
Example: SVD of an image

>> F = imread(’cameraman.tif’);
>> F = double(F) / 255; %normalizes values into [0,1]
>> imshow(F);
>> [U, S, V] = svd(F);
>> imshow(U(:,1)*S(1,1)*V(:,1)’)
>> k = 10; imshow(U(:,1:k)*S(1:k,1:k)*V(:,1:k)’)

Rank-1: very block-like: a small entry in u1 (v1) makes the whole
row (column) small.

Higher ranks still give a ‘blocky’ behaviour. Still fewer data than
the full image, though.

∥A − UkSkV T
k ∥F = sum of squares of neglected singular values.

Examine diag(S) — zeros at the end are due to duplicated
rows/columns (likely at the top).



Another example: test scores
Consider a matrix of test scores:

Ex. 1 Ex. 2 Ex. 3 Ex. 4
Student A 4 5 3 5
Student B 2 5 2 3
Student C 3 4 2 5
Student D 4 4 1 5
Student E 1 5 3 3

Suppose A has rank 1, A = uvT . How can we interpret the values?

Aij = ui︸︷︷︸
ability of student i

vj︸︷︷︸
difficulty of exercise j

What would a rank-2 table represent instead? Suppose for instance
all entries ≥ 0; they can represent ‘skill’ in two types of exercises,
e.g., theory and programming.

Aij = (u1)i︸ ︷︷ ︸
type-1 ability

(v1)j︸ ︷︷ ︸
type-1 difficulty

+ (u2)i︸ ︷︷ ︸
type-2 ability

(v2)j︸ ︷︷ ︸
type-2 difficulty

.



SVD approximation
Truncated SVD provides the best rank-1 approximation of given
scores:

A ≈ A1 = u1σ1vT
1

( σ1, scalar, is just a scaling factor; it could be incorporated in u1
or v1.)

A1 is the approximation with smallest
∥A − A1∥2

F =
∑

(Aij − (A1)ij).

This has a statistical interpretation: suppose there is a random
error in our scores

Aij = ui︸︷︷︸
student ability

vj︸︷︷︸
exercise difficulty

+ ϵij︸︷︷︸
error

Then, the choices of u1, v1 provided by SVD are the maximum
likelihood estimation, if ϵij are Gaussian errors with the same
variance.



Higher rank approximations with SVD
Approximations of rank larger than 1 could be interpreted as
different classes of exercises: for instance,

Aij = ui1︸︷︷︸
mathematical

ability

+ vj1︸︷︷︸
mathematical

difficulty

+ ui2︸︷︷︸
programming

ability

vj2︸︷︷︸
programming

difficulty

+ ϵij︸︷︷︸
error

However, there is an additional catch: u1, v1 already mean general
ability, and the four vectors u1, u2, v1, v2 provided by SVD cannot
all have positive entries (by orthogonality).

If all Aij ≥ 0, then one can prove that (u1)i ≥ 0, (v1)j ≥ 0, which
matches their interpretation as general ability / difficulty.
(Or both are negative, which is equivalent because
u1vT

1 = (−u1)(−v1)T )

The next terms u2, v2 have mixed signs, and must be interpreted
as corrections.

(and so do all the following ones u3, v3, . . . .)



Corrections

A =


3.6 5.9 6.7
7.7 3.9 3.1
7.9 6.7 6.6
2.0 6.1 7.3



=


−0.4
−0.4
−0.6
−0.4

 19.8
[
−0.5 −0.5 −0.6

]
+


−0.3
0.6
0.2

−0.6

 5.7
[
0.8 −0.2 −0.5

]

=


5.1 5.4 5.7
4.6 4.8 5.0
6.6 7.0 7.3
4.9 5.2 5.4


︸ ︷︷ ︸
generic rank-1 scores

+


−1.5822 0.4588 0.9922
3.1354 −0.9091 −1.9663
1.2287 −0.3563 −0.7706

−2.9082 0.8433 1.8238


︸ ︷︷ ︸

corrections due to 2 types

Corrections have mixed signs and reflect relative ability:
(u2)i ≥ 0: student better at type-A than first approximation would tell;
(v2)j ≥ 0: exercise is more type-A than first approximation would tell.



The meaning of singular values
Further terms u3σ3vT

3 , u4σ4vT
4 , . . . : further exercise types with

further corrections (of decreasing norm).

Errors of these approximations: sums of square of omitted singular
values.
∥A − A1∥2

F = σ2
2 + σ2

3 + · · · + σ2
min.

∥A − A2∥2
F = σ2

3 + σ2
4 + · · · + σ2

min.
∥A − A3∥2

F = σ2
4 + σ2

5 + · · · + σ2
min.

What does it mean if σ1 ≫ σ2? That the first approximation is
already good; the rest are minor corrections.
What does it mean if σ1 ≈ σ2 ≫ σ3? That the first correction is
more important (in term of how large its entries are), and the
successive ones are minor.
And so on.

At some point, further components become indistinguishable from
noise in your data.



Another example: text mining
1. Breakfast is the most important meal of the day.
2. I had a peanut butter sandwich for breakfast.
3. I like to eat almonds and peanuts.
4. People normally eat three meals a day.
5. My neighbor got a little dog the other day.
6. Cats and dogs are mortal enemies.
7. You mustn’t feed peanuts to your dog.
8. My dog chased a cat in the garden.



Term-document matrix
1 2 3 4 5 6 7 8

Breakfast 1 1
Meal 1 1
Day 1 1 1

Peanut 1 1 1
Sandwich 1

Eat 1
Almonds 1

My 1 1
Neighbor 1

Dog 1 1 1 1
Cat 1 1

Garden 1



Meaning of U and V
Columns of U = concepts (with positive/negative ‘scores’ for each
word).

Columns of V = occurrences of concepts in each sentence.

Representative case: ‘perfectly split topics’: two subsets of
sentences that contain disjoint words.

In NLP (natural language processing), this technique is known as
latent semantic analysis, because it identifies ‘hidden (latent)’
concepts.

Remark: these techniques identify significant components, but do
not tell you what these components are: it is up to the user to
figure out what type 1 / type 2 exercises are, or topic 1 / topic 2 /
topic 3. . .



Principal component analysis
The analysis of features of a dataset (a matrix A) given by the
vectors uk , vk of its SVD is used in various fields with different
names.

One of the most widespread: Principal Component Analysis
(PCA), which is usually performed on de-meaned data: replace
columns xj of A with

x̂j = xj − 1
n (

n∑
k=1

xk), Â =
[
x̂1 x̂2 . . . x̂n

]
.

In this way, all ui and vi from svd(Â) have (usually) mixed signs
and are interpreted as corrections w.r.t. the mean in one direction
or the other: there is no “special status” of the first component
u1, v1 anymore, since the data already have mean 0.



PCA and eigenvalues
Some sources define PCA using instead ui = eigenvectors of 1

n ÂÂT

(or sometimes 1
n−1). This matrix has a statistical interpretation: it

is the covariance matrix of the xj .

In the exercises of the previous lectures, we have seen that if
Â = USV T then ÂÂT = U(SST )UT , and this is an
eigendecomposition; the factor 1/n just scales the eigenvalues, so

>> [U, S, V] = svd(Ahat);

>> [U, D] = eig(1/n * Ahat*Ahat’); S = sqrt(n*D);

return the exact same matrices.

Warning: in floating-point arithmetic, the first method (SVD) is
more accurate.

(In general, all methods that rely on matrices of scalar products
like AAT have stability problems; we will see another instance later
in the course.)



What does PCA tell you?
PCA returns a basis, so you to write each data point x̂j = xj − µ as

xj − µ = u1α1j + u2α2j + · · · + unαnj .

This basis has the property that u1 is the direction responsible for
the largest variation in the data (in the sense of

∑
j α2

1j), u2 is the
direction (orthogonal to u1) responsible for the second largest
variation, and so on.

Two alternative formulas to get the matrix of α’s:

α = UT Â = SV T .



Another example: image classification
With the provided files: Yale faces dataset.

>> F = readyalefaces_to_tensor();
>> showyalefaces
>> size(F)
ans =

243 320 11 15
>> imshow(F(:,:,1,1));
>> v = reshape(F(:,:,1,1), 243*320, 1)
>> A = reshape(F, 243*320, 11*15);
>> [U,S,V] = svd(M);
Error using svd
Requested 77760x77760 (45.1GB) array exceeds maximum array size preference. Creation of arrays greater than this limit may take a long time and cause MATLAB to
become unresponsive. See array size limit or preference panel for more information.
>> [U,S,V] = svd(A, ’econ’); %thin SVD



Subtract “mean face”
Useful preprocessing: subtract “mean face” from all faces.
xj = jth image = jth column of A.
>> meanface = mean(A,2);
>> imagesc(reshape(A(:,52) - meanface, 243, 320));
>> [U, S, V] = svd(A - meanface, ’econ’);
>> imagesc(reshape(U(:,1), 243, 320)); % examine them
>> diag(S) % what do the zeros at the end mean?

(Let M̂ = M − meanface · [1, 1, . . . , 1])
Each image is
xj = meanface + u1α1 + u2α2 + · · · + umαm = meanface + Uα

Linear combination of fixed (global for the dataset) vectors ui with
variable (face-dependent) ‘scores’ (coordinates) αi .
The vector of ‘scores’ (coordinates) α is given by
α = U−1m̂j = UT x̂j .
>> interactiverec(M(:,1))



Variance around “mean face”
Larger singular components ⇐⇒ directions (in the “feature
space”) in which the variance is higher.

We can display the first singular components and try to give them
an interpretation (not always clear) in terms of what they
represent.

>> imagesc(reshape(U(:,1), [243, 320]))
>> imagesc(reshape(U(:,2), [243, 320]))



Dimensionality reduction
Let us take de-meaned data x̂i , and interpret them as vectors in
Rn. Suppose we are allowed only one direction through the origin
to plot them. Which one gives the most useful plot?

−10 0 10

−5

0

5

The direction in which they vary the most. A one-dimensional plot
is a rank-1 approximation of Â: given a direction u1, all plotted
vectors are multiples of u1.
How to retrieve this best multiplicator value (coordinate / score)?
As

uT
1 Â = uT

1 (u1σ1vT
1 + u2σ2vT

2 + . . . ) = σ1vT
1 (orthogonality).



Dimensionality reduction – 2
The same idea works with multiple directions: a 2D plot
approximates x̂i with multiples of two directions u1 and u2.
The matrix of scores / coordinates of each data vector is given by[

uT
1

uT
2

]
Â =

[
σ1vT

1
σ2vT

2

]
.

The best way to represent the columns of M̂ in a k-D space (in the
sense that the error

∑
j∥m̂j − pj∥2 is minimum) is the projection

on the plane (u1, u2, . . . , uk).

This follows from the Eckart-Young approximation theorem.
>> eigenfaces_scatter(F, [1,2])

Exploring the dataset via this kind of plots let us figure out also
which principal components work best to split the data into classes.
>> eigenfaces_scatter(F, [1,3,4])



Recognizing new images
Training set: remove an image for each individual.

>> T = F(:, :, 1:10, :);
>> T = reshape(T, 243*320, 10*15);
>> meanface = mean(T, 2);
>> [U, S, V] = svd(T - meanface, 0);

Test set: new image to be recognized.

>> S = F(:, :, 11, 1); %outside training test
>> S = reshape(S, 243*320, 1);

Look for “most similar” image along first 5 α-scores.

>> training_scores = U(:,1:5)’ * (T-meanface);
>> test_scores = U(:,1:5)’ * (S-meanface);
>> distances = sum((training_scores - test_scores).^2, 1);
>> [value, position] = min(distances)



Images outside of the “face space”

B = imread(’bart.png’); B = double(B) / 255;
B = reshape(B,243*320,1);
test_scores = U(:,1:5)’ * (B-meanface);
interactiverec(B)
distances = sum((training_scores - test_scores).^2, 1);
[value, position] = min(distances)

Try also B = imread(’car.png’);



Limitations
Many:
▶ Distance used: Frobenius distance among images =⇒ does

not mean that pictures of the same individual are close.

Image alignment, shadows, . . . may have a large impact.

Details that result in ‘small’ Frobenius-distance differences,
e.g., facial expressions, are harder to grasp.

▶ The SVD does not tell you which ‘features’ are good / bad for
person recognition, and which represent e.g. lighting.

▶ We never used the fact that we have several pictures of the
same person: the true structure is a 3-way (or even 4-way)
tensor, not a matrix M.

▶ In fact, SVD is a trick that is difficult to generalize: the same
problem with 3 indices Aijk does not have a simple solution.
The same problem minrk X≤r ∥A − X∥ with a different norm
does not have a simple solution.



Exercises
1. Make further experiments with the dataset. For instance, try

recognizing other pictures in the same way (with different
training/test splits). How many of them are correctly
recognized by our recognition algorithm above?

2. Which components among the first ones of the singular vector
basis u1, u2, . . . , u20 are better suited to classify individuals?
We can try to answer this question by comparing the variance
of the ‘scores’ uT

i m̂j for j ∈ {pictures of individual k} and for
j ∈ {pictures of all individuals}. If these scores are uniform
across an individual, but varied across the whole dataset, then
i is a ‘good’ component to use.

3. Consider a dataset in which sentences s1, . . . , sk contain all
terms of set T1 exactly once, and none of the (disjoint) set
T2, and sentences sk+1, . . . , sn contain all terms of T2 exactly
once and none of T1. What does its term-document matrix
look like? What is its rank, experimentally?



References
Book references Eldén, Sections 6.4, 10.1–10.2, 11.3. (While
apparently related at first sight, Chapter 14 uses a different
mathematical model.) Demmel, Example 3.4.


