
Solvability of least squares problems
Linear systems: Ax = y with A square: unique solution if A
nonsingular

Linear least squares problems: min∥Ax − y∥ with A tall thin:
unique solution if. . . ?

Example:

min∥Ax − y∥, A =


1 −1 0
2 1 3
1 0 1
0 0 0

 , y =


0
3
1
2

 .

Solution: We can ‘match’ the first three entries (but not the 4th).

x =

0
0
1

 solves the problem. But also x =

1
1
0

. Or x =

1
2
1
2
1
2

. . .



Full column rank definition

What is going on: there is a vector z ̸= 0 in ker A: A

 1
1

−1

 = 0.

If x is a solution, then so is x + z, x + 2z, x − 37z . . .

Definition
We say that A ∈ Rm×n has full column rank if ker A = {0}, or,
equivalently: rank A = n, or, equivalently: there is no
z ∈ Rn, z ̸= 0 such that Az = 0.

We shall see, via several equivalent conditions, that the least
squares problem min∥Ax − y∥ has a unique solution if and only if A
has full column rank.



Criterion for full column rank

Theorem
A has full column rank if and only if AT A is positive definite.

We already saw (lecture on orthogonal matrices) that AT A is
symmetric and positive semidefinite.

For each z ̸= 0, zT AT Az = ∥Az∥2 ≥ 0.

Proof: A full column rank ⇐⇒ Az ̸= 0 for all z ̸= 0 ⇐⇒
zT AT Az = ∥Az∥2 ̸= 0 for all z ̸= 0

We can test the matrix from our earlier example, using eigenvalues.

>> A = [1 -1 0; 2 1 3; 1 0 1; 0 0 0];
>> eig(A’*A)
ans =

2.6232e-16
2.0718e+00
1.5928e+01



Least squares problems — solution
Suppose A has full column rank. Then min∥Ax − y∥ can also be
written as

min
x∈Rn

1
2∥Ax − y∥2 = min

x∈Rn

1
2(Ax − y)T (Ax − y)

= min
x∈Rn

1
2

(
xT AT Ax − yT Ay − xT AT y + yT y

)
= min

x∈Rn

1
2xT AT A x − yT Ax + 1

2yT y

We have transformed the problem into the one of finding the
minimum of a quadratic function f (x) — sounds familiar?



Some optimization

min
x∈Rn

1
2xT AT A x − yT Ax + 1

2yT y

Gradient AT A x − AT y.
Hessian AT A ≻ 0. → strictly convex!

The minimum exists unique, and can be found with

0 = gradient = AT A x − AT y,

or

AT A x = AT y.

AT A is square invertible (because it’s positive definite), so this
linear system has a unique solution.

Can be solved with many methods: Gaussian elimination, LU
factorization, QR (you’ll see it soon),. . .



Computational cost
If done naively: (for A ∈ Rm×n, m > n, ignoring lower-order terms)

1. Computing AT A: 2mn2.
2. Computing AT y: 2mn (lower-order).
3. Solving AT Ax = AT y with Gaussian elimination / LU

factorization: 2
3n3.

Trick 1 using symmetry, we can skip half of the entries of AT A.
Trick 2 a better way to solve linear systems with posdef matrices,
Cholesky factorization, AT A = RT R (we’ll see it later).

1. Computing AT A: mn2.
2. Computing AT y: 2mn (lower-order).
3. Solving AT A x = AT y with Cholesky: 1

3n3.



Geometric idea
TL;DR: can’t solve A x = y? Multiply both sides by AT and try
again!

Geometric idea The residual A x − y is orthogonal to any vector
Av ∈ span A: (Av)T (A x − y) = 0.

This method to solve LS problems is known as method of normal
equations (‘normal’ is a fancy word for ‘perpendicular/orthogonal’).



Pseudoinverse
We showed that the solution of min∥Ax − y∥ is given by

x∗ = (AT A)−1AT y

(if A has full column rank).

Definition
The (Moore-Penrose) pseudoinverse of a matrix A with full column
rank is A+ := (AT A)−1AT .

So we can write x = A+y for the solution of a LS problem.
This generalizes the concept of inverse A−1 to a non-square A.
Non-obvious consequence: the solution is always obtained by
multiplying y by a certain matrix. In particular, the solution of
min∥Ax − (y1 + y2)∥ is the sum of the two solutions of
min∥Ax1 − y1∥ and min∥Ax2 − y2∥.
Note that A+A = In, but AA+ ̸= Im (there is no matrix such that
AA+ = Im, for rank reasons.)



The other side
Sometimes in ML the same problem is formulated with
multiplications on the other side: w ∈ R1×n row vector of unknown
weights, X ∈ Rn×m matrix with each “feature” as a row, y ∈ R1×m

target (row) vector:
min

w
∥wX − y∥2.

This is the same problem, apart from notation. If X ∈ Rn×m is
short-fat (n ≤ m) with linearly independent rows, then its
pseudoinverse is defined as

X+ = XT (XXT )−1.

(Mnemonic: you must invert a matrix with the small dimension as
its side.)



Exercises
1. Can a short-fat matrix A ∈ Rm×n, n > m, have full column

rank, i.e., rk A = n?
2. Write x = x∗ + z, where x∗ = (AT A)−1AT y and z is an

arbitrary vector, and show with algebraic manipulations that

f (x) = 1
2∥Ax − y∥2 = 1

2xT
∗ AT Ax∗ + 1

2zT AT Az + 1
2yT y.

Use this formula to give another proof that x∗ is the solution
of the minimum problem.

3. Take a simple linear least squares problem, e.g.
min

∥∥∥[ 1 2
3 4
0 1

]
x −

[ −1
0
1

]∥∥∥2
. Try to solve it numerically with

Matlab using gradient descent, which you saw in prof.
Frangioni’s lectures, and compare the iterates xk with the
exact solution x∗. How many iterations do you need to get
within, for instance, 10−5 of the exact solution?

Book references: Trefethen-Bau, Lecture 11; Demmel, Sections
3.1, 3.2; Eldén, Section 3.6.

https://epubs.siam.org/doi/book/10.1137/1.9780898718867

