
Defining the SVD

Let A ∈ Rm×m, and ATA = VΛV T be an eigenvalue
decomposition, with V orthogonal. Then, AV satisfies

(AV )T (AV ) = V TATAV = V T (VΛV T )V = Λ.

This means that the columns of AV are orthogonal, but not
orthonormal: the ith column has norm

√
λi .

We can scale them: define (AV )i = uiσi , with σi =
√
λi .

Then the ui are the columns of an orthogonal matrix U.



Singular value decomposition

This gives a variant of the eigenvalue decomposition that is
well-defined for every matrix:

Singular value decomposition (SVD) (for square matrices)

Each matrix A ∈ Rm×m can be decomposed as

A = USV T =

u1 u2 · · · um
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with U,V orthogonal and σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0.

In this decomposition U and V are not the inverse of each other!

We lose the ability to express matrix powers:
A2 = A · A = USV TUSV T ̸= US2V T .



Singular value decomposition

The σi are called singular values and we can take them
non-negative and ordered: σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0.

Singular values ̸= eigenvalues. They are always positive and usually
more ‘spread apart’ than the eigenvalues. (Matlab examples)

Uniqueness: singular values are unique; singular vectors ui , vi are
not — exactly like eigenvalues / eigenvectors.



Rectangular matrices

The same theorem holds also for a rectangular matrix, with some
changes in the shape of the involved matrices.

Singular value decomposition (SVD)

Each matrix A ∈ Rm×n can be decomposed as A = USV T , with
with U,V orthogonal and σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0. U ∈ Rm×m,
S ∈ Rm×n (padded with zeros), V ∈ Rn×n, e.g.,

S =

σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0

 .

A = u1σ1v
T
1 + u2σ2v

T
2 + · · ·+ umin(m,n)σmin(m,n)v

T
min(m,n),



Thin SVD

Note that the sum-of-rank-1 form uses only the first min(m, n)
columns of U and V . This suggests a different, more compact
form, the thin (or economy-sized) SVD.

For tall-thin matrices:

A =
[
U0 Uc

] [S0
0

]
V T = U0S0V

T .

U0 ∈ Rm×n, S0 ∈ Rn×n.

(Matlab examples, [U, S, V] = svd(A, 0)).



Computational costs

[U, S, V] = svd(A, 0) (thin) costs O(mn2) ops for A ∈ Rm×n

or A ∈ Rn×m with m ≥ n.

[U, S, V] = svd(A) (non-thin) is more expensive: it has to
compute and return the large m ×m factor.



Properties of the SVD: rank, image, kernel

Rank r = number of nonzero singular values:
σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.
We can omit row/columns after r in the product:

A = USV T =

u1 u2 · · · um
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For each x ∈ Rn, Ax is linear combination of u1, . . . ,ur (image).
Any linear combination y of vr+1, . . . , vn satisfies Ay = 0 (kernel).



Exercises

(Some done in class)

1. If A = USV T is the SVD of a square invertible A, what is the
SVD of A−1?

2. If A is positive semidefinite, is its eigendecomposition
A = UΛUT also an SVD?

3. If A is symmetric but not positive semidefinite, how can we
modify signs in A = UΛUT to obtain an SVD?

4. Show that for a square A = USV T one has AAT = US2UT

and ATA = VS2V T , and that these are eigendecompositions.

5. How do the decompositions in the previous exercise change if
A is rectangular? Check also with Matlab.

References: Trefethen-Bau book, Lectures 4 and 5.


