
Matrix-vector products
The operational way: row-by-column yi =

∑
j Aijxj .

A11 A12 A13
A21 A22 A23
A31 A32 A33
A41 A42 A43


x1

x2
x3

 =


y1
y2
y3
y4

 .

The smart way: linear combinations of columns of A
A11
A21
A31
A41


︸ ︷︷ ︸

v1

x1 +


A12
A22
A32
A42


︸ ︷︷ ︸

v2

x2 +


A31
A32
A33
A43


︸ ︷︷ ︸

v3

x3 =


y1
y2
y3
y4

 .

The entries of x are coordinates used to write y as a linear
combination of v1, v2, v3.



Bases
A basis is a tuple of vectors v1, v2, . . . , vn such that we can write
each vector y of a certain space, uniquely, as a linear combination
of them.

Uniquely = coordinates for each vector are unique / well defined.

Canonical basis: vectors with only one 1; e.g. for n = 4

e1 =


1
0
0
0

 , e2 =


0
1
0
0

 , e3 =


0
0
1
0

 , e4 =


0
0
0
1

 .

Coordinates wrt this basis ⇐⇒ vector entries
y = e1y1 + e2y2 + e3y3 + e4y4.

(I like to put scalars on the right.)

(In real life, vectors are not always boldfaced/underlined for your
convenience.)



Linear systems
Problem: find coordinates x1, . . . , xn needed to write y as linear
combinations of the columns of A ∈ Rm×n, or

Ax = y.

Sometimes there are multiple solutions, or none, e.g.,

A =


2 0 1
0 1 1
0 0 0
0 0 0

 , y1 =


4
4
0
0

 , y2 =


4
4
1
2

 .

Im A: the set of vectors y that we can obtain.
ker A: possible choices of x that produce Ax = 0.

Main problem in this part of our course: find x that reaches a
given y exactly, or gets as close as possible.



Square linear systems
A is called invertible if Ax = y has a unique solution; i.e., its
columns are a basis or Rn. (It must be square for this to hold.)

In this case, the solution is given by another matrix: x = A−1y

AA−1 = A−1A = I =


1

1
1

. . .
1


(Convention: omitted elements are zero.)

Warning inv(A)*y is not the best way to solve Ax = y,
numerically.
Most languages have a specialized instruction, e.g., Matlab’s
x = A \ y or Python’s scipy.linalg.solve(A, y). Use it!



Linear algebra in a slide
(You have already studied linear algebra, right?)

The powerful idea behind linear algebra

▶ there is a ‘space’ of vectors as abstract geometrical objects.
▶ we can represent them as coordinates w.r.t a given basis.
▶ operations on vectors ⇐⇒ operations on coordinates.
▶ many relations are true regardless of the choice of coordinates.

x
y v = (2, 1)

w = (2, 4)

v + w = (4, 5)

x

y v = (0.5, 1.5)

w = (−1, 3)

v + w = (−0.5, 4.5)



Matrices in linear algebra
Matrices also represent linear transformations: if you plot v and Av
on the same axes, the second is a transformation (rotation, or
scaling, shearing, . . . ) of the first.

Example: the change-of-basis matrix

x
y v = (2, 1)

w = (2, 4)

v + w = (4, 5)

x
y

Av = (0.5, 1.5)

Aw = (−1, 3)

Av + Aw = A(v + w) = (−0.5, 4.5)

A = 0.5
[
1 −1
1 1

]

I represents the identity: Iv = v for each v.

A(Bv) = “apply B first, then A” is another transformation,
represented by the matrix AB; so A(Bv) = (AB)v.



Matrix-matrix product


A11 A12 A13
A21 A22 A23
A31 A32 A33
A41 A42 A43


B11 B12

B21 B22
B31 B32


A ∈ R4×3, B ∈ R3×2. AB ∈ R4×2.
Mnemonic: if the inner dimensions agree, the product is
well-defined and removes them.

We can identify vectors with columns (n × 1 matrices).

Cost: multiplying m × n and n × p requires m(2n − 1)p = O(mnp)
floating point operations (flops). Fancier algorithms (e.g.
Strassen) typically do not perform better in practice.



Order of operations
Usual manipulations work, e.g.: A(B + C) = AB + AC ,
A(BC) = (AB)C , etc.

Warning: Parenthesization matters a lot: if A, B ∈ Rn×n, v ∈ Rn,
then (AB)v costs O(n3), but A(Bv) costs O(n2).

Warning: programming languages usually do not rearrange
parentheses to help you.

Matlab example:

n = 2000;
A = randn(n, n);
B = randn(n, n);
v = randn(n, 1);
tic, A * (B * v); toc
tic, (A * B) * v; toc



Matrix algebra

(A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2.

What doesn’t work
AB ̸= BA: one of them might not even make sense dimension-wise.
Exception: We can move around numbers (scalars): 3AB = A(3B).

AB = AC does not imply B = C (example: A = B = [ 1 0
0 0 ], C = I).

However, if there is a matrix M such that MA = I, I can multiply
by M:

(MA)B = (MA)C ⇐⇒ B = C .

Warning: multiplying ‘on the left’ and ‘on the right’ differ.



Row and column vectors
It is useful to keep the concepts of row and column vectors
separate.

c =

4
5
6

 , r = cT =
[
4 5 6

]
.

c is a vector in R3; you can identify it with a matrix in R3×1 for
most purposes. r is a matrix in R1×3 (or row vector).
Matlab keeps these concepts separate also in programming:

>> c = [4;5;6];
>> r = [1 2 3];
>> r * c
ans =

32

This operation is the scalar product of vectors in Rn:
v⊤w = ⟨v, w⟩.



Row and column vectors

>> c * r
ans =

4 8 12
5 10 15
6 12 18

>> c’
ans =

4 5 6
>> r * c’
Error using *
Inner matrix dimensions must agree.

Useful convention: “bare” letters are for columns, ⊤ for rows.

Some people (even other professors) write vw for the scalar
product v⊤w. This will be confusing: what is uvw?

v · w: more acceptable; at least it’s clear it is a different operation.



Rank
The word rank has a precise linear-algebra meaning. (For some
computer scientists, rank = number of indices of an array; don’t
confuse the two concepts.)

Definition
Rank of a matrix A = minimum r so that it is possible to find
vectors v1, . . . , vr such that all the columns of A are linear
combinations of these vectors.

Example:

vwT =

v1w1 v1w2 v1w3
v2w1 v2w2 v2w3
v3w1 v3w2 v3w3


has rank r = 1: all columns are multiples of v.

(Theorem: column rank = row rank: if you replace “columns” with
“rows” in the definition, you get the same value r . For instance, in
the example above, all rows are multiples of wT ).



Block operations

When computing a matrix product, we get the same result if we
use the row-by-column rule block-wise.

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




·

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




=

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




∗ ∗ ∗
∗ ∗ ∗

[ ]
·

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


+ ∗

∗

[ ]
· ∗ ∗ ∗
[ ]

+ ∗ ∗
∗ ∗

[ ]
· ∗ ∗ ∗

∗ ∗ ∗

[ ]
= ∗ ∗ ∗

∗ ∗ ∗

[ ]

“Inner” dimensions (in red) must be partitioned in the same way,
for the second line to make sense.
(Matlab example — syntax A(1:2, 1:3).)



Block operations
When implementing linear algebra on a computer, usually chopping
up matrices into large blocks (e.g., 64 × 64) gives better
performance, even with an equal number of floating point
operations, because of caching/locality reasons.

This is one of the reasons why libraries usually perform better than
hand-coded loops.



Triangular linear systems and substitution
Idea If A is lower triangular (i.e., square with all zeros above the
main diagonal), then we can solve Ax = y one entry at a time by
forward-substitution.


A11 0 0 0
A21 A22 0 0
A31 A32 A33 0
A41 A42 A43 A44




x1
x2
x3
x4

 =


y1
y2
y3
y4

 ⇐⇒


A11x1 = y1

A21x1 + A22x2 = y2
...

Cost: O(n2) (check!)

Cheaper than computing A−1, which costs O(n3).

Another instance of an important principle: never form inverses
explicitly.

The same computations hold if the above quantities are blocks
(careful with the order!): x1 = A−1

11 y ; x2 = A−1
22 (y2 − A21x1), . . . .



Exercises
1. What is the computational cost of solving a linear system with

diagonal A?
2. What is the computational cost of solving a linear system with

an upper triangular matrix by back-substitution, i.e., starting
from the last equation and working your way up?

3. Let A = I + uuT , where I is the n × n identity matrix and u is
a vector. How can one compute the product Av (for a vector
v) in O(n) flops?



Exercises
1. Compute (by giving expressions in the blocks Aij , Bij) the

product of two 3 × 3 block lower triangular matrices, i.e., of
the form A11 0 0

A21 A22 0
A31 A32 A33


(all Aij here are square matrices, not numbers.) Be careful
with the order of the factors.

2. Simplify the expression A−1(A − B)B−1(A − B).

3. What is the inverse of a matrix of the form
[

0 A
B C

]
(all

blocks square of the same size)? Is the product of two
matrices in this form still in the same form? (Suppose all
blocks are square, and help yourself with Matlab or Numpy to
formulate a conjecture before diving into computations.)



References
Trefethen-Bau book, Lecture 1 (matrix-vector product).

Other exercises (also more challenging) on the Trefethen-Bau and
Demmel books.


