A Bird's Eye on Optimization

Antonio Frangioni

Dipartimento di Informatica, Universita di Pisa

Model-Driven Decision-Making Methods (666AA)
AY 2021/22



Outline

Mathematical Models, Optimization Problems
Optimization is Difficult

Black-box Optimization

PDE-Constrained Optimization

NonLinear Nonconvex Problems
Mixed-Integer Convex (Linear) Problems

Conclusions



Mathematical models 3

reality ; mathematics
fragment modelling i | mathematical
situation  |data collection 5 model

uonejuawduwr
UOTJBOIJLIOA
formula
algorithm

law _ ' prediction
decision  [lnterpretation 1 solution

» The fundamental cycle



Mathematical models

reality

fragment
situation

mathematics

modelling

uonejuawduwr
UOTJBOIJLIOA

1Sed3I0J
dInseawx

data collection

implementation debug

mathematical
model

program (sw)
computer (hw)

law
decision

interpretation

execution

formula
algorithm

» The fundamental cycle and its implementation

prediction
solution




Optimization problem

» Descriptive model: tells how the world (supposedly) is

> Prescriptive model: tells how the world (supposedly) should be

a.k.a. optimization problem:
(P) fo=min{f(x) : xe X}

> arbitrary set X = feasible region of possible choices x

> typically X specified by G D X (ground set) + constraints
dictating required properties of feasible solutions x € X
[=> x € G\ X = unfeasible solution (??)]

> f: X — R objective function mapping preferences (cost)
> optimal value f, < f(x)Vx € X, Vv > f,Ix € X sit. f(x)<v

> we want optimal solution: x. € X s.t. f(x.)=fi

» Everything looks pretty straightforward
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“Bad” optimization problems 5

> “Bad case” I: X =0 (“empty”)
min{x : xERAx<-1Ax>1}

there just is no solution (which may be important to know)

» “Bad case” Il: VM 3xy € X s.t. f(xp) < M (“unbounded [below]")
min{x : xERAXx<O0}
there are solutions as good as you like (which may be important to know)

» Not really bad cases, just things that can happen

» Solving an optimization problem actually three different things:
> Finding x. and proving it is optimal (how??)
> Proving X = () (how??)

> Constructively prove VM 3xy € X s.t. f(xm) < M (how??)

» Let's just stick to nonempty and bounded X = 3x,
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» Things can be worse: not empty, not unbounded, but no x, either:

> min{x : xeRAx>0} ("bad" X)

> min{l/x : xeRAXx>0} (“bad” f and X)
. x ifx>0 "

>m|n{f(x):{1 i x =0 :XE[O,l]} (“bad” f)

» Still 3 approximately optimal X for given ¢ > 0:
(%)~ f. <& (absolute) or (F(X)~f.)/|f.| << (relative)

> Good enough for us (and anyway can't to better in general)

» Then optimizaton problems are simple objects: “just” a set and a function
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» Then optimizaton problems are simple objects: “just” a set and a function

» Or are they?
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ak.a. scalarization  min{ fi(x)+af(x) : x€ X} (which a??)



Another Way in Which f(-) May Be Nasty

» Often, the

more than

actual problem is min{ [fi(x), A(x)] : xe X}

one objective, with incomparable units (apples & oranges)

» Textbook example: portfolio selection problem

ki i
—
X
*
x x
* **
risk budget * * * * *
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, *** ***
* , K * A
* * * *
* * **ﬁ *
* * oy K K *
* x X K * X
x X JigleUpn *
> * X o
A return

> No “best” solution, only non-dominated ones on the Pareto frontier

» Two practical solutions: maximize return with budget on maximum risk,

a.k.a. budgeting

min{ A(x) : A(x)< B2, xe X} (which 5,77)



Another Way in Which f(-) May Be Nasty

» Often, the actual problem is min{ [fi(x), A(x)] : xe X}
more than one objective, with incomparable units (apples & oranges)

» Textbook example: portfolio selection problem

|#t 5 | *x =
— H
= ol S
S *
o ***
-
*x Da w0 & 7 *
* ** e * W
x * ******
S U ol
A K K afiafial
# * return

> No “best” solution, only non-dominated ones on the Pareto frontier

» Two practical solutions: minimize risk with budget on minimum return,
a.k.a. budgeting min{f(x) : A(x) <P, xe€ X} (which 5;77)



Another Way in Which f(-) May Be Nasty
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> No “best” solution, only non-dominated ones on the Pareto frontier

» Two practical solutions: minimize risk with budget on minimum return,
a.k.a. budgeting min{f(x) : A(x) <P, xe€ X} (which 5;77)

» All a bit fuzzy, but it's the nature of the beast
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OK, let's assume f : X — R: then (P) is easy ...or is it?
X C G = (indicator) function 1x : G — {0, o0 }
x € X = 1x(x) <0 (constraint)

All the difficulty lies in computing function values:
(P) = min{fx(x)=f(x)+1x(x)}

essential objective fx takes up all the complexity

Vice-versa also true: f can always be linear (with complex X)

(P)Emin{v cxeX sz(x)}

Functions can be demonstrably impossible to compute —>

(P) demonstrably impossible to solve

Even if not impossible, computing a function can be very hard
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Optimization is Really Hard 9
» OK, let's assume fx is “easy to compute”: then (P) is easy ...or is it?

» Impossible even in one dimension because isolated minima can be anywhere

Hf(x)

1
1

X. X,

\

» Does it help restricting to x € X = [x_, x| (—00 < x_ < x4 < +00)?
» No: still uncountably many points to try
» Is it because f “jumps’? No, f can have isolated | spikes anywhere

» ...even on X = [x_, x4 ] as spikes can be aribtrarily narrow



Making Optimization at least Possible 10

>

>
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Impose X = [x_, x4 ] with D = x4 —x_ < oo (finite diameter)

Impose spikes can't be arbitrarily narrow = f cannot change too fast =
f Lipschitz continuous (L-c) on X 3L > 0 s.t.
[f(x)—f(y)I<Llx=y|l VxyeX

f L-c = a fortiori f does not "“jump” (continuous)

f L-c = one e-optimum can be found with O( LD /¢ ) evaluations:
uniformly sample X with step 2¢/L

Bad news: no algorithm can work in less than Q( LD/¢)
# steps inversely proportional to accuracy, just not doable for “small” ¢
Even very dramatically worse if X C R"” (will see)

Also, L generally unknown and not easy to estimate (will see)

but algorithms actually require/use it
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Black-box Optimization
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Black-box Optimization 12

> (P) where f(-) and i1x(-) are “just any function” =

complex mathematical model with no closed formulze (most of them):

>

vV v.Yyy

numerical integration

systems of PDEs

electromagnetic propagation models (ray-tracing, ...)

heat propagation models (heating/cooling of buildings, ...)

systems with complex management procedures
(storage/plant design with route/machine optimization ...)

systems with stochastic components (4 possibly complex management)
(queues in ERs, users of cellular networks, . ..)

» A k.a. simulation-based optimization: the system can only be

numerically simulated as opposed to algebraically described

» Computation of fx(x) costly (can do few 100s/1000s of them)

» No information about the behaviour of f(-) “close” to x



Black-box Optimization Algorithms 13

> Typically require bound constraints: w.l.o.g. X =[0, 1]"
and other constraints “hidden” in f(-)

» Basically only (clever) “shotgun approach”:

fire enough rounds and eventually a good solution happens

» Good playground for population-based approaches
(genetic algorithms, particle swarm, ...)

> Any other standard search (simulated annealing, taboo search,
GRASP, variable-neighbourhood search, ...)

> Better idea: construct a model of f(-) out of past iterates to drive the
search (regression, kriging, radial-basis functions, SVR, ML, ...)

» Bad news: none of these can possibly work efficiently (in theory)



How (DoublePlusUn)Good are Black-box Optimization Algorithms? 14

> If f(-) “swings wildly”, things can be arbitrarily bad

.".1‘1'1‘”1',"ll'lllll!lllllll‘l'l'l"’l““‘ LN ‘ ‘ ‘
R

» Assume f : R" — R L-c with known constant L

» For each algorithm 37(-) s.t. finding e-optimal solution requires
Q(L/e)" evaluations — that's very bad

» No free lunch theorem says “all algorithms equally bad”
» In practice is not as bad, but cost indeed grows very rapidly with n

» n~ 10— 100 if f(-) very costly, perhaps n =~ 1000 if not too costly



Simulation-based Optimization

» f(x) may be a random process:

average performance computed via Montecarlo out of simulations

» Many examples:
» behaviour of users
> impact of weather on energy production/consumption

> errors in measurement/impurity of materials ...

» Interesting tidbit: almost all approaches are inherently randomized

(if you don't know anything, you may as well throw dices)
> Good part: can be trivially parallelized (as all Montecarlo do)
» Bad part: many runs = costly to compute average with high accuracy
» Intuitively, high accuracy only needed close to x,

» But how do | tell if I'm close x,? And which x.7?



So, Can | Solve Black-Box Optimization Problems? 16

» In a nutshell: if everything goes very, very well
> you don’t have many parameters (n in the few tens, ...)
» you don't really need the best solution, a good one is OK
> you have a lot of time and/or a supercomputer at hand
>

f is “nice enough”: Lipschitz continuous, no isolated local minima, ...

» Good news: plenty of general-purpose black-box solvers, simple to use
» Bad news: difficult to choose/tune, none will ever scale to large-size
» In many cases, it is just what is needed

» Can we do better? Yes, we can if we have more structure
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Let’s Pry Open That Black Box 18

» Fundamental concept: if you know the structure of f(-) /X, exploit it
» Very important structure: Partial Differential Equations

» Model disparate phenomena as such as:
» sound, heat, diffusion

> electromagnetism (Maxwell's equations)
» fluid dynamics (Navier-Stokes equations)

> elasticity, ...

» Countless many applications:
> weather forecast, ocean currents, pollution diffusion, ...

> flows in pipes (water, gas, blood, ...)
» air flow (airplane wing, car, wind turbine, ...)
> behaviour of complex materials/objects (buildings, seismic models, . ..)

» Optimal design/operation of many systems has PDE-defined f(-)/X:
PDE-Constrained Optimization (PDE-CO) problem



PDE-Constrained Optimization Problem 19
» General form of the problem:
(PDE-CO) min{f(c,s) : H(c,s)=0, G(c,s)>0}
x =]c, s], explicit description of X:

P> s = state (pressure/velocity of air, force in material, ...)

> ¢ = controls (shape of wing/blade, position of actuators, ...)

> f(c,s)= measure of function = typically involves integrals

» H(c,s) = PDE constraints (Navier-Stokes equations, ...)

> G(c,s) = “other" algebraic constraints (min/max size/position, ...)
» Each s; : R — R a function: X C F"
» Often k small-ish: 2D /3D coordinates, fields, time (optimal control)
» Controls may be functions or “simple” reals (= linear functions)

» " is a whole lot bigger than even R” (all functions vs. linear ones):

Banach space, infinite-dimensional while R" has finite dimension n

» What did | gain from knowing f, H, G?
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vastly, hugely, mind-bogglingly big it is.”
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X
> f(x):=dx+v:R — R (linear) easy: always left if d > 0, right if d <0
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“l Gained The Color of the Corn” ... No, Actually Derivatives 20
> (the) “Space (F") is big. Really big. You just won't believe how
vastly, hugely, mind-bogglingly big it is." Which way is x.7
()

»

X
> f(x):=dx+v:R — R (linear) easy: always left if d > 0, right if d <0

» Obvious idea: use the linear function that best locally approximates £
» Trusty old derivative d = f/(x) = limeo[f(x+t)—f(x)]/t
(putting a lot under the carpet even in R”, not to mention F")

» Provided it exists ...and it is unique
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(Local) Optimality and Derivatives

e

> f'(x)<0orf(x)>0= x cannot be a local minimum
» f'(x)=0in all local minima = in the global one

> However, f'(x) =0 also in local (global) maxima and in saddle points

21



Optimality Conditions 22

> To find x,, try finding stationary point x s.t. f/(x) =0

» f’(x) =0 (necessary, not sufficient) optimality condition:
optimization is a system of (nonlinear) equations
» Still a lot hidden under the carpet:

» what exactly is ' when X # R?

> lots of “ifs" and “buts” (f’ has to exist, X has to be “nice”, ...)

> If all goes well, (local) optimality can be detected using derivatives
(we'll see more details later in a simpler setting) =
optimality conditions for PDE-CO is a PDE system. But:
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Optimality Conditions 22

> To find x,, try finding stationary point x s.t. f/(x) =0

» f’(x) =0 (necessary, not sufficient) optimality condition:
optimization is a system of (nonlinear) equations
» Still a lot hidden under the carpet:

» what exactly is ' when X # R?

> lots of “ifs" and “buts” (f’ has to exist, X has to be “nice”, ...)

> If all goes well, (local) optimality can be detected using derivatives
(we'll see more details later in a simpler setting) =
optimality conditions for PDE-CO is a PDE system. But:

» significantly more complex than H itself
» mathematical details far from easy

» PDE systems have no closed-form solution anyway

= have to discretize the PDE and solve approximately



Tell

Me Again, what did | Gain, Exactly?

Still back to "have to compute f(-) numerically”
However, can now prove that x (= [c, u]) is a (local) minimum

Also, algorithms that use derivatives are vastly more efficient

(we'll see more details later in a simpler setting)

Can quickly reach a (local) minimum and stop there:

no more random moves for fear of having missed a better point nearby
| f'(x)|~ “distance” from x., useful to choose accuracy of simulation

Explicit optimality conditions leads to multiple strategies:
> first discretize, then write optimality conditions

> first write optimality conditions, then discretize

However, f'(x) = 0 only tells x may be a local minimum

23



To Avoid Issues, just Ensure Every Stationary Point is a Minimum 24

ff(x)

Xy

» If f has local minima
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ff(x)

X
» If f has local minima and maxima, ' must first * and then \,
» What if f/ monotone?
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» What if f/ monotone? f convex function =
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To Avoid Issues, just Ensure Every Stationary Point is a Minimum 24

tf(x)

X
» If f has local minima and maxima, ' must first * and then \,
» What if f/ monotone? f convex function =

stationary point = local minimum = global minimum

» f(-)and X convex = x, can be found “easily”

> Rules to construct f(-) and X convex



So, Can | Solve PDE-Constrained Optimization Problems 25

» In a nutshell: if everything goes very well
> f, H and G must have the right properties
> details have to be worked out, options be wisely chosen

> local optimality must be OK (or the problem convex to start with)

» There is no general-purpose PDE-OC solver,

each case has to be dealt with individually
» However, tools are there, knowledge is there

» Problems of scale required by practical applications can be solved
> with a little help from my (PDE-CO-savvy) friends

» and possibly a supercomputer at hand

» As always, structure is your friend
(e.g., optimal control has many specialized approaches exploiting time)

» s it worth? In quite many cases, it is



Outline

NonLinear Nonconvex Problems
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What If | Only Have Algebraic Constraints? 27

» “Easier” problem: no PDE constraints, “only” algebraic ones
X={xeR":g(x)<0i€l, h(x)=0,jeJ}
T = set of inequality constraints, J = set of equality constraints
> G(x)=[gi(x)liez : R” = RF, H(x) = [ hi(x) lieg : R" = RV
X={xeR": G(x)<0,H(x)=0}
G(-), H(-) algebraic (vector-valued, multivariate) real functions
» Could always assume |Z| =1 and | J | =0:
> hj(X):O = hj(X)§0 A 7hj(X)§O
> G(x)<0 = max{gi(x):i€l}=g(x)<0

but good reasons not to (exploit structure when is there)

» What does this gives to me? You know the drill: derivatives



Partial Derivatives, Gradient, Differentiability 28

» f:R" — R, partial derivative of f w.r.t. x; at x € R":

af T FOXLy e s Xim 1, Xitt, Xig1 ey Xo ) —F(X)
% X) = ||mt*>0 :

just f'(x1, ..., Xi—1, X, Xi41, - .. , Xn ) treating x; for j # i as constants

» Good news: computing derivatives mechanic, Automatic Differentiation

software will do it for you, not only from formulzae but from code



Partial Derivatives, Gradient, Differentiability 28

» f:R" — R, partial derivative of f w.r.t. x; at x € R":

of . (X1, Xic1, Xibt, Xig1 oy Xa ) —F(X)
% X) = ||mt*>0 : L
just f'(x1, ..., Xi—1, X, Xi41, - .. , Xn ) treating x; for j # i as constants

» Good news: computing derivatives mechanic, Automatic Differentiation
software will do it for you, not only from formulzae but from code
... provided they exist (f(x) =|x]|, f'(x) = 777)

» Gradient = vector of all partial derivatives all important in optimization

Vi(x):= g—)ﬁ(x),...,g; x)

> f differentiable at x ~ Vi %() continuous (< 3)

» f € C: VFf(x) continuous = f differentiable (= f continuous) V x

» f c C' = finding stationary point) “easy”:
just go in the other direction (—Vf( x) = steepest descent direction)



If You Win, Keep Playing

> F:R" > R”, f(x)=[A(x), K(x), ...

29
» fm(X) ]

» Partial derivative: usual stuff, except with extra index

of,

fi(x, .

X1, Xt Xig1 - Xn )= F(X)

GX,'(X) = ||mt4>0

t

> Vi(x):R"— R” itself has a gradient: Hessian of f

2
24(x)

&*f
8)(16)(2 ( X )

V2f(x) =

&
Ox10xp ( ) X )

second-order partial derivative
(just do it twice)

o*f
OxpOx1 ( X )

52f
8XnaX2 ( X )

% f )
aXZ 8X1

2
(%)

Bzigxﬂ(x) %(XJ
2f ’Pf ﬂ
Ox;0x; Oxi0x;  Ox?

» f € C?: V?f(x) continuous (= symmetric) = Vf differentiable V x

» f € C?> = finding local minimum (stationary point) “super-easy”



Local (Unconstrained) Optimization Algorithms 30
» X = R"” = all depends on quality of derivatives of f:
> f ¢ C' = subgradient methods = sublinear convergence
(error at step k = 1/vk, O(1/&?) iterations)
> f e C' = gradient methods = linear convergence
(error at step k = v* with v < 1, O(1/ log(¢)) iterations)
> f € C> = Newton-type methods = superlinear/quadratic convergence
(error at step k ~7* /4% with v < 1, ~ O(1) iterations)
» All bounds ~ independent from n (can be "hidden in the constants”)
= good for large-scale problems (n very large)
» Not all trivial, line search/trust region, globalization, ...

» Gradient methods can be rather slow in practice (y & 1), need to
cure zig-zagging (heavy ball, fast gradients, ...)

» Hessian a big guy, inverting it O(n®) a serious issue for large-scale:
quasi-Newton /conjugate gradient only O(n?) / O(kn) (but trade-offs)

» Allin all, local (unconstrained) convergence very well dealt with



How About Constrained Optimization? 31

» Local optimality still “easy” to characterize via derivatives

» Karush-Kuhn-Tucker conditions: 3\ € R‘fl and 1 € RV s t.

g(x)<0ieT , h(x)=0jeJ (KKT-F)
VI(x) + Xz AiVEi(x) + X7 i Vhi(x) =0 (KKT-G)
ZIEI )\,'g,'(X) = 0 (KKT—CS)

= x stationary point of Lagrangian function (in x, A / p parameters)
L Ay ) = F(X) 4 Yrer Ngi(x) & Sy ihi(x) (> duality ...)

» KKT Theorem: x local optimum + constraint qualifications = (KKT)
» (P) convex problem: (KKT) = x global optimum

» Otherwise, quite involved second-order optimality conditions ...



Meaning What, Algorithmically? 32

>

>

>

In a nutshell, that 3 efficient local algorithms

At the very least, (KKT) = x local minimum, stop the search
Checking if (KKT) holds “easy” (Farkas’' Lemma ...)

Optimization = solving systems of nonlinear equations and inequalities

Does not mean that algorithms are obvious:
> several different forms (primal, dual, ...)
> several different ideas (active set, projection, barrier, penalty, ...)
> combinatorial aspects (active set choice) may make them inefficient

Yet, provably and practically efficient algorithms are there
if data of the problem nice (f, G € C/C?, H affine ...)

Particularly relevant/elegant class: primal-dual interior point methods

(Reasonably) robust and efficient implementations available, although

numerical issues (linear algebra accuracy/cost) still nontrivial



How About Global Optimality, Then? 33
» Unfortunately an entirely different game: sifting through all X required

» Derivatives a local object, can't give global information

except in the convex case, where they actually do

f

A

\

» f convex =
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» Unfortunately an entirely different game: sifting through all X required

» Derivatives a local object, can't give

global information

except in the convex case, where they actually do
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A
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» f convex = f(x) +VF(x)(y —x)
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» Derivatives a local object, can't give global information
except in the convex case, where they actually do
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» Derivatives a local object, can't give global information

except in the convex case, where they actually do
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> f convex = f(x) +VI(x)(y—x)<f(y) Yy
> Vi(x)=0



How About Global Optimality, Then? 33
» Unfortunately an entirely different game: sifting through all X required

» Derivatives a local object, can't give global information

except in the convex case, where they actually do

f

A

f(x)+0(y-x
X >

> f convex = f(x) +VI(x)(y—x)<f(y) Yy
> Vf(x)=0= f(x)



How About Global Optimality, Then? 33
» Unfortunately an entirely different game: sifting through all X required

» Derivatives a local object, can't give global information
except in the convex case, where they actually do

\/

X
» fconvex = f(x) +VI(x)(y—x)<f(y) Vy
> V(x)=0= f(x) [+0(y =x)] < f(y) Yy



What Can | Do in the Nonconvex Case?

» Sift through all X =[x_, x4 ], but using a clever guide

+A(x)

34
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What Can | Do in the Nonconvex Case? 34
» Sift through all X =[x_, x4 ], but using a clever guide

+A(x)

» Convex lower approximation f of nonconvex f on X

» “Easily” find local = global minimum X, giving f(x) < f. < f(x)
> If gap f(X) — f(X) too large, partition X and iterate

> f depends on partition, smaller partition (hopefully) = better gap



What Can | Do in the Nonconvex Case?
» Sift through all X =[x_, x4 ], but using a clever guide
1A(x)
r 1 X
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X_ X

» Convex lower approximation f of nonconvex f on X
» “Easily” find local = global minimum X, giving f(X) < f. < f(X)
> If gap f(X) — f(X) too large, partition X and iterate

» If on some partition

34
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» Convex lower approximation f of nonconvex f on X
» “Easily” find local = global minimum X, giving f(X) < f. < f(X)
> If gap f(X) — f(X) too large, partition X and iterate

> If on some partition f(X) > best f-value so far,



What Can | Do in the Nonconvex Case? 34
» Sift through all X =[x_, x4 ], but using a clever guide

+A(x)

Y X

)L<_ X X4
» Convex lower approximation f of nonconvex f on X
» “Easily” find local = global minimum X, giving f(X) < f. < f(X)
> If gap f(X) — f(X) too large, partition X and iterate

> If on some partition f(X) > best f-value so far, partition killed for good



Is Something Like This Efficient? 35
> In a word? No
> Worst-case: keep dicing and slicing X until pieces “very small” (= (e/L)")

» However, in practice it depends on:
» “how much nonconvex” f really is

» how good f is as a lower approximation of f
» Best possible lower approximation: convex envelope
» Bad news: computing convex envelopes is hard

» Typical approach:
> rewrite the expression of f in terms of unary/binary functions
» apply specific convexification formulae for each function

» Tedious job, bounds often rather weak
» Good news: implemented in available, well-engineered solvers

» Good news: immensely less inefficient in practice than blind search
(at least, bounds allow to cut away whole regions for good)



So, Can | Solve NonLinear Nonconvex Problems?

» In a nutshell: if everything goes quite well
» f, G and H must have the right properties
» the less nonconvex they are, the better

P the less “complicated” they are, the better

» Yet, there are general-purpose nonconvex MINLP solvers which

can solve the problem to proven optimality

» Using them nontrivial, formulating the problem well crucial

(= so that a “good f is available™)

> Not really “large-scale”, but 100s/1000s of variables often
doable quickly enough with off-the-shelf tools

» Much larger problems also possible with special tools/effort
» As always, structure is your friend

> |s it worth? In quite many cases, it is (ask chemical Engineers)

36



Outline

Mixed-Integer Convex (Linear) Problems

37



A Very Convenient Form of Nonconvexity

>

>

Computing “good” convex approximation both complex and difficult
One very relevant case in which at least “easy”: integrality constraints

x; € Z, most often x; € {0, 1} very convenient for discrete choices

(start machine/don't, make trip/don't, ...)
Clearly nonconvex, 3 nonlinear versions (x;(1 —x;) <0, ...)

Actually quite powerful: many different nonlinear nonconvex structures

can be expressed via that + “simple” (linear) constraints

Yet, this requires some rather weird formulation tricks
z=xy=[(z<x)AN(z<y)A(z=2x+y—-1)]ifall x,y,z€ {0, 1}

38

If all the rest in the problem convex, then a convex relaxation very easy:

continuous relaxation (x; € Z — x; € R)
This does not mean convex relaxation is good, but it may be

At least makes life a lot easier to solution algorithms



Going All the Way to Help The Solver 39

>

>

>

Finding good relaxations crucial for practical efficiency
Solvers helped a lot by having few, well-controlled nonconvexities
Mixed-Integer Convex Problems the easiest class of hard problems

Especially famous special case: Mixed-Integer Linear Program
(MILP) min{cx: Ax>b , xx€Z i€l}

= continuous relaxation = Linear Program
Very stable and efficient algorithms, some = unique (simplex methods)
Very powerful methods to improve relaxation quality (valid inequalities)

Countless many results about special combinatorial structures
(paths, trees, cuts, matchings, cliques, covers, knapsacks, ...)

Clever approaches to exploit structure, though some work for MINLP too

(Column/Row Generation, Dantzig-Wolfe/Benders' Decomposition, ... )



Put

The Human in the Loop

Fundamental point: formulating the problem well is crucial

Almost anything can be written as a MILP, albeit to some ~

(not always a good idea: some nonlinearities “nice”)

Many different ways to write the same problem:

apparently minor changes can make orders-of-magnitude difference

Several of the best formulation weird and/or very large
(appropriate tricks to only generate the strictly required part)

Doing it “by hand” should not be required: solvers should

be able to automatically find the best formulation (reformulate)
Good news: the “perfect” formulation provably exists

Bad news: it is provably (AP-)hard to construct

Doing it automatically is clearly difficult (but we should try harder)

Meanwhile, a well-trained eye can make a lot of difference

40



An Incredibly Nifty Trick: (Mixed-Integer) Conic Programs 41

>

>

Good news: can “hide” many nonlinearities in a Linear Program
Conic Program: (P) min{cx : Ax>k b}
where x >k vy = x — y € K, K pointed convex cone, e.g.

> K =R/ = sign constraints = Linear Program

> K=L= {x eR” : x, > \/Z,f:ll x,2} = Second-Order Cone Program

> K=S, ={A>0} = ">" constraints = SemiDefinite Program

Exceedingly smart idea: everything is linear, but the cone is not

= a nonlinear program disguised as a linear one

» Contains as special case convex quadratic functions

> Many interesting (convex) nonlinear functions have a conic representation

(but have to learn some even weirder formulation trick)

» Continuous relaxation almost as efficient as Linear Program

» Many combinatorial MILP tricks extend di MI-SOCP (valid surfaces, . ..)

» Support in general-purpose software growing, already quite advanced



So, Can | Solve Mixed-Integer Linear (Convex) Problems? 42

» In a nutshell: unless something goes very bad
> data of the problem by definition is nice
P a feasible relaxation always there, bounds can be quite good

> lots of good ideas (cutting planes, general-purpose heuristics, . ..)

» Plenty of general-purpose, well-engineered MILP/MI-SOCP solvers
which can solve the problem to proven optimality

» Lots of useful supporting software: algebraic modelling languages,
(there for MINLP too), IDEs, interfaces with database/spreadsheet, ...

» 10000/100000 variables often doable in minutes/hours on stock hw/sw
if you write the right model

» Much larger problems (10° / 10°) also possible with special tools/effort
» As always, structure is your friend, and many known forms of structures

» s it worth? In very many cases, it is



Outline

Conclusions
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Conclusions

» Optimization problems are difficult
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Conclusions 44

>

>

>

Optimization problems are difficult ... but there are # kinds of “difficult”
Many problems have structure that can be exploited

First crucial choice: which class of optimization problems

Trade-off model accuracy vs. model complexity not trivial

However, apparently very complex problems may not be that difficult

if one knows the right set of modelling tricks

Lots of stable, well-developed software (even open-source),

especially for the most “tractable” problems
A lot depends on how the problem is written

The hand who rocks the model is the hand who rules the world
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