
A Bird’s Eye on Optimization

Antonio Frangioni

Dipartimento di Informatica, Università di Pisa

Model-Driven Decision-Making Methods (666AA)

AY 2021/22

Outline 2

Mathematical Models, Optimization Problems

Optimization is Difficult

Black-box Optimization

PDE-Constrained Optimization

NonLinear Nonconvex Problems

Mixed-Integer Convex (Linear) Problems

Conclusions

Mathematical models 3

reality mathematics

fragment
 situation

mathematical
 model

prediction
 solution

law
decision

 modelling
data collection

interpretation

 f
or

m
ul

a
al

go
ri

th
m

 verification
im

plem
entation

▶ The fundamental cycle

and its implementation

Mathematical models 3

reality mathematics

fragment
 situation

mathematical
 model

prediction
 solution

law
decision

 modelling
data collection

interpretation

 f
or

m
ul

a
al

go
ri

th
m

 verification
im

plem
entation

 program (sw)
computer (hw)

m
easure

forecast

implementation debug

execution

▶ The fundamental cycle and its implementation

Optimization problem 4

▶ Descriptive model: tells how the world (supposedly) is

▶ Prescriptive model: tells how the world (supposedly) should be

a.k.a. optimization problem:

(P) f∗ = min
{
f (x) : x ∈ X

}
▶ arbitrary set X = feasible region of possible choices x

▶ typically X specified by G ⊃ X (ground set) + constraints

dictating required properties of feasible solutions x ∈ X

[=⇒ x ∈ G \ X = unfeasible solution (??)]

▶ f : X → R objective function mapping preferences (cost)

▶ optimal value f∗ ≤ f (x) ∀x ∈ X , ∀v > f∗ ∃ x ∈ X s.t. f (x) < v

▶ we want optimal solution: x∗ ∈ X s.t. f (x∗) = f∗

▶ Everything looks pretty straightforward

. . . or is it?

Optimization problem 4

▶ Descriptive model: tells how the world (supposedly) is

▶ Prescriptive model: tells how the world (supposedly) should be

a.k.a. optimization problem:

(P) f∗ = min
{
f (x) : x ∈ X

}
▶ arbitrary set X = feasible region of possible choices x

▶ typically X specified by G ⊃ X (ground set) + constraints

dictating required properties of feasible solutions x ∈ X

[=⇒ x ∈ G \ X = unfeasible solution (??)]

▶ f : X → R objective function mapping preferences (cost)

▶ optimal value f∗ ≤ f (x) ∀x ∈ X , ∀v > f∗ ∃ x ∈ X s.t. f (x) < v

▶ we want optimal solution: x∗ ∈ X s.t. f (x∗) = f∗

▶ Everything looks pretty straightforward . . . or is it?

“Bad” optimization problems 5

▶ “Bad case” I: X = ∅ (“empty”)

min{ x : x ∈ R ∧ x ≤ −1 ∧ x ≥ 1 }
there just is no solution (which may be important to know)

▶ “Bad case” II: ∀M ∃xM ∈ X s.t. f (xM) ≤ M (“unbounded [below]”)

min{ x : x ∈ R ∧ x ≤ 0 }
there are solutions as good as you like (which may be important to know)

▶ Not really bad cases, just things that can happen

▶ Solving an optimization problem actually three different things:

▶ Finding x∗ and proving it is optimal (how??)

▶ Proving X = ∅ (how??)

▶ Constructively prove ∀M ∃xM ∈ X s.t. f (xM) ≤ M (how??)

▶ Let’s just stick to nonempty and bounded X =⇒ ∃x∗

. . . or does it?

“Bad” optimization problems 5

▶ “Bad case” I: X = ∅ (“empty”)

min{ x : x ∈ R ∧ x ≤ −1 ∧ x ≥ 1 }
there just is no solution (which may be important to know)

▶ “Bad case” II: ∀M ∃xM ∈ X s.t. f (xM) ≤ M (“unbounded [below]”)

min{ x : x ∈ R ∧ x ≤ 0 }
there are solutions as good as you like (which may be important to know)

▶ Not really bad cases, just things that can happen

▶ Solving an optimization problem actually three different things:

▶ Finding x∗ and proving it is optimal (how??)

▶ Proving X = ∅ (how??)

▶ Constructively prove ∀M ∃xM ∈ X s.t. f (xM) ≤ M (how??)

▶ Let’s just stick to nonempty and bounded X =⇒ ∃x∗ . . . or does it?

“Very bad” optimization problems 6

▶ Things can be worse: not empty, not unbounded, but no x∗ either:

▶ min{ x : x ∈ R ∧ x > 0 } (“bad” X)

▶ min{ 1 / x : x ∈ R ∧ x > 0 } (“bad” f and X)

▶ min

{
f (x) =

{
x if x > 0
1 if x = 0

: x ∈ [0 , 1]

}
(“bad” f)

▶ Still ∃ approximately optimal x̄ for given ε > 0:

f (x̄)− f∗ ≤ ε (absolute) or (f (x̄)− f∗) / | f∗ | ≤ ε (relative)

▶ Good enough for us (and anyway can’t to better in general)

▶ Then optimizaton problems are simple objects: “just” a set and a function

▶ Or are they?

“Very bad” optimization problems 6

▶ Things can be worse: not empty, not unbounded, but no x∗ either:

▶ min{ x : x ∈ R ∧ x > 0 } (“bad” X)

▶ min{ 1 / x : x ∈ R ∧ x > 0 } (“bad” f and X)

▶ min

{
f (x) =

{
x if x > 0
1 if x = 0

: x ∈ [0 , 1]

}
(“bad” f)

▶ Still ∃ approximately optimal x̄ for given ε > 0:

f (x̄)− f∗ ≤ ε (absolute) or (f (x̄)− f∗) / | f∗ | ≤ ε (relative)

▶ Good enough for us (and anyway can’t to better in general)

▶ Then optimizaton problems are simple objects: “just” a set and a function

▶ Or are they?

Another Way in Which f (·) May Be Nasty 7

▶ Often, the actual problem is min
{
[f1(x) , f2(x)] : x ∈ X

}
more than one objective, with incomparable units (apples & oranges)

▶ Textbook example: portfolio selection problem

▶ No “best” solution, only

non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

▶ All a bit fuzzy, but it’s the nature of the beast

Another Way in Which f (·) May Be Nasty 7

▶ Often, the actual problem is min
{
[f1(x) , f2(x)] : x ∈ X

}
more than one objective, with incomparable units (apples & oranges)

▶ Textbook example: portfolio selection problem

return

ris
k

▶ No “best” solution, only

non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

▶ All a bit fuzzy, but it’s the nature of the beast

Another Way in Which f (·) May Be Nasty 7

▶ Often, the actual problem is min
{
[f1(x) , f2(x)] : x ∈ X

}
more than one objective, with incomparable units (apples & oranges)

▶ Textbook example: portfolio selection problem

return

ris
k

▶ No “best” solution, only non-dominated ones on the

Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

▶ All a bit fuzzy, but it’s the nature of the beast

Another Way in Which f (·) May Be Nasty 7

▶ Often, the actual problem is min
{
[f1(x) , f2(x)] : x ∈ X

}
more than one objective, with incomparable units (apples & oranges)

▶ Textbook example: portfolio selection problem

return

ris
k

▶ No “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

▶ All a bit fuzzy, but it’s the nature of the beast

Another Way in Which f (·) May Be Nasty 7

▶ Often, the actual problem is min
{
[f1(x) , f2(x)] : x ∈ X

}
more than one objective, with incomparable units (apples & oranges)

▶ Textbook example: portfolio selection problem

return

ris
k

ris
k-

ad
just

ed

re

tu
rn

▶ No “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions: maximize risk-adjusted return,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

▶ All a bit fuzzy, but it’s the nature of the beast

Another Way in Which f (·) May Be Nasty 7

▶ Often, the actual problem is min
{
[f1(x) , f2(x)] : x ∈ X

}
more than one objective, with incomparable units (apples & oranges)

▶ Textbook example: portfolio selection problem

return

ris
k

risk budget

▶ No “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

maximize return with budget on maximum risk,

a.k.a. scalarization min
{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

a.k.a. budgeting min
{
f1(x) : f2(x) ≤ β2 , x ∈ X

}
(which β2??)

▶ All a bit fuzzy, but it’s the nature of the beast

Another Way in Which f (·) May Be Nasty 7

▶ Often, the actual problem is min
{
[f1(x) , f2(x)] : x ∈ X

}
more than one objective, with incomparable units (apples & oranges)

▶ Textbook example: portfolio selection problem

return

ris
k

re
tu

rn
 b

ud
ge

t
▶ No “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

minimize risk with budget on minimum return,

a.k.a.
scalarization min

{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

a.k.a. budgeting min
{
f2(x) : f1(x) ≤ β1 , x ∈ X

}
(which β1??)

▶ All a bit fuzzy, but it’s the nature of the beast

Another Way in Which f (·) May Be Nasty 7

▶ Often, the actual problem is min
{
[f1(x) , f2(x)] : x ∈ X

}
more than one objective, with incomparable units (apples & oranges)

▶ Textbook example: portfolio selection problem

return

ris
k

re
tu

rn
 b

ud
ge

t
▶ No “best” solution, only non-dominated ones on the Pareto frontier

▶ Two practical solutions:

maximize risk-adjusted return,

minimize risk with budget on minimum return,

a.k.a.
scalarization min

{
f1(x) + αf2(x) : x ∈ X

}
(which α??)

a.k.a. budgeting min
{
f2(x) : f1(x) ≤ β1 , x ∈ X

}
(which β1??)

▶ All a bit fuzzy, but it’s the nature of the beast

[Real-valued] Functions/Sets Can Be Very Hard to Compute 8

▶ OK, let’s assume f : X → R: then (P) is easy

. . . or is it?

▶ X ⊂ G ≡ (indicator) function ıX : G → { 0 , ∞}

▶ x ∈ X ≡ ıX (x) ≤ 0 (constraint)

▶ All the difficulty lies in computing function values:

(P) ≡ min
{
fX (x) = f (x) + ıX (x)

}
essential objective fX takes up all the complexity

▶ Vice-versa also true: f can always be linear (with complex X)

(P) ≡ min
{
v : x ∈ X , v ≥ f (x)

}
▶ Functions can be demonstrably impossible to compute =⇒

(P) demonstrably impossible to solve

▶ Even if not impossible, computing a function can be very hard

[Real-valued] Functions/Sets Can Be Very Hard to Compute 8

▶ OK, let’s assume f : X → R: then (P) is easy . . . or is it?

▶ X ⊂ G ≡ (indicator) function ıX : G → { 0 , ∞}

▶ x ∈ X ≡ ıX (x) ≤ 0 (constraint)

▶ All the difficulty lies in computing function values:

(P) ≡ min
{
fX (x) = f (x) + ıX (x)

}
essential objective fX takes up all the complexity

▶ Vice-versa also true: f can always be linear (with complex X)

(P) ≡ min
{
v : x ∈ X , v ≥ f (x)

}
▶ Functions can be demonstrably impossible to compute =⇒

(P) demonstrably impossible to solve

▶ Even if not impossible, computing a function can be very hard

Optimization is Really Hard 9

▶ OK, let’s assume fX is “easy to compute”: then (P) is easy

. . . or is it?

▶ Impossible even in one dimension because isolated minima can be anywhere

f(x)

x

...

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

▶ . . . even on X = [x− , x+] as spikes can be aribtrarily narrow

Optimization is Really Hard 9

▶ OK, let’s assume fX is “easy to compute”: then (P) is easy . . . or is it?

▶ Impossible even in one dimension because isolated minima can be anywhere

f(x)

x

...

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

▶ . . . even on X = [x− , x+] as spikes can be aribtrarily narrow

Optimization is Really Hard 9

▶ OK, let’s assume fX is “easy to compute”: then (P) is easy . . . or is it?

▶ Impossible even in one dimension because isolated minima can be anywhere

f(x)

x

...

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

▶ . . . even on X = [x− , x+] as spikes can be aribtrarily narrow

Optimization is Really Hard 9

▶ OK, let’s assume fX is “easy to compute”: then (P) is easy . . . or is it?

▶ Impossible even in one dimension because isolated minima can be anywhere

f(x)

x
x- x+

][

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

▶ . . . even on X = [x− , x+] as spikes can be aribtrarily narrow

Optimization is Really Hard 9

▶ OK, let’s assume fX is “easy to compute”: then (P) is easy . . . or is it?

▶ Impossible even in one dimension because isolated minima can be anywhere

f(x)

x
x- x+

][

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”?

No, f can have isolated ↓ spikes anywhere

▶ . . . even on X = [x− , x+] as spikes can be aribtrarily narrow

Optimization is Really Hard 9

▶ OK, let’s assume fX is “easy to compute”: then (P) is easy . . . or is it?

▶ Impossible even in one dimension because isolated minima can be anywhere

f(x)

x

...

▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

▶ . . . even on X = [x− , x+] as spikes can be aribtrarily narrow

Optimization is Really Hard 9

▶ OK, let’s assume fX is “easy to compute”: then (P) is easy . . . or is it?

▶ Impossible even in one dimension because isolated minima can be anywhere

f(x)

x
][

x- x+
▶ Does it help restricting to x ∈ X = [x− , x+] (−∞ < x− < x+ < +∞)?

▶ No: still uncountably many points to try

▶ Is it because f “jumps”? No, f can have isolated ↓ spikes anywhere

▶ . . . even on X = [x− , x+] as spikes can be aribtrarily narrow

Making Optimization at least Possible 10

▶ Impose X = [x− , x+] with D = x+ − x− < ∞ (finite diameter)

▶ Impose spikes can’t be arbitrarily narrow ≡ f cannot change too fast ≡
f Lipschitz continuous (L-c) on X ∃L > 0 s.t.

| f (x)− f (y) | ≤ L| x − y | ∀x , y ∈ X

▶ f L-c =⇒ a fortiori f does not “jump” (continuous)

▶ f L-c =⇒ one ε-optimum can be found with O(LD/ε) evaluations:

uniformly sample X with step 2ε/L

▶ Bad news: no algorithm can work in less than Ω(LD/ε)

▶ # steps inversely proportional to accuracy, just not doable for “small” ε

▶ Even very dramatically worse if X ⊂ Rn (will see)

▶ Also, L generally unknown and not easy to estimate (will see)

but algorithms actually require/use it

Outline 11

Mathematical Models, Optimization Problems

Optimization is Difficult

Black-box Optimization

PDE-Constrained Optimization

NonLinear Nonconvex Problems

Mixed-Integer Convex (Linear) Problems

Conclusions

Black-box Optimization 12

▶ (P) where f (·) and ıX (·) are “just any function” ≡
complex mathematical model with no closed formulæ (most of them):

▶ numerical integration

▶ systems of PDEs

▶ electromagnetic propagation models (ray-tracing, . . .)

▶ heat propagation models (heating/cooling of buildings, . . .)

▶ systems with complex management procedures
(storage/plant design with route/machine optimization . . .)

▶ systems with stochastic components (+ possibly complex management)
(queues in ERs, users of cellular networks, . . .)

▶ A.k.a. simulation-based optimization: the system can only be

numerically simulated as opposed to algebraically described

▶ Computation of fX (x) costly (can do few 100s/1000s of them)

▶ No information about the behaviour of f (·) “close” to x

Black-box Optimization Algorithms 13

▶ Typically require bound constraints: w.l.o.g. X = [0 , 1]n

and other constraints “hidden” in f (·)

▶ Basically only (clever) “shotgun approach”:

fire enough rounds and eventually a good solution happens

▶ Good playground for population-based approaches

(genetic algorithms, particle swarm, . . .)

▶ Any other standard search (simulated annealing, taboo search,

GRASP, variable-neighbourhood search, . . .)

▶ Better idea: construct a model of f (·) out of past iterates to drive the

search (regression, kriging, radial-basis functions, SVR, ML, . . .)

▶ Bad news: none of these can possibly work efficiently (in theory)

How (DoublePlusUn)Good are Black-box Optimization Algorithms? 14

▶ If f (·) “swings wildly”, things can be arbitrarily bad

▶ Assume f : Rn → R L-c with known constant L

▶ For each algorithm ∃ f (·) s.t. finding ε-optimal solution requires

Ω(L / ε)n evaluations — that’s very bad

▶ No free lunch theorem says “all algorithms equally bad”

▶ In practice is not as bad, but cost indeed grows very rapidly with n

▶ n ≈ 10− 100 if f (·) very costly, perhaps n ≈ 1000 if not too costly

Simulation-based Optimization 15

▶ f (x) may be a random process:

average performance computed via Montecarlo out of simulations

▶ Many examples:

▶ behaviour of users

▶ impact of weather on energy production/consumption

▶ errors in measurement/impurity of materials . . .

▶ Interesting tidbit: almost all approaches are inherently randomized

(if you don’t know anything, you may as well throw dices)

▶ Good part: can be trivially parallelized (as all Montecarlo do)

▶ Bad part: many runs = costly to compute average with high accuracy

▶ Intuitively, high accuracy only needed close to x∗

▶ But how do I tell if I’m close x∗? And which x∗?

So, Can I Solve Black-Box Optimization Problems? 16

▶ In a nutshell: if everything goes very, very well

▶ you don’t have many parameters (n in the few tens, . . .)

▶ you don’t really need the best solution, a good one is OK

▶ you have a lot of time and/or a supercomputer at hand

▶ f is “nice enough”: Lipschitz continuous, no isolated local minima, . . .

▶ Good news: plenty of general-purpose black-box solvers, simple to use

▶ Bad news: difficult to choose/tune, none will ever scale to large-size

▶ In many cases, it is just what is needed

▶ Can we do better? Yes, we can if we have more structure

Outline 17

Mathematical Models, Optimization Problems

Optimization is Difficult

Black-box Optimization

PDE-Constrained Optimization

NonLinear Nonconvex Problems

Mixed-Integer Convex (Linear) Problems

Conclusions

Let’s Pry Open That Black Box 18

▶ Fundamental concept: if you know the structure of f (·) /X , exploit it

▶ Very important structure: Partial Differential Equations

▶ Model disparate phenomena as such as:
▶ sound, heat, diffusion

▶ electromagnetism (Maxwell’s equations)

▶ fluid dynamics (Navier–Stokes equations)

▶ elasticity, . . .

▶ Countless many applications:
▶ weather forecast, ocean currents, pollution diffusion, . . .

▶ flows in pipes (water, gas, blood, . . .)

▶ air flow (airplane wing, car, wind turbine, . . .)

▶ behaviour of complex materials/objects (buildings, seismic models, . . .)

▶ Optimal design/operation of many systems has PDE-defined f (·)/X :

PDE-Constrained Optimization (PDE-CO) problem

PDE-Constrained Optimization Problem 19

▶ General form of the problem:

(PDE-CO) min
{

f (c , s) : H(c , s) = 0 , G(c , s) ≥ 0
}

x = [c , s], explicit description of X :

▶ s = state (pressure/velocity of air, force in material, . . .)

▶ c = controls (shape of wing/blade, position of actuators, . . .)

▶ f (c , s) = measure of function =⇒ typically involves integrals

▶ H(c , s) = PDE constraints (Navier–Stokes equations, . . .)

▶ G(c , s) = “other” algebraic constraints (min/max size/position, . . .)

▶ Each si : Rk → R a function: X ⊂ Fn

▶ Often k small-ish: 2D/3D coordinates, fields, time (optimal control)

▶ Controls may be functions or “simple” reals (≡ linear functions)

▶ Fn is a whole lot bigger than even Rn (all functions vs. linear ones):

Banach space, infinite-dimensional while Rn has finite dimension n

▶ What did I gain from knowing f , H, G?

“I Gained The Color of the Corn” . . . No, Actually Derivatives 20

▶ (the) “Space (Fn) is big. Really big. You just won’t believe how

vastly, hugely, mind-bogglingly big it is.”

Which way is x∗?

f(x)

v

d > 0

x

}
▶ f (x) := dx + v : R → R (linear) easy: always left if d > 0, right if d < 0

▶ Obvious idea: use the linear function that best locally approximates f

▶ Trusty old derivative d = f ′(x) = limt→0[f (x + t)− f (x)] / t

(putting a lot under the carpet even in Rn, not to mention Fn)

▶ Provided it exists . . . and it is unique

“I Gained The Color of the Corn” . . . No, Actually Derivatives 20

▶ (the) “Space (Fn) is big. Really big. You just won’t believe how

vastly, hugely, mind-bogglingly big it is.” Which way is x∗?

f(x)

v

d > 0

x

}
▶ f (x) := dx + v : R → R (linear) easy: always left if d > 0, right if d < 0

▶ Obvious idea: use the linear function that best locally approximates f

▶ Trusty old derivative d = f ′(x) = limt→0[f (x + t)− f (x)] / t

(putting a lot under the carpet even in Rn, not to mention Fn)

▶ Provided it exists . . . and it is unique

“I Gained The Color of the Corn” . . . No, Actually Derivatives 20

▶ (the) “Space (Fn) is big. Really big. You just won’t believe how

vastly, hugely, mind-bogglingly big it is.” Which way is x∗?

f(x)

v

d > 0

x

}
▶ f (x) := dx + v : R → R (linear) easy: always left if d > 0,

right if d < 0

▶ Obvious idea: use the linear function that best locally approximates f

▶ Trusty old derivative d = f ′(x) = limt→0[f (x + t)− f (x)] / t

(putting a lot under the carpet even in Rn, not to mention Fn)

▶ Provided it exists . . . and it is unique

“I Gained The Color of the Corn” . . . No, Actually Derivatives 20

▶ (the) “Space (Fn) is big. Really big. You just won’t believe how

vastly, hugely, mind-bogglingly big it is.” Which way is x∗?

f(x)

v

d < 0

x

}
▶ f (x) := dx + v : R → R (linear) easy: always left if d > 0, right if d < 0

▶ Obvious idea: use the linear function that best locally approximates f

▶ Trusty old derivative d = f ′(x) = limt→0[f (x + t)− f (x)] / t

(putting a lot under the carpet even in Rn, not to mention Fn)

▶ Provided it exists . . . and it is unique

“I Gained The Color of the Corn” . . . No, Actually Derivatives 20

▶ (the) “Space (Fn) is big. Really big. You just won’t believe how

vastly, hugely, mind-bogglingly big it is.” Which way is x∗?

f(x)

x
▶ f (x) := dx + v : R → R (linear) easy: always left if d > 0, right if d < 0

▶ Obvious idea: use the linear function that best locally approximates f

▶ Trusty old derivative d = f ′(x) = limt→0[f (x + t)− f (x)] / t

(putting a lot under the carpet even in Rn, not to mention Fn)

▶ Provided it exists . . . and it is unique

“I Gained The Color of the Corn” . . . No, Actually Derivatives 20

▶ (the) “Space (Fn) is big. Really big. You just won’t believe how

vastly, hugely, mind-bogglingly big it is.” Which way is x∗?

f(x)

xx

d = ∞

▶ f (x) := dx + v : R → R (linear) easy: always left if d > 0, right if d < 0

▶ Obvious idea: use the linear function that best locally approximates f

▶ Trusty old derivative d = f ′(x) = limt→0[f (x + t)− f (x)] / t

(putting a lot under the carpet even in Rn, not to mention Fn)

▶ Provided it exists

. . . and it is unique

“I Gained The Color of the Corn” . . . No, Actually Derivatives 20

▶ (the) “Space (Fn) is big. Really big. You just won’t believe how

vastly, hugely, mind-bogglingly big it is.” Which way is x∗?

f(x)

xx
▶ f (x) := dx + v : R → R (linear) easy: always left if d > 0, right if d < 0

▶ Obvious idea: use the linear function that best locally approximates f

▶ Trusty old derivative d = f ′(x) = limt→0[f (x + t)− f (x)] / t

(putting a lot under the carpet even in Rn, not to mention Fn)

▶ Provided it exists . . . and it is unique

(Local) Optimality and Derivatives 21

f(x)

x
▶ f ′(x) < 0 or f (x) > 0 =⇒ x cannot be a local minimum

▶ f ′(x) = 0 in all local minima =⇒ in the global one

▶ However, f ′(x) = 0 also in local (global) maxima and in saddle points

(Local) Optimality and Derivatives 21

f(x)

x
▶ f ′(x) < 0 or f (x) > 0 =⇒ x cannot be a local minimum

▶ f ′(x) = 0 in all local minima =⇒ in the global one

▶ However, f ′(x) = 0 also in local (global) maxima and in saddle points

(Local) Optimality and Derivatives 21

f(x)

x
▶ f ′(x) < 0 or f (x) > 0 =⇒ x cannot be a local minimum

▶ f ′(x) = 0 in all local minima =⇒ in the global one

▶ However, f ′(x) = 0 also in local (global) maxima

and in saddle points

(Local) Optimality and Derivatives 21

f(x)

x
▶ f ′(x) < 0 or f (x) > 0 =⇒ x cannot be a local minimum

▶ f ′(x) = 0 in all local minima =⇒ in the global one

▶ However, f ′(x) = 0 also in local (global) maxima and in saddle points

Optimality Conditions 22

▶ To find x∗, try finding stationary point x s.t. f ′(x) = 0

▶ f ′(x) = 0 (necessary, not sufficient) optimality condition:

optimization is a system of (nonlinear) equations

▶ Still a lot hidden under the carpet:

▶ what exactly is f ′ when X ̸= R?

▶ lots of “ifs” and “buts” (f ′ has to exist, X has to be “nice”, . . .)

▶ If all goes well, (local) optimality can be detected using derivatives

(we’ll see more details later in a simpler setting) =⇒
optimality conditions for PDE-CO is a PDE system. But:

▶ significantly more complex than H itself

▶ mathematical details far from easy

▶ PDE systems have no closed-form solution anyway

=⇒ have to discretize the PDE and solve approximately

Optimality Conditions 22

▶ To find x∗, try finding stationary point x s.t. f ′(x) = 0

▶ f ′(x) = 0 (necessary, not sufficient) optimality condition:

optimization is a system of (nonlinear) equations

▶ Still a lot hidden under the carpet:

▶ what exactly is f ′ when X ̸= R?

▶ lots of “ifs” and “buts” (f ′ has to exist, X has to be “nice”, . . .)

▶ If all goes well, (local) optimality can be detected using derivatives

(we’ll see more details later in a simpler setting) =⇒
optimality conditions for PDE-CO is a PDE system. But:

▶ significantly more complex than H itself

▶ mathematical details far from easy

▶ PDE systems have no closed-form solution anyway

=⇒ have to discretize the PDE and solve approximately

Optimality Conditions 22

▶ To find x∗, try finding stationary point x s.t. f ′(x) = 0

▶ f ′(x) = 0 (necessary, not sufficient) optimality condition:

optimization is a system of (nonlinear) equations

▶ Still a lot hidden under the carpet:

▶ what exactly is f ′ when X ̸= R?

▶ lots of “ifs” and “buts” (f ′ has to exist, X has to be “nice”, . . .)

▶ If all goes well, (local) optimality can be detected using derivatives

(we’ll see more details later in a simpler setting) =⇒
optimality conditions for PDE-CO is a PDE system. But:

▶ significantly more complex than H itself

▶ mathematical details far from easy

▶ PDE systems have no closed-form solution anyway

=⇒ have to discretize the PDE and solve approximately

Optimality Conditions 22

▶ To find x∗, try finding stationary point x s.t. f ′(x) = 0

▶ f ′(x) = 0 (necessary, not sufficient) optimality condition:

optimization is a system of (nonlinear) equations

▶ Still a lot hidden under the carpet:

▶ what exactly is f ′ when X ̸= R?

▶ lots of “ifs” and “buts” (f ′ has to exist, X has to be “nice”, . . .)

▶ If all goes well, (local) optimality can be detected using derivatives

(we’ll see more details later in a simpler setting) =⇒
optimality conditions for PDE-CO is a PDE system. But:

▶ significantly more complex than H itself

▶ mathematical details far from easy

▶ PDE systems have no closed-form solution anyway

=⇒ have to discretize the PDE and solve approximately

Optimality Conditions 22

▶ To find x∗, try finding stationary point x s.t. f ′(x) = 0

▶ f ′(x) = 0 (necessary, not sufficient) optimality condition:

optimization is a system of (nonlinear) equations

▶ Still a lot hidden under the carpet:

▶ what exactly is f ′ when X ̸= R?

▶ lots of “ifs” and “buts” (f ′ has to exist, X has to be “nice”, . . .)

▶ If all goes well, (local) optimality can be detected using derivatives

(we’ll see more details later in a simpler setting) =⇒
optimality conditions for PDE-CO is a PDE system. But:

▶ significantly more complex than H itself

▶ mathematical details far from easy

▶ PDE systems have no closed-form solution anyway

=⇒ have to discretize the PDE and solve approximately

Tell Me Again, what did I Gain, Exactly? 23

▶ Still back to “have to compute f (·) numerically”

▶ However, can now prove that x (= [c , u]) is a (local) minimum

▶ Also, algorithms that use derivatives are vastly more efficient

(we’ll see more details later in a simpler setting)

▶ Can quickly reach a (local) minimum and stop there:

no more random moves for fear of having missed a better point nearby

▶ | f ′(x) | ≈ “distance” from x∗, useful to choose accuracy of simulation

▶ Explicit optimality conditions leads to multiple strategies:

▶ first discretize, then write optimality conditions

▶ first write optimality conditions, then discretize

▶ However, f ′(x) = 0 only tells x may be a local minimum

To Avoid Issues, just Ensure Every Stationary Point is a Minimum 24

f(x)

x
▶ If f has local minima

and maxima, f ′ must first ↗ and then ↘
▶ What if f ′ monotone? f convex function =⇒

stationary point =⇒ local minimum =⇒ global minimum

▶ f (·) and X convex =⇒ x∗ can be found “easily”

▶ Rules to construct f (·) and X convex

To Avoid Issues, just Ensure Every Stationary Point is a Minimum 24

f(x)

x
▶ If f has local minima and maxima, f ′ must first ↗ and then ↘
▶ What if f ′ monotone?

f convex function =⇒
stationary point =⇒ local minimum =⇒ global minimum

▶ f (·) and X convex =⇒ x∗ can be found “easily”

▶ Rules to construct f (·) and X convex

To Avoid Issues, just Ensure Every Stationary Point is a Minimum 24

f(x)

x
▶ If f has local minima and maxima, f ′ must first ↗ and then ↘
▶ What if f ′ monotone? f convex function =⇒

stationary point =⇒ local minimum =⇒ global minimum

▶ f (·) and X convex =⇒ x∗ can be found “easily”

▶ Rules to construct f (·) and X convex

To Avoid Issues, just Ensure Every Stationary Point is a Minimum 24

f(x)

x
▶ If f has local minima and maxima, f ′ must first ↗ and then ↘
▶ What if f ′ monotone? f convex function =⇒

stationary point =⇒ local minimum =⇒ global minimum

▶ f (·) and X convex =⇒ x∗ can be found “easily”

▶ Rules to construct f (·) and X convex

So, Can I Solve PDE-Constrained Optimization Problems 25

▶ In a nutshell: if everything goes very well

▶ f , H and G must have the right properties

▶ details have to be worked out, options be wisely chosen

▶ local optimality must be OK (or the problem convex to start with)

▶ There is no general-purpose PDE-OC solver,

each case has to be dealt with individually

▶ However, tools are there, knowledge is there

▶ Problems of scale required by practical applications can be solved

▶ with a little help from my (PDE-CO-savvy) friends

▶ and possibly a supercomputer at hand

▶ As always, structure is your friend

(e.g., optimal control has many specialized approaches exploiting time)

▶ Is it worth? In quite many cases, it is

Outline 26

Mathematical Models, Optimization Problems

Optimization is Difficult

Black-box Optimization

PDE-Constrained Optimization

NonLinear Nonconvex Problems

Mixed-Integer Convex (Linear) Problems

Conclusions

What If I Only Have Algebraic Constraints? 27

▶ “Easier” problem: no PDE constraints, “only” algebraic ones

X =
{
x ∈ Rn : gi (x) ≤ 0 i ∈ I , hj(x) = 0 j ∈ J

}
I = set of inequality constraints, J = set of equality constraints

▶ G (x) = [gi (x)]i∈I : Rn → R|I|, H(x) = [hi (x)]i∈J : Rn → R|J |

X =
{
x ∈ Rn : G (x) ≤ 0 , H(x) = 0

}
G (·), H(·) algebraic (vector-valued, multivariate) real functions

▶ Could always assume | I | = 1 and | J | = 0:

▶ hj(x) = 0 ≡ hj(x) ≤ 0 ∧ −hj(x) ≤ 0

▶ G(x) ≤ 0 ≡ max{ gi (x) : i ∈ I } = g(x) ≤ 0

but good reasons not to (exploit structure when is there)

▶ What does this gives to me? You know the drill: derivatives

Partial Derivatives, Gradient, Differentiability 28

▶ f : Rn → R, partial derivative of f w.r.t. xi at x ∈ Rn:

∂f
∂xi

(x) = limt→0
f (x1 , ... , xi−1 , xi+t , xi+1 , ... , xn)−f (x)

t

just f ′(x1 , . . . , xi−1 , x , xi+1 , . . . , xn) treating xj for j ̸= i as constants

▶ Good news: computing derivatives mechanic, Automatic Differentiation

software will do it for you, not only from formulæ but from code

. . . provided they exist (f (x) = | x |, f ′(x) = ???)

▶ Gradient = vector of all partial derivatives all important in optimization

∇f (x) :=
[

∂f
∂x1

(x) , . . . , ∂f
∂xn

(x)
]

▶ f differentiable at x ≈ ∀i ∂f
∂xi

(·) continuous (⇐= ∃)

▶ f ∈ C 1: ∇f (x) continuous ≡ f differentiable (=⇒ f continuous) ∀ x

▶ f ∈ C 1 =⇒ finding stationary point) “easy”:

just go in the other direction (−∇f (x) = steepest descent direction)

Partial Derivatives, Gradient, Differentiability 28

▶ f : Rn → R, partial derivative of f w.r.t. xi at x ∈ Rn:

∂f
∂xi

(x) = limt→0
f (x1 , ... , xi−1 , xi+t , xi+1 , ... , xn)−f (x)

t

just f ′(x1 , . . . , xi−1 , x , xi+1 , . . . , xn) treating xj for j ̸= i as constants

▶ Good news: computing derivatives mechanic, Automatic Differentiation

software will do it for you, not only from formulæ but from code

. . . provided they exist (f (x) = | x |, f ′(x) = ???)

▶ Gradient = vector of all partial derivatives all important in optimization

∇f (x) :=
[

∂f
∂x1

(x) , . . . , ∂f
∂xn

(x)
]

▶ f differentiable at x ≈ ∀i ∂f
∂xi

(·) continuous (⇐= ∃)

▶ f ∈ C 1: ∇f (x) continuous ≡ f differentiable (=⇒ f continuous) ∀ x

▶ f ∈ C 1 =⇒ finding stationary point) “easy”:

just go in the other direction (−∇f (x) = steepest descent direction)

If You Win, Keep Playing 29

▶ f : Rn → Rm, f (x) = [f1(x) , f2(x) , . . . , fm(x)]

▶ Partial derivative: usual stuff, except with extra index

∂fj
∂xi

(x) = limt→0
fj (x1 , ... , xi−1 , xi+t , xi+1 , ... , xn)−fj (x)

t

▶ ∇f (x) : Rn → Rn itself has a gradient: Hessian of f

∇2f (x) =



∂2f
∂x2

1
(x) ∂2f

∂x2∂x1
(x) . . . ∂2f

∂xn∂x1
(x)

∂2f
∂x1∂x2

(x) ∂2f
∂x2

2
(, x) . . . ∂2f

∂xn∂x2
(x)

...
...

. . .
...

∂2f
∂x1∂xn

(, x) ∂2f
∂x2∂xn

(x) . . . ∂2f
∂x2

n
(x ,)


second-order partial derivative

(just do it twice)
∂2f

∂xj∂xi

∂2f

∂xi∂xi
=

∂2f

∂x2i

▶ f ∈ C 2: ∇2f (x) continuous (=⇒ symmetric) ≡ ∇f differentiable ∀ x

▶ f ∈ C 2 =⇒ finding local minimum (stationary point) “super-easy”

Local (Unconstrained) Optimization Algorithms 30

▶ X = Rn =⇒ all depends on quality of derivatives of f :

▶ f /∈ C 1 =⇒ subgradient methods =⇒ sublinear convergence

(error at step k ≈ 1/
√
k, O(1 / ε2) iterations)

▶ f ∈ C 1 =⇒ gradient methods =⇒ linear convergence

(error at step k ≈ γk with γ < 1, O(1 / log(ε)) iterations)

▶ f ∈ C 2 =⇒ Newton-type methods =⇒ superlinear/quadratic convergence

(error at step k ≈ γk2/γ2k with γ < 1, ≈ O(1) iterations)

▶ All bounds ≈ independent from n (can be “hidden in the constants”)

=⇒ good for large-scale problems (n very large)

▶ Not all trivial, line search/trust region, globalization, . . .

▶ Gradient methods can be rather slow in practice (γ ≈ 1), need to

cure zig-zagging (heavy ball, fast gradients, . . .)

▶ Hessian a big guy, inverting it O(n3) a serious issue for large-scale:

quasi-Newton/conjugate gradient only O(n2) / O(kn) (but trade-offs)

▶ All in all, local (unconstrained) convergence very well dealt with

How About Constrained Optimization? 31

▶ Local optimality still “easy” to characterize via derivatives

▶ Karush-Kuhn-Tucker conditions: ∃λ ∈ R|I|
+ and µ ∈ R|J | s.t.

gi (x) ≤ 0 i ∈ I , hj(x) = 0 j ∈ J (KKT-F)

∇f (x) +
∑

i∈I λi∇gi (x) +
∑

j∈J µj∇hj(x) = 0 (KKT-G)∑
i∈I λigi (x) = 0 (KKT-CS)

≡ x stationary point of Lagrangian function (in x , λ / µ parameters)

L(x ; λ , µ) = f (x) +
∑

i∈I λigi (x) +
∑

j∈I µjhj(x) (⇝ duality . . .)

▶ KKT Theorem: x local optimum + constraint qualifications =⇒ (KKT)

▶ (P) convex problem: (KKT) =⇒ x global optimum

▶ Otherwise, quite involved second-order optimality conditions . . .

Meaning What, Algorithmically? 32

▶ In a nutshell, that ∃ efficient local algorithms

▶ At the very least, (KKT) ≈ x local minimum, stop the search

▶ Checking if (KKT) holds “easy” (Farkas’ Lemma . . .)

▶ Optimization ≡ solving systems of nonlinear equations and inequalities

▶ Does not mean that algorithms are obvious:
▶ several different forms (primal, dual, . . .)

▶ several different ideas (active set, projection, barrier, penalty, . . .)

▶ combinatorial aspects (active set choice) may make them inefficient

▶ Yet, provably and practically efficient algorithms are there

if data of the problem nice (f , G ∈ C 1/C 2, H affine . . .)

▶ Particularly relevant/elegant class: primal-dual interior point methods

▶ (Reasonably) robust and efficient implementations available, although

numerical issues (linear algebra accuracy/cost) still nontrivial

How About Global Optimality, Then? 33

▶ Unfortunately an entirely different game: sifting through all X required

▶ Derivatives a local object, can’t give global information

except in the convex case, where they actually do

f

▶ f convex ≡

f (x) +∇f (x)(y − x) ≤ f (y) ∀ y
▶ ∇f (x) = 0 =⇒ f (x) [+0(y − x)] ≤ f (y) ∀ y

How About Global Optimality, Then? 33

▶ Unfortunately an entirely different game: sifting through all X required

▶ Derivatives a local object, can’t give global information

except in the convex case, where they actually do

x

f

f(x)

▶ f convex ≡ f (x)

+∇f (x)(y − x) ≤ f (y) ∀ y
▶ ∇f (x) = 0 =⇒ f (x) [+0(y − x)] ≤ f (y) ∀ y

How About Global Optimality, Then? 33

▶ Unfortunately an entirely different game: sifting through all X required

▶ Derivatives a local object, can’t give global information

except in the convex case, where they actually do

x

f

f(x)+ f(x)(y - x)

▶ f convex ≡ f (x) +∇f (x)(y − x)

≤ f (y) ∀ y
▶ ∇f (x) = 0 =⇒ f (x) [+0(y − x)] ≤ f (y) ∀ y

How About Global Optimality, Then? 33

▶ Unfortunately an entirely different game: sifting through all X required

▶ Derivatives a local object, can’t give global information

except in the convex case, where they actually do

x

f

f(x)+ f(x)(y - x)

▶ f convex ≡ f (x) +∇f (x)(y − x) ≤

f (y) ∀ y
▶ ∇f (x) = 0 =⇒ f (x) [+0(y − x)] ≤ f (y) ∀ y

How About Global Optimality, Then? 33

▶ Unfortunately an entirely different game: sifting through all X required

▶ Derivatives a local object, can’t give global information

except in the convex case, where they actually do

x

f

f(x)+ f(x)(y - x)

▶ f convex ≡ f (x) +∇f (x)(y − x) ≤ f (y) ∀ y

▶ ∇f (x) = 0 =⇒ f (x) [+0(y − x)] ≤ f (y) ∀ y

How About Global Optimality, Then? 33

▶ Unfortunately an entirely different game: sifting through all X required

▶ Derivatives a local object, can’t give global information

except in the convex case, where they actually do

x

f

f(x)+0(y-x)

▶ f convex ≡ f (x) +∇f (x)(y − x) ≤ f (y) ∀ y
▶ ∇f (x) = 0

=⇒ f (x) [+0(y − x)] ≤ f (y) ∀ y

How About Global Optimality, Then? 33

▶ Unfortunately an entirely different game: sifting through all X required

▶ Derivatives a local object, can’t give global information

except in the convex case, where they actually do

x

f

f(x)+0(y-x)

▶ f convex ≡ f (x) +∇f (x)(y − x) ≤ f (y) ∀ y
▶ ∇f (x) = 0 =⇒ f (x)

[+0(y − x)] ≤ f (y) ∀ y

How About Global Optimality, Then? 33

▶ Unfortunately an entirely different game: sifting through all X required

▶ Derivatives a local object, can’t give global information

except in the convex case, where they actually do

x

f

f(x)

▶ f convex ≡ f (x) +∇f (x)(y − x) ≤ f (y) ∀ y
▶ ∇f (x) = 0 =⇒ f (x) [+0(y − x)] ≤ f (y) ∀ y

What Can I Do in the Nonconvex Case? 34

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+

▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap

What Can I Do in the Nonconvex Case? 34

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+
▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap

What Can I Do in the Nonconvex Case? 34

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+x

f(x)

f(x)

▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap

What Can I Do in the Nonconvex Case? 34

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x

gap

][
x- x+x

f(x)

f(x)
{

▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large,

partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap

What Can I Do in the Nonconvex Case? 34

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+
▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap

What Can I Do in the Nonconvex Case? 34

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+

f(x)f(x)

x
▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ f depends on partition, smaller partition (hopefully) =⇒ better gap

What Can I Do in the Nonconvex Case? 34

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+
▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ If on some partition

f (x̄) ≥ best f -value so far, partition killed for good

What Can I Do in the Nonconvex Case? 34

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+x

fbest

f(x)

▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ If on some partition f (x̄) ≥ best f -value so far,

partition killed for good

What Can I Do in the Nonconvex Case? 34

▶ Sift through all X = [x− , x+], but using a clever guide

f(x)

x
][

x- x+x

fbest

f(x)

▶ Convex lower approximation f of nonconvex f on X

▶ “Easily” find local ≡ global minimum x̄ , giving f (x̄) ≤ f∗ ≤ f (x̄)

▶ If gap f (x̄)− f (x̄) too large, partition X and iterate

▶ If on some partition f (x̄) ≥ best f -value so far, partition killed for good

Is Something Like This Efficient? 35

▶ In a word? No

▶ Worst-case: keep dicing and slicing X until pieces “very small” (≈ (ε / L)n)

▶ However, in practice it depends on:

▶ “how much nonconvex” f really is

▶ how good f is as a lower approximation of f

▶ Best possible lower approximation: convex envelope

▶ Bad news: computing convex envelopes is hard

▶ Typical approach:

▶ rewrite the expression of f in terms of unary/binary functions

▶ apply specific convexification formulæ for each function

▶ Tedious job, bounds often rather weak

▶ Good news: implemented in available, well-engineered solvers

▶ Good news: immensely less inefficient in practice than blind search

(at least, bounds allow to cut away whole regions for good)

So, Can I Solve NonLinear Nonconvex Problems? 36

▶ In a nutshell: if everything goes quite well

▶ f , G and H must have the right properties

▶ the less nonconvex they are, the better

▶ the less “complicated” they are, the better

▶ Yet, there are general-purpose nonconvex MINLP solvers which

can solve the problem to proven optimality

▶ Using them nontrivial, formulating the problem well crucial

(≡ so that a “good f is available”)

▶ Not really “large-scale”, but 100s/1000s of variables often

doable quickly enough with off-the-shelf tools

▶ Much larger problems also possible with special tools/effort

▶ As always, structure is your friend

▶ Is it worth? In quite many cases, it is (ask chemical Engineers)

Outline 37

Mathematical Models, Optimization Problems

Optimization is Difficult

Black-box Optimization

PDE-Constrained Optimization

NonLinear Nonconvex Problems

Mixed-Integer Convex (Linear) Problems

Conclusions

A Very Convenient Form of Nonconvexity 38

▶ Computing “good” convex approximation both complex and difficult

▶ One very relevant case in which at least “easy”: integrality constraints

▶ xi ∈ Z, most often xi ∈ { 0 , 1 } very convenient for discrete choices

(start machine/don’t, make trip/don’t, . . .)

▶ Clearly nonconvex, ∃ nonlinear versions (xi (1− xi) ≤ 0, . . .)

▶ Actually quite powerful: many different nonlinear nonconvex structures

can be expressed via that + “simple” (linear) constraints

▶ Yet, this requires some rather weird formulation tricks

z = xy ≡ [(z ≤ x) ∧ (z ≤ y) ∧ (z ≥ x + y − 1)] if all x , y , z ∈ { 0 , 1 }

▶ If all the rest in the problem convex, then a convex relaxation very easy:

continuous relaxation (xi ∈ Z −→ xi ∈ R)

▶ This does not mean convex relaxation is good, but it may be

▶ At least makes life a lot easier to solution algorithms

Going All the Way to Help The Solver 39

▶ Finding good relaxations crucial for practical efficiency

▶ Solvers helped a lot by having few, well-controlled nonconvexities

▶ Mixed-Integer Convex Problems the easiest class of hard problems

▶ Especially famous special case: Mixed-Integer Linear Program

(MILP) min
{
cx : Ax ≥ b , xi ∈ Z i ∈ I

}
=⇒ continuous relaxation ≡ Linear Program

▶ Very stable and efficient algorithms, some ≈ unique (simplex methods)

▶ Very powerful methods to improve relaxation quality (valid inequalities)

▶ Countless many results about special combinatorial structures

(paths, trees, cuts, matchings, cliques, covers, knapsacks, . . .)

▶ Clever approaches to exploit structure, though some work for MINLP too

(Column/Row Generation, Dantzig-Wolfe/Benders’ Decomposition, . . .)

Put The Human in the Loop 40

▶ Fundamental point: formulating the problem well is crucial

▶ Almost anything can be written as a MILP, albeit to some ≈
(not always a good idea: some nonlinearities “nice”)

▶ Many different ways to write the same problem:

apparently minor changes can make orders-of-magnitude difference

▶ Several of the best formulation weird and/or very large

(appropriate tricks to only generate the strictly required part)

▶ Doing it “by hand” should not be required: solvers should

be able to automatically find the best formulation (reformulate)

▶ Good news: the “perfect” formulation provably exists

▶ Bad news: it is provably (NP-)hard to construct

▶ Doing it automatically is clearly difficult (but we should try harder)

▶ Meanwhile, a well-trained eye can make a lot of difference

An Incredibly Nifty Trick: (Mixed-Integer) Conic Programs 41

▶ Good news: can “hide” many nonlinearities in a Linear Program

▶ Conic Program: (P) min{ cx : Ax ≥K b }
where x ≥K y ≡ x − y ∈ K , K pointed convex cone, e.g.

▶ K = Rn
+ ≡ sign constraints ≡ Linear Program

▶ K = L =
{
x ∈ Rn : xn ≥

√∑n−1
i=1 x2

i

}
≡ Second-Order Cone Program

▶ K = S+ = {A ⪰ 0 } ≡ “⪰” constraints ≡ SemiDefinite Program

▶ Exceedingly smart idea: everything is linear, but the cone is not

≡ a nonlinear program disguised as a linear one

▶ Contains as special case convex quadratic functions

▶ Many interesting (convex) nonlinear functions have a conic representation

(but have to learn some even weirder formulation trick)

▶ Continuous relaxation almost as efficient as Linear Program

▶ Many combinatorial MILP tricks extend di MI-SOCP (valid surfaces, . . .)

▶ Support in general-purpose software growing, already quite advanced

So, Can I Solve Mixed-Integer Linear (Convex) Problems? 42

▶ In a nutshell: unless something goes very bad

▶ data of the problem by definition is nice

▶ a feasible relaxation always there, bounds can be quite good

▶ lots of good ideas (cutting planes, general-purpose heuristics, . . .)

▶ Plenty of general-purpose, well-engineered MILP/MI-SOCP solvers

which can solve the problem to proven optimality

▶ Lots of useful supporting software: algebraic modelling languages,

(there for MINLP too), IDEs, interfaces with database/spreadsheet, . . .

▶ 10000/100000 variables often doable in minutes/hours on stock hw/sw

if you write the right model

▶ Much larger problems (106 / 109) also possible with special tools/effort

▶ As always, structure is your friend, and many known forms of structures

▶ Is it worth? In very many cases, it is

Outline 43

Mathematical Models, Optimization Problems

Optimization is Difficult

Black-box Optimization

PDE-Constrained Optimization

NonLinear Nonconvex Problems

Mixed-Integer Convex (Linear) Problems

Conclusions

Conclusions 44

▶ Optimization problems are difficult

. . . but there are ̸= kinds of “difficult”

▶ Many problems have structure that can be exploited

▶ First crucial choice: which class of optimization problems

▶ Trade-off model accuracy vs. model complexity not trivial

▶ However, apparently very complex problems may not be that difficult

if one knows the right set of modelling tricks

▶ Lots of stable, well-developed software (even open-source),

especially for the most “tractable” problems

▶ A lot depends on how the problem is written

▶ The hand who rocks the model is the hand who rules the world

Conclusions 44

▶ Optimization problems are difficult . . . but there are ̸= kinds of “difficult”

▶ Many problems have structure that can be exploited

▶ First crucial choice: which class of optimization problems

▶ Trade-off model accuracy vs. model complexity not trivial

▶ However, apparently very complex problems may not be that difficult

if one knows the right set of modelling tricks

▶ Lots of stable, well-developed software (even open-source),

especially for the most “tractable” problems

▶ A lot depends on how the problem is written

▶ The hand who rocks the model is the hand who rules the world

	Mathematical Models, Optimization Problems
	Optimization is Difficult
	Black-box Optimization
	PDE-Constrained Optimization
	NonLinear Nonconvex Problems
	Mixed-Integer Convex (Linear) Problems
	Conclusions

