
Matrix norms
Recall: ∥v∥2 =

√
v⊤v, and ∥Uv∥2 = ∥v∥2 for orthogonal U.

One can define a norm for matrices, too.

Definition (induced matrix norm)
Given a norm on vectors (e.g., ∥·∥2, ∥·∥∞, . . . ), we can define a
corresponding norm on matrices:

∥A∥ := max
v ̸=0

∥Av∥
∥v∥

= max
∥u∥=1

∥Au∥.

Idea: it’s the smallest value of ∥A∥ that ensures ∥Av∥ ≤ ∥A∥∥v∥
for all v.
This general construction works for every vector norm (∥·∥1, ∥·∥2,
∥·∥∞. . . )



Norm properties

Properties
For each choice of matrices A, B and vector v for which the
operations make sense,
▶ ∥A∥ ≥ 0, with equality iff A is all-zeros;
▶ ∥αA∥ = |α|∥A∥ for each α ∈ R;
▶ ∥A + B∥ ≤ ∥A∥ + ∥B∥;
▶ ∥AB∥ ≤ ∥A∥∥B∥;
▶ ∥Av∥ ≤ ∥A∥∥v∥ (if same norm for matrices and vectors).

Our favorite norm: ∥A∥2. It satisfies ∥A∥2 = ∥AU∥2 = ∥UA∥2 for
each orthogonal U.

(People often omit the subscript 2.)



Frobenius norm
Other matrix norm of a different kind: Frobenius norm

∥A∥F =

∥∥∥∥∥∥∥∥∥∥


a11 a12 . . . a1n
a21 a22 . . . a2n
... . . . ...

am1 am2 . . . amn


∥∥∥∥∥∥∥∥∥∥

F

=
√

a2
11 + a2

12 + · · · + a2
mn.

It satisfies all the properties in the previous slide (reducing to
∥v∥F = ∥v∥2 on vectors); in particular, ∥AU∥F = ∥UA∥F = ∥A∥F .
However, it does not come from the ‘induced’ construction.



Norm and SVD
Since orthogonal matrices do not change ∥·∥2,

∥A∥2 = ∥USV T ∥2 = ∥S∥2 = σ1.

(Why is ∥S∥2 = σ1 for the diagonal matrix S in SVD? By a similar
argument to the one we used for λminxT x ≤ xT Ax ≤ λmaxxT x.)

Similarly, ∥A∥2
F =

∑min(m,n)
i=1 σ2

i .



Eckart-Young theorem

Theorem
For a matrix A with SVD A = USV T , the solution of

min
rank X≤k

∥A − X∥

for both ∥·∥2 and ∥·∥F is given by truncated SVD:

X =

u1 u2 · · · uk




σ1
σ2

. . .
σk




v1
v2
...

vk


T

= u1σ1vT
1 + u2σ2vT

2 + · · · + ukσkvT
k .

Geometric/application meaning: we will see experimentally in the
next lectures!



Exercises
1. Show that ∥A∥ ≥ ∥c∥, where c is one of the columns of A.
2. SHow that for each eigenvalue λ of A we have |λ| ≤ ∥A∥.
3. Show that ∥UA∥2 = ∥A∥2 for each orthogonal U.
4. Show that ∥AU∥2 = ∥A∥2 for each orthogonal U.
5. Show that (for a square matrix) ∥A−1∥2 = 1

σm
, where σm is

the smallest singular value of A. (Hint: in a previous exercise,
we asked you to compute the SVD of A−1 from that of A.)

6. Let Ak be the best rank-k approximation of A (computed
through SVD/Eckart-Young theorem). What is the value of
∥A − Ak∥2? Of ∥A − Ak∥F ?

References: Trefethen-Bau book, Lectures 3 and 5.


