
Solving systems of equations

Storing an m ×m matrix with m = 100 000 requires ≈ 80GB. And
even if we managed to do it, applying an algorithm like Gaussian
elimination, with complexity O(m3), is prohibitive.

Luckily, many real-world matrices are sparse: for instance 3, 10
nonzeros per row.

This includes matrices from graph/networks, KKT systems,
discretization of differential equations. . .
Some examples (from the Suitesparse Matrix Collection) in the
next slide.



Some real-world matrices

▶ Adjacency matrices from networks and graphs.

% ’’Friendship matrix’’ on a group of 34 people

M = load(’karate.mat’).Problem.A;

% Road network of Luxembourg

M = load(’luxembourg_osm.mat’).Problem.A;

For instance, in some applications centrality indices are
computed by solving (I − αA)x = ones(n,1).

▶ In both engineering and video game programming, one often
models complex objects as “networks of points joined by
forces”, and then solves problems on them.

% From a structural stability problem (Boeing)

M = load(’msc00726.mat’).Problem.A;

▶ KKT matrices in optimization,

[
D1 A
AT 0

]
, often with D1

diagonal and tall-thin A (possibly already sparse).



Storing and using a sparse matrix

Basic format to store sparse matrices: as list of non-zero (i , j ,Aij).

>> sprandn(10,10,0.3)

(Detail: if the indices j are listed increasingly, they can be
compressed further. The most well-known format is known as
CSC/CSR — compressed sparse column/row.)

We can operate on them directly in this format, e.g., in Python
pseudocode:

"Compute the product w = A*v"

def compute_product(A, v):

w = zeros(size(A, 1))

for (i, j, Aij) in A:

w[i] += Aij * v[j]

return w



Optimization to solve linear systems

Given a n× n matrix Q ≻ 0 and a vector v = −q ∈ Rn, we wish to
minimize

min f (x) =
1

2
xTQx− vTx+ const.

This is equivalent to solving g = Qx− v = 0, i.e., the linear
system Qx = v.

We shall see a particularly efficient algorithm that uses concepts
from both linear algebra and optimization. It computes at each
step the best (in a certain sense) possible approximation xk to the
solution x∗.

It is particularly suited to large problem with sparse matrices.



Intro to conjugate gradient

Let us start from a simple quadratic problem with Q = I :

min
y∈Rm

1

2
∥y −w∥2 + const = min

1

2
yTy −w⊤y + const

= min
1

2
(y21 + y22 + · · ·+ y2m)

− (w1y1 + w2y2 + · · ·+ wmym) + const

This problem is separable: starting from y0 = 0, we optimize on
each coordinate separately and generate the sequence of vectors

y1 =


w1
0
0
0
...
0

, y2 =


w1
w2
0
0
...
0

, y3 =


w1
w2
w3
0
...
0

, . . .

At each step, we add a multiple of a new search direction
e1, e2, e3, . . . . They are all orthogonal to each other.

Convergence guaranteed after m iterations.



Subspace optimality

At each step, we solve a 1D problem and choose yk to solve

yk = argmin f (y) over


w1

...
wk−1
∗
0
...
0

 = {yk−1 + αek : α ∈ R},

(line search), but we also get for free a stronger property:

yk = argmin f (y) over


∗
...
∗
∗
0
...
0

 = span(e1, . . . , ek).



Orthogonal directions

We can proceed similarly with any set of orthogonal search
directions U = [u1,u2, . . . ,um] instead of the canonical basis
e1, e2, . . . , em. Write

w = U

[ c1
c2
...
cm

]
, ∥w∥ = ∥c∥

and find

yk = min f (y) over U


c1
...

ck−1
∗
0
...
0

 = {yk−1 + αuk : α ∈ R},

= min f (y) over U


∗
...
∗
∗
0
...
0

 = span(u1, . . . ,um).



The algorithm

Given orthogonal search dirs u1, . . . ,um (i.e., uTi uj = 0 when i ̸= j)

y0 ← 0;
for k = 1, 2, 3, . . . ,m do

yk ← argmin ∥y −w∥2 + const over {yk−1 + αuk};
// univariate quadratic problem in α

end



Change of variable

This simple problem is actually equivalent to any quadratic
problem via a change of basis: given R ∈ Rm×m invertible, y = Rx,

min
1

2
yTy −wTy + const = min

1

2
xT RTR︸ ︷︷ ︸

=Q

x−wTR︸ ︷︷ ︸
=vT

x+ const.

We can solve the (difficult) problem on the x-space by looking at
the (easier) one on the y-space, with coordinate descent.

Important detail: in the old problem, w is both the linear term
appearing in the objective function and the solution y∗ = w; in the
new problem, v = RTw, but x∗ = Q−1v = R−1w: indeed we can
rewrite the objective function as

min
y

1

2
∥y−w∥2+C = min

x

1

2
∥R(x−x∗)∥2+C = min

x

1

2
(x−x∗)TRTR(x−x∗)+C

Definition: the Q-norm of a vector z is ∥z∥Q = (zTQz)1/2.

Since Q ≻ 0, it is still true that ∥z∥Q ≥ 0, with equality iff z = 0.



Q-orthogonality

Search directions: Rdk = uk . These are orthogonal in the y-space
(uTi uj = 0 when i ̸= j), but in the y-space the relation becomes

dTj RTR︸ ︷︷ ︸
=Q

di = 0

Definition: vectors di ,dj are called Q-orthogonal if dTj Qdj = 0.



The algorithms

In the y space:

Given orthogonal search dirs u1, . . . ,um (i.e., uTi uj = 0 when i ̸= j)

y0 ← 0;
for k = 1, 2, 3, . . . ,m do

yk ← argmin ∥y −w∥2 + const over {yk−1 + αuk};
// univariate quadratic problem in α

end

In the x space:

Given Q-orthogonal search dirs d1, . . . ,dm (i.e., dTi Qdj = 0 when
i ̸= j)

x0 ← 0;
for k = 1, 2, 3, . . . ,m do

xk ← argmin xTQx+ vTx+ const over {xk−1 + αdk};
// univariate quadratic problem in α

end



Details

▶ We do not need to know R, nor x∗, nor const: it is enough to
have Q and v!

▶ Subspace optimality: xk = min f (x) for x ∈ span(d1, . . . ,dk).

▶ Convergence guaranteed in m steps — but we hope to do
better!

▶ Important missing part: how to choose the di ’s?
Optimization suggests: it should be loosely in the direction of
the residual rj = −gj = v − Qxj . But residuals are noth
Q-orthogonal.
We shall see that a special property holds: if we set
dj = rj + βjdj−1, it is sufficient to choose βj to impose
dTj−1Qdj = 0; Q-orthogonality with all previous search
directions holds automatically.



Conjugate gradient — implementation

Three ingredients: current iterate xj , residual rj = v − Qxj = −gj ,
and search direction dj .

CG iteration

x0 = 0, r0 = d0 = v;
for j = 1:n do

αj = (rTj−1rj−1)/(d
T
j−1Qdj−1) ; // exact line search

xj = xj−1 + αjdj−1;
rj = rj−1 − αjQdj−1 ; // residual update (check!)

βj = (rTj rj)/(r
T
j−1rj−1);

dj = rj + βjdj−1 ; // Q-orthogonal (we’ll see why)

end

The formula for the exact line search αj is not obvious, but we will
have the tools to prove it later.
Storage: 3 vectors: xj , rj ,dj . No need to keep previous iterates.



Black-box algorithms

Cost: n × (1 mat-vec product for Qdj−1 + O(m)).

Dominant part: computing n products dj 7→ Qdj .

Note that we only need a function (“oracle” in CS terms)
compute_product(d) = Q*d: this is a so-called black box
algorithm.

CG is fast whenever compute_product is fast: a sparse Q yields
O(nnz(Q)), but not only.



Krylov spaces

A new linear algebra concept that will help us analyze CG.

Definition

Given Q ∈ Rm×m (not nec. symmetric), v ∈ Rm, and n ≤ m, the
Krylov space Kn(Q, v) is the linear subspace

Kn(Q, v) = span(v,Qv,Q2v, . . . ,Qn−1v),

That is, the set of vectors that we can write as

w = (c0I + c1Q + c2Q
2 + · · ·+ cn−1Q

n−1)︸ ︷︷ ︸
:=p(Q)

v;

any polynomial of degree d < n in Q, multiplied by v.



Krylov spaces, polynomials and degrees

Assume v,Qv,Q2v, . . . ,Qn−1v are linearly independent; then the
coordinates

w = vc0 + Qvc1 + . . .Q2vc2 + · · ·+ Qn−1vcn−1

of any vector w ∈ Kn(Q, v) are unique. For each w the degree d
of the polynomial such that w = p(Q)v is well-defined.

Trivial but useful facts

▶ If w has degree d , then w ∈ Kd+1(Q, v) \ Kd(Q, v).

▶ If w has degree d , then Qw has degree d + 1.



Krylov spaces — characterization

Observation Kn(Q, v) is the set of vectors that I can obtain,
starting from S = {v}, with these operations:

▶ Multiply by Q: add to the set Qw, where w is any element of
S ;

▶ Linear combinations: add to the set w1α1 + · · ·+wkαk ,
where the wi belong to S ;

and the first operation is performed fewer than n times.

This matches well our “oracle” idea: the allowed operations are
linear combinations and invoking the oracle; Kn(Q, v) is the set of
vectors that I can obtain by calling the oracle fewer than n times.



Krylov spaces and optimization

Observation The iterates of gradient descent lie in Krylov spaces.

Suppose we are looking for

min f (x) =
1

2
xTQx− vT x + const, x0 = 0.

At each step we take a gradient gk := Qxk − v and use it to
compute xk+1.

x0 = 0

x1 = x0 − (Qx0 − v)α1 = vα1,

x2 = x1 − (Qx1 − v)α2 = vα1 − (Qvα1 − v)α2 ∈ span(v,Qv)

x3 = x2 − (Qx2 − v)α3 ∈ span(v,Qv,Q2v)

We have

g0, x1 ∈ K1(Q, v), 0 products with Q required

g1, x2 ∈ K2(Q, v) \ K1(Q, v), 1 product with Q required

g2, x3 ∈ K3(Q, v) \ K2(Q, v), 2 products with Q required

...



Search space = Krylov space

Theorem

Assume that v,Qv, . . . ,Qn−1v are linearly independent. Then,
after each step n of CG (starting from x0 = 0),

▶ x1, x2, . . . , xn
▶ r0, r1, . . . , rn−1

▶ d0,d1, . . . ,dn−1.

are bases of Kn(Q, v).

Proof

1. Using the formulas that define the method, show inductively
that xj , rj−1,dj−1 have degree j − 1.

2. Observe that if we have a polynomial p0(t) of degree 0, one
p1(t) of degree 1, . . . , one pn−1(t) of degree n − 1, then we
can write any polynomial of degree ≤ n − 1 as a linear
combination of them.



Orthogonality in CG

Theorem

At each step rTi rj = dTi Qdj = 0 for all i < j .

The ri are orthogonal (not -normal), and the di are Q-orthogonal.

Proof (sketch) Assume it holds for j − 1 (induction!). We show
only that rTi rj = 0 for all i < j ; the other part is similar.

From rj = rj−1 − αQdj−1 it follows that

rTi rj = rTi rj−1 − αj r
T
i Qdj−1.

▶ For i < j − 1, rTi rj−1 is zero by induction, since
ri ∈ span(d0,d1, . . . ,di) is Q-orthogonal to dj−1.

▶ For i = j − 1, the RHS is zero if we can prove that

αj =
rTj−1rj−1

rTj−1Qdj−1
. This is almost the formula for αj , but the

denominator is not dTj−1Qdj−1. However
dj−1 = rj−1 + βj−1dj−2, so the two denominators differ by
βj−1d

T
j−2Qdj−1 = 0 (by induction).



The other half of the proof

(Not shown, just here for completeness.)
It remains to prove the second half of the induction step, i.e.,

0 = dTi Qdj = dTi Q(rj + βjdj−1).

For i < j − 1, this follows by induction and the fact that
Qdi ∈ Kj−1(Q, v) is orthogonal to rj by the first half of the proof.
For i = j − 1, this holds if we can prove that

βj = −
dTj−1Qrj

dTj−1Qdj−1
=

rTj (−αQdj−1)

dTj−1(αQdj−1)
=

rTj (rj − rj−1)

dTj−1(rj−1 − rj)
.

This quantity is equal to the formula for βj because
dj−1, rj−1 ∈ Kj(Q, v) are orthogonal to rj , and
dTj−1rj−1 = (rj−1 + βj−1dj−2)

T rj−1 = rTj−1rj−1.



Lucky breakdown

Breakdown =⇒ solution: Suppose that for a certain n the vectors
v,Qv, . . .Qnv are linearly dependent, i.e., Qnv can be written as a
linear combination of the previous ones, i.e.,

Kn(Q, v) = Kn−1(Q, v).

In particular, since rn ∈ Kn(Q, v), we have

rn = c0r0 + c1r1 + · · ·+ cn−1rn−1.

But we can still use the steps of our proof to show that rTn rj = 0
for j < n.
Then, we must have ∥rn∥2 = rTn rn = 0, by orthogonality.



Convergence of CG

Geometric idea: the level curves are ellipsoids in the x-space but
circles in the y-space.

Convergence is guaranteed in at most m iterations, xm = x∗, but it
can be much faster. For instance, when Q = I we converge in 1
step.

Optimality =⇒ ∥xk − x∗∥Q and f (xk) decrease monotonically.
However, ∥xk − x∗∥ or ∥rk∥ do not, in general.

Optimality =⇒ ∥xk − x∗∥Q and f (xk) decrease faster than any
other method that produces xn ∈ K (Q, v). E.g., gradient method,
heavy ball variants, . . .



Convergence speed of CG

The convergence speed depends on the effectiveness of polynomial
approximation of the eigenvalues of Q.

Theorem

∥xn − x∗∥Q
∥x0 − x∗∥Q

≤ min
r(t)

max
i=1,2,...,m

|r(λi )|,

where λ1, . . . , λm are the eigenvalues of Q, and the minimum is
over all polynomials r of degree ≤ n, normalized such that
r(0) = 1.

Proof

xn ∈ Kn(Q, v) ⇐⇒ xn = p(Q)v for a polynomial p of degree < n.

∥xn − x∗∥Q = min
x∈Kn(Q,v)

∥x− x∗∥Q = min
p(t)
∥x∗ − p(Q)Qx∗∥Q

= min
r(t)=1−tp(t)
of degree ≤ n

∥r(Q)x∗∥Q .

(cont.)



Convergence speed of CG (cont.)

We can use the formulas from our slideset on orthogonality to give
better expressions in terms of an eigenvalue decomposition
Q = UDUT , with U orthogonal and D diagonal containing the
eigenvalues:

r(Q) = U


r(λ1)

r(λ2)
. . .

r(λm)

UT .

Moreover, if x∗ = Uc, then ∥x∗∥2Q =
∑

i λic
2
i , and

∥r(Q)x∗∥2Q =

∥∥∥∥∥∥∥∥∥U

r(λ1)

r(λ2)
. . .

r(λm)

 c

∥∥∥∥∥∥∥∥∥
2

Q

=
∑
i

λi r(λi )
2c2i .



Convergence speed of CG (cont.)

From these two expressions it follows that

∥xn − x∗∥2Q
∥x0 − x∗∥2Q

=
∥r(Q)x∗∥2Q
∥−x∗∥2Q

=
λ1r(λ1)

2c21 + · · ·+ λmr(λm)
2c2m

λ1c21 + · · ·+ λmc2m

≤ max
λ1,...,λm

r(λi )
2.



CG finds the best polynomial

CG converges as well as the best possible polynomial r(t); and we
don’t even need to compute it explicitly!

0 1 2 3 4

0

1

λ1 λ2 λ3

n = 1
n = 2
n = 3



Repeated eigenvalues

If Q ∈ Rm×m has only n < m distinct eigenvalues, then we can
find r(t) such that r(λi ) = 0, r(0) = 1, by interpolation =⇒
∥xn − x∗∥Q = 0. CG finds the exact solution in n steps!

0 1 2 3 4

0

1

λ1 λ2 λ3



Clustered eigenvalues

Similar case: if the eigenvalues of Q are clustered around n values
µ1, . . . , µn, then the interpolation polynomial r on the µi is likely
to have small |r(λi )| for all i =⇒ small residual after n steps.

0 1 2 3 4

0

1

µ1 µ2 µ3



Linear convergence

Theorem (linear convergence)

Let λmax, λmin be the maximum/minimum eigenvalue of Q; then,
CG converges with rate

∥xn − x∗∥Q
∥x0 − x∗∥Q

≤ 2

(√
λmax −

√
λmin√

λmax +
√
λmin

)n

.

(Proof: find a polynomial such that maxλ∈[λmin,λmax]|r(λ)| = RHS .)

We can rewrite that constant in terms of κ(Q) = λmax
λmin

, the
condition number of Q (this definition is valid only for Q ≻ 0!).
This quantity measures how “imbalanced” the eigenvalues of Q
are. √

λmax −
√
λmin√

λmax +
√
λmin

=

√
κ(Q)− 1√
κ(Q) + 1

.

This is a faster rate than that of the gradient method, κ−1
κ+1 .



Matlab examples

>> rng(0);

>> A = randn(5); Q = A’*A;

>> v = randn(5, 1);

>> x = pcg(Q, v);

pcg converged at iteration 5 to a solution

with relative residual 4e-13.

>> norm(Q*x-v) / norm(v)

ans =

4.0223e-13

>> [x, ~, ~, ~, resvec] = pcg(Q, v); semilogy(resvec)

% sudden convergence at the last iteration

% this is normal for small-scale matrices

% CG really shines with large, sparse matrices



>> rng(0); n = 1000;

>> A = sprandsym(n, 5/n); % 5 nonzeros/row on avg

>> min(eig(A)) % A is symmetric but not posdef

>> Q = 10*speye(n) + A; % to get a posdef matrix

>> spy(Q)

>> min(eig(Q)), max(eig(Q))

ans =

3.9943

ans =

16.0227

>> v = randn(n, 1);

>> pcg(Q, v, 1e-18, 200);

Warning: Input tol may not be achievable by PCG

Try to use a bigger tolerance

> In pcg (line 90)

pcg converged at iteration 33 to a solution

with relative residual 2e-16.



>> Q = 6.0058*speye(n) + A; % more ill-conditioned

>> min(eig(Q)), max(eig(Q))

ans =

1.0563e-04

ans =

12.0285

>> >> pcg(Q, v, 1e-18, 200); % slower convergence

Warning: Input tol may not be achievable by PCG

Try to use a bigger tolerance

> In pcg (line 90)

pcg stopped at iteration 86 without converging to

the desired tolerance 2.2e-16

because the method stagnated.

The iterate returned (number 82) has relative

residual 7.6e-14.



>> A = bucky(); spy(A) % 60x60 test matrix, repeated eigs

>> Q = 2.6181 * speye(size(A)) + A;

>> v = randn(size(A,1), 1);

>> [x, ~, ~, ~, resvec] = pcg(Q, v); % exact convergence

>> semilogy(resvec);


