Solvability of least squares problems

Linear systems: $A\mathbf{x} = \mathbf{y}$ with A square: unique solution if A nonsingular

Linear least squares problems: $\min ||A\mathbf{x} - \mathbf{y}||$ with A tall thin: unique solution if...?

Example:

$$\min \|A\mathbf{x} - \mathbf{y}\|, \quad A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 0 \\ 3 \\ 1 \\ 2 \end{bmatrix}.$$

Solution: We can 'match' the first three entries (but not the 4th). $\mathbf{x} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$ solves the problem. But also $\mathbf{x} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$. Or $\mathbf{x} = \begin{bmatrix} \frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2} \end{bmatrix}$...

Full column rank definition

What is going on: there is a vector $\mathbf{z} \neq 0$ in ker A: $A \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} = 0.$

If ${\boldsymbol x}$ is a solution, then so is ${\boldsymbol x}+{\boldsymbol z}, {\boldsymbol x}+2{\boldsymbol z}, {\boldsymbol x}-37{\boldsymbol z}\dots$

Definition

We say that $A \in \mathbb{R}^{m \times n}$ has full column rank if ker $A = \{0\}$, or, equivalently: rank A = n, or, equivalently: there is no $z \in \mathbb{R}^n, z \neq 0$ such that Az = 0.

We shall see, via several equivalent conditions, that the least squares problem $\min ||A\mathbf{x} - \mathbf{y}||$ has a unique solution if and only if A has full column rank.

Criterion for full column rank

Theorem

A has full column rank if and only if $A^T A$ is positive definite.

We already saw (lecture on orthogonal matrices) that $A^T A$ is symmetric and positive semidefinite.

For each
$$\mathbf{z} \neq \mathbf{0}$$
, $\mathbf{z}^T A^T A \mathbf{z} = \|A\mathbf{z}\|^2 \ge \mathbf{0}$.

Proof: A full column rank $\iff A\mathbf{z} \neq 0$ for all $\mathbf{z} \neq 0 \iff \mathbf{z}^T A^T A \mathbf{z} = ||A\mathbf{z}||^2 \neq 0$ for all $\mathbf{z} \neq 0$

We can test the matrix from our earlier example, using eigenvalues.

```
>> A = [1 -1 0; 2 1 3; 1 0 1; 0 0 0];
>> eig(A'*A)
ans =
    2.6232e-16
    2.0718e+00
    1.5928e+01
```

Least squares problems — solution

Suppose A has full column rank. Then $\min ||A\mathbf{x} - \mathbf{y}||$ can also be written as

$$\begin{split} \min_{\mathbf{x}\in\mathbb{R}^n} \frac{1}{2} \|A\mathbf{x} - \mathbf{y}\|^2 &= \min_{\mathbf{x}\in\mathbb{R}^n} \frac{1}{2} (A\mathbf{x} - \mathbf{y})^T (A\mathbf{x} - \mathbf{y}) \\ &= \min_{\mathbf{x}\in\mathbb{R}^n} \frac{1}{2} \left(\mathbf{x}^T A^T A \mathbf{x} - \mathbf{y}^T A \mathbf{y} - \mathbf{x}^T A^T \mathbf{y} + \mathbf{y}^T \mathbf{y} \right) \\ &= \min_{\mathbf{x}\in\mathbb{R}^n} \frac{1}{2} \mathbf{x}^T A^T A \mathbf{x} - \mathbf{y}^T A \mathbf{x} + \frac{1}{2} \mathbf{y}^T \mathbf{y} \end{split}$$

We have transformed the problem into the one of finding the minimum of a quadratic function $f(\mathbf{x})$ — sounds familiar?

Some optimization

$$\begin{split} \min_{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \mathbf{x}^{\mathsf{T}} A^{\mathsf{T}} A \, \mathbf{x} - \mathbf{y}^{\mathsf{T}} A \mathbf{x} + \frac{1}{2} \mathbf{y}^{\mathsf{T}} \mathbf{y} \\ \text{Gradient } A^{\mathsf{T}} A \, \mathbf{x} - A^{\mathsf{T}} \, \mathbf{y}. \\ \text{Hessian } A^{\mathsf{T}} A \succ 0. \rightarrow \text{strictly convex!} \end{split}$$

The minimum exists unique, and can be found with

$$0 = \text{gradient} = A^T A \mathbf{x} - A^T \mathbf{y},$$

or

$$A^T A \mathbf{x} = A^T \mathbf{y}.$$

 $A^T A$ is square invertible (because it's positive definite), so this linear system has a unique solution.

Can be solved with many methods: Gaussian elimination, LU factorization, QR (you'll see it soon),...

Computational cost

If done naively: (for $A \in \mathbb{R}^{m \times n}$, m > n, ignoring lower-order terms)

- 1. Computing $A^T A$: $2mn^2$.
- 2. Computing $A^T \mathbf{y}$: 2mn (lower-order).
- 3. Solving $A^T A \mathbf{x} = A^T \mathbf{y}$ with Gaussian elimination / LU factorization: $\frac{2}{3}n^3$.

Trick 1 using symmetry, we can skip half of the entries of $A^T A$. Trick 2 a better way to solve linear systems with posdef matrices, Cholesky factorization, $A^T A = R^T R$ (we'll see it later).

- 1. Computing $A^T A$: mn^2 .
- 2. Computing $A^T \mathbf{y}$: 2mn (lower-order).
- 3. Solving $A^T A \mathbf{x} = A^T \mathbf{y}$ with Cholesky: $\frac{1}{3}n^3$.

Geometric idea

TL;DR: can't solve $A\mathbf{x} = \mathbf{y}$? Multiply both sides by A^T and try again!

Geometric idea The residual $A\mathbf{x} - \mathbf{y}$ is orthogonal to any vector $A\mathbf{v} \in \text{span } A$: $(A\mathbf{v})^T (A\mathbf{x} - \mathbf{y}) = 0$.

This method to solve LS problems is known as method of normal equations ('normal' is a fancy word for 'perpendicular/orthogonal').

Pseudoinverse

We showed that the solution of min $||A\mathbf{x} - \mathbf{y}||$ is given by

$$\mathbf{x}_* = (A^T A)^{-1} A^T \mathbf{y}$$

(if A has full column rank).

Definition

The (Moore-Penrose) pseudoinverse of a matrix A with full column rank is $A^+ := (A^T A)^{-1} A^T$.

So we can write $\mathbf{x} = A^+ \mathbf{y}$ for the solution of a LS problem. This generalizes the concept of inverse A^{-1} to a non-square A.

Non-obvious consequence: the solution is always obtained by multiplying **y** by a certain matrix. In particular, the solution of $\min ||A\mathbf{x} - (\mathbf{y}_1 + \mathbf{y}_2)||$ is the sum of the two solutions of $\min ||A\mathbf{x}_1 - \mathbf{y}_1||$ and $\min ||A\mathbf{x}_2 - \mathbf{y}_2||$.

Note that $A^+A = I_n$, but $AA^+ \neq I_m$ (there is no matrix such that $AA^+ = I_m$, for rank reasons.)

The other side

Sometimes in ML the same problem is formulated with multiplications on the other side: $\mathbf{w} \in \mathbb{R}^{1 \times n}$ row vector of unknown weights, $X \in \mathbb{R}^{n \times m}$ matrix with each "feature" as a row, $\mathbf{y} \in \mathbb{R}^{1 \times m}$ target (row) vector:

$$\min_{\mathbf{w}} \|\mathbf{w}X - \mathbf{y}\|_2.$$

This is the same problem, apart from notation. If $X \in \mathbb{R}^{n \times m}$ is short-fat $(n \le m)$ with linearly independent rows, then its pseudoinverse is defined as

$$X^+ = X^T (XX^T)^{-1}.$$

(Mnemonic: you must invert a matrix with the small dimension as its side.)

Exercises

- 1. Can a short-fat matrix $A \in \mathbb{R}^{m \times n}$, n > m, have full column rank, i.e., rk A = n?
- 2. Write $\mathbf{x} = \mathbf{x}_* + \mathbf{z}$, where $\mathbf{x}_* = (A^T A)^{-1} A^T \mathbf{y}$ and \mathbf{z} is an arbitrary vector, and show with algebraic manipulations that

$$f(\mathbf{x}) = \frac{1}{2} \|A\mathbf{x} - \mathbf{y}\|^2 = \frac{1}{2} \mathbf{x}_*^T A^T A \mathbf{x}_* + \frac{1}{2} \mathbf{z}^T A^T A \mathbf{z} + \frac{1}{2} \mathbf{y}^T \mathbf{y}.$$

Use this formula to give another proof that \boldsymbol{x}_* is the solution of the minimum problem.

3. Take a simple linear least squares problem, e.g. $\min \left\| \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 0 & 1 \end{bmatrix} \mathbf{x} - \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\|^2$. Try to solve it numerically with Matlab using gradient descent, which you saw in prof. Frangioni's lectures, and compare the iterates \mathbf{x}_k with the exact solution \mathbf{x}_* . How many iterations do you need to get within, for instance, 10^{-5} of the exact solution?

Book references: Trefethen-Bau, Lecture 11; Demmel, Sections 3.1, 3.2; Eldén, Section 3.6.