A Bird's Eye on Optimization

Antonio Frangioni

Dipartimento di Informatica, Università di Pisa

Model-Driven Decision-Making Methods (666AA) AY 2021/22

Outline

Mathematical Models, Optimization Problems

Optimization is Difficult

Black-box Optimization

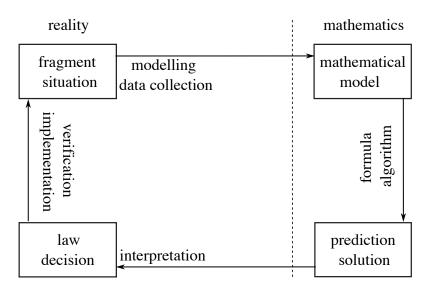
PDE-Constrained Optimization

NonLinear Nonconvex Problems

Mixed-Integer Convex (Linear) Problems

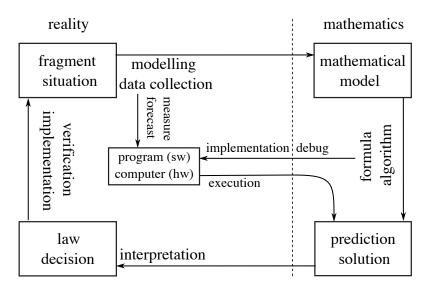
Conclusions

Mathematical models



The fundamental cycle

Mathematical models



The fundamental cycle and its implementation

Optimization problem

- Descriptive model: tells how the world (supposedly) is
- Prescriptive model: tells how the world (supposedly) should be a.k.a. optimization problem:

(P)
$$f_* = \min \{ f(x) : x \in X \}$$

- arbitrary set X = feasible region of possible choices x
- typically X specified by G ⊃ X (ground set) + constraints dictating required properties of feasible solutions x ∈ X
 (⇒ x ∈ G \ X = unfeasible solution (??)]
- $f: X \to \mathbb{R}$ objective function mapping preferences (cost)
- optimal value $f_* \leq f(x) \forall x \in X$, $\forall v > f_* \exists x \in X$ s.t. f(x) < v
- we want optimal solution: $x_* \in X$ s.t. $f(x_*) = f_*$
- Everything looks pretty straightforward

Optimization problem

- Descriptive model: tells how the world (supposedly) is
- Prescriptive model: tells how the world (supposedly) should be a.k.a. optimization problem:

(P)
$$f_* = \min \{ f(x) : x \in X \}$$

- arbitrary set X = feasible region of possible choices x
- typically X specified by G ⊃ X (ground set) + constraints dictating required properties of feasible solutions x ∈ X
 (⇒ x ∈ G \ X = unfeasible solution (??)]
- $f: X \to \mathbb{R}$ objective function mapping preferences (cost)
- optimal value $f_* \leq f(x) \forall x \in X$, $\forall v > f_* \exists x \in X$ s.t. f(x) < v
- we want optimal solution: $x_* \in X$ s.t. $f(x_*) = f_*$
- Everything looks pretty straightforward ... or is it?

"Bad" optimization problems

- "Bad case" II: ∀M∃x_M ∈ X s.t. f(x_M) ≤ M ("unbounded [below]") min{x : x ∈ ℝ ∧ x ≤ 0} there are solutions as good as you like (which may be important to know)
- Not really bad cases, just things that can happen
- Solving an optimization problem actually three different things:
 - Finding x_{*} and proving it is optimal (how??)
 - Proving $X = \emptyset$ (how??)
 - ► Constructively prove $\forall M \exists x_M \in X \text{ s.t. } f(x_M) \leq M \text{ (how??)}$

• Let's just stick to nonempty and bounded $X \Longrightarrow \exists x_*$

"Bad" optimization problems

- "Bad case" II: ∀M∃x_M ∈ X s.t. f(x_M) ≤ M ("unbounded [below]") min{x : x ∈ ℝ ∧ x ≤ 0} there are solutions as good as you like (which may be important to know)
- Not really bad cases, just things that can happen
- Solving an optimization problem actually three different things:
 - Finding x_{*} and proving it is optimal (how??)
 - Proving $X = \emptyset$ (how??)
 - ► Constructively prove $\forall M \exists x_M \in X \text{ s.t. } f(x_M) \leq M \text{ (how??)}$

• Let's just stick to nonempty and bounded $X \Longrightarrow \exists x_* \dots$ or does it?

"Very bad" optimization problems

Things can be worse: not empty, not unbounded, but no x_{*} either:

$$\min\{x : x \in \mathbb{R} \land x > 0\}$$
 ("bad" X)

 $\min\{1/x : x \in \mathbb{R} \land x > 0\}$
 ("bad" f and X)

 $\min\{f(x) = \begin{cases} x & \text{if } x > 0\\ 1 & \text{if } x = 0 \end{cases}$
 ("bad" f)

► Still ∃ approximately optimal \bar{x} for given $\varepsilon > 0$: $f(\bar{x}) - f_* \le \varepsilon$ (absolute) or $(f(\bar{x}) - f_*) / |f_*| \le \varepsilon$ (relative)

- Good enough for us (and anyway can't to better in general)
- Then optimizaton problems are simple objects: "just" a set and a function

"Very bad" optimization problems

Things can be worse: not empty, not unbounded, but no x_{*} either:

$$\min\{x : x \in \mathbb{R} \land x > 0\}$$
 ("bad" X)

 $\min\{1/x : x \in \mathbb{R} \land x > 0\}$
 ("bad" f and X)

 $\min\{f(x) = \begin{cases} x & \text{if } x > 0\\ 1 & \text{if } x = 0 \end{cases}$
 ("bad" f)

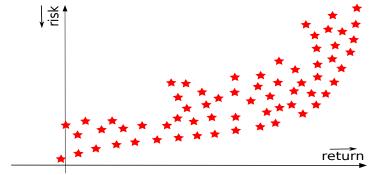
► Still ∃ approximately optimal \bar{x} for given $\varepsilon > 0$: $f(\bar{x}) - f_* \le \varepsilon$ (absolute) or $(f(\bar{x}) - f_*) / |f_*| \le \varepsilon$ (relative)

- Good enough for us (and anyway can't to better in general)
- Then optimizaton problems are simple objects: "just" a set and a function

Or are they?

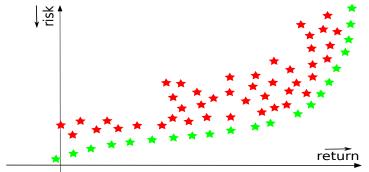
Often, the actual problem is min { [f₁(x), f₂(x)] : x ∈ X } more than one objective, with incomparable units (apples & oranges)

- ▶ Often, the actual problem is $\min \{ [f_1(x), f_2(x)] : x \in X \}$ more than one objective, with incomparable units (apples & oranges)
- Textbook example: portfolio selection problem



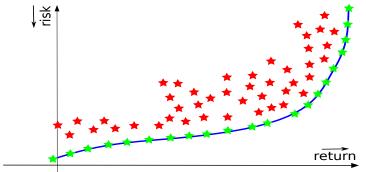
No "best" solution, only

- ▶ Often, the actual problem is $\min \{ [f_1(x), f_2(x)] : x \in X \}$ more than one objective, with incomparable units (apples & oranges)
- Textbook example: portfolio selection problem



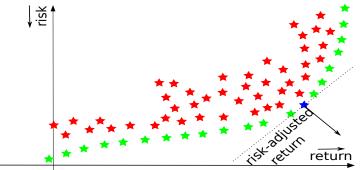
No "best" solution, only non-dominated ones on the

- ▶ Often, the actual problem is $\min \{ [f_1(x), f_2(x)] : x \in X \}$ more than one objective, with incomparable units (apples & oranges)
- Textbook example: portfolio selection problem



No "best" solution, only non-dominated ones on the Pareto frontier
 Two practical solutions:

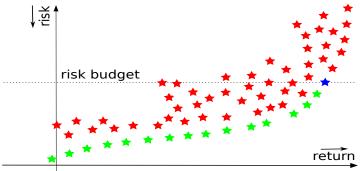
- ▶ Often, the actual problem is $\min \{ [f_1(x), f_2(x)] : x \in X \}$ more than one objective, with incomparable units (apples & oranges)
- Textbook example: portfolio selection problem



No "best" solution, only non-dominated ones on the Pareto frontier

► Two practical solutions: maximize risk-adjusted return, a.k.a. scalarization min { $f_1(x) + \alpha f_2(x) : x \in X$ } (which α ??)

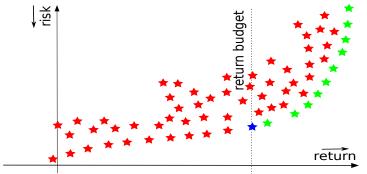
- Often, the actual problem is min { [f₁(x), f₂(x)] : x ∈ X } more than one objective, with incomparable units (apples & oranges)
- Textbook example: portfolio selection problem



No "best" solution, only non-dominated ones on the Pareto frontier

► Two practical solutions: maximize return with budget on maximum risk, a.k.a. budgeting min { $f_1(x) : f_2(x) \le \beta_2$, $x \in X$ } (which β_2 ??)

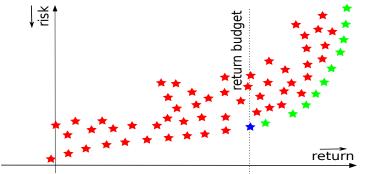
- ▶ Often, the actual problem is $\min \{ [f_1(x), f_2(x)] : x \in X \}$ more than one objective, with incomparable units (apples & oranges)
- Textbook example: portfolio selection problem



No "best" solution, only non-dominated ones on the Pareto frontier

► Two practical solutions: minimize risk with budget on minimum return, a.k.a. budgeting min { $f_2(x) : f_1(x) \le \beta_1, x \in X$ } (which β_1 ??)

- Often, the actual problem is min { [f₁(x), f₂(x)] : x ∈ X } more than one objective, with incomparable units (apples & oranges)
- Textbook example: portfolio selection problem



No "best" solution, only non-dominated ones on the Pareto frontier

- ► Two practical solutions: minimize risk with budget on minimum return, a.k.a. budgeting min { $f_2(x)$: $f_1(x) \le \beta_1$, $x \in X$ } (which β_1 ??)
- All a bit fuzzy, but it's the nature of the beast

[Real-valued] Functions/Sets Can Be Very Hard to Compute

▶ OK, let's assume $f : X \to \mathbb{R}$: then (P) is easy

[Real-valued] Functions/Sets Can Be Very Hard to Compute

▶ OK, let's assume $f : X \to \mathbb{R}$: then (P) is easy ... or is it?

•
$$X \subset G \equiv (indicator) \text{ function } \iota_X : G \rightarrow \{0, \infty\}$$

- $x \in X \equiv I_X(x) \leq 0$ (constraint)
- All the difficulty lies in computing function values:

$$(P) \equiv \min \left\{ f_X(x) = f(x) + \iota_X(x) \right\}$$

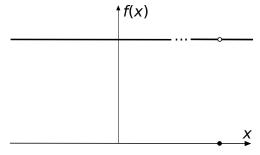
essential objective f_X takes up all the complexity

- Vice-versa also true: f can always be linear (with complex X)
 (P) ≡ min { v : x ∈ X , v ≥ f(x) }
- Functions can be demonstrably impossible to compute (P) demonstrably impossible to solve
- Even if not impossible, computing a function can be very hard

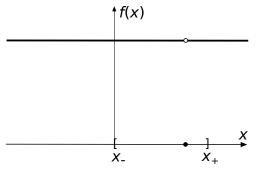
• OK, let's assume f_X is "easy to compute": then (P) is easy

• OK, let's assume f_X is "easy to compute": then (P) is easy ... or is it?

- OK, let's assume f_X is "easy to compute": then (P) is easy ... or is it?
- Impossible even in one dimension because isolated minima can be anywhere



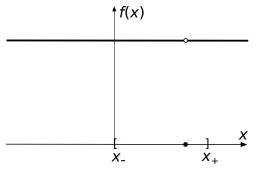
- OK, let's assume f_X is "easy to compute": then (P) is easy ... or is it?
- Impossible even in one dimension because isolated minima can be anywhere



▶ Does it help restricting to $x \in X = [x_-, x_+]$ ($-\infty < x_- < x_+ < +\infty$)?

No: still uncountably many points to try

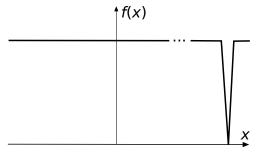
- OK, let's assume f_X is "easy to compute": then (P) is easy ... or is it?
- Impossible even in one dimension because isolated minima can be anywhere



▶ Does it help restricting to $x \in X = [x_-, x_+]$ ($-\infty < x_- < x_+ < +\infty$)?

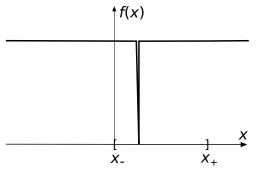
- No: still uncountably many points to try
- Is it because f "jumps"?

- OK, let's assume f_X is "easy to compute": then (P) is easy ... or is it?
- Impossible even in one dimension because isolated minima can be anywhere



- ▶ Does it help restricting to $x \in X = [x_-, x_+]$ ($-\infty < x_- < x_+ < +\infty$)?
- No: still uncountably many points to try
- ls it because f "jumps"? No, f can have isolated \downarrow spikes anywhere

- OK, let's assume f_X is "easy to compute": then (P) is easy ... or is it?
- Impossible even in one dimension because isolated minima can be anywhere



▶ Does it help restricting to $x \in X = [x_-, x_+]$ ($-\infty < x_- < x_+ < +\infty$)?

- No: still uncountably many points to try
- Is it because f "jumps"? No, f can have isolated \$\frac{1}{spikes}\$ anywhere
- ... even on $X = [x_-, x_+]$ as spikes can be aribtrarily narrow

Making Optimization at least Possible

- ▶ Impose $X = [x_-, x_+]$ with $D = x_+ x_- < \infty$ (finite diameter)
- ▶ Impose spikes can't be arbitrarily narrow $\equiv f$ cannot change too fast $\equiv f$ Lipschitz continuous (L-c) on $X \exists L > 0$ s.t.

$$|f(x) - f(y)| \le L|x - y| \qquad \forall x, y \in X$$

- $f \text{ L-c} \implies$ a fortiori f does not "jump" (continuous)
- F L-c ⇒ one ε-optimum can be found with O(LD/ε) evaluations: uniformly sample X with step 2ε/L
- Bad news: no algorithm can work in less than $\Omega(LD/\varepsilon)$
- \blacktriangleright # steps inversely proportional to accuracy, just not doable for "small" arepsilon
- Even very dramatically worse if $X \subset \mathbb{R}^n$ (will see)
- Also, L generally unknown and not easy to estimate (will see) but algorithms actually require/use it

Outline

Mathematical Models, Optimization Problems

Optimization is Difficult

Black-box Optimization

PDE-Constrained Optimization

NonLinear Nonconvex Problems

Mixed-Integer Convex (Linear) Problems

Conclusions

Black-box Optimization

• (P) where $f(\cdot)$ and $\iota_X(\cdot)$ are "just any function" \equiv

complex mathematical model with no closed formulæ (most of them):

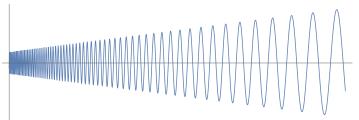
- numerical integration
- systems of PDEs
- electromagnetic propagation models (ray-tracing, ...)
- heat propagation models (heating/cooling of buildings, ...)
- systems with complex management procedures (storage/plant design with route/machine optimization ...)
- systems with stochastic components (+ possibly complex management) (queues in ERs, users of cellular networks, ...)
- A.k.a. simulation-based optimization: the system can only be numerically simulated as opposed to algebraically described
- Computation of $f_X(x)$ costly (can do few 100s/1000s of them)
- ▶ No information about the behaviour of $f(\cdot)$ "close" to x

Black-box Optimization Algorithms

- ► Typically require bound constraints: w.l.o.g. X = [0, 1]ⁿ and other constraints "hidden" in f(·)
- Basically only (clever) "shotgun approach": fire enough rounds and eventually a good solution happens
- Good playground for population-based approaches (genetic algorithms, particle swarm, ...)
- Any other standard search (simulated annealing, taboo search, GRASP, variable-neighbourhood search, ...)
- Better idea: construct a model of f(·) out of past iterates to drive the search (regression, kriging, radial-basis functions, SVR, ML, ...)
- Bad news: none of these can possibly work efficiently (in theory)

How (DoublePlusUn)Good are Black-box Optimization Algorithms? 14

• If $f(\cdot)$ "swings wildly", things can be arbitrarily bad



• Assume $f : \mathbb{R}^n \to \mathbb{R}$ L-c with known constant L

- For each algorithm $\exists f(\cdot)$ s.t. finding ε -optimal solution requires $\Omega(L/\varepsilon)^n$ evaluations that's very bad
- No free lunch theorem says "all algorithms equally bad"
- In practice is not as bad, but cost indeed grows very rapidly with n

▶ $n \approx 10 - 100$ if $f(\cdot)$ very costly, perhaps $n \approx 1000$ if not too costly

Simulation-based Optimization

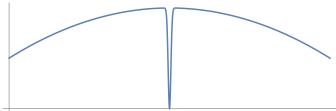
• f(x) may be a random process:

average performance computed via Montecarlo out of simulations

- Many examples:
 - behaviour of users
 - impact of weather on energy production/consumption
 - errors in measurement/impurity of materials
- Interesting tidbit: almost all approaches are inherently randomized (if you don't know anything, you may as well throw dices)
- Good part: can be trivially parallelized (as all Montecarlo do)
- Bad part: many runs = costly to compute average with high accuracy
- Intuitively, high accuracy only needed close to x_{*}
- But how do I tell if I'm close x_{*}? And which x_{*}?

So, Can I Solve Black-Box Optimization Problems?

- In a nutshell: if everything goes very, very well
 - you don't have many parameters (n in the few tens, ...)
 - you don't really need the best solution, a good one is OK
 - you have a lot of time and/or a supercomputer at hand
 - f is "nice enough": Lipschitz continuous, no isolated local minima, ...



- Good news: plenty of general-purpose black-box solvers, simple to use
- Bad news: difficult to choose/tune, none will ever scale to large-size
- In many cases, it is just what is needed
- Can we do better? Yes, we can if we have more structure

Outline

Mathematical Models, Optimization Problems

- **Optimization is Difficult**
- Black-box Optimization
- **PDE-Constrained Optimization**
- NonLinear Nonconvex Problems

Mixed-Integer Convex (Linear) Problems

Conclusions

Let's Pry Open That Black Box

- Fundamental concept: if you know the structure of $f(\cdot)/X$, exploit it
- Very important structure: Partial Differential Equations
- Model disparate phenomena as such as:
 - sound, heat, diffusion
 - electromagnetism (Maxwell's equations)
 - fluid dynamics (Navier–Stokes equations)
 - elasticity, ...
- Countless many applications:
 - weather forecast, ocean currents, pollution diffusion, ...
 - flows in pipes (water, gas, blood, ...)
 - air flow (airplane wing, car, wind turbine, ...)
 - behaviour of complex materials/objects (buildings, seismic models, ...)
- Optimal design/operation of many systems has PDE-defined f(·)/X:
 PDE-Constrained Optimization (PDE-CO) problem

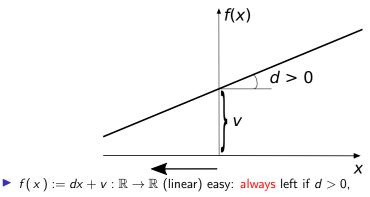
PDE-Constrained Optimization Problem

- General form of the problem:
 - (PDE-CO) min $\{f(c, s) : \mathcal{H}(c, s) = 0, \mathcal{G}(c, s) \ge 0\}$ x = [c, s], explicit description of X:
 - s = state (pressure/velocity of air, force in material, ...)
 - c = controls (shape of wing/blade, position of actuators, ...)
 - f(c, s) = measure of function \implies typically involves integrals
 - $\mathcal{H}(c, s) = \mathsf{PDE} \text{ constraints} (Navier-Stokes equations, ...)$
 - $\mathcal{G}(c, s) =$ "other" algebraic constraints (min/max size/position, ...)
- Each $s_i : \mathbb{R}^k \to \mathbb{R}$ a function: $X \subset \mathbb{F}^n$
- Often k small-ish: 2D/3D coordinates, fields, time (optimal control)
- Controls may be functions or "simple" reals (≡ linear functions)
- ▶ \mathbb{F}^n is a whole lot bigger than even \mathbb{R}^n (all functions vs. linear ones): Banach space, infinite-dimensional while \mathbb{R}^n has finite dimension *n*
- What did I gain from knowing f, H, G?

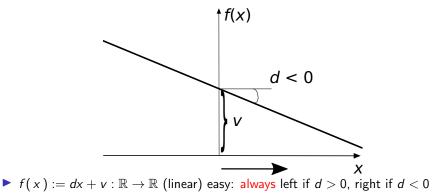
► (the) "Space (𝔽ⁿ) is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is."

► (the) "Space (𝔽ⁿ) is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is." Which way is x_{*}?

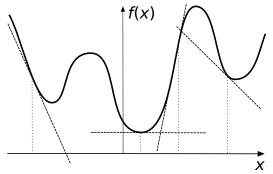
► (the) "Space (𝔽ⁿ) is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is." Which way is x_{*}?



► (the) "Space (𝔽ⁿ) is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is." Which way is x_{*}?



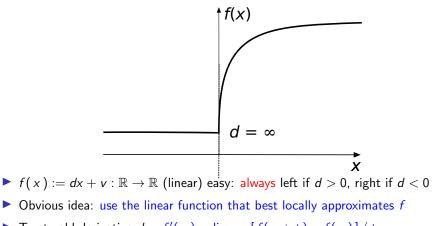
► (the) "Space (𝔽ⁿ) is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is." Which way is x_{*}?



▶ $f(x) := dx + v : \mathbb{R} \to \mathbb{R}$ (linear) easy: always left if d > 0, right if d < 0

- Obvious idea: use the linear function that best locally approximates f
- ► Trusty old derivative d = f'(x) = lim_{t→0}[f(x + t) f(x)] / t (putting a lot under the carpet even in ℝⁿ, not to mention ℝⁿ)

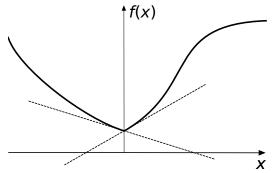
► (the) "Space (𝔽ⁿ) is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is." Which way is x_{*}?



► Trusty old derivative d = f'(x) = lim_{t→0}[f(x + t) - f(x)] / t (putting a lot under the carpet even in ℝⁿ, not to mention ℝⁿ)

Provided it exists

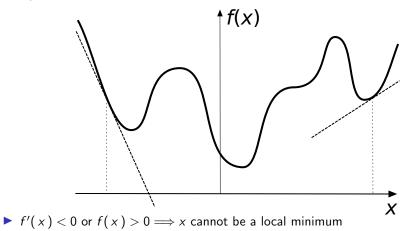
► (the) "Space (𝔽ⁿ) is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is." Which way is x_{*}?



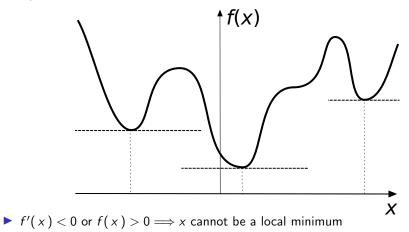
▶ $f(x) := dx + v : \mathbb{R} \to \mathbb{R}$ (linear) easy: always left if d > 0, right if d < 0

- Obvious idea: use the linear function that best locally approximates f
- Trusty old derivative d = f'(x) = lim_{t→0}[f(x + t) f(x)] / t (putting a lot under the carpet even in ℝⁿ, not to mention ℝⁿ)
- Provided it exists . . . and it is unique

(Local) Optimality and Derivatives

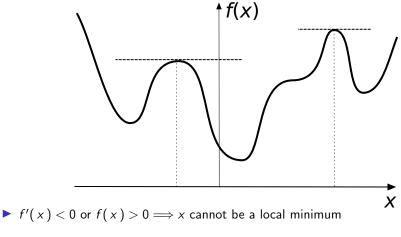


(Local) Optimality and Derivatives



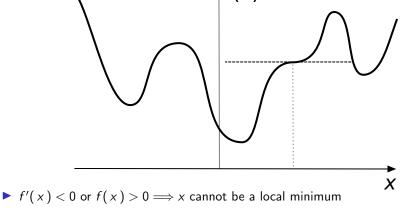
• f'(x) = 0 in all local minima \implies in the global one

(Local) Optimality and Derivatives



- f'(x) = 0 in all local minima \implies in the global one
- However, f'(x) = 0 also in local (global) maxima

(Local) Optimality and Derivatives f(x)



- f'(x) = 0 in all local minima \implies in the global one
- However, f'(x) = 0 also in local (global) maxima and in saddle points

- To find x_* , try finding stationary point x s.t. f'(x) = 0
- f'(x) = 0 (necessary, not sufficient) optimality condition: optimization is a system of (nonlinear) equations
- Still a lot hidden under the carpet:
 - what exactly is f' when $X \neq \mathbb{R}$?
 - ▶ lots of "ifs" and "buts" (f' has to exist, X has to be "nice", ...)
- If all goes well, (local) optimality can be detected using derivatives (we'll see more details later in a simpler setting) => optimality conditions for PDE-CO is a PDE system. But:

- To find x_* , try finding stationary point x s.t. f'(x) = 0
- f'(x) = 0 (necessary, not sufficient) optimality condition:
 optimization is a system of (nonlinear) equations
- Still a lot hidden under the carpet:
 - what exactly is f' when $X \neq \mathbb{R}$?
 - lots of "ifs" and "buts" (f' has to exist, X has to be "nice", ...)
- If all goes well, (local) optimality can be detected using derivatives (we'll see more details later in a simpler setting) => optimality conditions for PDE-CO is a PDE system. But:
 - significantly more complex than H itself

- To find x_* , try finding stationary point x s.t. f'(x) = 0
- f'(x) = 0 (necessary, not sufficient) optimality condition:
 optimization is a system of (nonlinear) equations
- Still a lot hidden under the carpet:
 - what exactly is f' when $X \neq \mathbb{R}$?
 - ▶ lots of "ifs" and "buts" (f' has to exist, X has to be "nice", ...)
- If all goes well, (local) optimality can be detected using derivatives (we'll see more details later in a simpler setting) => optimality conditions for PDE-CO is a PDE system. But:
 - significantly more complex than H itself
 - mathematical details far from easy

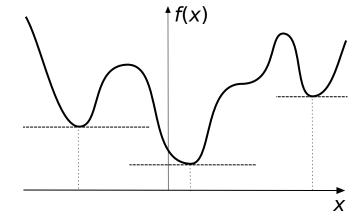
- To find x_* , try finding stationary point x s.t. f'(x) = 0
- f'(x) = 0 (necessary, not sufficient) optimality condition:
 optimization is a system of (nonlinear) equations
- Still a lot hidden under the carpet:
 - what exactly is f' when $X \neq \mathbb{R}$?
 - ▶ lots of "ifs" and "buts" (f' has to exist, X has to be "nice", ...)
- If all goes well, (local) optimality can be detected using derivatives (we'll see more details later in a simpler setting) => optimality conditions for PDE-CO is a PDE system. But:
 - significantly more complex than H itself
 - mathematical details far from easy
 - PDE systems have no closed-form solution anyway

- To find x_* , try finding stationary point x s.t. f'(x) = 0
- f'(x) = 0 (necessary, not sufficient) optimality condition:
 optimization is a system of (nonlinear) equations
- Still a lot hidden under the carpet:
 - what exactly is f' when $X \neq \mathbb{R}$?
 - ▶ lots of "ifs" and "buts" (f' has to exist, X has to be "nice", ...)
- If all goes well, (local) optimality can be detected using derivatives (we'll see more details later in a simpler setting) => optimality conditions for PDE-CO is a PDE system. But:
 - significantly more complex than H itself
 - mathematical details far from easy
 - PDE systems have no closed-form solution anyway
 - \implies have to discretize the PDE and solve approximately

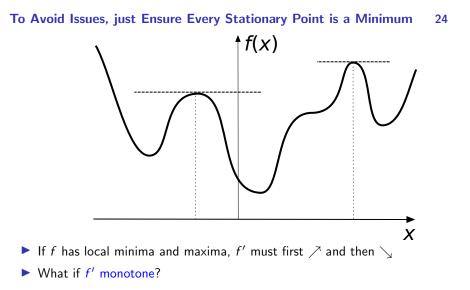
Tell Me Again, what did I Gain, Exactly?

- Still back to "have to compute $f(\cdot)$ numerically"
- However, can now prove that x (= [c, u]) is a (local) minimum
- Also, algorithms that use derivatives are vastly more efficient (we'll see more details later in a simpler setting)
- Can quickly reach a (local) minimum and stop there: no more random moves for fear of having missed a better point nearby
- ▶ $|f'(x)| \approx$ "distance" from x_* , useful to choose accuracy of simulation
- Explicit optimality conditions leads to multiple strategies:
 - first discretize, then write optimality conditions
 - first write optimality conditions, then discretize

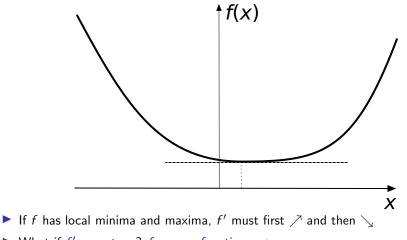
To Avoid Issues, just Ensure Every Stationary Point is a Minimum 24



If f has local minima

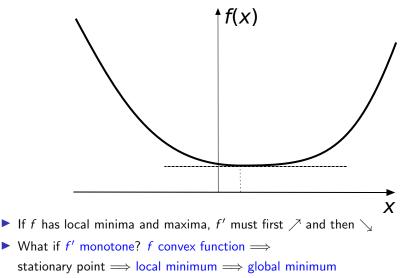


To Avoid Issues, just Ensure Every Stationary Point is a Minimum 24



• What if f' monotone? f convex function \Longrightarrow

To Avoid Issues, just Ensure Every Stationary Point is a Minimum 24



- $f(\cdot)$ and X convex $\implies x_*$ can be found "easily"
- Rules to construct $f(\cdot)$ and X convex

So, Can I Solve PDE-Constrained Optimization Problems

- In a nutshell: if everything goes very well
 - f, \mathcal{H} and \mathcal{G} must have the right properties
 - details have to be worked out, options be wisely chosen
 - local optimality must be OK (or the problem convex to start with)
- There is no general-purpose PDE-OC solver, each case has to be dealt with individually
- However, tools are there, knowledge is there
- Problems of scale required by practical applications can be solved
 - with a little help from my (PDE-CO-savvy) friends
 - and possibly a supercomputer at hand
- As always, structure is your friend (e.g., optimal control has many specialized approaches exploiting time)
 - Is it worth? In quite many cases, it is

Outline

Mathematical Models, Optimization Problems

- **Optimization is Difficult**
- Black-box Optimization
- **PDE-Constrained Optimization**
- NonLinear Nonconvex Problems

Mixed-Integer Convex (Linear) Problems

Conclusions

What If I Only Have Algebraic Constraints?

"Easier" problem: no PDE constraints, "only" algebraic ones
 X = { x ∈ ℝⁿ : g_i(x) ≤ 0 i ∈ I , h_j(x) = 0 j ∈ J }
 I = set of inequality constraints, J = set of equality constraints

$$\mathsf{G}(x) = [g_i(x)]_{i \in \mathcal{I}} : \mathbb{R}^n \to \mathbb{R}^{|\mathcal{I}|}, \ \mathsf{H}(x) = [h_i(x)]_{i \in \mathcal{J}} : \mathbb{R}^n \to \mathbb{R}^{|\mathcal{J}|}$$
$$X = \{ x \in \mathbb{R}^n : \ \mathsf{G}(x) \le 0, \ \mathsf{H}(x) = 0 \}$$

 $G(\cdot)$, $H(\cdot)$ algebraic (vector-valued, multivariate) real functions

- Could always assume $|\mathcal{I}| = 1$ and $|\mathcal{J}| = 0$:
 - $h_{j}(x) = 0 \equiv h_{j}(x) \le 0 \land -h_{j}(x) \le 0$
 - $\bullet \quad G(x) \leq 0 \equiv \max\{g_i(x) : i \in \mathcal{I}\} = g(x) \leq 0$

but good reasons not to (exploit structure when is there)

What does this gives to me? You know the drill: derivatives

Partial Derivatives, Gradient, Differentiability

▶ $f : \mathbb{R}^n \to \mathbb{R}$, partial derivative of f w.r.t. x_i at $x \in \mathbb{R}^n$:

$$\frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i+t, x_{i+1}, \dots, x_n) - f(x)}{t}$$

just $f'(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_n)$ treating x_j for $j \neq i$ as constants

Good news: computing derivatives mechanic, Automatic Differentiation software will do it for you, not only from formulæ but from code

Partial Derivatives, Gradient, Differentiability

►
$$f : \mathbb{R}^n \to \mathbb{R}$$
, partial derivative of f w.r.t. x_i at $x \in \mathbb{R}^n$:

$$\frac{\partial f}{\partial x_i}(x) = \lim_{t\to 0} \frac{f(x_1, \dots, x_{i-1}, x_i+t, x_{i+1}, \dots, x_n) - f(x)}{t}$$
just $f'(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n)$ treating x_j for $j \neq i$ as constants

Good news: computing derivatives mechanic, Automatic Differentiation software will do it for you, not only from formulæ but from code ... provided they exist (f(x) = |x|, f'(x) = ???)

• Gradient = vector of all partial derivatives all important in optimization $\nabla f(x) := \left[\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x) \right]$

- f differentiable at $x \approx \forall i \frac{\partial f}{\partial x_i}(\cdot)$ continuous ($\iff \exists$)
- ▶ $f \in C^1$: $\nabla f(x)$ continuous $\equiv f$ differentiable ($\Longrightarrow f$ continuous) $\forall x$
- *f* ∈ *C*¹ ⇒ finding stationary point) "easy": just go in the other direction (−∇*f*(*x*) = steepest descent direction)

If You Win, Keep Playing

$$\blacktriangleright f: \mathbb{R}^n \to \mathbb{R}^m, f(x) = [f_1(x), f_2(x), \dots, f_m(x)]$$

Partial derivative: usual stuff, except with extra index

$$\frac{\partial f_j}{\partial x_i}(x) = \lim_{t \to 0} \frac{f_j(x_1, \dots, x_{i-1}, x_i+t, x_{i+1}, \dots, x_n) - f_j(x)}{t}$$

• $\nabla f(x) : \mathbb{R}^n \to \mathbb{R}^n$ itself has a gradient: Hessian of f

$$\nabla^{2}f(x) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x) \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}}(x) & \frac{\partial^{2}f}{\partial x_{2}^{2}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x) & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x,) \end{bmatrix}$$

second-order partial derivative $\frac{\partial^2 f}{\partial x_j \partial x_i}$ $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i^2}$

f ∈ *C*²: ∇²*f*(*x*) continuous (⇒ symmetric) ≡ ∇*f* differentiable ∀*x f* ∈ *C*² ⇒ finding local minimum (stationary point) "super-easy"

Local (Unconstrained) Optimization Algorithms

- $X = \mathbb{R}^n \implies$ all depends on quality of derivatives of f:
 - f ∉ C¹ ⇒ subgradient methods ⇒ sublinear convergence (error at step k ≈ 1/√k, O(1/ε²) iterations)
 - f ∈ C¹ ⇒ gradient methods ⇒ linear convergence
 (error at step k ≈ γ^k with γ < 1, O(1 / log(ε)) iterations)
 - ► $f \in C^2$ \implies Newton-type methods \implies superlinear/quadratic convergence (error at step $k \approx \gamma^{k^2} / \gamma^{2^k}$ with $\gamma < 1$, $\approx O(1)$ iterations)
- ► All bounds ≈ independent from n (can be "hidden in the constants") ⇒ good for large-scale problems (n very large)
- Not all trivial, line search/trust region, globalization, ...
- ► Gradient methods can be rather slow in practice (γ ≈ 1), need to cure zig-zagging (heavy ball, fast gradients, ...)
- Hessian a big guy, inverting it O(n³) a serious issue for large-scale: quasi-Newton/conjugate gradient only O(n²) / O(kn) (but trade-offs)
- All in all, local (unconstrained) convergence very well dealt with

How About Constrained Optimization?

- Local optimality still "easy" to characterize via derivatives
- Karush-Kuhn-Tucker conditions: $\exists \lambda \in \mathbb{R}^{|\mathcal{I}|}_+$ and $\mu \in \mathbb{R}^{|\mathcal{I}|}$ s.t.

$$g_{i}(x) \leq 0 \quad i \in \mathcal{I} \quad , \quad h_{j}(x) = 0 \quad j \in \mathcal{J}$$

$$\nabla f(x) + \sum_{i \in \mathcal{I}} \lambda_{i} \nabla g_{i}(x) + \sum_{j \in \mathcal{J}} \mu_{j} \nabla h_{j}(x) = 0$$

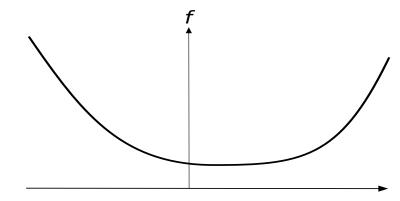
$$\sum_{i \in \mathcal{I}} \lambda_{i} g_{i}(x) = 0$$
(KKT-CS)

- $= x \text{ stationary point of Lagrangian function (in x, <math>\lambda / \mu \text{ parameters})$ $L(x; \lambda, \mu) = f(x) + \sum_{i \in \mathcal{I}} \lambda_i g_i(x) + \sum_{j \in \mathcal{I}} \mu_j h_j(x)$ (\rightsquigarrow duality ...)
- KKT Theorem: x local optimum + constraint qualifications \implies (KKT)
- (P) convex problem: (KKT) \implies x global optimum
- Otherwise, quite involved second-order optimality conditions ...

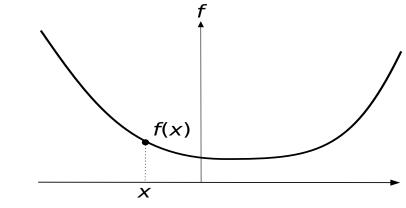
Meaning What, Algorithmically?

- In a nutshell, that ∃ efficient local algorithms
- At the very least, $(KKT) \approx x$ local minimum, stop the search
- Checking if (KKT) holds "easy" (Farkas' Lemma ...)
- Optimization = solving systems of nonlinear equations and inequalities
- Does not mean that algorithms are obvious:
 - several different forms (primal, dual, ...)
 - several different ideas (active set, projection, barrier, penalty, ...)
 - combinatorial aspects (active set choice) may make them inefficient
- ▶ Yet, provably and practically efficient algorithms are there if data of the problem nice ($f, G \in C^1/C^2, H$ affine ...)
- Particularly relevant/elegant class: primal-dual interior point methods
- (Reasonably) robust and efficient implementations available, although numerical issues (linear algebra accuracy/cost) still nontrivial

- Unfortunately an entirely different game: sifting through all X required
- Derivatives a local object, can't give global information except in the convex case, where they actually do

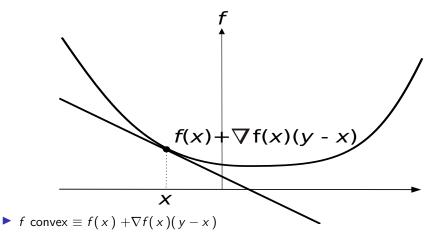


- Unfortunately an entirely different game: sifting through all X required
- Derivatives a local object, can't give global information except in the convex case, where they actually do

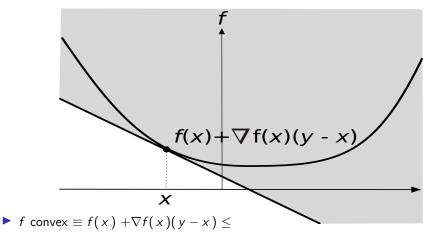


•
$$f \text{ convex} \equiv f(x)$$

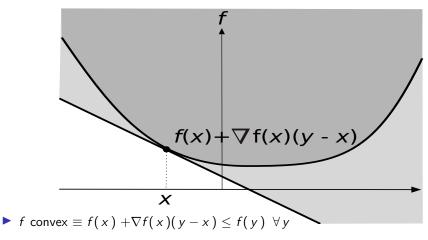
- Unfortunately an entirely different game: sifting through all X required
- Derivatives a local object, can't give global information except in the convex case, where they actually do



- Unfortunately an entirely different game: sifting through all X required
- Derivatives a local object, can't give global information except in the convex case, where they actually do

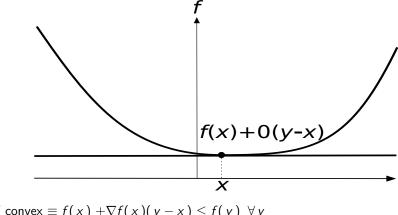


- Unfortunately an entirely different game: sifting through all X required
- Derivatives a local object, can't give global information except in the convex case, where they actually do



How About Global Optimality, Then?

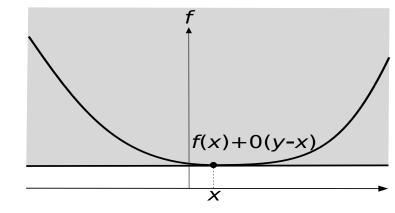
- Unfortunately an entirely different game: sifting through all X required
- Derivatives a local object, can't give global information except in the convex case, where they actually do



$$\nabla f(x) = 0$$

How About Global Optimality, Then?

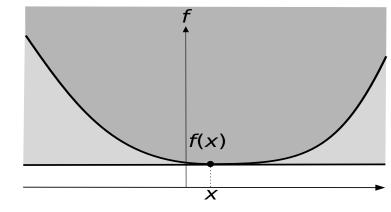
- Unfortunately an entirely different game: sifting through all X required
- Derivatives a local object, can't give global information except in the convex case, where they actually do



- $f \text{ convex} \equiv f(x) + \nabla f(x)(y-x) \leq f(y) \quad \forall y$
- $\nabla f(x) = 0 \Longrightarrow f(x)$

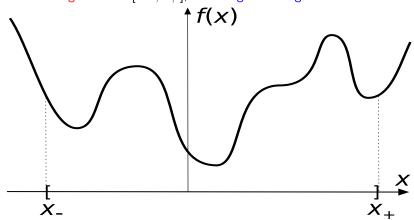
How About Global Optimality, Then?

- Unfortunately an entirely different game: sifting through all X required
- Derivatives a local object, can't give global information except in the convex case, where they actually do

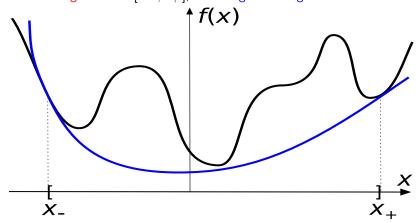


- $f \text{ convex} \equiv f(x) + \nabla f(x)(y-x) \leq f(y) \quad \forall y$
- $\blacktriangleright \nabla f(x) = 0 \Longrightarrow f(x) \ [+0(y-x)] \le f(y) \ \forall y$

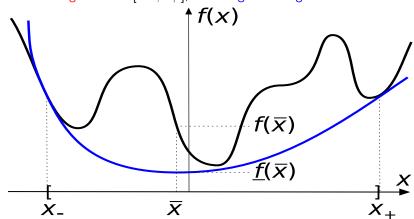
Sift through all $X = [x_{-}, x_{+}]$, but using a clever guide



Sift through all $X = [x_{-}, x_{+}]$, but using a clever guide



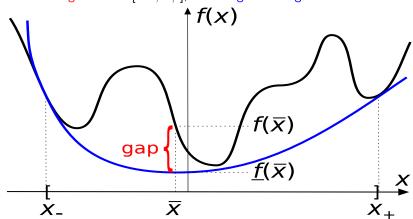
Sift through all $X = [x_{-}, x_{+}]$, but using a clever guide



Convex lower approximation <u>f</u> of nonconvex f on X

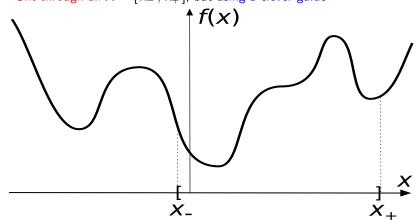
• "Easily" find local \equiv global minimum \bar{x} , giving $\underline{f}(\bar{x}) \leq f_* \leq f(\bar{x})$

Sift through all $X = [x_{-}, x_{+}]$, but using a clever guide



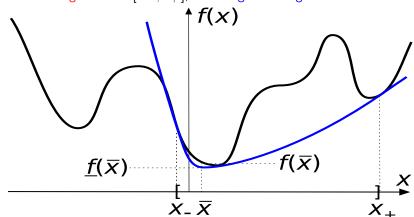
- "Easily" find local \equiv global minimum \bar{x} , giving $\underline{f}(\bar{x}) \leq f_* \leq f(\bar{x})$
- If gap $f(\bar{x}) \underline{f}(\bar{x})$ too large,

• Sift through all $X = [x_{-}, x_{+}]$, but using a clever guide



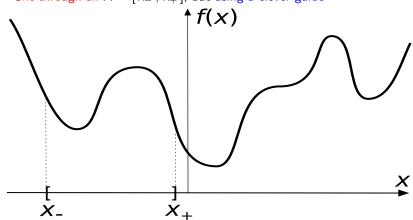
- "Easily" find local \equiv global minimum \bar{x} , giving $\underline{f}(\bar{x}) \leq f_* \leq f(\bar{x})$
- ▶ If gap $f(\bar{x}) \underline{f}(\bar{x})$ too large, partition X and iterate

Sift through all $X = [x_-, x_+]$, but using a clever guide



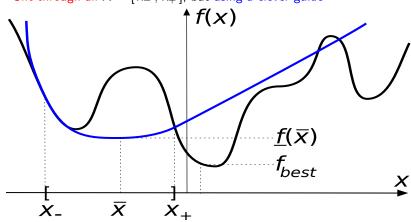
- "Easily" find local \equiv global minimum \bar{x} , giving $\underline{f}(\bar{x}) \leq f_* \leq f(\bar{x})$
- If gap $f(\bar{x}) \underline{f}(\bar{x})$ too large, partition X and iterate
- \underline{f} depends on partition, smaller partition (hopefully) \implies better gap

▶ Sift through all $X = [x_{-}, x_{+}]$, but using a clever guide



- "Easily" find local \equiv global minimum \bar{x} , giving $\underline{f}(\bar{x}) \leq f_* \leq f(\bar{x})$
- If gap $f(\bar{x}) \underline{f}(\bar{x})$ too large, partition X and iterate
- If on some partition

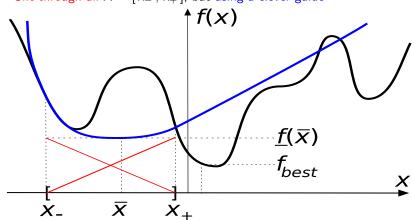
Sift through all $X = [x_{-}, x_{+}]$, but using a clever guide



Convex lower approximation <u>f</u> of nonconvex f on X

- "Easily" find local \equiv global minimum \bar{x} , giving $\underline{f}(\bar{x}) \leq f_* \leq f(\bar{x})$
- ▶ If gap $f(\bar{x}) \underline{f}(\bar{x})$ too large, partition X and iterate
- If on some partition $\underline{f}(\bar{x}) \ge \text{best } f$ -value so far,

Sift through all $X = [x_{-}, x_{+}]$, but using a clever guide



Convex lower approximation <u>f</u> of nonconvex f on X

- "Easily" find local \equiv global minimum \bar{x} , giving $\underline{f}(\bar{x}) \leq f_* \leq f(\bar{x})$
- ▶ If gap $f(\bar{x}) \underline{f}(\bar{x})$ too large, partition X and iterate
- lf on some partition $\underline{f}(\bar{x}) \ge \text{best } f$ -value so far, partition killed for good

Is Something Like This Efficient?

- In a word? No
- ▶ Worst-case: keep dicing and slicing X until pieces "very small" ($\approx (\varepsilon/L)^n$)
- However, in practice it depends on:
 - "how much nonconvex" f really is
 - how good <u>f</u> is as a lower approximation of f
- Best possible lower approximation: convex envelope
- Bad news: computing convex envelopes is hard
- Typical approach:
 - rewrite the expression of f in terms of unary/binary functions
 - apply specific convexification formulæ for each function
- Tedious job, bounds often rather weak
- Good news: implemented in available, well-engineered solvers
- Good news: immensely less inefficient in practice than blind search (at least, bounds allow to cut away whole regions for good)

So, Can I Solve NonLinear Nonconvex Problems?

- In a nutshell: if everything goes quite well
 - f, G and H must have the right properties
 - the less nonconvex they are, the better
 - the less "complicated" they are, the better
- Yet, there are general-purpose nonconvex MINLP solvers which can solve the problem to proven optimality
- ► Using them nontrivial, formulating the problem well crucial (≡ so that a "good <u>f</u> is available")
- Not really "large-scale", but 100s/1000s of variables often doable quickly enough with off-the-shelf tools
- Much larger problems also possible with special tools/effort
- As always, structure is your friend
- Is it worth? In quite many cases, it is (ask chemical Engineers)

Outline

Mathematical Models, Optimization Problems

- **Optimization is Difficult**
- Black-box Optimization
- **PDE-Constrained Optimization**
- NonLinear Nonconvex Problems

Mixed-Integer Convex (Linear) Problems

Conclusions

A Very Convenient Form of Nonconvexity

- Computing "good" convex approximation both complex and difficult
- One very relevant case in which at least "easy": integrality constraints
- x_i ∈ Z, most often x_i ∈ {0, 1} very convenient for discrete choices (start machine/don't, make trip/don't, ...)
- ▶ Clearly nonconvex, \exists nonlinear versions $(x_i(1 x_i) \leq 0, ...)$
- Actually quite powerful: many different nonlinear nonconvex structures can be expressed via that + "simple" (linear) constraints
- ▶ Yet, this requires some rather weird formulation tricks $z = xy \equiv [(z \le x) \land (z \le y) \land (z \ge x + y - 1)]$ if all $x, y, z \in \{0, 1\}$
- If all the rest in the problem convex, then a convex relaxation very easy: continuous relaxation (x_i ∈ Z → x_i ∈ ℝ)
- This does not mean convex relaxation is good, but it may be
- At least makes life a lot easier to solution algorithms

Going All the Way to Help The Solver

- Finding good relaxations crucial for practical efficiency
- Solvers helped a lot by having few, well-controlled nonconvexities
- Mixed-Integer Convex Problems the easiest class of hard problems
- ► Especially famous special case: Mixed-Integer Linear Program
 (MILP) min { cx : Ax ≥ b , x_i ∈ Z i ∈ I }
 ⇒ continuous relaxation ≡ Linear Program
- Very stable and efficient algorithms, some \approx unique (simplex methods)
- Very powerful methods to improve relaxation quality (valid inequalities)
- Countless many results about special combinatorial structures (paths, trees, cuts, matchings, cliques, covers, knapsacks, ...)
- Clever approaches to exploit structure, though some work for MINLP too (Column/Row Generation, Dantzig-Wolfe/Benders' Decomposition, ...)

Put The Human in the Loop

- Fundamental point: formulating the problem well is crucial
- ► Almost anything can be written as a MILP, albeit to some ≈ (not always a good idea: some nonlinearities "nice")
- Many different ways to write the same problem: apparently minor changes can make orders-of-magnitude difference
- Several of the best formulation weird and/or very large (appropriate tricks to only generate the strictly required part)
- Doing it "by hand" should not be required: solvers should be able to automatically find the best formulation (reformulate)
- Good news: the "perfect" formulation provably exists
- Bad news: it is provably (NP-)hard to construct
- Doing it automatically is clearly difficult (but we should try harder)
- Meanwhile, a well-trained eye can make a lot of difference

An Incredibly Nifty Trick: (Mixed-Integer) Conic Programs

- Good news: can "hide" many nonlinearities in a Linear Program
- ► Conic Program: (P) min{ $cx : Ax \ge_{\kappa} b$ } where $x \ge_{\kappa} y \equiv x - y \in K$, K pointed convex cone, e.g.
 - $\mathcal{K} = \mathbb{R}^n_+ \equiv \text{sign constraints} \equiv \text{Linear Program}$
 - $\mathcal{K} = \mathbb{L} = \left\{ x \in \mathbb{R}^n : x_n \ge \sqrt{\sum_{i=1}^{n-1} x_i^2} \right\} \equiv \text{Second-Order Cone Program}$
 - ► $K = S_+ = \{A \succeq 0\} \equiv `` \succeq'' \text{ constraints} \equiv \text{SemiDefinite Program}$
- Exceedingly smart idea: everything is linear, but the cone is not
 a nonlinear program disguised as a linear one
- Contains as special case convex quadratic functions
- Many interesting (convex) nonlinear functions have a conic representation (but have to learn some even weirder formulation trick)
- Continuous relaxation almost as efficient as Linear Program
- Many combinatorial MILP tricks extend di MI-SOCP (valid surfaces, ...)
- Support in general-purpose software growing, already quite advanced

So, Can I Solve Mixed-Integer Linear (Convex) Problems?

- In a nutshell: unless something goes very bad
 - data of the problem by definition is nice
 - a feasible relaxation always there, bounds can be quite good
 - Iots of good ideas (cutting planes, general-purpose heuristics, ...)
- Plenty of general-purpose, well-engineered MILP/MI-SOCP solvers which can solve the problem to proven optimality
- Lots of useful supporting software: algebraic modelling languages, (there for MINLP too), IDEs, interfaces with database/spreadsheet, ...
- 10000/100000 variables often doable in minutes/hours on stock hw/sw if you write the right model
- ▶ Much larger problems $(10^6 / 10^9)$ also possible with special tools/effort
- ► As always, structure is your friend, and many known forms of structures
- Is it worth? In very many cases, it is

Outline

Mathematical Models, Optimization Problems

- **Optimization is Difficult**
- Black-box Optimization
- **PDE-Constrained Optimization**
- NonLinear Nonconvex Problems

Mixed-Integer Convex (Linear) Problems

Conclusions

Conclusions

Optimization problems are difficult

Conclusions

- Optimization problems are difficult ... but there are \neq kinds of "difficult"
- Many problems have structure that can be exploited
- First crucial choice: which class of optimization problems
- Trade-off model accuracy vs. model complexity not trivial
- However, apparently very complex problems may not be that difficult if one knows the right set of modelling tricks
- Lots of stable, well-developed software (even open-source), especially for the most "tractable" problems
- A lot depends on how the problem is written
- The hand who rocks the model is the hand who rules the world