Defining the SVD

Let Ac R™™ and ATA= VAV be an eigenvalue
decomposition, with V orthogonal. Then, AV satisfies

(AV)T(AV) = VTATAV = VT(VAVT)V = A

This means that the columns of AV are orthogonal, but not
orthonormal: the ith column has norm /\;.

We can scale them: define (AV); = u;o;, with o; = /A;.
Then the u; are the columns of an orthogonal matrix U.



Singular value decomposition

This gives a variant of the eigenvalue decomposition that is
well-defined for every matrix:

Singular value decomposition (SVD) (for square matrices)

Each matrix A € R™*™ can be decomposed as

A=USVT = [u1 uz - upy

= ulalvlT ar U20’2V; qFoccHF umamvz,;.
with U, V orthogonal and 07 > 05 > --- > 0, > 0.

In this decomposition U and V are not the inverse of each other!

We lose the ability to express matrix powers:
A2 =A-A=USVTUSVT £ US?VT.



Singular value decomposition

The o; are called singular values and we can take them
non-negative and ordered: 01 > 02 > - > 0, > 0.

Singular values # eigenvalues. They are always positive and usually
more ‘spread apart’ than the eigenvalues. (Matlab examples)

Uniqueness: singular values are unique; singular vectors u;, v; are
not — exactly like eigenvalues / eigenvectors.



Rectangular matrices

The same theorem holds also for a rectangular matrix, with some
changes in the shape of the involved matrices.

Singular value decomposition (SVD)

Each matrix A € R™*" can be decomposed as A = USV' T, with
with U, V orthogonal and 07 > 05 > --- >0, > 0. U € R™™,
S € R™*" (padded with zeros), V € R"™*" eg.,

cpr 0 0 0O
S=10 o2 0 0 O
0 0 o3 0O

_ T T T
A= Uioivy +uzoovy +--- + Umin(m,n)Tmin(m,n)¥Ymin(m,n)>



Thin SVD

Note that the sum-of-rank-1 form uses only the first min(m, n)
columns of U and V. This suggests a different, more compact
form, the thin (or economy-sized) SVD.

For tall-thin matrices:

So

A= [Up UC]{O

] VT = UpSoV 7.

Up € R™*N. Sy € RMXM,
(Matlab examples, [U, S, V] = svd(A, 0)).



Computational costs
[U, S, V] = svd(A, 0) (thin) costs O(mn?) ops for A € R™x"
or Ae R™M™ with m > n.
(U, S, V] = svd(A) (non-thin) is more expensive: it has to
compute and return the large m x m factor.



Properties of the SVD: rank, image, kernel

Rank r = number of nonzero singular values:
012"'20r>0r+1:"‘:0n:0-
We can omit row/columns after r in the product:
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For each x € R", Ax is linear combination of uy,...,u, (image).

Any linear combination y of v,11,..., v, satisfies Ay = 0 (kernel).



Exercises

(Some done in class)

1.

If A= USVT is the SVD of a square invertible A, what is the
SVD of A71?

If A is positive semidefinite, is its eigendecomposition
A= UAUT also an SVD?

If Ais symmetric but not positive semidefinite, how can we
modify signs in A= UAUT to obtain an SVD?

. Show that for a square A= USV'T one has AAT = US?UT

and ATA = VS2VT and that these are eigendecompositions.

. How do the decompositions in the previous exercise change if

A is rectangular? Check also with Matlab.

References: Trefethen-Bau book, Lectures 4 and 5.



