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Constrained optimization algorithms 1

▶ Algorithms for (P) min{ f ( x ) : G ( x ) ≤ 0 , H( x ) = 0 }

▶ Never ever nonconvex X : very nasty + not used in learning

=⇒ only linear equalities Ax = b (almost dealt with already)

▶ Almost only linear inequalities Ax ≤ b, very convenient: i) always convex,

ii) satisfy (LinI), iii) numerically stable, iv) cheap to compute . . .

a few hints to nonlinear convex case when things easily extend

▶ Usually ignore H(·) (implementation details), just G ( x ) ≤ 0 ≡ Ax ≤ b

▶ Important notation: sub-system (a relaxation). A ∈ Rm×n, b ∈ Rm

B ⊆ { 1 , 2 , . . . , m } subset of row(’s indice)s ≡ constraints

sub-matrix / -vector / -system: AB = [Ai ]i∈B / bB = [ bi ]i∈B / ABx ≤ bB

▶ Crucial polyhedral cone: TX ( x ) = FX ( x ) = { d ∈ Rn : AA( x )d ≤ 0 }

▶ Important point: exploiting special structures in the constraints

(only a few hints given, there is a lot more of that)
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Quadratic problem with linear equality constraints 2

▶ Equality-constrained QP: (P) min
{

1
2x

TQx + qx : Ax = b
}

A ∈ Rm×n, w.l.o.g. rank(A ) = m < n ≡ rows of A linearly independent

▶ Usually (P) convex ≡ Q ⪰ 0 (otherwise v(P) = −∞ likely)

▶ Minimum / saddle point: just solve the KKT system / normal equations

(a)
(b)

[
Q AT

A 0

] [
x
µ

]
=

[
−q
b

]
“only linear algebra”

(symmetric but indefinite, lots of 0 eigenvalues)

▶ Basic step in many ̸= cases =⇒ have to do that efficiently

▶ Clearly Federico’s playground, let’s just hint at some possible ways

▶ Just go and solve it by direct or iterative methods:

▶ indefinite factorization of the matrix (may reduce sparsity)

▶ Krylov-type iterative methods (GMRES, . . . )

▶ Or try to exploit the large-scale structure (saddle-point system)



Mathematically speaking: Reduced KKT [8, p. 455] 3

▶ Q nonsingular: multiply (a) by AQ−1 + (b) =⇒

[AQ−1AT ]µ = −b − AQ−1q ∧ x = −Q−1(ATµ+ q )

▶ Schur Complement M = AQ−1AT ⪰ 0 if Q ⪰ 0

▶ M ∈ Rm×m “small” (m < n < m + n)

▶ M can be very dense even if A, Q sparse . . .

▶ Heuristics to permute rows to improve sparsity

▶ Iterative methods to solve the systems without forming M

(Preconditioned Conjugate Method, appropriate preconditioners . . . )



Mathematically speaking: Null Space methods [8, p. 457] 4

▶ A = [AB , AN ], x = [ xB , xN ], det(AB ) ̸= 0 =⇒

(b) ≡ xB = A−1
B ( b − ANxN ) =⇒ x = DxN + d with

d =

[
b
0

]
, D =

[
−A−1

B AN

I

]
∈ Rm×n−m basis of null space of A

≡ AD = 0

▶ Multiply (a) by DT =⇒ DTQx − DTATµ =

DTQ(DxN + d ) = −DTq =⇒ [DTQD ]xN = −DT (Qd + q )

▶ Reduced Hessian H = DTQD ∈ Rn−m×n−m “small”, ⪰ 0 if Q is

▶ Can be generalized to any basis of null space of A

▶ Q does not need to be nonsingular

▶ H can be very dense even if A, Q sparse, proper choices of D . . .

▶ Iterative methods to solve the systems without forming H

(Preconditioned Conjugate Method, appropriate preconditioners . . . )
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Active-Set method for Quadratic Programs 5

▶ QP with linear constraints: (P) min{ f ( x ) = 1
2x

TQx + qx : Ax ≤ b }
▶ If one knew A( x∗ ), then it would be “just linear algebra”

▶ “If you don’t know it estimate it, but be ready to revise your estimate”:

exploit dual prices to help revising it

procedure x = ASMQP (Q , q , A , b , x ) // precondition: x s.t. Ax ≤ b
for( B ← A( x ) ; ; )
solve (PB) min{ f ( x ) : ABx = bB }; // ( x̄ , µ̄B ) s.t. −∇f ( x̄ ) = µ̄BAB

if( Ai x̄ ≤ bi ∀ i /∈ B ) then

if( µ̄B ≥ 0 ) then return;

h← min{ i ∈ B : µ̄i < 0 }; B ← B \ { h }; continue;
d ← x̄ − x ; ᾱ← min{αi = ( bi − Aix ) /Aid : Aid > 0 , i /∈ B };
x ← x + ᾱd ; B ← A( x );

▶ B = “active set”, current estimate of A( x∗ )
▶ Can compute feasible initial x (if any) autonomously (check) (nontrivial)

▶ ᾱ = max{α : Ai ( x + αd ) ≤ bi } <∞ (check)

Exercise: the code has two glaring omissions if Q ̸≻ 0: find and fix them



Mathematically speaking: The Active-Set method, theory [8, §16.5] 6

▶ Ax̄ ̸≤ b =⇒ d = x̄ − x descent direction,

ᾱ ∈ argmin{ f ( x + αd ) : x + αd ∈ X } < 1, A( x + ᾱd ) ⫌ B

▶ Ax̄ ≤ b and µ̄B ≥ 0 =⇒ µ = λ (≥ 0) ≡ x̄ optimal (check)

▶ (LinI)-type condition: AA( x ) full row rank ∀ x

▶ Ax̄ ≤ b but ∃ h ∈ B s.t. µ̄h < 0 =⇒ ν(PB′ ) < ν(PB ) with B ′ = B \ { h }
Proof: w.l.o.g. B =A( x ); if B ⊂ A( x ) then ν(PB′ ) even smaller

AB = AA( x ) full rank ≡ Ah /∈ range(AB′ ) ≡
Ah = v + d with d ̸= 0, v ⊥ d , v ∈ range(AB′ ) =⇒ AB′d = 0

⟨Ah , −d ⟩ = −⟨ v , d ⟩ − ∥ d ∥2 < 0 =⇒ AA( x )(−d) ≤ 0 ≡ −d ∈ FX ( x )

⟨∇f ( x̄ ) , −d ⟩ = µ̄h⟨Ah , d ⟩+ µ̄B′AT
B′d < 0: d feasible and of descent

▶ Finitely terminates: once found the right B the problem is over +

cannot have the same B twice since f ( x ) strictly decreases [8, p. 477]

▶ “Just” have to search among 2m possible B



Active-Set method: special forms of constraints 7

▶ Important: always exploit all the structure of your problem

▶ QP with box constraints: (P) min{ 1
2x

TQx + qx : x ≤ x ≤ x }

▶ Active constraint ≡ inactive variable (fixed), “B ⊆ N = { 1 , . . . , n }”

▶ B = ( L , U ) , L ∩ U = ∅ , L ∪ U ⊂ N , F = N \ ( L ∪ U ) =⇒

ABx = bB ≡ x = [ xL , xF , xU ] = [ xL , xF , xU ]: only xF “free”

▶ W.l.o.g. x = 0 (x ← x + x) =⇒ x = [ 0 , xF , xU ]

▶ (PB) min{ 1
2x

T
F QFF xF + ( qF + xTUQUF )xF } [ + 1

2x
T
UQUUxU + qUxU ]

unconstrained and in a (possibly, much) smaller space

▶ (LinI)-type condition obviously holds

▶ Initial feasible x straightforward

Exercise: (PB) as written above does not have constraints: discuss how
to compute µ̄ and/or how to replace it in the algorithm



The Active-Set method in practice 8

▶ If (LinI)-type not satisfied, B need be more carefully managed

to handle possible degenerate steps (ᾱ = 0)

▶ For instance, only one constraint at a time is added to B [8, Ex. 16.18],

not very efficient in practice, different rules used (nontrivial)

▶ Exploit information from previous iteration to speed up KKT system solution:

update factorizations [8, p. 478], use x to warm-start iterative approaches . . .

▶ Many different variants (direct / iterative, H / M)

▶ Can be extended to f ( x ) generic, but (PB) general unconstrained problem

▶ No more exact solution, but (hopefully, fast) iterative approaches:

e.g., (quasi-)Newton on the reduced problem [4, §10.2–.4]

▶ Which ε / how many iterations? How about one of the gradient method?
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Projected gradient method 9

▶ Nonlinear problem with linear constraints: (P) min{ f ( x ) : Ax ≤ b }

▶ Another (primal) feasible approach: keep Ax ≤ b, easy to initialize (check)

▶ If −∇f ( x ) ∈ FX ( x ) trivial: just LS / FS along d = −∇f ( x )
(⇐= x ∈ int(X ) ≡ A( x ) = ∅ =⇒ FX ( x ) = Rn)

▶ If not: find d ∈ FX ( x ) “closer” to −∇f ( x ), then LS/FS along d

▶ Projection of d ∈ Rn on S ⊂ Rn: pS( d ) = min{ ∥ d − x ∥ : x ∈ S }

▶ pFX ( x )(−∇f ( x ) ) = min{ h( d ) = ∥ d +∇f ( x ) ∥2 / 2 : AA( x )d ≤ 0 }
a convex QP with simple function on a polyhedral cone

▶ Not trivial but clearly doable, e.g. ASQPM (possibly streamlined, will see)

▶ d∗ = 0 =⇒ λ∗A( x ) +∇f ( x ) = 0 , λ∗ ≥ 0 (check) ≡ x optimal for (P)

=⇒ stopping condition ∥ d∗ ∥ ≤ ε (norm of projected gradient)

▶ pFX ( x )(·) potentially costly, but can be very cheap with appropriate X



Projected gradient method: special forms of constraints 10

▶ Always exploit all the structure of your problem: box constraints x ≤ x ≤ x

▶ X = X1 × X2 × ...× Xn and ∥ d − v ∥2 =
∑n

i=1( di − vi )
2 decomposable =⇒

pX ( x ) separable: n independent problems =⇒ much easier & parallelizable

procedure x = BCPGM ( f , x , x , x , ε )
for( ; ; )

d = −∇f ( x ); ᾱ =∞;

foreach( i = 1 . . . n s.t. di ̸= 0 ) do

if( di < 0 ) then if( xi = x i ) then di = 0 else ᾱ← min{ ᾱ , ( x i − xi ) / di }
else if( xi = x i ) then di = 0 else ᾱ← min{ ᾱ , ( x i − xi ) / di }

if( ⟨∇f ( x ) , d ⟩ ≤ ε ) then return;

α← choose step( f , x , d , ᾱ , ε ); x ← x + αd ;

Exercise: justify why d computed in the pseudo-code is the projected anti-gradient

Exercise: discuss what choose step() should look like

▶ Other easy projections, e.g., balls or simplex constraints
∑n

i=1 xi = 1 , x ≥ 0

Exercise: propose a fast dual method to project for a simplex constraint



Projected gradient method, Goldstein’s version 11

▶ What if projection is easy on the whole of X , not only FX ( x )?

▶ Goldstein’s projected gradient method: move first, project second

y i ← x i − αi∇f ( x i ); x i+1 ← pX ( y
i );

▶ Not a descent method, more like Heavy Ball

▶ Only converges with appropriate stepsize, typical α = 1 / L

▶ Convergence results ≈ unconstrained gradient [9, §5] (for good and bad):

O( (L / τ) log( 1 / ε ) ) for f τ -convex, O( LD / ε ) otherwise

▶ Projection cost can be very small (e.g., box constraints)

Exercise: Develop pX for box constraints . . . where have I seen it?

▶ Other easy projections, e.g., balls or simplex constraints [5] (sounds familiar?)

Exercise: develop pX for the ball in the 2-norm

▶ Practical convergence can be quite different



Projected gradient method, Rosen’s version 12

▶ General Ax ≤ b: pFX ( x ) can be too costly (not to mention pX )

▶ Make it easier by projecting on ∂FX ( x ) = { d ∈ Rn : AA( x )d = 0 }
QP with easy objective and equality constraints =⇒ very easy

▶ In fact, Ā = AA( x ) full row rank =⇒ closed formula (check)

µ = −[ ĀĀT ]−1Ā∇f ( x ) , d = ( I − ĀT [ ĀĀT ]−1Ā )(−∇f ( x ) )

▶ d = 0 may happen: good if µ ≥ 0 (check), un-good otherwise

▶ d = 0 surely happens if Ā ∈ Rn×n (x a vertex, A( x ) a base) (check)

▶ AA( x ) not full rank in general: must work with AB full rank, B ⊂ A( x )
=⇒ rather more complicated logic

▶ f linear + streamlining ⇝ primal simplex method [8, Chap. 13][7, Chap. 3]

▶ Can be extended to G ( x ) ≤ 0 nonlinear (nontrivial) [3, p. 597][7, p. 371]

▶ When B gives the optimal face ≈ unconstrained steepest descent =⇒
convergence results analogous (with twists) [7, §12.5] (for good and bad)



Rosen’s Projected gradient method 13

procedure x = PGM ( f , A , b , x , ε ) // invariant: Ax ≤ b
for( ; ; )

B ← maximal ⊆ A( x ) s.t. rank(AB ) = #B;

for( ; ; )

d ← ( I − AT
B [ABA

T
B ]−1AB )(−∇f ( x ) );

if( ⟨∇f ( x ) , d ⟩ ≤ ε ) then

µB ← −[ABA
T
B ]−1AB∇f ( x );

if( µB ≥ 0 ) then return;

h← min{ i ∈ B : µi < 0 }; B ← B \ { h }; continue;
ᾱ← min{αi = ( bi − Aix )/Aid : Aid > 0 , i /∈ B };
if( ᾱ > 0 ) then break;

k ← min{ i /∈ B : Aid > 0 : αi = 0 }; B ← B ∪ { k };
α← LS( f , x , d , ᾱ , ε ); x ← x + αd ;

▶ pesky part: handling of linear independence

▶ Maximal B easy to get via a greedy algorithm [15]

Exercise: streamline the algorithm’s computations when B is a base



Mathematically speaking: Rosen’s projected gradient, the theory 14

▶ d ̸= 0 is a descent direction, i.e., ⟨∇f ( x ) , d ⟩ < 0 (check)

Exercise: is d a feasible direction? If not, what happens? Discuss

▶ B ′ = B \ { h }, ∃ ξ s.t. AB′ξ = 0 ∧ Ahξ < 0 (check)

▶ d = 0 ∧ ∃ h ∈ B s.t. µh < 0 =⇒ ⟨∇f ( x ) , ξ ⟩ < 0 for any ξ above (check)

=⇒ ∃ x ′ ∈ { x ∈ Rn : AB′x = bB′ , Ahx ≤ bh } s.t. f ( x ′ ) < f ( x )

≡ removing h from B the objective can (perhaps) strictly decrease

▶ Inner loop handles degenerate steps: ᾱ = 0 =⇒ x does not change (B does)

▶ Inner loop explores ̸= B ⊂ A( x ) s.t. AB full rank (if AA( x ) is not),

finitely terminates by Bland’s anti-cycle rule (min entering / leaving i) [6, §4.3]

▶ B “changes little” at every iteration: update factorization of ABA
T
B . . .

Exercise: streamline the algorithm for the case when f (·) is linear
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The Frank-Wolfe method 15

▶ Nonlinear problem with linear constraints: (P) min{ f ( x ) : Ax ≤ b }

▶ Projecting ≡ min{ ∥ x − x̄ ∥2 : Ax ≤ b } may be too costly, but minimizing a
linear function may be possible (special structure, e.g., network constraints)

▶ Solve nonlinear (P) by solving a sequence Master Problems ≡ LPs

procedure x = FW ( f , A , b , x , ε ) // invariant: Ax ≤ b
for( ; ; )

(MPx) x̄ ← argmin{ ⟨∇f ( x ) , z ⟩ : Az ≤ b }; d ← x̄ − x ;

if( ⟨∇f ( x ) , d ⟩ ≥ −ε ) then return;

α← LS( f , x , d , 1 , ε ); x ← x + αd ;

▶ ⟨∇f ( x ) , d ⟩ = 0 =⇒ x local optimum

Exercise: prove it by exhibiting λ∗ ≥ 0 that satisfies (KKT) with x

▶ Otherwise ⟨∇f ( x ) , d ⟩< 0 ≡ d a descent direction (check)

▶ f convex =⇒ v∗ = f ( x ) + ⟨∇f ( x ) , d ⟩ ≤ ν(P) (check) =⇒
f ( x )− ν(P) ≤ f ( x )− v∗ = readily available estimate of gap =⇒
⟨∇f ( x ) , d ⟩ = 0 =⇒ x global optimum



Stabilising the Frank-Wolfe method 16

▶ Initial x not really needed: one LP (say, ⟨ 0 , z ⟩ objective) to find it, if any

▶ Convergence easy enough, ≈ run-of-the-mill descent algorithm [2, Th. 3.8]

▶ One LP per iteration costly, exploit structure to make it efficient

▶ Convergence rather slow: trusting Lx(·) very far from x where ∇f is computed

▶ Solution seen already: stabilize master problem

▶ But separable penalty γ∥ z − x ∥2 in the objective ⇝ QP ≈ projection

▶ Trust region stabilization: constraint ∥ z − x ∥∞ ≤ τ ≡
box constraints xi − τ ≤ zi ≤ xi + τ , almost never make an LP harder

▶ Have to manage τ somehow (e.g., fixed), but often worth it

▶ Other ways to improve convergence speed, e.g., away step and/or

use FW to identify optimal Active Set then exploit it [10]



(Stabilised) Frank-Wolfe for f /∈ C 1 ≡ (Bundle) Cutting Plane 17

▶ What if f /∈ C 1? Cannot use any g ∈ ∂f ( x ), “crap” first-order information

▶ f convex =⇒ first-order information not so crap: globally valid

▶ What if I collect it along the way and use it all?

▶ { x i } =⇒ B = { ( x i , f i = f ( x i ) , g i ∈ ∂f ( x i ) ) } bundle

▶ fB( x ) = max{ f i + ⟨ g i , x − x i ⟩ : ( x i , f i , g i ) ∈ B }
cutting-plane model of f – (1 + ε)-order model

sou
n
d
s
stran

gely
fam

iliar
...

▶ x̄ ← argmin { fB( x ) : Ax ≤ b }: constrained cutting-plane algorithm

completely ≡ unconstrained version, even better if Ax ≤ b compact

▶ x ← argmin { fB( z ) + γ∥ z − x̄ ∥2 : Az ≤ b } constrained Bundle method

▶ More difficult to exploit structure, but not impossible [12]

▶ Many complicated details (dual . . . ), not for the faint of heart, not for today



Frank-Wolfe for f ∈ C 2 ≡ Sequential Quadratic Programming 18

▶ Want a better direction? Use a better model!

▶ Second-order model ≡ constrained Newton’s method

d∗ ← argmin
{

1
2d

T∇2f ( x )d + ⟨∇f ( x ) , d ⟩ : A( x + d ) ≤ b
}
;

α← LS( f , x , d∗ , 1 , ε ); x ← x + αd∗;

▶ ∇2f ( x )⪰ 0 otherwise NP-hard: Hessian modification or

Trust Region constraint ∥ d ∥ ≤ τ (may still be NP-hard)

▶ Use 0 ⪯ H ≈ ∇2f ( x ) with quasi-Newton formulæ

▶ Fast convergence if done properly [8, Chap. 18]

▶ Solve a constrained QP at each iteration, possibly with quadratic constraints

▶ Many complicated details, not for the faint of heart, not for today
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Dual approach 19

▶ QP with linear constraints: (P) min{ 1
2x

TQx + qx : Ax ≤ b }

▶ So far, kept Ax ≤ b and gotten λ ≥ 0 in the end (primal approach)

▶ Can we do the reverse (dual approach)? Of course we can

▶ ∀ fixed λ ≥ 0: ψ(λ ) = min
{

1
2x

TQx + qx + λ( b − Ax )
}
≤ ν(P )

concave dual function, x(λ ) optimal solution =⇒ b − Ax(λ ) ∈ ∂ψ(λ )

▶ Lagrangian dual (D) max{ψ(λ ) : λ ≥ 0 } convex possibly nonsmooth

▶ Strong assumption Q ≻ 0 =⇒ unique x(λ ) = Q−1(λA− q )

=⇒ ψ ∈ C 1 (but, in general, ψ /∈C 2) and ∇ψ(λ ) = b − Ax(λ )

▶ (D) ≡ (P): ν(D ) = ν(P ) and { x(λi ) } → x∗ as {λi } → λ∗

Exercise: discuss relaxing the strong assumption Q ≻ 0



Dual method 20

▶ Solve (D) by any method for C 1-but-not C 2 functions (if you are lucky)

▶ (D) constrained but constraints are very easy (projection trivial)

▶ Feasible primal solution x∗ only asymptotically, but

valid lower bound v i = ψ(λi ) ≤ ν(P ) at every iteration

▶ If X “simple”, Lagrangian heuristic: x i = pX ( x(λ
i ) ) =⇒

valid upper bound f i = f ( x i ) ≥ ν(P ) at every iteration =⇒
f ( x i )− ν(P ) ≤ f i − v i = readily available estimate of gap

▶ Can behave very differently from primal methods (L / τ much less of an issue)

▶ Extends to f ( x ) (strictly) convex but must solve general nonlinear problem

▶ f ( x ) not convex serious issue, ψ has to be computed exactly

▶ Yet, methods ∃ that work with inexact computation of ψ(·) [1]



Dual methods ⇝ decomposition 21

▶ Partial Lagrangian relaxation: (P) min{ f ( x ) : Ax ≤ b , Ex ≤ d }

(Rλ) ψ(λ ) = min{ f ( x ) + λ( b − Ax ) : Ex ≤ d }

complicating constraints Ax ≤ b relaxed, easy constraints Ex ≤ d kept

▶ (Rλ) constrained but can exploit structure (and ψ(λ ) = −∞ less likely)

▶ Typical structure: Ax ≤ b linking constraints + f separable

E1

Ek

A

…
Q1

…

Qk

=⇒ ψ(λ ) =
∑

k ψ
k(λ ) separable, algorithms can exploit it (parallelize)

▶ Many complicated details, not for the faint of heart [13], not for today
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Barrier methods: motivation 22

▶ Pros of dual methods: (D) ≈ unconstrained (would be with Ax = b)

▶ Cons of dual methods:

▶ ψ /∈ C 2, not even ∈ C 1 if f not strictly convex

▶ x(λ ) never feasible until the very end (unless Lagrangian heuristic)

▶ Would like: i) (D) unconstrained; ii) ψ ∈ C 2; iii) x(λ ) feasible

▶ i) and iii) obvious: f + ıX . . . except ıX /∈ C 0

▶ Would need something like ıX but ∈ C 2

▶ Can get C 2 if you accept to solve almost (P), but not quite



Barrier function & Central Path [8, p. 397][4, §11.2] 23

▶ γ > 0 parameter, (Pγ) min
{
fγ( x ) = f ( x )− γ

∑m
i=1 ln( bi − Aix )

}
logarithmic barrier fγ ∈ C 2 (if f ∈ C 2) and strictly convex (if f convex)

▶ X = { x ∈ Rn : Ax ≤ b }

▶ fγ( x ) =∞ for x /∈ X (like ıX )

▶ fγ( x ) =∞ for x ∈ ∂X (unlike ıX )

▶ ∀ γ > 0 ∃! xγ optimal of (Pγ)

▶ x∞ = limγ→∞ xγ analytic center of X
(maximize product of slacks)

▶ As γ → 0, xγ → x∗ =
analytic center of optimal face

▶ C = { xγ : γ ∈ (0,∞) }
central path (smooth curve)

▶ Idea: start (≈) at center x∞, (≈) follow C to reach (very close to) x∗

▶ Always strictly fasible, never touch ∂X



Barrier function & Central Path [8, p. 397][4, §11.2] 23

▶ γ > 0 parameter, (Pγ) min
{
fγ( x ) = f ( x )− γ

∑m
i=1 ln( bi − Aix )

}
logarithmic barrier fγ ∈ C 2 (if f ∈ C 2) and strictly convex (if f convex)

▶ X = { x ∈ Rn : Ax ≤ b }

▶ fγ( x ) =∞ for x /∈ X (like ıX )

▶ fγ( x ) =∞ for x ∈ ∂X (unlike ıX )

▶ ∀ γ > 0 ∃! xγ optimal of (Pγ)

▶ x∞ = limγ→∞ xγ analytic center of X
(maximize product of slacks)

▶ As γ → 0, xγ → x∗ =
analytic center of optimal face

▶ C = { xγ : γ ∈ (0,∞) }
central path (smooth curve)

▶ Idea: start (≈) at center x∞, (≈) follow C to reach (very close to) x∗

▶ Always strictly fasible, never touch ∂X
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Barrier method, geometric version (“path following”) 24

▶ − log(·) self-concordant [4, §9.6] =⇒ fγ is for many f (linear, quadratic, . . . )

▶ Newton’s method converges very quickly to xγ if started witin

appropriate neighbourhood N of C

▶ x i “close” to x( γ i ): a few Newton’s steps [4, §11.5.2] give

x i+1 “much closer” to x( γ i ) =⇒ “close” to x( γ i+1 ) with γ i+1 = τγ i

=⇒ linear convergence (and τ is “good” ≪ 1)

▶ Overall O(m log( 1 / ε ) ) iterations, can be made O(
√
m log( 1 / ε ) )

and more like O( log(m ) log( 1 / ε ) ) in practice [4, §11.5.3]

▶ Dimension independent on n, not on m (but ≈ in practice),

▶ Each Newton’s steps at least O( n3 ) ≡ costly

▶ Best implementations for LP, QP, SOCP and SDP in fact primal-dual



Primal-Dual Interior-Point (Barrier) Method [14] 25

▶ Focus on quadratic case: (P) min{ 1
2x

TQx + qx : Ax ≤ b }

▶ Could compute Newton’s step as usual

Exercise: compute ∇fµ( x ), ∇2fµ( x ), Newton’s step

▶ Cleaner derivation out of KKT of (P) “written with slacks”

Ax + s = b , s ≥ 0 (KKT-F)

Qx + λA = −q , λ ≥ 0 (KKT-G)

λi si = 0 i = 1, ...,m (KKT-CS)

▶ One is solving the dual at the same time as the primal:

(D) max
{
− λb − 1

2x
TQx : Qx + λA = −q , λ ≥ 0

}
▶ “Slackened KKT” characterize x( γ ) and complementarity gap:

λi si = γ i = 1, ...,m (KKT-CS-µ)

=⇒
∑m

i=1 λi si = γm = ( 1
2x

TQx + qx )− (−λb − 1
2x

TQx ) (check)



Computing Newton’s step 26

▶ Useful notation: Λ , S diagonal matrices with λi , si on the diagonal

ΛSu = γu (KKT-CS-µ)

▶ x → x +∆x , s → s +∆s , λ→ λ+∆λ (current iterate + displacement)

⇝ ( Λ + ∆Λ )(S +∆S )u = (S∆Λ+ Λ∆S + ΛS +∆Λ∆S )u = γu

▶ Nonlinear system of equations (ignoring sign constraints),

(KKT-CS-µ) only nonlinear (bilinear) term

▶ Linearize ≡ Newton’s method ≡ just ignore it Q AT 0
A 0 I
0 S Λ

 ∆x
∆λ
∆s

 =

 −(Qx + q)− λA
b − Ax − s

γu − ΛSu −∆Λ∆Su

 ≈
 rP

rD

γu − ΛSu

 (∗)

rP = b − Ax − s = 0 / rD = −(Qx + q)− λA = 0 if primal / dual feasible

(if not unfeasibility ↘ linearly =⇒ feasible quickly)

▶ Solving (∗) by far the most costly step: exploit structure



Mathematically speaking: Solving (∗) ≡ lots of linear algebra [14, §5]
27

▶ Exploit large-scale structure: substitute from last constraint (check) =⇒
modified Normal Equations (note: Λ−1S ≻ 0 diagonal)[

Q AT

A −Λ−1S

] [
∆x
∆λ

]
=

[
rP

rD + s − γΛ−1u

]
structure-exploiting Krylov-like methods . . .

▶ Exploit large-scale structure: substitute from second constraint (check) =⇒

[Q + ATΛS−1A ]∆x = rP + AT (λ− S−1( ΛrD − γu ) ) Reduced KKT

M = Q + ATΛS−1A ≻ 0 if A has full column rank (it should)

Cholesky factorization of M (can be dense, permute rows of A . . . )

▶ Predictor-corrector variant: solve, add fixed term ∆Λ∆Su in r.h.s. of (∗),
solve again re-using factorization, possibly iterate [8, Alg. 16.4][14, p. 15]

▶ Exploit all structure: Dx = d , box constraints 0 ≤ x ≤ u, blocks, . . .

Exercise: develop formulæ for (P) min{ 1
2x

TQx + qx : Ax = b , 0 ≤ x ≤ u }



Primal-Dual Infeasible Interior-Point (Barrier) Method 28

procedure x = IPMQP (Q , q , A , b , εP , εD , ε , ρ )
choose ( x , λ> 0 , s > 0 ); γ ← ⟨λ , s ⟩;
while( ∥ rP ∥ > εP ∨ ∥ rP ∥ > εD ∨ γm > ε )

solve (∗); α← 0.995max{β : λ+ β∆λ≥ 0 , s + β∆s ≥ 0 };
x ← x + α∆x ; s ← s + α∆s; λ← λ+ α∆λ; γ ← ργ;

▶ Until ∥ rP ∥ > εP ∨ ∥ rP ∥ > εD may choose αP ̸= αD [8, p. 483]

▶ New iterate primal and dual feasible if old was, otherwise less unfeasible

▶ Primal-dual algorithm: upper and lower bound on ν(P ), converge as γ ↘ 0

▶ γ = ρ(λs) /m for ρ < 1 fixed (reasonable value ρ = 1 /m),

more sophisticated formulæ using αP and/or αD and for predictor-corrector

▶ Very good convergence in practice, but large time/memory cost per iteration

▶ “Straightforward” to extend to SOCP, SDP [4, §11.6]

▶ May have numerical problems (dividing by very small numbers)

especially on empty / unbounded problems
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Wrap up 29

▶ Constraints make things a lot more complex =⇒ intersting

▶ Many different cases, “structure constraints” × “structure objective”

=⇒ very many different ways to exploit them

▶ The linear algebra is often crucial, makes or breaks a method

▶ We barely scratched the surface, there is lots more:

▶ other barrier / penalty methods

▶ other primal methods

▶ algorithms for highly nonlinear constraints

▶ and more, and more, . . .

▶ Not to mention getting global optima in the nonconvex case

▶ learning usually does not need all this, but other applications do

▶ learning requires large size and speed: something’s gotta give

▶ Still plenty of ways to do nice things



(Wrap up)2 – technical 30

▶ Models are important for algorithms, too (besides vice-versa)

▶ Models must be simple, but first- and second-order ones are!

▶ Want a better direction? Use a better model!

If the world does not give you one, invent one yourself!

▶ Thank goodness you can go (much) faster than gradient,

but there is only so much you can do with first-order methods

▶ Always keep it convex if possible, better if C 1, better still if C 2

▶ Duality an extremely useful tool, especially (but not only) in convex case

▶ Mind trade-offs: “fat” models ⇝ fast convergence but high iteration cost

▶ If you don’t know it estimate it, but be ready to revise your estimate

▶ Best choices in theory not best in practice (worst-case ̸= average case)

▶ A lot of details need be considered, numerical aspects crucial



(Wrap up)3 – philosophical 31

▶ Dabble with math-based algorithms? Have to know (some) maths

▶ Learn simple things first: must know a Line Search to optimize in Rn

▶ Algorithms can only get so far with nasty problems

hence choose your problems (foes) wisely; learning most often does

▶ Always exploit all the structure of your problem

▶ There is no one-size-fits-all solution

▶ Linear algebra is crucial for doing optimization, vice-versa also quite true

▶ Your mileage may vary, so try, try, try!

Lots of Fun!
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Solutions I 35

▶ The clever idea is to construct a problem of the same class that is surely
non-empty and whose optimal solution provides a feasible one of (P) or prove
no-one exists, such as (F ) min{ 1

2∥ v ∥
2
2 : Ax ≤ b + v , v ≥ 0 }. (F ) is surely

nonempty: take any x (e.g., x = 0), then v = max{Ax − b , 0 } (e.g,
v = max{−b , 0 }) is such that [ x , v ] is feasible to (F ). Also, (F ) cannot be
unbounded below (see next exercise) as the objective is bounded below by 0.
Thus, one can use the Active-Set approach starting from [ x , v ] to get an
optimal solution [ x∗ , v∗ ] to (F ). Now, if v∗ = 0 then x∗ is a feasible solution
to (P) that we can re-start the Active-Set approach from. If, instead, v∗ ̸= 0,
this proves that (P) has no feasible solution. Indeed, if any x feasible for (P)
existed then it would correspond to a [ x , 0 ] feasible for (F ) that would have a
better objective than v∗, which is impossible since v∗ is provably a global
optimum ((F ) is convex, in fact even if (P) is not). This so-called “phase 0” of
the approach can be conveniently integrated in the Active-Set method so that
the restarting on (P) once a feasible x if found (if ever) can occur “naturally”
exploiting all the currently available information; see, e.g., [8, p. 473] for
details [back]
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▶ For x(α ) = x + αd , we want to find the maximum value of α s.t. Ax(α ) ≤ b,
which we know is ≥ 0 since x = x( 0 ) is feasible. We look at every constraint
individually, and write Ai ( x + αd ) ≤ bi ≡ α(Aid ) ≤ bi − Aix . By feasibility,
bi −Aix ≥ 0: hence, if Aid ≤ 0 the relationship is true for all α ≥ 0. If, instead,
Aid > 0, then the relationship is only true if α ≤ αi = ( bi − Aix ) /Aid . Since
x(α ) must satisfy all the constraints, α ≤ αi must all for all i s.t. Aid > 0,
and therefore α has to be the min of all these αi . It is easy to see that the min
has to be <∞, in fact < 1: this is because x( 1 ) = x + d = x̄ is unfeasible by
construction when the control reaches the ᾱ computation step [back]

▶ The first issue is that if Q ̸≻ 0, even if possibly Q ⪰ 0, then (PB) may not have
a finite optimal solution because it may be unbounded below. This happens if
∃ d ∈ ker(Q ) (a linear combination of eigenvectors corresponding to 0
eigenvalues) s.t. ⟨ q , d ⟩ ≠ 0 and ABd = 0, as implies AB( x + αd ) =
= ABx + αABd = bB ∀α, and φ(α ) = f ( x + αd ) = f ( x ) + α⟨ q , d ⟩, which
means that one can find feasible solutions to (PB) with arbitrarily large
negative value. However, any such d—that one must be able to properly
identify in order to prove unboundedness of (PB)—can then be used instead of
x̄ − x as the direction of descent along which ᾱ is found.
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This reveals the second issue: in such a case, (P) itself may be unbounded
below. In fact, φ(α ) is decreasing with α and unbounded below. If ᾱ <∞,
then the algorithm can proceed as usual. But ᾱ =∞ may happen if Ad ≤ 0,
which implies that x(α ) = x + αd is feasible for all α ≥ 0. This means that
the algorithm can be stopped as (P) has been “solved”, but specific checks
(and a specific return code) are required [back]

▶ Given µ̄B ≥ 0, it is easy to see that λ = [ µ̄B , 0 ] ≥ 0 satisfies the KKT for
(P). In fact, ∇f ( x̄ ) + µ̄BAB = 0 since x̄ is optimal for (PB) and µ̄B are the
corresponding optimal (unconstrained) Lagrangian multipliers, but this is
equivalent to ∇f ( x̄ ) + λA = 0, i.e., (KKT-G). (KKT-F) is just Ax̄ ≤ b, that is
satisfied since it is checked for i /∈ B in the algorithm and it surely satisfied at
equality for i ∈ B since x̄ is feasible for (PB). Finally, (KKT-CS) holds: for
i ∈ B one has Ai x̄ = bi =⇒ λi ( bi − Ai x̄ ) = µ̄i ( bi − Ai x̄ ) = 0, while for
i /∈ B one has λi = 0 and therefore λi ( bi − Ai x̄ ) = 0 [back]
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▶ Let x∗F be the solution of (PB), and x∗ = [ 0 , x∗F , xU ] the corresponding
complete solution. We only need µ̄, the Lagrangian multipliers of the active
constraints, when xF ≤ x∗F ≤ xF , i.e., x

∗ is feasible. µ are the multipliers of the
constraint xi ≥ 0 for i ∈ L and those of the constraints xi ≤ x i for i ∈ U. The
values of each of these multipliers is immediately derived by the corresponding
entry gi = [∇f ( x∗ ) ]i of the gradient in x∗ and (KKT-G). In fact, the entry of
(KKT-G) corresponding to i ∈ L reads gi − µ̄i = 0 ≡ µ̄i = gi (recall that the
constraint is −xi ≤ 0), while for i ∈ U reads gi + µ̄i = 0 ≡ µ̄i = −gi . Thus,
the condition “µ̄ ≥ 0” reads “gi ≥ 0 for i ∈ L and gi ≤ 0 for i ∈ U”
This can be made sense of in the following way. If gi < 0 for i ∈ L,
x∗i − αgi = α(−gi ) > 0 for α > 0; that is, a (small) step along the
anti-gradient keeps the iterate i inside the feasible region and decreases the
function value, which means that x∗ cannot be optimal. Symmetrically, If
gi > 0 for i ∈ U, x∗i − αgi = x i − αgi < x i , i.e., again, a (small) step α > 0
along the anti-gradient keeps the iterate i inside the feasible region and
decreases the function value, which again means that x∗ cannot be optimal.
The optimality condition is that none of these things happen [back]
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▶ As we have seen already, feasibility of a set of linear inequalities can be cast as
a, say, QP with linear constraints that can be solved with, say, an Active-Set
method. In fact, one can alternatively use a Linear Program, i.e.,
(F ) min{ uv : Ax ≤ b + v , v ≥ 0 } and then use its finite optimal solution
[ x∗ , v∗ ] (which must exists) exactly in the same way as the one from the QP
from a few exercises back. LPs are somewhat cheaper than QPs to solve
[back]

▶ ∇h( d ) = d +∇f ( x ), hence (KKT-G) for pFX ( x )(−∇f ( x ) ) reads
d∗ +∇f ( x ) + ν∗AA( x ) = 0. This ν∗ ≥ 0 is not a dual solution for (P) since it

is of the wrong size: ν∗ ∈ Rk , where k = | A( x ) | is the number of active
constraints in x , which in general is < m (number of original constraints in
(P) = number of rows in A). However, this is easy to solve with the trick we
have seen already when discussing (KKT-CS): just set λ∗i = ν∗i for i ∈ A( x )
and λ∗i = 0 for i /∈ A( x ). This λ∗ ∈ Rm is such that λ∗A = ν∗AA( x ) (and, of
course, λ∗ ≥ 0), hence it still satisfies d∗ +∇f ( x ) + λ∗AA( x ) = 0, providing
(KKT-S) for (P) if d∗ = 0. It is also obvious that λ∗Ax = 0 (it has been
constructed precisely so that this holds) and x is always kept feasible for (P),
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hence (KKT-F) and (KKT-CS) are satisfied as well and x is optimal for (P)
[back]

▶ X is decomposable, i.e., X = X1 × X2 × . . .× Xn with Xi = [ x i , x i ]. Hence,
FX ( x ) is decomposable: FX ( x ) =

⊗n
i=1 FXi ( xi ). Now, the individual feasible

direction cones are trivial. If x i < xi < x i , then FXi ( xi ) = R and the i-th entry
of the projected anti-gradient is equal to the original entry: di is not changed.
If, instead, xi = x i , then FXi ( xi ) = R+: it is only feasible to increase xi but not
to decrease it. Thus, if di ≥ 0 it need not be changed, otherwise the projection
problem min{ ( z − di )

2 : z ≥ 0 } clearly has optimal solution z = 0, hence
di = 0. The converse happens if xi = x i : increasing xi is forbidden, hence di
must be set to 0 if the i-th original entry of the anti-gradient is > 0 [back]
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▶ choose step() is just any regular Line Search over d , with maximum stepsize ᾱ:
by convexity, x + αd is feasible for all α ∈ [ 0 , ᾱ ] (but it is no longer so for
α > ᾱ). The only delicate aspect is the stopping condition of the LS as a
function of the “global” accuracy parameter ε, but this has amply been
discussed already: one can stop when |φ′(α ) | ≤ ε∥∇f ( x ) ∥ (although it is an
interesting exercise, left to the reader, whether or not one could use, say,
∥ d ∥ ≤ ∥∇f ( x ) ∥ instead), or the Armijo-Wolfe stopping conditions, as this
clearly is an example of twisted gradient method and therefore in principle
subject to the Zoutendijk’s Theorem. The convergence arguments are
somewhat more involved than this discussion seems to imply since the
maximum stepsize ᾱ may make it impossible to satisfy Wolfe’s condition. In
fact, one may not even be able to find an α s.t. φ′(α ) > 0, as it may happen
that φ′(α ) < 0 for all α ∈ [ 0 , ᾱ ]; which is not a big deal since it means that
ᾱ is the minimum of φ in the interval and the LS stops immediately. One
should therefore expect the algorithm to be convergence, although the details
of the proof are not immediate [back]
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▶ It is easy to see that the projection problem is simple. Each variable zi is
constrained to be non-negative (zi ≥ 0) if xi = x i , non-positive (zi ≤ 0) if
xi = x i , and is unconstrained in sign otherwise. Also, a feasible direction z
must satisfy

∑n
i=1 zi = 0. The Lagrangian relaxation w.r.t. that constraint has

objective
∑n

i=1[ gi ( zi ) = zi − di )
2 / 2− µzi ], and therefore is separable over

the zi variables. Since g ′
i ( zi ) = zi − di − µ, the unconstrained minimum is

z∗i = di + µ, a linear function of µ: hence, the constrained optimum z∗i (µ ) is
obtained by taking the min or max of z∗i with 0, depending on the sign
constraint (if any), i.e., it is either a linear or a piecewise-linear function of µ
with exactly two segments and the breakpoint in z∗i = di + µ = 0 ≡ µ = −di .
The optimal solution µ∗ of the Lagrangian dual is such that

∑n
i=1 z

∗
i (µ

∗ ) = 0
(this is the condition “(sub)gradient = 0” for the dual function); note that µ∗

must exist since the projection problem is neither empty nor unbounded below
and therefore it has an optimal solution, hence so has its dual since appropriate
constraints qualifications trivially hold. It is now easy to explicitly write the
function φ′(µ ) =

∑n
i=1 z

∗
i (µ ): it is piecewise-linear, continuous (since the

individual z∗i (µ ) are) and it has at most n breakpoints corresponding to the
values µ = −di for the zi that have sign constraints. Once the breakpoints are
properly ordered in O( n log( n ) ), a linear visit among them allows to find in



Solutions IX 43

O( n ) the value µ∗ s.t. φ′(µ∗ ) = 0 and the corresponding optimal primal
solution z∗ = z∗(µ∗ ) (with minor adjustments required for the zi
corresponding to the “critical” breakpoint). This is a special case of the
classical dual approach to nonlinearly constrained convex quadratic knapsack
problems, see, e.g., [5] and the references therein [back]

▶ Projection of x over box constraints [ x , x ] is trivial since it can be done
independently for each variable: x∗i = min{ x i , max{ xi , x i } }. This is the
formula for solving x∗i = argmin{ h( z ) = ( z − xi )

2 / 2 : x i ≤ z ≤ x i }, which
it just the explicit formulation of the projection problem (the univariate
minimization of a quadratic function), since h′( z ) = z − xi , thus the
unconstrained minimum is h′( z ) = 0 ≡ z = xi [back]
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▶ The projection problem of x over B2( 0 , r ), which is
min{ f ( z ) = ∥ z − x ∥22 / 2 : g( x ) = ∥ x ∥22 / 2− r2 / 2 ≤ 0 }, is very easy: if
∥ x ∥2 ≤ r then z∗ = x , otherwise z∗ = x( r / ∥ x ∥ ). Indeed, ∇f ( z ) = z − x
and ∇g( z ) = z , thus (KKT-G) reads z∗− x +λ∗z∗ = 0 ≡ z∗ = x / ( 1+λ∗ ):
as announced, z∗ must be a positive scalar multiple of x . Now, ∥ x ∥ > r but
∥ z∗ ∥ ≤ r by (KKT-F), thus 1 + λ∗ > 1 ≡ λ∗ > 0: then, (KKT-CS) gives
∥ z∗ ∥ = r ≡ ∥ x ∥ / ( 1+ λ∗ ) = r ≡ 1+ λ∗ = ∥ x ∥ / r =⇒ z∗ = x( r / ∥ x ∥ )
as desired [back]

▶ The Reduced KKT formulæ for the equality constrained quadratic problem
min{ xTQx / 2 + qx : Ax = b } read [AQ−1AT ]µ = −b − AQ−1q and
x = −Q−1(ATµ+ q ). Here, x = d , Q = I , q = ∇f ( x ) (since the objective is
∥ d +∇f ( x ) ∥2 / 2 = dTd / 2 +∇f ( x )d + constant), A = Ā, and b = 0:
plugging them in gives [ ĀĀT ]µ = −Ā∇f ( x ) and
d = −( ĀT [ ĀĀT ]−1(−Ā∇f ( x )) +∇f ( x ) ) = P(−∇f ( x ) ), with
P = I − ĀT [ ĀĀT ]−1Ā being the projection matrix [back]
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▶ Obviously, because then x is optimal. In fact, the “poorman’s KKT conditions
on the projected problem read ∇f ( x ) + µĀ = 0: since µ ≥ 0, with the
already-seen trick of defining λ∗i = µi for i ∈ A( x ) and λ∗i = 0 for i /∈ A( x )
one obtains a λ∗ ≥ 0 s.t. ∇f ( x ) + λ∗A = 0 and λ∗( b − Ax ) = 0, i.e., that
satisfies all of the KKT conditions (feasibility is given for granted) [back]

▶ Ā being squared and full row rank means that it is nonsingular: hence
[ ĀĀT ]−1 = Ā−T Ā−1, and therefore P = I − ĀT [ ĀĀT ]−1Ā =
= I − ĀT Ā−T Ā−1Ā = I − I = 0 =⇒ d = P(−∇f ( x ) ) = 0 [back]

▶ B is a base ≡ AB nonsingular =⇒ d = 0 (as we have seen already)
=⇒ ⟨∇f ( x ) , d ⟩ ≤ ε surely holds. Also, µB = −[ABA

T
B ]−1AB∇f ( x ) =

= −A−T
B A−1

B AB∇f ( x ) = −A−T
B ∇f ( x ), i.e., µB is the (unique, and existing)

solution of the linear system µT
BAB = −∇f ( x )T [back]
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▶ The projection matrix P = I − AT
B [ABA

T
B ]−1AB is symmetric and idempotent,

i.e., PP = P, which implies P ⪰ 0 since its eigenvalues can only be 1 and 0
[16]. Symmetry is trivial, verifying the other property is just algebra:
PP = ( I − AT

B [ABA
T
B ]−1AB )( I − AT

B [ABA
T
B ]−1AB ) =

= I − 2AT
B [ABA

T
B ]−1AB + (AT

B [ABA
T
B ]−1AB )(AT

B [ABA
T
B ]−1AB ) =

= I − 2AT
B [ABA

T
B ]−1AB + AT

B ( [ABA
T
B ]−1ABA

T
B )[ABA

T
B ]−1AB =

= I − 2AT
B [ABA

T
B ]−1AB + AT

B [ABA
T
B ]−1AB = I − AT

B [ABA
T
B ]−1AB = P.

Hence, ⟨∇f ( x ) , d ⟩ = ⟨∇f ( x ) , P(−∇f ( x ) ) ⟩ = −∇f ( x )TP∇f ( x ) < 0
(in fact it could also be = 0, but in this case the algorithm stops) [back]

▶ The relevant property of d is that ABd = 0: hence, it is only guaranteed to be
a feasible direction if B = A( x ). In fact, AB( x + αd ) = ABx + αABd =
= bB + 0 = bB (since B ⊆ A( x )), i.e., all constraints in B cannot be violated
whatever step α is taken along d (they will all remain active). Thus, if all the
constraints i /∈ B are inactive, i.e., Aix < bi , then x + αd is feasible for a small
enough nonzero step; in other words, ᾱ > 0. However, if there exists some
h ∈ A( x ) s.t. h /∈ B, then d is no longer guaranteed to be feasible. This
happens if Ahd > 0: in fact, in this case each step α > 0 would lead to



Solutions XIII 47

Ah( x + αd ) = Ahx + αAhd = bh + αAhd > bh, i.e., violating the h-th
constraint. In this case ᾱ = 0 and a degenerate step is made where x remains
the same but B does not, as (one of) the active constraint(s) h /∈ B is added
to it. It is easy to see that Ah is not linearly dependent from AB : if this were
true there would exist γ s.t. γTAB = Ah, but this would imply that
0 = γTABd = Ahd (since ABd = 0) while we know that Ahd > 0. Thus, the
new B at the begining of the next iteration will be different (strictly larger) and
a different d will be generated. It is not trivial that this process terminates with
either a feasible direction or proving that x is optimal because d = 0 may
eventually happen, leading to some indices to be removed from B which could
lead to cycling. This is known to be very unlikely in practice and it is avoided
by Bland’s anti-cycle rule [6, §4.3] [back]
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▶ Because AB ∈ Rk×n is full row rank (which implies k ≤ n), with a trick we
have seen already we can write it (after reshuffling of columns if necessary) as
[A′

B , A
′′
B ]. Now, let p ∈ { 1 , . . . , k } be the position in B of the row h, i.e.,

[AB ]p = Ah, and consider the direction ξ = [−(A′
B )−1up , 0 ] whose first k

components are the opposite of the p-th column of (A′
B )−1 while the

remaining n − k ones are 0. Hence, ABξ = [A′
B , A

′′
B ][−(A′

B )−1up , 0 ] =
= A′

B(A
′
B )−1(−up ) + A′′

B0 = −up, i.e., Aiξ = 0 for i ∈ B ′ = B \ { h } and
Ahξ = −1 < 0 [back]

▶ The “poorman’s KKT” of the projection problem read d +∇f ( x ) + µBAB ,
and since d = 0 this gives ∇f ( x ) = −µBAB . Hence,
⟨∇f ( x ) , ξ ⟩ = ⟨−µAB , ξ ⟩ = ⟨−µB , ABξ ⟩ = −µh⟨Ah , ξ ⟩ < 0 [back]
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▶ The fundamental idea is that in the LP case one can ensure that B is always a
base, which streamlines many operations starting from computing µB and (not)
d (= 0). Also, for the direction ξ in the previous exercise one has A′

B = AB and
A′′
B is void, hence ξ = −A−1

B up can be obtained at little cost since A−1
B —or,

equivalently, a factorization of AB—need be computed to find µB in the first
place. This ξ is a descent direction: in fact, ⟨∇f ( x ) , ξ ⟩ = ⟨−µT

BAB , ξ ⟩ =
= ⟨−µT

B , ABξ ⟩ = ⟨−µT
B , −up ⟩ = µh < 0. While ξ is not the projection of

the anti-gradient, hence the directional derivative is in principle less negative, it
has a specific benefit: if the algorithm uses d = ξ and performs a full step ᾱ, it
easy to prove that B ′′ = B \ { h } ∪ { k } is another base, i.e., that AB′′ is
nonsingular [6, Lemma 4.5], which allows to keep applying the streamlining at
the next iteration. And since f (·), clearly ᾱ is the optimal step, which also
implies that the Line Search is also useless and can be avoided entirely. Note
that the special cases ᾱ =∞ (which, as we have already seen, implies that (P)
is unbounded below) ane ᾱ = 0 (a degenerate step, discussed already) can
happen but are not a problem. Hence, in the LP case the projected gradient
algorithm can be streamlined as to always have B as a basis: doing this results
in the well-known (primal) simplex algorithm for Linear Programs [6, §4.2].
There actually is a caveat: one needs not only a feasible starting point, but a
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feasible starting basis (in other words, the starting point needs be a vertex of
the polyhedron). We have already seen how computing the starting point, or
proving there is none, can be recasted as an LP: it is possible to work out the
details [6, §4.4] to prove that for such an LP we can easily construct a feasible
(for the auxiliary problem) starting basis, and that upon termination it provides
a feasible (for the original problem) basis or the proof that no feasible point
exists. Doing this in details requires to weed out weird cases such as that A has
not full column rank, i.e., no basis exists; this is also doable, but the details are
not important here [back]

▶ The Lagrangian dual max{min{ ⟨∇f ( x ) , z ⟩+ λ(Az − b ) } : λ ≥ 0 } of
(MPx) has a bounded below inner min ⇐⇒ ∇f ( x ) + λA = 0, in which case
its optimal value is 0: hence, max{λ(−b ) : λA = −∇f ( x ) , λ ≥ 0 } is the
linear dual of (MPx), whose optimal solution λ∗ ≥ 0 thus satisfies (KKT-G)
∇f ( x ) + λ∗A = 0. (KKT-F) is kept satisfied by x all along. Since x̄ is optimal
for (MPx) it satisfies its (KKT-CS) λ

∗( b − Ax̄ ) = 0. But ⟨∇f ( x ) , d ⟩ = 0
≡ ⟨∇f ( x ) , x̄ ⟩ = ⟨∇f ( x ) , x ⟩: hence, x is also optimal for (MPx), thus it
satisfies its (KKT-CS) λ∗( b − Ax ) = 0, which are (KKT-CS) for (P) [back]
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▶ ⟨∇f ( x ) , d ⟩ = ⟨∇f ( x ) , x̄ − x ⟩ ≤ 0 since x̄ is the optimal solution of the
master problem, hence ⟨∇f ( x ) , x̄ ⟩ ≤ ⟨∇f ( x ) , z ⟩ ∀ z s.t. Az ≤ b and
therefore also for z = x : since it is not = 0, it can only be < 0 [back]

▶ This hinges on the (sub)gradient inequality f ( z ) ≥ f ( x ) + ⟨∇f ( x ) , z − x ⟩
which is valid ∀ z ∈ Rn, i.e., to the fact that the first-order model of f (·) is a
lower approximation of f (·) everywhere since f (·) is convex. Thus, minimizing
independently over the feasible region on the two sides of the inequality gives
ν(P) = min{ f ( z ) : Az ≤ b } ≥ f ( x ) + min{ ⟨∇f ( x ) , z − x ⟩ : Az ≤ b } =
f ( x ) + ⟨∇f ( x ) , x̄ − x ⟩ = f ( x ) + ⟨∇f ( x ) , d ⟩ = v∗ [back]
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▶ The first consequence of Q ̸≻ 0 is that the Lagrangian relaxation does not in
general have a unique optimal solution, hence ψ /∈ C 1. Yet, ψ remains concave
and one can use convex nonsmooth algorithms to solve (D). An issue is that as
{λi } → λ∗ it is no longer true that { x(λi ) } → x∗ automatically holds:
however, this can be solved by, e.g., Proximal Bundle methods whose dual
solution of the Master Problem can be used to construct aggregated solutions
{ x̃ i } → x∗ as hinted at in the relevant deck of slides. Another issue, however,
is that for some λ the Lagrangian may not have an optimal solution at all since
it is unbounded below. This may happen even if Q ⪰ 0, as there can be a
direction d of 0 curvature (dTQd = 0) where the linear part of the objective is
also not null, i.e., qd + λ( b−Ad ) ̸= 0. One should then add linear constraints
on λ( b − Ad ) = qd to (D) to “neutralise” all these directions; these are in
principle infinitely many but clearly only a finite set of constraints is needed
(say, those corresponding to all eigenvectors of Q corresponding to 0
eigenvalues). Algorithmically speaking, one could also avoid do insert all these
constraints from the beginning and only do this “on demand” when a λi is
generated such that ψ(λi ) = −∞, as detecting unboundedness of the
Lagrangian relaxation amounts precisely at finding one of the offending d ; yet,
by adding (many) “complex” linear constraints to the much simpler λ ≥ 0 in
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(D) may make it significantly more costly to solve (but see, for instance,
Frank-Wolfe for f /∈ C1 for ways to do that with a Bundle method).

Q having negative curvature directions is more complicated, as then
ψ(λ ) = −∞ ∀λ and (D) ≡ (P) no longer holds (not surprising since the latter
is no longer convex while the former always is). One possible approach here is
to add to (P) other constraints that are not relaxed and that make the dual
function bounded; e.g., identify some Bp( 0 , r ) that contains all feasible
solutions (if any exists, as it may not) and leave the corresponding constraint in
the Lagrangian relaxation. This is still tricky in that, for instance, balls in the
1- or ∞-norm would still lead to NP-hard relaxations, but a ball in the 2-norm
or some other “simple” sets could instead be used [11] [back]
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▶ fγ is the sum of two terms: one is a simple quadratic function whose gradient
and Hessian are trivial, so we concentrate on the second, which in turn is the
sum of m terms hi ( x ) = − ln( bi − Aix ). Hence we study gradient and
Hessian of each hi (·) and then sum (and multiply everything by γ). It is also
convenient to introduce the vector s ∈ Rm of the slacks of the constraints, i.e.,
si = bi − Aix : for all hi (·) to be well-defined, necessarily s > 0. Now, the
multivariate chain rule gives ∇hi ( x ) = −AT

i ( 1 / si ); note that Ai is the i-th
row of A and therefore is a row—horizontal—n-vector while by default the
gradient must be a column—vertical—n-vector. Introducing S ∈ Rm×m =
diag( s ), one can finally write ∇fγ( x ) = Qx + q + γATS−1u; note that S−1u
is the m-vector with entries 1 / si . Since the first derivative w.r.t. xj of hi (·) is
−Aij( 1 / si ), the second-order partial derivative w.r.t. both xj and xk is
AijAik( 1 / s

2
i ) (recall that [ z

−1 ]′ = −1 / z2): hence, ∇2hi ( x ) = AT
i Ai ( 1 / s

2
i ).

Thus, ∇2fγ( x ) = Q + γATS−2A, and Newton’s direction then reads
d = −[Q + γATS−2A ]−1(Qx + q + γATS−1u, ). Qualitatively speaking, the
term “S−2” is somewhat worrying: for any constraint i that is active in the
optimal solution, i.e., i ∈ A( x∗ ), one would want to drive si to be “very
small”; say, 1e-8 to 1e-12. But then, s2i would be “very very small”, and
therefore 1 / s2i would be “very very large”, i.e., many orders of magnitude
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larger than the si of non-active constraints. This may make the ATS−2A term
extremely ill-conditioned, although this is somehow balanced by the fact that
γ → 0; but overall, it should be apparent that the approach can be prone to
numerical difficulties. This is one of the reasons why primal-dual approaches are
preferred: not only they tend to be more robust (we will see some “−1”, but no
“−2” there), they can also be easily complemented with crossover techniques
that, using both primal and dual information, try to guess A( x∗ ) and “jump
on the right active set” when the algorithm has reached close enough to x∗,
hybridising the barrier method with efficient simplex-based ones exactly at its
final stage where the numerical difficulties are more significant [back]

▶ It should be recalled that the x variables in (D), as we have discussed when
deriving it, are formally distinct from those in (P); however, it is true that they
are meant to ultimately become the same in primal-dual optimal solutions, and
anyway there is only one copy of x in the KKT conditions. One then has
xTQx / 2+ qx − (−λb− xTQx / 2 ) = xTQx + qx +λb = xT (Qx + q )+λb =
[ using Qx + q = −λA ] = −λAx + λb = λ( b − Ax ) = [ using s = b − Ax ]
= λs [back]
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▶ We are using the last constraint in (∗) to rewrite ∆s = Λ−1( γu − S∆λ )− s
(we can do it because λ > 0 and therefore Λ−1 is well-defined, and we are using
Λ−1ΛSu = Su = s), and then we substitute this in the second constraint in (∗)
to get A∆x +∆s = rD =⇒ A∆x − [ Λ−1S ]∆λ = rD + s − γΛ−1u [back]

▶ On top of the previous development, we are now using the second constraint in
(∗) to further rewrite A∆x − Λ−1S∆λ = rD + s − γΛ−1u =⇒ ∆λ =
= S−1( γu − ΛrD ) + ΛS−1A∆x − λ (again, s > 0 =⇒ S−1 is well-defined,
plus we have used [ Λ−1S ]−1s = ΛS−1Su = Λu = λ and [ Λ−1S ]−1γΛ−1u =
= S−1ΛγΛ−1u = γS−1u); plug this in the first constraint and rearrange
[back]
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▶ We first have to compute (D). This can be done in different ways, one of which
is to rewrite (P) in an equivalent form that has the shape of a QP for which we
have already derived the dual. We rather take the direct route: the Lagrangian
relaxation is (Pµ,λ) minx{ xTQx / 2 + qx + µ( b − Ax )− λ−x + λ+( x − u ) },
that only has solution if Qx + q − µA− λ− + λ+ = 0. Thus,
(D) min{ xTQx / 2+µb−λ+u : Qx−µA−λ−+λ+ = −q , λ− ≥ 0 , λ+ ≥ 0 }.
The slackened KKT conditions for (P) and (D) therefore read Ax = b,
0 ≤ x ≤ u, Qx − µA− λ− + λ+ = −q, λ−x = γe, λ+( u − x ) = γe (here e is
the all-ones vector, to distinguish it from the upper bounds vector u). Due to
the simplicity of the upper bound constraints x ≤ u we can avoid to introduce
formal slack variables, as they would just be 0 ≤ s− = x and 0 ≤ s+ = u − x .
We now introduce the “current iterate plus displacement” notation, i.e.,
x → x +∆x , µ→ µ+∆µ , λ− → λ− +∆λ− , λ+ → λ+ +∆λ+, as well
as the primal and dual residuals of the equality constraints, respectively
rP = b−Ax and rD = µA+ λ− − λ+ −Qx − q. The two slackened (KKT-CS)
then are ( x +∆x )(λ− +∆λ− ) = γe and ( u − x −∆x )(λ+ +∆λ+ ) = γe,
which we rewrite X∆λ− + Λ−∆x = γe − XΛ−e −∆X∆Λ−e and
(U − X )∆λ+ − Λ+∆x = γe − (U − X )Λ+e +∆X∆Λ+e, with the usual



Solutions XXIV 58

notation whereby an upper case S indicates the diagonal matrix having as
diagonal entries the lower case vector s. Thus, the slackened KKT system reads

Q −AT I −I
A 0 0 0
Λ− 0 X 0
−Λ+ 0 0 U − X




∆x
∆µ
∆λ−
∆λ+

 =


rD

rP

γe − XΛ−e −∆X∆Λ−e
γe − (U − X )Λ+e +∆X∆Λ+e


We now proceed as usual by removing the bilinear terms in ∆x and ∆λ− /
∆λ+ from the right-hand-side of the last two constraints (with the provision
that they could be iteratively re-inserted with the fixed value of the previous
iteration in a predictor-corrector approach). This allows to start by solving the
last two constraints over ∆λ− and ∆λ+, yielding
∆λ− = γX−1e − λ− − X−1Λ−∆x and
∆λ+ = γ(U − X )−1e − λ+ + (U − X )−1Λ+∆x (again, x > 0 and x < u make
X−1 and (U − X )−1 well-defined, and we have used similar tricks as before).
Substituting this in the first constraint gives a Normal Equation version in
[∆x , ∆µ ] only, and then substituting away ∆µ gives a Reduced KKT version.
The lengthy and tedious final formulæ are left as final exercise [back]
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