡ x + ε̄d ∈ X ≡ x + [ε̄ / α](αd) ∈ X ≡ αd ∈ FX (x) however
chosen α > 0, hence FX (x) is a cone Take any z ∈ X : x + (z − x) ∈ X ,
hence d = (z − x) ∈ FX (x) (with ε̄ = 1), hence X ⊆ x + FX (x) [back]

▶ For d ∈ FX (x), X convex =⇒ ∃ ε̄ > 0 s.t. x + εd ∈ X ∀ ε ∈ [0 , ε̄]. Thus,
for any { ε̄ ≥ ti > 0 } → 0 define zi = x + tid : clearly zi ∈ X , { zi } → x and
(zi − x) / ti = d ∀ i , hence d ∈ FX (x)
To see that FX (x) ̸= TX (x) can happen, even with convex X , consider
X = B2(0 , 1) ⊂ R2 and x = [1 , 0]. Obviously, FX (x) contains all and only
the directions d = [d1 , d2] s.t. d1 < 0, but in addition to all those TX (x) also
contains all the directions d = [0 , d2], characterising the frontier of the set.
That is, FX (x) is an open set and TX (x) is its closure. This clearly has to do
with the fact that ∂X is “smooth” around x : in fact, for X = B1(0 , 1) one
rather has FX (x) = cone({ [−1 , 1] , [−1 , −1] }) = TX (x)
Hence, X ⊆ x + FX (x) and FX (x) ⊆ TX (x) =⇒ X ⊆ x + TX (x) [back]

Solutions VII 54

▶ Consider the nonconvex set X = { 0 , 1 } and 0 = x ∈ X . TX (x) = { 0 }: in
fact, the only way to take a sequence { zi } ⊂ X s.t. { zi } → 0 is to have
zi = 0 (eventually), so that ti is irrelevant and d = limi→∞(zi − x) / ti = 0.
On the other hand, d = 1 ∈ FX (x) (0 + ε̄1 = 1 ∈ X for ε̄ = 1), which means
that FX (x) = R+ ⊃ TX (x) [back]

▶ Assume by contradiction that ⟨∇f (x∗) , d ⟩ ≥ 0 ∀ d ∈ TX (x∗) but x∗ is not
optimum: ∃ x̄ ∈ X s.t. f (x̄) < f (x∗). Since f is convex on X , and both x̄ and
x∗ belong to X , one has 0 > f (x̄)− f (x∗) ≥ ⟨∇f (x∗) , x̄ − x∗ ⟩. But x̄ ∈ X
=⇒ x̄ − x∗ = d ∈ FX (x∗), and since X is convex FX (x) ⊆ TX (x), hence
d ∈ TX (x) and therefore ⟨∇f (x∗) , d ⟩ ≥ 0, yielding the contradiction
If f /∈ C 1, the contradiction would be found in the same way as long as
⟨ g , d ⟩ ≥ 0 for any g ∈ ∂f (x∗) and some d ∈ TX (x∗). Hence, for f /∈ C 1

(TCC) reads ∀ d ∈ TX (x∗) ∃ g ∈ ∂f (x∗) s.t. ⟨ g , d ⟩ ≥ 0, or, equivalently,
max{ ⟨ g , d ⟩ : g ∈ ∂f (x∗) } ≥ 0. This is consistent with the fact that, for
any x , ∂f

∂d (x) ≥ ⟨ g , d ⟩ ∀g ∈ ∂f (x). In order for x∗ to be a (local ≡ global)
optimum, all feasible directions d must not be of descent. But for d not to be
of descent it is enough that ⟨ g , d ⟩ ≥ 0 for any subgradient g in x∗ [back]

Solutions VIII 55

▶ Pick any d ∈ Rn: by definition of x ∈ int(X) one has B(x , ε) ⊂ X , i.e.,
x + εd ∈ X , i.e., d ∈ FX (x). But in fact x + αd ∈ X ∀α ∈ [0 , ε], and
therefore d ∈ TX (x) without any need for X to be convex: B(x , ε) is convex,
and convexity is clearly only needed “close to x” for the definition of a “local”
object such as TX (x) [back]

▶ As we know well, min{ ⟨∇f (x) , d ⟩ : d ∈ Rn } = ⟨∇f (x) , −∇f (x) ⟩ =
= −∥∇f (x) ∥2 ≤ 0. If ⟨∇f (x) , d ⟩ ≥ 0 ∀ d then the minimum must be ≥ 0
and therefore = 0, i.e., ∥∇f (x) ∥ = 0 ≡ ∇f (x) = 0 [back]

▶ Again: d ∈ FX (x) ≡ Ad = 0, hence ∇f (x) = µA =⇒
⟨∇f (x) , d ⟩ = ⟨µA , d ⟩ = ⟨µ , Ad ⟩ = 0 =⇒ (TCC) =⇒ x
global optimum since both f and X are convex [back]

Solutions IX 56

▶ DxN + d =

[
−A−1

B AN

I

]
xN +

[
A−1
B b
0

]
=

[
A−1
B (b − ANxN)

xN

]
=

[
xB
xN

]
AD = [AB , AN]

[
−A−1

B AN

I

]
= AB(−A−1

B AN) + AN = −AN + AN = 0

[back]

▶ Assume that the rows of A are not linearly independent: for A1 the first row
and Ā all the rest, ∃ γ s.t. A1 = γT Ā. Let b1 be the first element of b and b̄ all
the rest: if b1 = γT b̄, then the first equation is a linear combination of all the
remaining ones and therefore irrelevant, in that ∀ x s.t. Āx = b̄ one has
A1x = γT Āx = γT b̄ = b1. Hence, every solution of the restricted system
Āx = b̄ is a solution of the original one (and, obviously, vice-versa), and the
first equation can be discarded; repeating the process if necessary eventually
leaves with a (reduced) A whose rows are linearly independent. If b1 ̸= γT b̄
instead, the original system has no solution. In fact, for any x s.t. Āx = b̄ one
has A1x = γT Āx = γT b̄ ̸= b1, i.e., it is impossible to satisfy all the equations
at the same time. Hence the problem is provably empty and there is no point
in trying to determine a(n optimal) solution [back]

Solutions X 57

▶ From the first constraint we get z = 1− x . Plugging this into the second
constraint we get x + w − (1− x) = 2 ≡ w = 3− 2x . Hence, (R) is
min{ 2x2 + (3− 2x)2 + (1− x)2 } = min{ r(x) = 7x2 − 14x + 10 }. Imposing
r ′(x) = 14x − 14 = 0 gives x = 1, whence z = 0 and w = 1.
To verify the correctness of the result we write ∇f (1 , 1 , 0) = [4 , 2 , 0] and

A =

[
1 0 1
1 1 −1

]
: it is then immediate to verify that µ = [2 , 2] satisfies

µA = ∇f (1 , 1 , 0), hence [1 , 1 , 0] is optimal [back]

▶ We prove that x ∈ ∂S(gi , 0) =⇒ gi (x) = 0 by contradiction: assume
x ∈ ∂S(gi , 0) but gi (x) = −ε < 0 (the case gi (x) > 0 is analogous): since
gi ∈ C 0 ∃ δ > 0 s.t. gi (z) ≤ gi (x) + ε / 2 = −ε / 2 < 0 ∀ z ∈ B(x , δ), i.e.,
B(x , δ) ⊆ S(gi , 0), i.e., x ∈ int(S(gi , 0)), contradicting x ∈ ∂S(gi , 0)
The converse implication is not true. Consider the (“ReLU”) function
g(x) = max{ x , 0 }. Clearly, g ∈ C 0, S(g , 0) = (−∞ , 0] and
∂S(g , 0) = { 0 }, but (say) g(−1) = 0 although −1 /∈ S(g , 0). In order for
gi (x) = 0 to be a “good proxy” of x ∈ ∂S(gi , 0), L(g , 0) must be “thin”,
i.e., not-full-dimensional. This is hardly a problem in practice, as we can freely

Solutions XI 58

choose our constraint functions. For instance, h(x) = x is such that
S(h , 0) = (−∞ , 0] = S(g , 0), but L(h , 0) = { 0 } is “properly thin”
[back]

▶ It is obvious that X = { [0 , 0] }: x21 + (x2 − 1)2 − 1 ≤ 0 ≡ (x2 − 1)2 ≤
1− x21 ≤ 1 =⇒ x22 − 2x2 + 1 ≤ 1 ≡ x2(x2 − 2) ≤ 0 ≡ x2 ∈ [0 , 2]. Coupled
with x2 ≤ 0 this gives x2 = 0, and therefore x21 +(0− 1)2− 1 ≤ 0 ≡ x21 ≤ 0 ≡
x1 = 0. For g1(x1 , x2) = x21 + (x2 − 1)2 − 1, ∇g1(x1 , x2) = [2x1 , 2x2 − 2]T ,
thus ∇g1(0 , 0) = [0 , −2]T . For g2(x1 , x2) = x2, ∇g1(x1 , x2) = [0 , 1]T .
Thus, d = [d1 , d2] ∈ DX ([0 , 0]) requires both ⟨ [d1 , d2] , [0 , −2] ⟩ ≤ 0
≡ −2d2 ≤ 0 and ⟨ [d1 , d2] , [0 , 1] ⟩ ≤ 0 ≡ d2 ≤ 0, i.e., d2 = 0 while
nothing is required on d1, hence DX ([0 , 0]) is the x1 axis as in the picture.
On the other hand, since X = { [0 , 0] }, necessarily TX (x) = { [0 , 0] } as we
have seen already [back]

Solutions XII 59

▶ With E = JH(x), the definition of DX (x) must also include the equality
constraints Ed = 0; however, these can be represented as the pair of inequality
constraints Ed ≤ 0, (−E)d ≤ 0, that are then assumed to be a part of A in the
statement of the Lemma to simplify the notation [back]

▶ c ∈ C∗ ≡ c = λTA for some λ ≥ 0, d ∈ C ≡ Ad ≤ 0, hence
⟨ c , d ⟩ = ⟨λTA , d ⟩ = ⟨λ , v ⟩ ≤ 0 since v = Ad ≤ 0 and λ ≥ 0 [back]

▶ The general separation result states that given a convex set X and a point x̄ ,
x̄ /∈ X ⇐⇒ ∃ a hyperplane ⟨ d , x ⟩ = δ that separates x̄ from X in the sense
that ⟨ d , x ⟩ ≤ δ ∀ x ∈ X (the whole of X fits in the half-space defined by the
hyperplane “in the opposite direction of d”) while ⟨ d , x̄ ⟩ > δ (x̄ lies in the
other half-space defined by the hyperplane, that “in the same direction as d”).
In the case of Farkas’ lemma, X = C∗ and x̄ = c . Indeed, the lemma states
that either c ∈ C∗, or ∃ an hyperplane ⟨ d , x ⟩ = 0 that separates c from C∗,
i.e., such that ⟨ d , c ⟩ > 0 and d ∈ C =⇒ ⟨ d , x ⟩ ≤ 0 ∀ x ∈ C∗ (as we have
already proven). That is, the separating hyperplane in this case is an element
of C (and δ = 0). Note that the latter =⇒ is in fact a ⇐⇒ , since clearly each

Solutions XIII 60

single Ai ∈ C∗ (take λ ≥ 0 s.t. λi = 1 while λj = 0 for j ̸= i), hence
⟨ d , x ⟩ ≤ 0 ∀ x ∈ C∗ =⇒ ⟨ d , Ai ⟩ ≤ 0 ∀ i ≡ Ad ≤ 0 ≡ d ∈ C [back]

▶ The (TCC) written for DX (x) requires that ⟨∇f (x) , d ⟩ ≥ 0 ∀ d ∈ DX (x) =
= { d ∈ Rn : Ad ≤ 0 } for properly defined A. The opposite of this condition
is that ∃ d s.t. Ad ≤ 0 and ⟨∇f (x) , d ⟩ < 0. To bring the latter in the right
form for applying Farkas’ lemma we need to choose c = −∇f (x), so that the
condition becomes ⟨ c , d ⟩ > 0. That not being true (and therefore (TCC)
being verified) thus requires −∇f (x) = c = λTA, i.e., ∇f (x) + λTA = 0
As previously recalled, the matrix A in the definition of DX (x) must also
include the equality constraints Ed = 0, with E = JH(x). These are
represented as the pair of inequality constraints Ed ≤ 0, (−E)d ≤ 0, part of
the system Ad ≤ 0. Thus, they have two separate (vectors of) multipliers
λ+ ≥ 0 and λ− ≥ 0 (obviously, of the same size), parts of the overall vector λ.
The corresponding terms in λTA then look like “. . .λT+E + λT−(−E)”, i.e.,
(λ+ − λ−)TE . Thus, one can just define µ = λ+ − λ− and consider a single
term µTE , except that now the sign of µ is undetermined, while of course
expunging λ+ and λ− from λ, that now only contains the multipliers of the
“true inequality” constraints [back]

Solutions XIV 61

▶ In (GC), the multipliers λi are only defined for the active constraints, i.e., if
gi (x) = 0. This is of course only an issue for inequality constraints, since
equality constraints are always active (at feasible points) by definition. Yet, it
would be more convenient if the vector of multipliers was always of the same
size irrespective of the point x that is being considered. This is indeed possible
by always defining a multiplier for each constraint, be it active or not, and then
adding the logical condition “if the constraint is not active, the multiplier is 0”.
This satisfies λi ≥ 0 while making the term λi∇gi (x) in (KKT-G) to vanish,
and therefore renders (KKT-G) equivalent to (GC). In a feasible x (satisfying
(KKT-F)) one has −gi (x) ≥ 0 ∀ i ∈ I; since λi ≥ 0 ∀ i ∈ I, this implies∑

i∈I λi [−gi (x)] ≥ 0, since all the terms of the sum are ≥ 0; thus, in order
for (KKT-CS) to be satisfied, they must necessarily be all 0. This proves that
(KKT-CS) (together with (KKT-F)) implies λigi (x) = 0 ∀ i ∈ I, which in turn
proves gi (x) < 0 =⇒ λi = 0. Hence, (KKT-CS) (together with (KKT-F))
guarantees that gradients of non-active constraints “disappear from (KKT-G)”,
thereby making it equivalent to (GC) [back]

Solutions XV 62

▶ Clearly, C (x ; λ , µ) = Rn; there are no constraints, hence λ and µ are not
even defined, nor are the linear equality and inequality constraints in the
definition of C (x ; λ , µ). Thus, “∇2L(x ; λ , µ) ⪰ 0 on the critical cone” is
just “∇2L(x) ⪰ 0” as in the ordinary second-order optimality conditions for
unconstrained optimization [back]

▶ By dint of having less constraints (in fact, none), the feasible region of (Rλ,µ)
is not smaller than that of (P) (in fact, it being the whole of Rn it can hardly
be larger), i.e., i) holds. In f (x) + ⟨λ , G (x) ⟩+ ⟨µ , H(x) ⟩, the objective of
(Rλ,µ), if x is feasible then H(x) = 0 =⇒ ⟨µ , H(x) ⟩ = 0, and G (x) ≤ 0
=⇒ ⟨λ , G (x) ⟩ ≤ 0 (since λ ≥ 0); thus, f (x) + ⟨λ , G (x) ⟩+ ⟨µ , H(x) ⟩
≤ f (x), i.e., ii) holds. Hence, (Rλ,µ) is a relaxation of (P) [back]

Solutions XVI 63

▶ For any x ∈ Rn, lx(λ , µ) = f (x) + ⟨λ , G (x) ⟩+ ⟨µ , H(x) ⟩ is a linear
function in λ and µ: in fact, since x is fixed, f (x) is a fixed number and
G (x), H(x) are fixed vectors. In other words, “all the nonlinearity of the
function is related to x”: when x is fixed, the function is linear in the other
variables λ and µ. Thus, ψ(λ , µ) is the pointwise minimum of all the
(uncountably ∞-ly many) linear functions lx(·), one for each x ∈ Rn, and
therefore concave since the pointwise maximum of convex functions is convex:
ψ(λ , µ) = max{ lx(λ , µ) : x ∈ Rn} ≡ −min{−lx(λ , µ) : x ∈ Rn }, lx(·)
are linear thus −lx(·) are linear and therefore convex (as well as concave),
hence ψ(·) is the opposite of a convex function and thus concave [back]

▶ The obvious condition is L(x ; λ , µ) strictly (⇐= strongly) convex on x , which
also means that (Rλ,µ) is “easy” (can be solved by local methods). This
implies hi affine, gi convex and at least one among f and the gi strictly (⇐=
strongly) convex. In our applications the gi are invariably affine, hence the
condition becomes f strictly (⇐= strongly) convex [back]

Solutions XVII 64

▶ For L(x ; λ , µ) = f (x) + ⟨λ , G (x) ⟩+ ⟨µ , H(x) ⟩, ∇xL(x ; λ , µ) =
= ∇f (x) +

∑
i∈I λi∇gi (x) +

∑
j∈J µj∇hj(x); thus ∇xL(x∗ ; λ∗ , µ∗) = 0 is

precisely (KKT-G), i.e., x∗ is a stationary point for L(· ; λ∗ , µ∗), which is
convex because (P) is convex, i.e., f (·) is convex, each gi (·) is convex and
therefore ⟨λ∗ , G (·) ⟩ is (since λ∗ ≥ 0), and H(·) is affine and therefore
⟨µ∗ , H(·) ⟩ is (affine, hence convex, irrespectively on the sign of µ∗). Hence x∗
is a minimum of L(· ; λ∗ , µ∗), and therefore optimal for (Rλ∗,µ∗): this proves
v(D) ≥ ψ(λ∗ , µ∗) = L(x∗ ; λ∗ , µ∗) = f (x∗)+⟨λ∗ , G (x∗) ⟩+⟨µ∗ , H(x∗) ⟩.
But x∗ is optimal for (P) hence feasible, therefore H(x∗) = 0; furthermore,
⟨λ∗ , G (x∗) ⟩ = 0 by (KKT-CS). This finally yields L(x∗ ; λ∗ , µ∗) = f (x∗) =
= v(P) ≥ v(D), finishing the proof [back]

Solutions XVIII 65

▶ For (Pr) ≡ min{ f (x) : G (x)− r ≤ 0 }, consider the Lagrangian function
Lr (x ; λ) = f (x) + ⟨λ , G (x)− r ⟩ = L(x ; λ)− ⟨λ , r ⟩. Let x∗ and λ∗ be
optimal for (P0) and its dual (D0), respectively: we know that x∗ is also
optimal for the Lagrangian relaxation (Rλ∗) ≡ minx{ L(x ; λ∗) : x ∈ Rn }.
But L(x λ) and Lr (x λ) only differ for the term −⟨λ , r ⟩, that does not
depend on x : thus, x∗ is also the optimal solution of the Lagrangian relaxation
(Rr ,λ∗) ≡ minx{ Lr (x ; λ∗) : x ∈ Rn } of (Pr). Hence, v(Pr) ≥ v(Rr ,λ∗) =
= Lr (x∗ ; λ∗) = L(x∗ ; λ∗)− ⟨λ∗ , r ⟩ = v(P0)− ⟨λ∗ , r ⟩ [back]

▶ As it can be expected, it is (P). In fact, rewrite (D) in the same form as (P),
i.e., (D) = (P̄) −min{ c̄λ : Āλ ≥ b̄ } with c̄ = −b, Ā = [A , −A , I]T and
b̄ = [cT , −cT , 0]T : its dual is (D̄) −max{wb̄ : wĀ = c̄ , w ≥ 0 }. Note
that if A ∈ Rm×n, Ā ∈ R2m+n×m and therefore w ∈ R2m+n. We write
w = [x− , x+ , s] (x− , x+ ∈ Rn and s ∈ Rm) and plug this into (D̄) to get
(D̄) −max{ cx− − cx+ : Ax− − Ax+ + s = −b , x− ≥ 0 , x+ ≥ 0 , s ≥ 0 }.
With some easy algebra and −max{ } = min{−} we transform this into
(D̄) min{ c(x+ − x−) : A(x+ − x−)− s = b , x− ≥ 0 , x+ ≥ 0 , s ≥ 0 }. We
now substitute the pair of variables x+ and x−, both constrained in sign, with

Solutions XIX 66

x = x+ − x− that is not. We then note that, since s ≥ 0 and s does not
appear in the objective (has 0 coefficients there), Ax − s = b is equivalent to
Ax ≥ b. Hence, (D̄) min{ cx : Ax ≥ b } = (P): the dual of the dual is the
primal [back]

▶ There are two ways develop a dual for a LP in a different form: either one
re-develops the Lagrangian relaxation and the closed formula or, like in previous
exercise, one rewrites the primal in a form for which the dual is known. For
instance, (P) min{ cx : Ax ≥ b , x ≥ 0 } ≡ min{ cx : Āx ≥ b̄ } with
ĀT = [AT , I] and b̄T = [bT , 0]: plugging this into the (D) formula we
already have gives (D) max{ λ̄b̄ : λ̄Ā = c , λ̄ ≥ 0 } with λ̄T = [λ , λ+]. But
λ̄Ā = λA+ λ+, and since the λ+ do not appear (have 0 coefficient) in the
objective they are “slack variables” and they can be eliminated by just rewriting
the problem as (D) max{λb : λA ≤ c , λ ≥ 0 }: sign constraints on the
primal variables change the dual constraints from equalities to inequalities
This can be generalised by developing a primal-dual correspondence table that
allows to directly derive the dual of an LP written in “any” form, i.e., where
each constraint can be either an equality or an inequality (of both senses) and

Solutions XX 67

each variable can be either constrained in sign (in both ways) or not; w.l.o.g.,
this can be written

min
[
c+ c− c0

] x+

x−

x0

 A+

+ A−
+ A0

+

A+
− A−

− A0
−

A+
0 A−

0 A0
0

 x+

x−

x0

 ≤≥
=

 b+
b−
b0

 ,
x+ ≥ 0
x− ≤ 0

Again, the trick is to cook up Ā, b̄ and c̄ that express the same problem
written in a form for which we already know (D). This requires the application
of a few simple tricks of the trade, such as that the (block of) equality
constraint(s) A0x = b0 is equivalent to the pair A0x ≤ b0 and A0x ≥ b0, and
that A+x ≤ b+ is equivalent to (−A+)x ≥ (−b+), finally yielding

Solutions XXI 68

min
[
c+ c− c0

] x+

x−

x0

−A+

+ −A−
+ −A0

+

A+
− A−

− A0
−

A+
0 A−

0 A0
0

−A+
0 −A−

0 −A0
0

I 0 0
0 −I 0

 x+

x−

x0

 ≥

−b+
b−
b0
−b0
0
0

whose dual is

Solutions XXII 69

max
[
y+ y− y+

0 y−
0 s+ s−

]

−b+
b−
b0
−b0
0
0

[
y+ y− y+

0 y−
0 s+ s−

]

−A+

+ −A−
+ −A0

+

A+
− A−

− A0
−

A+
0 A−

0 A0
0

−A+
0 −A

−
0 −A0

0

I 0 0
0 −I 0

 =
[
c+ c− c0

]
[
y+ y− y+

0 y−
0 s+ s−

]
≥ 0

We now have to use other simple tricks of the trade, in particular redefining
y+ = −y+ (hence y+ ≤ 0) and y0 = y+

0 − y−
0 (hence y0 ≷ 0), plus eliminating

the slack variables s+ and s− by turning the corresponding constraints into

Solutions XXIII 70

inequalities (with the appropriate verse): this finally yields a dual problem where
the data has the “natural size” of the primal (no extra rows/columns required)

max
[
y+ y− y0

] b+
b−
b0

[
y+ y− y0

] A+
+ A−

+ A0
+

A+
− A−

− A0
−

A+
0 A−

0 A0
0

≥ ≤ =[
c+ c− c0

]
,

y+ ≤ 0
y− ≥ 0

thereby proving the validity of the general primal-dual correspondence table

max c b Aix ≤ bi Aix ≥ bi Aix = bi xj ≥ 0 xj ≤ 0 xj ≷ 0

min b c yi ≥ 0 yi ≤ 0 yi ≷ 0 yAj ≥ cj yAj ≤ cj yAj = cj

where, as usual, Ai and Aj are, respectively, the i-th row and the j-th column
of the coefficients matrix A [back]

Solutions XXIV 71

▶ An LP is convex, and clearly regular as (AffC) trivially holds: thus, provided
that (P) has an optimal solution x∗, then (D) has an optimal solution λ∗ and
strong duality holds, i.e., cx∗ = λ∗b, as a consequence of the general result.
Since (D) is also an LP and its dual is (P) [see previous exercise], we can apply
the result to (D) to prove that ∃λ∗ =⇒ ∃ x∗: thus, strong duality always
holds whenever at least one of the two LPs has an optimal solution. To find
cases where strong duality fails we therefore have to require at least one of the
problems is empty, but one is not enough. In fact, if (P) is unbounded below,
i.e., v(P) = −∞, then by weak duality (D) must be empty (every feasible
solution to (D) provides a finite lower bound to v(P)), i.e., v(D) = −∞ as
well by the definition of the maximum over an empty set. Of course this works
symmetrically if (D) is unbounded ((P) must be empty), hence strong duality
holds (albeit in a sort of “degenerate” way where optimal values are infinite) in
those cases as well. Yet, another case remains: that where both (P) and (D)
are empty. This is indeed possible, one example being

c = [0 , 1] , A =

[
1 0
−1 0

]
, b =

[
−1
−1

]
i.e., (P) min{ x2 : x1 ≤ −1 , −x1 ≤ −1 } and
(D) max{−λ1 − λ2 ; λ1 − λ2 = 0 , 0 = 1 , λ1 ≥ 0 , λ2 ≥ 0 }. It is immediately

Solutions XXV 72

obvious that both (P) and (D) are empty, hence v(P) = +∞ > −∞ = v(D),
i.e., strong duality “falls spectacularly”. This is a rather extreme case, though,
that hardly ever occurs in practice. It is tied to the fact that (P) “is at the
same time empty and unbounded”: it would be unbounded due to the variable
x2 if it were possible to find any feasible value for x1, which is not [back]

▶ L(x ; λ) = 1
2x

TQx+qx+λ(b−Ax) = λb+[Rλ(x) =
1
2x

TQx+(q−λA)x].
Hence, ∇Rλ(x) = Qx + q − λA = 0 ≡ x = Q−1(q − λA). Rather than
directly plugging this into Rλ(x), one gets a more compact formula by defining
v = q − λA ≡ x = Q−1v . Then, Rλ(Q

−1v) = 1
2v

TQ−TQQ−1v + vQ−1v =
= − 1

2v
TQ−1v , which yields the announced (D)

If the constraints had been Ax = b, not much would change except that we
would have the unconstrained µ in place of λ ≥ 0 all along, hence (D) would
look the same save for the ≥ 0 constraint [back]

Solutions XXVI 73

▶ This is basically the sum of a QP with strictly convex Q and of an LP. Thus,
L(z , w ; λ) = 1

2z
TQz + qz + pw + λ(b − Az − Ew) = λb + [Rλ(z) =

1
2z

TQz + (q − λA)z] + [Rλ(w) = (p − λE)w]. As in the LP case,
minimizing Rλ(w), which is linear, yields −∞ unless p − λE = 0, in which
case it yields 0. As in the previous exercise, minimizing Rλ(z) yields z = Q−1v
where v = q − λA and Rλ(Q

−1v) = − 1
2v

TQ−1v . All in all,
(D) max

{
λb − 1

2v
TQ−1v : λE = p , λA− v = q , λ ≥ 0

}
[back]

▶ The start is identical to the first exercise in the slide: L(x ; λ) =
= 1

2x
TQx + qx + λ(b − Ax) = λb + [Rλ(x) =

1
2x

TQx + (q − λA)x].
However, ∇Rλ(x) = Qx + q − λA = 0 no longer has a closed formula that
allows to do away with x : hence, one has to leave x in the formulation. Yet,
the usual trick works for simplifying the objective 1

2x
TQx + (q − λA)x : since

q − λA = −Qx , multiplying by x we obtain (q − λA)x = −xTQx , and
therefore 1

2x
TQx + (q − λA)x = − 1

2x
TQx . This is crucial on two accounts:

first it yields a concave quadratic term in the objective, that is maximised, and
second it does away with the bilinear term λAx . All in all, we obtain

(D) max
{
λb − 1

2x
TQx : Qx + q − λA = 0 , λ ≥ 0

}

Solutions XXVII 74

Note that the x variables in (D) are formally distinct from those in (P)
If Q≻≺ 0, the above development fails in that Qx + q − λA = 0 is no longer
equivalent to “x is a minimum of Rλ(x) =

1
2x

TQx + (q − λA)x”. In fact, Q
then has directions of negative curvature, along which Rλ(x) is unbounded
below: hence, ψ(λ) = −∞ ∀λ =⇒ v(D) = −∞, as we have already seen
happening in the example min{−x2 : 0 ≤ x ≤ 1 }. This does not mean that
Lagrangian techniques cannot be used in nonconvex problems, far from it: but
(very roughly speaking) one have to use partial Lagrangian relaxations where
not all the constraints are relaxed, so that ψ(λ) > −∞ may happen. We will
not be able to delve further into this idea [back]

▶ It is obvious that a SOCP constraint of a vector in R1 (a single variable) is
x ≥ 0, i.e., a sign constraint: thus, any LP is a SOCP. Also,∣∣∣∣ [x , (t − s) / 2]

∣∣∣∣ ≤ (t + s) / 2 ≡
√
∥ x ∥22 + (t − s)2 / 4 ≤ (t + s) / 2 ≡

∥ x ∥22 + (t − s)2 / 4 ≤ (t + s)2 / 4 ≡ ∥ x ∥22 ≤ ts ≡ ∥ x ∥22 / s ≤ t if s > 0
(and it actually works if s = 0, too, written in the form ∥ x ∥22 ≤ ts)
Used with s = 1, this proves that one can transform a convex quadratic
constraint into a conic one: while ∥ x ∥22 is only the simplest of convex

Solutions XXVIII 75

quadratic functions, it can be used to construct any convex quadratic function
via an appropriate affine mapping. Indeed, let Q = RR: xTQx = ∥ z ∥22 with
Rx = z , and affine mappings can always be represented in a SOCP (they are
linear constraints) by adding new variables if necessary. Similarly, t can be
transformed to any linear form. In fact, this is necessary already to bring the
above form to the “standard” SOCP definition, with [x , w , z] the vector of
variables (in this order), w = (t − s) / 2 and z = (t + s) / 2
Conversely, it is obvious as x2 / s is not a standard convex quadratic function.
Actually, x2 / s − t ≤ 0 can be written as the quadratic constraint x2 − ts ≤ 0,
but that quadratic function is easily seen not to be convex: in fact, its Hessian

is Q =

 2 0 0
0 0 −1
0 −1 0

 whose eigenvalues are 2, 1 and −1 [back]

Solutions XXIX 76

▶ Let λ1 and λ2 be the eigenvalues of any symmetric real 2× 2 matrix

Q =

[
a c
c b

]
: it is well-known that tr(Q) = a+ b = λ1 + λ2, while

det(Q) = λ1λ2. It is also obvious that Q ⪰ 0 =⇒ a ≥ 0 ∧ b ≥ 0, for
otherwise it is trivial to find v ∈ R2 s.t. vTQv < 0. Thus, Q ⪰ 0 =⇒
tr(Q) = λ1 + λ2 ≥ 0. As the conditions a ≥ 0 ∧ b ≥ 0 are necessary anyway,
Q ⪰ 0 ≡ det(Q) ≥ 0, since two numbers whose sum is ≥ 0 are both ≥ 0
⇐⇒ their product is also ≥ 0. Hence, Q ⪰ 0 ≡ a ≥ 0 ∧ b ≥ 0∧
det(Q) = ab − c2 ≥ 0 ≡ ab ≥ c2: but we have seen in the previous exercise
that all these conditions are SOCP-representable, hence any SOCP is a SDP
[back]

Solutions XXX 77

▶ To apply Lagrangian duality we rewrite (P) min{ cx : v = Ax − b , v ≥K 0 }
and then we consider its partial Lagrangian relaxation w.r.t. the linear
constraints only: (Rλ) min{ cx + λ(v + b − Ax) : v ≥K 0 }. Due to the
linearity of the objective, (Rλ) decomposes into two independent problems:
min{ (c − λA)x : x ∈ Rn } and min{λv : v ≥K 0 } ≡ min{λv : v ∈ K }
(plus the constant term λb). The first is exactly the same as in the LP case
and it gives rise to the constraint λA = c . The second is a problem with a
constraint in a cone, and therefore “rather prone to be unbounded below”. In
fact, if there exists any v̄ ∈ K s.t. λv̄ < 0, then the second problem is
unbounded below, as by definition of cone αv̄ ∈ K ∀α ≥ 0. Thus, the second
problem is unbounded below unless there is no such v̄ : in other words, it must
be λv ≥ 0 ∀ v ∈ K , which by definition corresponds to λ ∈ KD . All in all this
gives the announced (D) max{λb : λA = c , λ ∈ KD }. It is easy to see how
this proof is a very direct generalization of that for LPs [back]

Solutions XXXI 78

▶ (PMB,x̄,µ) min{ v + µ∥ d ∥2 / 2 : uv − Gd ≥ −α }, where G is the matrix
having all the gh as rows, α is the vector having all the αh as entries, and u is
the all-1 vector. This is a QP with “some quadratic and some linear variables”
and whose quadratic variables have strictly convex Q [= µI], as we have seen in
a previous exercise: plugging the data of (PMB,x̄,µ) in the formula we obtained
then gives max{ θ(−α)− 1

2v
TQ−1v : θu = 1 , θ(−G)− v = 0 , θ ≥ 0 } ≡

−min{ 1
2µ∥ θG ∥

2 + αθ : θ ∈ Θ } with Θ = { θ ≥ 0 : θu = 1 }. The map

between the optimal primal and dual solutions comes first from (KKT-G) of the
d variables, i.e., θ∗G = −∇d f (d

∗) = −µd∗ ≡ d∗ = −(1 / µ)[θ∗G] (note
that in the derivation of KKT the constraints are written as G (x) ≤ 0, which
explains why it is “θ∗G” rather than “θ∗(−G)”). Then, (KKT-CS) gives
θ∗[uv∗ − Gd∗ + α] = 0 =⇒ v∗ = θ∗Gd∗ − αθ∗ (since θ∗u = 1) =⇒
v∗ = −(1 / µ)∥ θ∗G ∥2 − αθ∗ [≤ 0] [back]

Solutions XXXII 79

▶ The setting is that of using a proximal bundle method to minimize the convex
dual function v(Rλ) = φ(λ) = max{ L(x ; λ) = f (x)+λ(Ax − b) : x ∈ Rn }
of the original problem (P) max{ f (x) : Ax = b , x ∈ Rn }, with concave f .
Here, iterates λh produce optimal solutions xh of (Rλh) that give φ(λh) in the
obvious way and Axh − b = gh ∈ ∂φ(λh). Thus, for linearization errors
w.r.t. the stability centre λ̄ (and the corresponding optimal solution x̄ of (Rλ̄)),
one has αh = φ(λ̄)− φ(λh)− ⟨Axh − b , λ̄− λh ⟩ =
f (x̄) + λ̄(Ax̄ − b)− f (xh)− λh(Axh − b)− ⟨Axh − b , λ̄− λh ⟩ =
f (x̄) + λ̄(Ax̄ − b)− f (xh)− λ̄(Axh − b) = L(x̄ ; λ̄)− L(xh ; λ̄) ≥ 0.
Hence, αh = 0 ⇐⇒ x̄ and xh have the same objective value in the Lagrangian
relaxation w.r.t. λ̄, and since x̄ is optimal for (Rλ̄) this implies that xh is
optimal as well, as announced. Then, when λ̄ is proven optimal by d∗ = 0 ≡
z∗ = 0 ≡ θ∗G = 0 ≡

∑
h∈B ghθ∗h = 0 ≡

∑
h∈B(Axh − b)θ∗h = 0 ≡

A
∑

h∈B xhθ∗h = b
∑

h∈B θ∗h ≡ Ax∗ = b for x∗ =
∑

h∈B xhθ∗h , x
∗ is a feasible

solution of (P) and φ(λ̄) ≥ L(x∗ ; λ̄) = f (x∗) + λ̄(Ax∗ − b) = = f (x∗).
But since f is concave, and λ̄ is optimal, x∗ is also optimal for (Rλ̄): in fact,
σ∗ = 0 ≡ αh = 0 ≡ L(x̄ ; λ̄) = L(xh ; λ̄) ∀ h s.t. σ∗

h > 0, hence φ(λ̄) =
= L(x̄ ; λ̄) =

∑
h∈B θ∗hL(x

h ; λ̄) =
∑

h∈B θ∗h f (x
h) +

∑
h∈B θ∗h λ̄(Ax

h − b) =

Solutions XXXIII 80

∑
h∈B θ∗h f (x

h) + λ̄
∑

h∈B θ∗h(Ax
h − b) =

∑
h∈B θ∗h f (x

h) + λ̄(Ax∗ − b) =∑
h∈B θ∗h f (x

h) ≤ f (x∗) (by concavity). Thus, f (x∗) = φ(λ̄) ≥ v(D) ≥
≥ v(P) ≥ f (x∗): x∗ is optimal for (P) and λ̄ is optimal for (D).
The proof actually shows that d∗ = 0 ≡ z∗ = 0 and σ∗ ≤ ε means that x∗ is
ε-optimal, and that ∥ z∗ ∥ ≤ δ ≡ ∥Ax∗ − b ∥ ≤ δ, i.e., x∗ is approximately
feasible (which is all that can be required from a numerical algorithm). Since it
can be shown that σ∗ → 0 and ∥ z∗ ∥ → 0 as h→∞, bundle methods are able
to (asymptotically) provide optimal solutions to (P). This is also true for
convex nonlinear G (x) ≤ 0: the fundamental steps are that, due to the
constraints λ ≥ 0 in (D), the optimality condition is not on d∗ but on its
projection over the active constraints, i.e., d̄i = 0 if λ̄i = 0 and d∗

i < 0 while
d̄i = d∗

i otherwise, and that this implies G (x∗) ≤ 0 (via convexity) [back]

Solutions XXXIV 81

▶ (SVM-P) is min{Cuξ + ∥w ∥2 / 2 : ξ + YXw − yb ≥ u , ξ ≥ 0 }, where X is
the matrix having the x i as rows, y is the vector having the y i as entries, Y =
diag(y) and u is the all-1 vector. This is again a QP with “some linear-only
variables” and whose “quadratic variables” have strictly convex Q [= I]:
plugging the data of (SVM-P) in the formula we obtained in the previous
exercise yields
max{αu − ∥ v ∥2 / 2 : α+ s = Cu , αy = 0 , αYX − v = 0 , α ≥ 0 , s ≥ 0 }
The dual variables s of the ξ ≥ 0 constraints have no cost, i.e., they are slack
variables and can be eliminated by changing the first constraints to α ≤ Cu.
This yields the desired max{αu − αTY (XTX)Yα/ 2 : αy = 0 , 0 ≤ α ≤ Cu }
by just substituting away v . With the same notation, (SVR-P) is
min{Cuξ+∥w ∥2 / 2 : ξ−Xw+bu ≥ −y−εu , ξ+Xw−bu ≥ y−εu , ξ ≥ 0 }
and therefore its dual is

max α+(−y − εu) + α−(y − εu)− ∥ v ∥2 / 2
α+ + α− + s = Cu
− α+X + α−X − v = 0
α+u − α−u = 0
α− ≥ 0 , α+ ≥ 0 , s ≥ 0

Solutions XXXV 82

with α+ the multipliers of the first set of constraints, α− those of the second,
and s those of ξ ≥ 0. Again, the slack variable s can be eliminated by making
the constraint a ≤ one. Then, the problem can be written in term of
α = α+ − α− and |α | = α+ + α− (the latter being the element-wise absolute
value vector), since in each optimal solution at least one between α+

i and α−
i is

0 for each i . Indeed, if one had, say, α+
i > α−

i > 0, doing α+
i ← α+

i − α
−
i and

α−
i ← 0 the value of all terms α+

i − α
−
i does not change while the value of all

terms α+
i + α−

i decreases, hence the new solution is feasible (if the original one
was) and it has a smaller objective value; thus the original solution could not
be optimal. All in all, the dual can be rewritten
max{αy − εu| θ | − αT (XTX)α/ 2 : −Cu ≤ α ≤ Cu , αu = 0 }, which is not a
QP but can easily be transformed into one by rewriting min{ | x | } as
min{ v : v ≥ x , v ≥ −x }. This requires one new variable for each αi , and
therefore yields a QP with as many variables as the original form (sans the s):
however, in this form “half of the variables do not appear in the quadratic
term”, which is in general convenient [back]

Solutions XXXVI 83

▶ As previously seen in the Proximal Bundle case, (KKT-G) on the variables w
gives [∇∥ · ∥2 / 2](w∗)− α∗YW = 0 for SVM and
[∇∥ · ∥2 / 2](w∗)− (α+ − α−)W = 0 for SVR (recall that constraints need
be written as ≤, which explains the change in sign to YW and W). Computing
b∗ requires using (KKT-CS): for any i s.t. α∗

i = 0 the corresponding constraint
y i (wx i − b) ≥ 1− ξi in (SVM-P) must be satisfied as equality, and if also
α∗
i < C then ξ∗i = 0 (recall that si is the dual variable of αi ≤ C), which gives

y i (w∗x i − b∗) = 1 that allows to compute b∗ once w∗ is obtained out of α∗ (if
0 < α∗

i < C happens for multiple i it may be a good idea numerically to
compute b∗ multiple times and take the average). Alternatively, if the solver
provides (as it should) dual variables, b is just the dual variable of the αy = 0
constraint. Similarly for (SVR-P), w∗x i − b∗ − yi − ε = 0 whenever
C > α∗

i > 0 (≡ C > α+,∗
i > 0 and α−,∗

i = 0) and −w∗x i + b∗ + yi − ε = 0

whenever −C < α∗
i < 0 (≡ C > α−,∗

i > 0 and α+,∗
i = 0); or fetch the dual

variable of the αu = 0 constraint from the solver. This discussion justifies the
“support vector” moniker. Starting from SVR, the points x i s.t. 0 < α∗

i < C
are those that are correctly classified (ξ∗i = 0) and that “lie on the boundary”
of the two parallel classifying hyperplanes, i.e., w∗x i − b∗ = 1 or
w∗x i − b∗ = −1. These are called “supporting vectors” of the hyperplane, and

Solutions XXXVII 84

surely at least one exists (at least one point of one class will be correctly
classified, and there is no point in having them all strictly in the interior of the
classification zone). Eliminating all other points would not change the optimal
dual solution α∗, and therefore nor w∗ and b∗. Thus, like in the Proximal
Bundle case, the dual optimal solution provides information about which points
are “important” for the current classification (depending on the current choice
of C). A similar description holds for SVR: the support hyperplanes are those
on the border of the “insensitivity zone” [y i − ε , y i + ε], picture two lines
parallel to the graph of the function to be interpolated, one lifted above by ε
and one below by the same amount. Since they are “on the border” they are
correctly interpolated (ξ∗i = 0), and are the ones which characterise the
predicted function in the sense that even if all the other ones are removed from
the fitting problem, the function remains the same [back]

Solutions XXXVIII 85

▶ Assume we want to classify / interpolate using a cubic polynomial: we can map
x = [xi]i=1,...,h onto the vector having all possible h(h − 1)(h − 2) / 6 triples
xpxqxm plus all possible h(h − 1) / 2 pairs xpxq plus all individual entries xp;
thus, the corresponding w would have O(h3) entries. In general, a polynomial
of degree k would entail O(hk) entries [back]

▶ Each term κ(x , x i) = e−∥ x−x i ∥2 / (2σ2) is 1 for x = x i , but it will vanish
quickly (the more so the more σ is small) as x drifts away from x i . Thus, any
function f (x) could in principle be replicated with arbitrarily high accuracy by,
roughly speaking, having “uncountably ∞-ly many” terms κ(x , x i) in the
sum, one for each x i ∈ R, with α∗

i = f (x i) + b∗, and an “infinitely small σ”.
Note that the constraint

∑
i∈I α

∗
i = 0 is satisfied by taking b∗ = −

∫
f (x)dx ,

provided of course that the integral is finite, which is guaranteed to hold if
f ∈ C 0 and restricted to a finite interval [x− , x+]. Thus, over any such finite
interval, an appropriately large (but finite) number of support “vectors” x i ∈ R
and an appropriately small (but finite) σ should reasonably be able to
reproduce any continuous function f . Of course this comes at the cost of a
“very large data set” and it is very likely to result in “overfitting”, i.e., it is not

Solutions XXXIX 86

a good solution in terms of the bias/variance dilemma. Furthermore, this does
not imply that SVR with Gaussian kernel is a universal approximator in the
strong sense envisioned by ML, unlike, e.g., Neural Networks [13] [back]

	Constrained optimization
	First-order optimality conditions, geometric version
	First-order optimality conditions, algebraic version
	A fleeting glimpse to second-order optimality conditions
	Lagrangian duality
	Specialized duals
	Ex-post motivations
	Wrap up & References
	Solutions

