Solving systems of equations

Storing an $m \times m$ matrix with $m = 100000$ requires ≈ 80 GB. And even if we managed to do it, applying an algorithm like Gaussian elimination, with complexity $\mathcal{O}(m^3)$, is prohibitive.

Luckily, many real-world matrices are sparse: for instance 3, 10 nonzeros per row.

This includes matrices from graph/networks, KKT systems, discretization of differential equations. . .

Some examples (from the Suitesparse Matrix Collection) in the next slide.

Some real-world matrices

▶ Adjacency matrices from networks and graphs.

% ''Friendship matrix'' on a group of 34 people

```
M = load('karate.mat').Problem.A;
```
% Road network of Luxembourg

M = load('luxembourg_osm.mat').Problem.A;

For instance, in some applications centrality indices are computed by solving $(I - \alpha A)\mathbf{x} = \text{ones}(n,1)$.

 \blacktriangleright In both engineering and video game programming, one often models complex objects as "networks of points joined by forces", and then solves problems on them.

% From a structural stability problem (Boeing) $M =$ load('msc00726.mat'). Problem. A:

▶ KKT matrices in optimization, $\begin{bmatrix} D_1 & A \\ A \end{bmatrix}$ $A^{\mathcal{T}}$ 0 $\Big]$, often with D_1 diagonal and tall-thin A (possibly already sparse).

Storing and using a sparse matrix

Basic format to store sparse matrices: as list of non-zero (i, j, A_{ii}) .

>> sprandn(10,10,0.3)

(Detail: if the indices j are listed increasingly, they can be compressed further. The most well-known format is known as CSC/CSR — compressed sparse column/row.)

We can operate on them directly in this format, e.g., in Python pseudocode:

```
"Compute the product w = A*v"
def compute_product(A, v):
       w = zeros(size(A, 1))for (i, j, Aij) in A:
              w[i] += Aij * v[i]return w
```
Optimization to solve linear systems

Given a $n \times n$ matrix $Q \succ 0$ and a vector $\mathbf{v} = -\mathbf{q} \in \mathbb{R}^n$, we wish to minimize

$$
\min f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} - \mathbf{v}^T \mathbf{x} + const.
$$

This is equivalent to solving $\mathbf{g} = Q\mathbf{x} - \mathbf{v} = 0$, i.e., the linear system $Qx = v$.

We shall see a particularly efficient algorithm that uses concepts from both linear algebra and optimization. It computes at each step the best (in a certain sense) possible approximation x_k to the solution x∗.

It is particularly suited to large problem with sparse matrices.

Intro to conjugate gradient

Let us start from a simple quadratic problem with $Q = I$:

$$
\min_{\mathbf{y} \in \mathbb{R}^m} \frac{1}{2} \|\mathbf{y} - \mathbf{w}\|^2 + \text{const} = \min \frac{1}{2} \mathbf{y}^T \mathbf{y} - \mathbf{w}^T \mathbf{y} + \text{const}
$$

$$
= \min \frac{1}{2} (y_1^2 + y_2^2 + \dots + y_m^2)
$$

$$
- (w_1 y_1 + w_2 y_2 + \dots + w_m y_m) + \text{const}
$$

This problem is separable: starting from $y_0 = 0$, we optimize on each coordinate separately and generate the sequence of vectors

$$
\textbf{y}_1 = \begin{bmatrix} \begin{smallmatrix} w_1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{smallmatrix} \end{bmatrix}, \quad \textbf{y}_2 = \begin{bmatrix} \begin{smallmatrix} w_1 \\ w_2 \\ 0 \\ 0 \\ \vdots \\ 0 \end{smallmatrix} \end{bmatrix}, \quad \textbf{y}_3 = \begin{bmatrix} \begin{smallmatrix} w_1 \\ w_2 \\ 0 \\ \vdots \\ 0 \end{smallmatrix} \end{bmatrix}, \quad \ldots
$$

At each step, we add a multiple of a new search direction e_1, e_2, e_3, \ldots . They are all orthogonal to each other.

Convergence guaranteed after m iterations.

Subspace optimality

At each step, we solve a 1D problem and choose y_k to solve

$$
\mathbf{y}_k = \arg\min f(\mathbf{y}) \text{ over } \begin{bmatrix} w_1 \\ \vdots \\ w_{k-1} \\ \vdots \\ 0 \end{bmatrix} = \{ \mathbf{y}_{k-1} + \alpha \mathbf{e}_k : \alpha \in \mathbb{R} \},
$$

(line search), but we also get for free a stronger property:

$$
\mathbf{y}_k = \arg\min f(\mathbf{y}) \text{ over } \begin{bmatrix} * \\ \vdots \\ * \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \text{span}(\mathbf{e}_1, \dots, \mathbf{e}_k).
$$

Orthogonal directions

We can proceed similarly with any set of orthogonal search directions $U = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m]$ instead of the canonical basis e_1, e_2, \ldots, e_m . Write

$$
\mathbf{w} = \mathcal{U} \begin{bmatrix} \frac{c_1}{c_2} \\ \vdots \\ \frac{c_m}{c_m} \end{bmatrix}, \quad \| \mathbf{w} \| = \| \mathbf{c} \|
$$

and find

$$
\mathbf{y}_{k} = \min f(\mathbf{y}) \text{ over } U \begin{bmatrix} c_{1} \\ \vdots \\ c_{k-1} \\ \vdots \\ c_{k} \\ \vdots \\ c_{k} \end{bmatrix} = \{ \mathbf{y}_{k-1} + \alpha \mathbf{u}_{k} : \alpha \in \mathbb{R} \},
$$

$$
= \min f(\mathbf{y}) \text{ over } U \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ c_{k} \end{bmatrix} = \text{span}(\mathbf{u}_{1}, \dots, \mathbf{u}_{m}).
$$

The algorithm

Given orthogonal search dirs $\mathbf{u}_1, \ldots, \mathbf{u}_m$ (i.e., $\mathbf{u}_i^T \mathbf{u}_j = 0$ when $i \neq j$) $v_0 \leftarrow 0$: for $k = 1, 2, 3, \ldots, m$ do $\mathbf{y}_k \leftarrow \mathsf{arg\,min}\, \|\mathbf{y} - \mathbf{w}\|^2 + \mathit{const}\,$ over $\{\mathbf{y}_{k-1} + \alpha \mathbf{u}_k\};$ // univariate quadratic problem in α end

Change of variable

This simple problem is actually equivalent to any quadratic problem via a change of basis: given $R \in \mathbb{R}^{m \times m}$ invertible, $\mathbf{y} = R \mathbf{x}$,

$$
\min \frac{1}{2} \mathbf{y}^T \mathbf{y} - \mathbf{w}^T \mathbf{y} + \text{const} = \min \frac{1}{2} \mathbf{x}^T \underbrace{R^T R \mathbf{x}}_{=Q} - \underbrace{\mathbf{w}^T R \mathbf{x}}_{= \mathbf{v}^T} + \text{const.}
$$

We can solve the (difficult) problem on the x -space by looking at the (easier) one on the y -space, with coordinate descent.

Important detail: in the old problem, w is both the linear term appearing in the objective function and the solution $y_* = w$; in the new problem, $\mathbf{v}=R^{\mathsf{T}}\mathbf{w}$, but $\mathbf{x}_* = Q^{-1}\mathbf{v} = R^{-1}\mathbf{w}$: indeed we can rewrite the objective function as

$$
\min_{\mathbf{y}} \frac{1}{2} \|\mathbf{y} - \mathbf{w}\|^2 + C = \min_{\mathbf{x}} \frac{1}{2} \|R(\mathbf{x} - \mathbf{x}_*)\|^2 + C = \min_{\mathbf{x}} \frac{1}{2} (\mathbf{x} - \mathbf{x}_*)^T R^T R (\mathbf{x} - \mathbf{x}_*)
$$

Definition: the Q-norm of a vector **z** is $\|\mathbf{z}\|_Q = (\mathbf{z}^T Q \mathbf{z})^{1/2}$. Since $Q \succ 0$, it is still true that $||z||_Q \geq 0$, with equality iff $z = 0$.

Q-orthogonality

Search directions: $R\mathbf{d}_k = \mathbf{u}_k$. These are orthogonal in the y-space $(\mathbf{u}_i^T \mathbf{u}_j = 0$ when $i \neq j)$, but in the **y**-space the relation becomes

$$
\mathbf{d}_j^T \underbrace{R^T R}_{=Q} \mathbf{d}_i = 0
$$

Definition: vectors $\mathbf{d}_i, \mathbf{d}_j$ are called Q-orthogonal if $\mathbf{d}_j^T Q \mathbf{d}_j = 0$.

The algorithms

In the y space:

Given orthogonal search dirs $\mathbf{u}_1, \ldots, \mathbf{u}_m$ (i.e., $\mathbf{u}_i^T \mathbf{u}_j = 0$ when $i \neq j$)

$$
\mathbf{y}_0 \leftarrow \mathbf{0};
$$
\n
$$
\mathbf{for } k = 1, 2, 3, \ldots, m \mathbf{do}
$$
\n
$$
\begin{aligned}\n\mathbf{y}_k \leftarrow \arg \min \| \mathbf{y} - \mathbf{w} \|^2 + \text{const} \text{ over } \{ \mathbf{y}_{k-1} + \alpha \mathbf{u}_k \}; \\
\text{if } \text{in } \alpha \text{ and } \mathbf{u}_k = \text{matrix problem in } \alpha\n\end{aligned}
$$

In the x space:

Given Q-orthogonal search dirs $\mathbf{d}_1,\ldots,\mathbf{d}_m$ (i.e., $\mathbf{d}_i^T Q \mathbf{d}_j = 0$ when $i \neq j$ $x_0 \leftarrow 0$: for $k = 1, 2, 3, \ldots, m$ do $\mathbf{x}_k \leftarrow \mathsf{arg\,min}\, \mathbf{x}^{\mathcal{T}} Q \mathbf{x} + \mathbf{v}^{\mathcal{T}} \mathbf{x} + const\,$ over $\{\mathbf{x}_{k-1} + \alpha \mathbf{d}_k\};$ // univariate quadratic problem in α end

Details

- ▶ We do not need to know R, nor x_{*} , nor const: it is enough to have Q and **v**!
- ▶ Subspace optimality: $x_k = min f(x)$ for $x \in span(d_1, ..., d_k)$.
- \triangleright Convergence guaranteed in m steps but we hope to do better!
- Important missing part: how to choose the \mathbf{d}_i 's? Optimization suggests: it should be loosely in the direction of the residual $\mathbf{r}_j=-\mathbf{g}_j=\mathbf{v}-Q\mathbf{x}_j$. But residuals are noth Q-orthogonal.

We shall see that a special property holds: if we set $\mathbf{d}_i = \mathbf{r}_i + \beta_i \mathbf{d}_{i-1}$, it is sufficient to choose β_i to impose $\mathsf{d}_{j-1}^{\mathcal{T}} Q \mathsf{d}_{j} = 0$; Q -orthogonality with all previous search directions holds automatically.

Conjugate gradient — implementation

Three ingredients: current iterate ${\mathbf x}_j$, residual ${\mathbf r}_j = {\mathbf v} - Q {\mathbf x}_j = - {\mathbf g}_j$, and search direction $\mathbf{d}_j.$

CG iteration

$$
\mathbf{x}_0 = \mathbf{0}, \mathbf{r}_0 = \mathbf{d}_0 = \mathbf{v};
$$
\n
$$
\mathbf{for} \ j = 1:n \ \mathbf{do}
$$
\n
$$
\alpha_j = (\mathbf{r}_{j-1}^T \mathbf{r}_{j-1})/(\mathbf{d}_{j-1}^T \mathcal{Q} \mathbf{d}_{j-1}) ; \quad // \ \text{exact line search}
$$
\n
$$
\mathbf{x}_j = \mathbf{x}_{j-1} + \alpha_j \mathbf{d}_{j-1};
$$
\n
$$
\mathbf{r}_j = \mathbf{r}_{j-1} - \alpha_j \mathcal{Q} \mathbf{d}_{j-1} ; \quad // \ \text{residual update (check!)}
$$
\n
$$
\beta_j = (\mathbf{r}_j^T \mathbf{r}_j)/(\mathbf{r}_{j-1}^T \mathbf{r}_{j-1});
$$
\n
$$
\mathbf{d}_j = \mathbf{r}_j + \beta_j \mathbf{d}_{j-1} ; \quad // \ \mathcal{Q}\text{-orthogonal (we'll see why)}
$$
\n
$$
\mathbf{end}
$$

The formula for the exact line search α_j is not obvious, but we will have the tools to prove it later.

Storage: 3 vectors: \mathbf{x}_j , \mathbf{r}_j , \mathbf{d}_j . No need to keep previous iterates.

Black-box algorithms

Cost: $n \times (1$ mat-vec product for $Qd_{i-1} + \mathcal{O}(m)$.

Dominant part: computing n products $\mathbf{d}_j \mapsto Q \mathbf{d}_j$.

Note that we only need a function ("oracle" in CS terms) compute_product(d) = $Q*d$: this is a so-called black box algorithm.

CG is fast whenever compute_product is fast: a sparse Q yields $\mathcal{O}(nnz(Q))$, but not only.

Krylov spaces

A new linear algebra concept that will help us analyze CG.

Definition

Given $Q \in \mathbb{R}^{m \times m}$ (not nec. symmetric), $\mathbf{v} \in \mathbb{R}^m$, and $n \leq m$, the Krylov space $K_n(Q, \mathbf{v})$ is the linear subspace

$$
K_n(Q, \mathbf{v}) = \text{span}(\mathbf{v}, Q\mathbf{v}, Q^2\mathbf{v}, \dots, Q^{n-1}\mathbf{v}),
$$

That is, the set of vectors that we can write as

$$
\mathbf{w} = \underbrace{(c_0 I + c_1 Q + c_2 Q^2 + \cdots + c_{n-1} Q^{n-1})}_{:=p(Q)} \mathbf{v};
$$

any polynomial of degree $d < n$ in Q, multiplied by v.

Krylov spaces, polynomials and degrees

Assume $\mathbf{v}, Q\mathbf{v}, Q^2\mathbf{v}, \ldots, Q^{n-1}\mathbf{v}$ are linearly independent; then the coordinates

$$
\mathbf{w} = \mathbf{v}c_0 + Q\mathbf{v}c_1 + \dots Q^2\mathbf{v}c_2 + \dots + Q^{n-1}\mathbf{v}c_{n-1}
$$

of any vector $w \in K_n(Q, v)$ are unique. For each w the degree d of the polynomial such that $w = p(Q)v$ is well-defined.

Trivial but useful facts

- ▶ If w has degree d, then $w \in K_{d+1}(Q, v) \setminus K_d(Q, v)$.
- If w has degree d, then Qw has degree $d + 1$.

Krylov spaces — characterization

Observation $K_n(Q, \mathbf{v})$ is the set of vectors that I can obtain, starting from $S = \{v\}$, with these operations:

- \triangleright Multiply by Q: add to the set Qw, where w is any element of S;
- \blacktriangleright Linear combinations: add to the set $w_1\alpha_1 + \cdots + w_k\alpha_k$. where the w_i belong to S;

and the first operation is performed fewer than n times.

This matches well our "oracle" idea: the allowed operations are linear combinations and invoking the oracle; $K_n(Q, \mathbf{v})$ is the set of vectors that I can obtain by calling the oracle fewer than n times.

Krylov spaces and optimization

Observation The iterates of gradient descent lie in Krylov spaces. Suppose we are looking for

$$
\min f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T Q \mathbf{x} - \mathbf{v}^T x + \text{const}, \quad \mathbf{x}_0 = \mathbf{0}.
$$

At each step we take a gradient $\mathbf{g}_k := Q\mathbf{x}_k - \mathbf{v}$ and use it to compute x_{k+1} .

$$
\mathbf{x}_0 = \mathbf{0}
$$
\n
$$
\mathbf{x}_1 = \mathbf{x}_0 - (Q\mathbf{x}_0 - \mathbf{v})\alpha_1 = \mathbf{v}\alpha_1,
$$
\n
$$
\mathbf{x}_2 = \mathbf{x}_1 - (Q\mathbf{x}_1 - \mathbf{v})\alpha_2 = \mathbf{v}\alpha_1 - (Q\mathbf{v}\alpha_1 - \mathbf{v})\alpha_2 \in \text{span}(\mathbf{v}, Q\mathbf{v})
$$
\n
$$
\mathbf{x}_3 = \mathbf{x}_2 - (Q\mathbf{x}_2 - \mathbf{v})\alpha_3 \in \text{span}(\mathbf{v}, Q\mathbf{v}, Q^2\mathbf{v})
$$

We have

. . .

- $\mathbf{g}_0, \mathbf{x}_1 \in K_1(Q, \mathbf{v}),$ 0 products with Q required $\mathbf{g}_1, \mathbf{x}_2 \in K_2(Q, \mathbf{v}) \setminus K_1(Q, \mathbf{v}),$ 1 product with Q required $\mathbf{g}_2, \mathbf{x}_3 \in K_3(Q, \mathbf{v}) \setminus K_2(Q, \mathbf{v}),$ 2 products with Q required
	-
	-
	-

Search space $=$ Krylov space

Theorem

Assume that $\mathbf{v}, Q\mathbf{v}, \ldots, Q^{n-1}\mathbf{v}$ are linearly independent. Then, after each step n of CG (starting from $x_0 = 0$),

$$
\begin{array}{l}\n \blacktriangleright \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \\
 \blacktriangleright \mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_{n-1} \\
 \blacktriangleright \mathbf{d}_0, \mathbf{d}_1, \dots, \mathbf{d}_{n-1}.\n \end{array}
$$

are bases of $K_n(Q, \mathbf{v})$.

Proof

- 1. Using the formulas that define the method, show inductively that $\mathsf{x}_{j},\mathsf{r}_{j-1},\mathsf{d}_{j-1}$ have degree $j-1.$
- 2. Observe that if we have a polynomial $p_0(t)$ of degree 0, one $p_1(t)$ of degree 1, ..., one $p_{n-1}(t)$ of degree $n-1$, then we can write any polynomial of degree $\leq n-1$ as a linear combination of them.

Orthogonality in CG

Theorem

At each step
$$
\mathbf{r}_i^T \mathbf{r}_j = \mathbf{d}_i^T Q \mathbf{d}_j = 0
$$
 for all $i < j$.

The r_i are orthogonal (not -normal), and the d_i are Q-orthogonal. Proof (sketch) Assume it holds for $j - 1$ (induction!). We show only that $\mathbf{r}_i^T \mathbf{r}_j = 0$ for all $i < j$; the other part is similar. From $\mathbf{r}_i = \mathbf{r}_{i-1} - \alpha Q \mathbf{d}_{i-1}$ it follows that

$$
\mathbf{r}_i^T \mathbf{r}_j = \mathbf{r}_i^T \mathbf{r}_{j-1} - \alpha_j \mathbf{r}_i^T Q \mathbf{d}_{j-1}.
$$

▶ For $i < j - 1$, $\mathbf{r}_i^T \mathbf{r}_{j-1}$ is zero by induction, since $\mathbf{r}_i \in \text{span}(\mathbf{d}_0, \mathbf{d}_1, \dots, \mathbf{d}_i)$ is Q-orthogonal to \mathbf{d}_{i-1} . ▶ For $i = j - 1$, the RHS is zero if we can prove that $\alpha_j = \frac{\mathbf{r}_{j-1}^T \mathbf{r}_{j-1}}{\mathbf{r}^T \cdot \Omega \mathbf{d}}$ $\frac{r_{j-1}^{r_{j-1}+r_{j-1}}}{r_{j-1}^{r_{j}}Q\mathsf{d}_{j-1}}.$ This is *almost* the formula for $\alpha_j,$ but the denominator is not $\mathbf{d}_{j-1}^{\mathcal{T}} Q \mathbf{d}_{j-1}$. However $$ β_{j-1} d $_{j-2}^T Q$ d $_{j-1} = 0$ (by induction).

The other half of the proof

(Not shown, just here for completeness.) It remains to prove the second half of the induction step, i.e.,

$$
0 = \mathbf{d}_i^T Q \mathbf{d}_j = \mathbf{d}_i^T Q(\mathbf{r}_j + \beta_j \mathbf{d}_{j-1}).
$$

For $i < j - 1$, this follows by induction and the fact that $Q\mathbf{d}_i \in K_{i-1}(Q, \mathbf{v})$ is orthogonal to \mathbf{r}_i by the first half of the proof. For $i = j - 1$, this holds if we can prove that

$$
\beta_j=-\frac{\mathbf{d}_{j-1}^T Q \mathbf{r}_j}{\mathbf{d}_{j-1}^T Q \mathbf{d}_{j-1}}=\frac{\mathbf{r}_j^T(-\alpha Q \mathbf{d}_{j-1})}{\mathbf{d}_{j-1}^T(\alpha Q \mathbf{d}_{j-1})}=\frac{\mathbf{r}_j^T(\mathbf{r}_j-\mathbf{r}_{j-1})}{\mathbf{d}_{j-1}^T(\mathbf{r}_{j-1}-\mathbf{r}_j)}.
$$

This quantity is equal to the formula for β_i because $\mathsf{d}_{j-1},\mathsf{r}_{j-1}\in\mathsf{K}_j(\mathsf{Q},\mathsf{v})$ are orthogonal to r_j , and $d_{j-1}^T \mathbf{r}_{j-1} = (\mathbf{r}_{j-1} + \beta_{j-1} \mathbf{d}_{j-2})^T \mathbf{r}_{j-1} = \mathbf{r}_{j-1}^T \mathbf{r}_{j-1}.$

Lucky breakdown

Breakdown \implies solution: Suppose that for a certain *n* the vectors $v, Qv, \ldots Q^n v$ are linearly dependent, i.e., $Q^n v$ can be written as a linear combination of the previous ones, i.e.,

$$
K_n(Q, v) = K_{n-1}(Q, v).
$$

In particular, since ${\bf r}_n \in K_n(Q, v)$, we have

$$
\mathbf{r}_n = c_0 \mathbf{r}_0 + c_1 \mathbf{r}_1 + \cdots + c_{n-1} \mathbf{r}_{n-1}.
$$

But we can still use the steps of our proof to show that $\mathbf{r}_n^T \mathbf{r}_j = 0$ for $j < n$.

Then, we must have $\|\mathbf{r}_n\|^2 = \mathbf{r}_n^T \mathbf{r}_n = 0$, by orthogonality.

Convergence of CG

Geometric idea: the level curves are ellipsoids in the x-space but circles in the y-space.

Convergence is guaranteed in at most m iterations, $x_m = x_*$, but it can be much faster. For instance, when $Q = I$ we converge in 1 step.

Optimality \implies $\|\mathbf{x}_k - \mathbf{x}_*\|_Q$ and $f(\mathbf{x}_k)$ decrease monotonically. However, $||\mathbf{x}_k - \mathbf{x}_*||$ or $||\mathbf{r}_k||$ do *not*, in general.

Optimality \implies $\|\mathbf{x}_k - \mathbf{x}_*\|_Q$ and $f(\mathbf{x}_k)$ decrease faster than any other method that produces $x_n \in K(Q, v)$. E.g., gradient method, heavy ball variants, ...

Convergence speed of CG

The convergence speed depends on the effectiveness of polynomial approximation of the eigenvalues of Q.

Theorem

$$
\frac{\|\mathbf{x}_n-\mathbf{x}_*\|_Q}{\|\mathbf{x}_0-\mathbf{x}_*\|_Q} \leq \min_{r(t)} \max_{i=1,2,\dots,m} |r(\lambda_i)|,
$$

where $\lambda_1, \ldots, \lambda_m$ are the eigenvalues of Q, and the minimum is over all polynomials r of degree $\leq n$, normalized such that $r(0) = 1.$

Proof

 $x_n \in K_n(Q, v) \iff x_n = p(Q)v$ for a polynomial p of degree $\lt n$.

$$
\|\mathbf{x}_n - \mathbf{x}_*\|_Q = \min_{\mathbf{x} \in K_n(Q,\mathbf{v})} \|\mathbf{x} - \mathbf{x}_*\|_Q = \min_{\rho(t)} \|\mathbf{x}_* - \rho(Q)Q\mathbf{x}_*\|_Q
$$

=
$$
\min_{\substack{r(t)=1-t\rho(t)\\ \text{of degree }\leq n}} \left\|r(Q)\mathbf{x}_*\|_Q\right\|.
$$

Convergence speed of CG (cont.)

We can use the formulas from our slideset on orthogonality to give better expressions in terms of an eigenvalue decomposition $Q = UDU^T$, with U orthogonal and D diagonal containing the eigenvalues:

$$
r(Q) = U \begin{bmatrix} r(\lambda_1) & & & \\ & r(\lambda_2) & & \\ & & \ddots & \\ & & & r(\lambda_m) \end{bmatrix} U^T
$$

.

Moreover, if $\mathbf{x}_{*} = U\mathbf{c}$, then $\|\mathbf{x}_{*}\|_{Q}^{2} = \sum_{i} \lambda_{i} c_{i}^{2}$, and

$$
\|r(Q)\mathbf{x}_{*}\|_{Q}^{2} = \left\| U \begin{bmatrix} r(\lambda_{1}) & & & \\ & r(\lambda_{2}) & & \\ & & \ddots & \\ & & & r(\lambda_{m}) \end{bmatrix} \mathbf{c} \right\|_{Q}^{2} = \sum_{i} \lambda_{i} r(\lambda_{i})^{2} c_{i}^{2}.
$$

Convergence speed of CG (cont.)

From these two expressions it follows that

$$
\frac{\|\mathbf{x}_{n} - \mathbf{x}_{*}\|_{Q}^{2}}{\|\mathbf{x}_{0} - \mathbf{x}_{*}\|_{Q}^{2}} = \frac{\|r(Q)\mathbf{x}_{*}\|_{Q}^{2}}{\|-\mathbf{x}_{*}\|_{Q}^{2}}
$$

$$
= \frac{\lambda_{1}r(\lambda_{1})^{2}c_{1}^{2} + \dots + \lambda_{m}r(\lambda_{m})^{2}c_{m}^{2}}{\lambda_{1}c_{1}^{2} + \dots + \lambda_{m}c_{m}^{2}}
$$

$$
\leq \max_{\lambda_{1},...,\lambda_{m}} r(\lambda_{i})^{2}.
$$

CG finds the best polynomial

CG converges as well as the best possible polynomial $r(t)$; and we don't even need to compute it explicitly!

Repeated eigenvalues

If $Q \in \mathbb{R}^{m \times m}$ has only $n < m$ distinct eigenvalues, then we can find $r(t)$ such that $r(\lambda_i) = 0, r(0) = 1$, by interpolation \implies $||\mathbf{x}_n - \mathbf{x}_*||_Q = 0$. CG finds the exact solution in *n* steps!

Clustered eigenvalues

Similar case: if the eigenvalues of Q are clustered around n values μ_1,\ldots,μ_n , then the interpolation polynomial r on the μ_i is likely to have small $|r(\lambda_i)|$ for all $i \implies$ small residual after *n* steps.

Linear convergence

Theorem (linear convergence)

Let λ_{max} , λ_{min} be the maximum/minimum eigenvalue of Q; then, CG converges with rate

$$
\frac{\|\mathbf{x}_n - \mathbf{x}_*\|_Q}{\|\mathbf{x}_0 - \mathbf{x}_*\|_Q} \le 2 \left(\frac{\sqrt{\lambda_{\text{max}}} - \sqrt{\lambda_{\text{min}}}}{\sqrt{\lambda_{\text{max}}} + \sqrt{\lambda_{\text{min}}}}\right)^n
$$

.

(Proof: find a polynomial such that max $_{\lambda\in[\lambda_{\sf min},\lambda_{\sf max}]}|r(\lambda)|=R$ HS.) We can rewrite that constant in terms of $\kappa(Q) = \frac{\lambda_{\max}}{\lambda_{\min}}$, the condition number of Q (this definition is valid only for $Q \succ 0!$). This quantity measures how "imbalanced" the eigenvalues of Q are. √ √

$$
\frac{\sqrt{\lambda_{\text{max}}} - \sqrt{\lambda_{\text{min}}}}{\sqrt{\lambda_{\text{max}}} + \sqrt{\lambda_{\text{min}}}} = \frac{\sqrt{\kappa(Q)} - 1}{\sqrt{\kappa(Q)} + 1}.
$$

This is a faster rate than that of the gradient method, $\frac{\kappa-1}{\kappa+1}$.

Matlab examples

```
\gg rng(0);
>> A = \text{randn}(5); Q = A'*A;
>> v = \text{randn}(5, 1);>> x = pcg(Q, v);pcg converged at iteration 5 to a solution
with relative residual 4e-13.
\Rightarrow norm(Q*x-v) / norm(v)
ans =
  4.0223e-13
\gg [x, \tilde{ }, \tilde{ }, \tilde{ }, \tilde{ }, resvec] = pcg(Q, v); semilogy(resvec)
% sudden convergence at the last iteration
% this is normal for small-scale matrices
% CG really shines with large, sparse matrices
```

```
\gg rng(0); n = 1000;
> A = sprandsym(n, 5/n); % 5 nonzeros/row on avg
\gg min(eig(A)) % A is symmetric but not posdef
> 0 = 10*speye(n) + A; % to get a posdef matrix
\gg spy(\mathbb{Q})
\gg min(eig(Q)), max(eig(Q))
ans =3.9943
ans =16.0227
\Rightarrow v = randn(n, 1);
>> pcg(Q, v, 1e-18, 200);
Warning: Input tol may not be achievable by PCG
        Try to use a bigger tolerance
> In pcg (line 90)
pcg converged at iteration 33 to a solution
with relative residual 2e-16.
```

```
> Q = 6.0058*spec(n) + A; % more ill-conditioned>> min(eig(Q)), max(eig(Q))
ans =1.0563e-04
ans =12.0285
\gg \gg \chi \sim \chi, \approx \chi \sim \chi \sim \sim \chi 
Warning: Input tol may not be achievable by PCG
           Try to use a bigger tolerance
> In pcg (line 90)
pcg stopped at iteration 86 without converging to
the desired tolerance 2.2e-16
because the method stagnated.
The iterate returned (number 82) has relative
residual 7.6e-14.
```
 $> A = \text{bucky}()$; spy(A) % 60x60 test matrix, repeated eigs >> $Q = 2.6181 * \text{spec(size(A))} + A;$ \Rightarrow v = randn(size(A,1), 1); \gg [x, $\tilde{ }$, $\tilde{ }$, $\tilde{ }$, $\tilde{ }$, resvec] = pcg(Q, v); % exact convergence >> semilogy(resvec);