Solvability of least squares problems

Linear systems: Ax =y with A square: unique solution if A
nonsingular

Linear least squares problems: min||Ax — y|| with A tall thin:
unique solution if...7

Example:
1 -1 0 0
. 2 1 3 3
min|[Ax —y||, A= 10 10 Y= 1
0 0 O 2
Solution: We can ‘match’ the first three entries (but not the 4th).
0 1 %
x = |0| solves the problem. But also x = |1|. Orx= |5].
1 0 3



Full column rank definition

1

What is going on: there is a vector z# 0 in kerA: A| 1 | =0.
-1

If x is a solution, then so is x +z,x +2z,x — 37z. ..

Definition

We say that A € R™*" has full column rank if ker A = {0}, or,
equivalently: rank A = n, or, equivalently: there is no

z € R",z # 0 such that Az = 0.

We shall see, via several equivalent conditions, that the least
squares problem min||Ax — y|| has a unique solution if and only if A
has full column rank.



Criterion for full column rank

Theorem

A has full column rank if and only if AT A is positive definite.

We already saw (lecture on orthogonal matrices) that AT A is
symmetric and positive semidefinite.

For each z# 0, zT AT Az = ||Az||2 > 0.

Proof: A full column rank <= Az #O0forallz#0 <
2T ATAz = ||Az||> £ 0 for all z £ 0

We can test the matrix from our earlier example, using eigenvalues.

> A=1[1-10;213;101; 00 0];
>> eig(A’*4)
ans =

2.6232e-16

2.0718e+00

1.5928e+01



L east squares problems — solution
Suppose A has full column rank. Then min||Ax — y|| can also be
written as

1 » 1 .
min > |Ax —y|I* = min 5(Ax —y) " (Ax —y)

1
= min — (xTATAx - yTAy - XTAT)’ + yTY)
xeR"

1T T 1
= min =x"ATAx —yTAx + =
xCEn 2 X—Y XAy

We have transformed the problem into the one of finding the
minimum of a quadratic function f(x) — sounds familiar?



Some optimization

N T 1 7
—x'"A"Ax—y' A —
XCRP 2 X—y AxEoYy

Gradient ATAx — ATy.
Hessian AT A = 0. — strictly convex!

The minimum exists unique, and can be found with
0 = gradient = ATAx — ATy,
or
ATAx = ATy.

AT A'is square invertible (because it's positive definite), so this
linear system has a unique solution.

Can be solved with many methods: Gaussian elimination, LU
factorization, QR (you'll see it soon),. ..



Computational cost

If done naively: (for A € R™*" m > n, ignoring lower-order terms)

1. Computing AT A: 2mn?.
2. Computing ATy: 2mn (lower-order).
3. Solving AT Ax = ATy with Gaussian elimination / LU

factorization: %n3.

Trick 1 using symmetry, we can skip half of the entries of AT A.
Trick 2 a better way to solve linear systems with posdef matrices,
Cholesky factorization, ATA = RTR (we'll see it later).

1. Computing ATA: mn?.
2. Computing ATy: 2mn (lower-order).
3. Solving ATAx = ATy with Cholesky: %n3.



Geometric idea

TL;DR: can't solve Ax = y? Multiply both sides by A7 and try
again!

Geometric idea The residual Ax — y is orthogonal to any vector
Av € span A: (Av)T(Ax —y) =0.

This method to solve LS problems is known as method of normal
equations (‘normal’ is a fancy word for ‘perpendicular/orthogonal’).



Pseudoinverse
We showed that the solution of min||Ax — y|| is given by
x, = (ATA)1ATy
(if A has full column rank).
Definition
The (Moore-Penrose) pseudoinverse of a matrix A with full column
rank is At := (ATA)1AT.
So we can write x = ATy for the solution of a LS problem.
This generalizes the concept of inverse A~! to a non-square A.

Non-obvious consequence: the solution is always obtained by
multiplying y by a certain matrix. In particular, the solution of
min||Ax — (y1 + y2)|| is the sum of the two solutions of
min||Ax; — y1|| and min||Axz — y2||.

Note that ATA = I,, but AA" # I, (there is no matrix such that
AAT = |, for rank reasons.)



The other side

Sometimes in ML the same problem is formulated with
multiplications on the other side: w € R*"” row vector of unknown
weights, X € R™ ™ matrix with each “feature” as a row, y € R1X™
target (row) vector:

min|[wX — y]l2.

This is the same problem, apart from notation. If X € R"™*™ is
short-fat (n < m) with linearly independent rows, then its
pseudoinverse is defined as

Xt =XxT(xx")~L

(Mnemonic: you must invert a matrix with the small dimension as
its side.)



Exercises

1. Can a short-fat matrix A € R™*" n > m, have full column
rank, i.e., rk A =n?

2. Write x = x,. + z, where x, = (ATA)*IATy and z is an
arbitrary vector, and show with algebraic manipulations that

1 1 1 1
F(x) = 5 Ax —y|? = SxTATAx, + 52T AT Az + 2yTy.

Use this formula to give another proof that x, is the solution
of the minimum problem.
3. Take a simple linear least squares problem, e.g.
. [IT12 —17(12 . : .

mmH [8 Hx — [ 9 }H . Try to solve it numerically with
Matlab using gradient descent, which you saw in prof.
Frangioni's lectures, and compare the iterates x, with the
exact solution x,. How many iterations do you need to get
within, for instance, 10~° of the exact solution?

Book references: Trefethen-Bau, Lecture 11; Demmel, Sections

3.1, 3.2; Eldén, Section 3.6.


https://epubs.siam.org/doi/book/10.1137/1.9780898718867

