
Linear combinations

Abstract goal Given vectors a1, a2, . . . , an ∈ Rm and a ‘target
vector’ y ∈ Rm, we look for coefficients x1, x2, . . . , xn such that

a1x1 + · · ·+ anxn = y.

Example

A certain food is a mixture of ingredient A, which contains 10
grams of sugars, 20 of protein and 3 of fats, and ingredient B,
which contains 5 grams of sugars, 1 of protein and 1 of fats. A lab
analysis reveals that the mixture contains 40 grams of sugars, 30
grams of protein and 20 grams of fats. What is the amount of
each ingredient? 1020

3

 x1 +

51
1

 x2 =

4030
20

 .



Solvability

Ax = y, A =

a1 a2 . . . an.


Solvable for each y when we have n = m linearly independent
vectors (invertibility, from linear algebra).

Not always the case: sometimes the vectors are too few,
sometimes they are not linearly independent.

Example

21
0

 x1 +

13
0

 x2 =

55
1


is not solvable. [geometric interpretation: spanning plane]

Not even if I add
[
4
3
0

]
,
[

12
−8
0

]
, . . .



Linear least squares problems

Even if I cannot get
[
5
5
1

]
, maybe I can get

[
5
5
0

]
. . .

Problem

What is the closest I can get?

min
x∈Rn

∥Ax− y∥.

(Here, ∥v∥2 = v21 + v22 + · · ·+ v2n .)

Geometric interpretation: closest vector to y inside the hyperplane
Im(A). We obtain it by orthogonal projection.

The obstructions are not always as visible as in our first example;
for instance, all columns of A may have zero sum, instead of a zero
component. . .



Matlab divisions

We will see various algorithms. But first, some examples where we
let Matlab do the work.

First of all: Matlab has two division operators

>> 5 / 2

ans =

2.5000e+00

>> 5 \ 2

ans =

4.0000e-01

Mnemonic: one divides the number above the bar by the number
below.



Linear systems in Matlab

The same operators solve linear systems:

>> [1 2; 3 4] \ [5; 6]

ans =

-4.0000e+00

4.5000e+00

Finds the vector x such that

Ax = y, A =

[
1 2
3 4

]
, y =

[
5
6

]
.

Functionally equivalent to A−1y (but not implemented as
inv(A)*y — there are faster and more stable ways).

There is also X / A, which computes XA−1, when the product
makes sense, e.g., when X = vT is a row vector.



Linear least squares problems

The same operators solve least squares problems.

>> [2 1; 1 3; 0 0] \ [5; 5; 1]

ans =

2.0000e+00

1.0000e+00

min
x=[ x1x2 ]∈R

2

∥∥∥[ 2
1
0

]
x1 +

[
1
3
0

]
x2 −

[
5
5
1

]∥∥∥.
Before speaking about algorithms, we will show a few applications
of this problem.

Example 0: Linear regression in machine learning (prof. Micheli).
Apart from notation change,

min
x
∥Ax− y∥2 ⇐⇒ min

w
∥Xw − y∥2.



Example 1: Salary estimation

salaries.csv: contains number of points made, rebounds taken,
fouls committed by 399 NBA players in season 2015–2016, and the
salaries they earn.
(Source: basketball-reference.com)

Is it true that the best-performing players are paid more? Which of
these statistics has a larger impact?

Linear model: (salary) ≈ (rebounds)x1 + (fouls)x2 + (points)x3.

∑
p∈players

(
x1(rebounds)p + x2(fouls)p + x3(points)p − (salary)p

)2

Our intuition suggests that x1 and x3 should be positive, and x2
may be negative.



Matlab example

% separator: ’,’; skip 1 row, 1 column.

>> M = dlmread(’salaries.csv’, ’,’, 1, 1)

>> A = M(:, 1:3);

>> y = M(:, 4);

>> x = A \ y

ans =

1.3285e+04

-2.6578e+04

9.5162e+03

>> [value, location] = min(A*x-y)

value =

-1.8864e+07

location =

271

Player #271 is paid 18M$ more than he would deserve. . .



Example 2: polynomial fitting

Problem

Given pairs (xi , yi ) such that yi is almost equal to
ax3i + bx2i + cxi + d , recover the unknown coefficients a, b, c , d .

% 1000 random points in [-10, 10], sorted

>> x = sort(20*rand(1000,1) - 10);

% degree-3 polynomial plus random noise

>> y = 0.02*x.^3 - x + 1 + randn(1000,1);

>> plot(x, y)



Least squares fitting

Problem

Given pairs (xi , yi ), find a, b, c , d that minimize

m∑
i=1

(ax3i + bx2i + cxi + d − yi )
2.

It does not look like a linear problem, but it is: the xi are
parameters and a, b, c , d are our unknowns:

min[ a
b
c
d

]
∈R4

∥∥∥∥∥∥∥∥∥


x31 x21 x1 1
x32 x22 x2 1
...

...
...

...
x3m x2m xm 1



a
b
c
d

−


y1
y2
...
ym


∥∥∥∥∥∥∥∥∥

(Last column of ones: bias, in machine learning terms.)



Matlab solution

>> A = [x.^3, x.^2, x, ones(size(x))];

>> p = A \ y

p =

1.9842e-02

-5.9348e-04

-9.9320e-01

1.0230e+00

This is not too different from the values we started with; and
actually these numbers give a lower error than the ones we used to
construct the example,

[
0.02 0 −1 1

]
.

>> plot(x, y, x, A*p)



More difficult

Now with 100× as much noise. . .

>> y = 0.02*x.^3 - x + 1 + 100 * randn(1000,1);

>> p = A \ y

p =

1.5762e-03

5.1916e-02

4.7983e-01

-7.1315e+00

>> plot(x, y, x, A*p)

General idea: the signal-to-noise ratio is related to the accuracy we
can get.

Geometric idea: if there is no noise, y lies on the plane ImA; noise
moves it away from the plane.



The statistics behind it

Statistical problem: given observations yi , what are the values of
a, b, c, d that ‘most likely’ produced it?

If noise = random Gaussian with same variance for each i , ‘most
likely’ (maximum likelihood) means minimizing

m∑
i=1

(ax3i + bx2i + cxi + d − yi )
2,

i.e., the squared Euclidean norm.

Remark This works because the variance of the added noise is the
same on each entry. If they are different, e.g.,

>> y(1) = 0.02*x(1)^3 - x(1) + 1 + randn();

>> y(2) = 0.02*x(2)^3 - x(2) + 1 + 5*randn();

we should rescale rows to have more accuracy. (Ask a statistician
for more detail.)


