Solving systems of equations

Storing an m x m matrix with m = 100 000 requires ~ 80GB. And
even if we managed to do it, applying an algorithm like Gaussian
elimination, with complexity O(m?3), is prohibitive.

Luckily, many real-world matrices are sparse: for instance 3, 10
nonzeros per row.

This includes matrices from graph/networks, KKT systems,
discretization of differential equations. ..

Some examples (from the Suitesparse Matrix Collection) in the
next slide.



Some real-world matrices

» Adjacency matrices from networks and graphs.

% ’’Friendship matrix’’ on a group of 34 people
M = load(’karate.mat’).Problem.A;

% Road network of Luxembourg

M = load(’luxembourg_osm.mat’) .Problem.A;

For instance, in some applications centrality indices are
computed by solving (/ — aA)x = ones(n,1).
» In both engineering and video game programming, one often

models complex objects as “networks of points joined by
forces”, and then solves problems on them.

% From a structural stability problem (Boeing)
M = load(’msc00726.mat’) .Problem.A;

. ) o A .
> KKT matrices in optimization, } often with Dy

Dy
AT 0
diagonal and tall-thin A (possibly already sparse).



Storing and using a sparse matrix
Basic format to store sparse matrices: as list of non-zero (i, Aj).
>> sprandn(10,10,0.3)

(Detail: if the indices j are listed increasingly, they can be
compressed further. The most well-known format is known as
CSC/CSR — compressed sparse column/row.)

We can operate on them directly in this format, e.g., in Python
pseudocode:

"Compute the product w = Axv"
def compute_product(A, v):
w = zeros(size(A, 1))
for (i, j, Aij) in A:
wli] += Aij * v[j]
return w



Optimization to solve linear systems

Given a n X n matrix @ = 0 and a vector v= —q € R", we wish to
minimize 1

min f(x) = EXTQX — v’ x + const.
This is equivalent to solving g = Qx — v =0, i.e., the linear
system Qx = v.

We shall see a particularly efficient algorithm that uses concepts
from both linear algebra and optimization. It computes at each
step the best (in a certain sense) possible approximation xy to the
solution Xu.

It is particularly suited to large problem with sparse matrices.



Intro to conjugate gradient

Let us start from a simple quadratic problem with Q@ = /:

T Lo o7
min ~|y —w||“ + const = min-y'y —w 'y + const
yeRm 2 2

1
=min (yf +y3 + -+ yp)
— (wiyr + ways + - -+ + Wpym) + const
This problem is separable: starting from yg = 0, we optimize on
each coordinate separately and generate the sequence of vectors

w1 w1 w1

0 w2 w2

0 0 w3
Y1 = 0 , Y2 = 0 y Y3 = 0 s

0 0 0

At each step, we add a multiple of a new search direction
e1,ep,e3,.... They are all orthogonal to each other.

Convergence guaranteed after m iterations.



Subspace optimality

At each step, we solve a 1D problem and choose yj to solve
wi
WI,

Yk = arg min f(y) over % Y| = {yk_1+oex:acR},

0
(line search), but we also get for free a stronger property:

yx = argmin f(y) over (I) = span(ey, ..., €).

0



Orthogonal directions

We can proceed similarly with any set of orthogonal search

directions U = [uy,uy, ..., upy] instead of the canonical basis
e, es,...,e,. Write
a
w=Ul .|, [w]=]c]|
cm
and find
.
yx = min f(y) over U Cks_l = {yk—1 +au,:a R},
L o
-
. *
= min f(y) over U 5= span(ug,...,up).

Lo



The algorithm

Given orthogonal search dirs uy,...,u, (ie., u,-Tuj = 0 when i # )
Yo < O;
for k=1,2,3,...,mdo
Yk < argmin ||y — w||? + const over {y,_1 + auy};
// univariate quadratic problem in «

end



Change of variable

This simple problem is actually equivalent to any quadratic
problem via a change of basis: given R € R™*™ invertible, y = RXx,

17 T _ LT T
m|n§y y—w y—i—const—mlnEx R"Rx —w'Rx+ const.

-Q T

We can solve the (difficult) problem on the x-space by looking at
the (easier) one on the y-space, with coordinate descent.

Important detail: in the old problem, w is both the linear term
appearing in the objective function and the solution y, = w; in the
new problem, v = R"w, but x, = Q" 'v = R~lw: indeed we can
rewrite the objective function as

1 1 1
min §|]y—w|]2+C = min §\|R(x—x*)||2+C = min E(x—x*)TRTR(x—x*)
y X X

Definition: the Q-norm of a vector z is ||z o = (27 Qz)/2.
Since Q > 0, it is still true that ||z||g > 0, with equality iff z= 0.



Q-orthogonality

Search directions: Rdy = uy. These are orthogonal in the y-space
(ulu; =0 when i # j), but in the y-space the relation becomes

d/ R"Rd; =0
=Q

Definition: vectors d;, d; are called Q-orthogonal if djTde = 0.



The algorithms

In the y space:
Given orthogonal search dirs ug, ... ,up (i.e., ulu; =0 when i # j)
Yo < 0;
for k=1,2,3,...,mdo
yk < argmin |ly — w||2 + const over {yx_1 + auy};
// univariate quadratic problem in «
end

In the x space:

Given Q-orthogonal search dirs dy,...,d,, (i.e., d,-Tde = 0 when
i # )
xo <+ 0;
for k=1,2,3,...,mdo
Xx — argminx’ Qx + v x + const over {x,_1 + ady};
// univariate quadratic problem in «
end



Details

» We do not need to know R, nor x,, nor const: it is enough to

>
>

have @ and v!

Subspace optimality: x,x = min f(x) for x € span(dy, ..., dg).
Convergence guaranteed in m steps — but we hope to do
better!

Important missing part: how to choose the d;’s?
Optimization suggests: it should be loosely in the direction of
the residual r; = —g; = v — Qx;. But residuals are noth
Q-orthogonal.

We shall see that a special property holds: if we set

djT: ri + Bidj_1, itis sufﬁci.ent to choose ﬂ.j to impose
dj_lej = 0; Q-orthogonality with all previous search
directions holds automatically.



Conjugate gradient — implementation

Three ingredients: current iterate x;, residual r; = v — Qx; = —g;,
and search direction d;.

CG iteration

x0:0,r0:d0:v;

for j = 1:ndo
aj = (ro,lrj—l)/(djT,lej—l) ; // exact line search
Xj = xj_1 + ojdj_g;
ri=ri—1—a;jQd;_1; // residual update (check!)

/BJ = (r_/TrJ')/(rjllrj_l);
di=r;j+p5d;_1; // Q-orthogonal (we’ll see why)
end

The formula for the exact line search ¢; is not obvious, but we will
have the tools to prove it later.
Storage: 3 vectors: x;,rj,d;. No need to keep previous iterates.



Black-box algorithms
Cost: n x (1 mat-vec product for Qd;—1 + O(m)).
Dominant part: computing n products d; — Qd;.

Note that we only need a function (“oracle” in CS terms)
compute_product(d) = Q*d: this is a so-called black box
algorithm.

CG is fast whenever compute_product is fast: a sparse Q yields
O(nnz(Q)), but not only.



Krylov spaces
A new linear algebra concept that will help us analyze CG.
Definition

Given @ € R™*™ (not nec. symmetric), v € R™, and n < m, the
Krylov space Kn(Q,v) is the linear subspace

Kn(Q,v) = span(v, Qv, Q?v, ..., Q”_lv),

That is, the set of vectors that we can write as

w = (Co/ +aQ+ CzQ2 + -+ Cn—1Q"71)V;
=p(Q)

any polynomial of degree d < nin Q, multiplied by v.



Krylov spaces, polynomials and degrees

Assume v, Qv, Q?v, ..., @™ v are linearly independent; then the
coordinates

w=ve+ Qua+...Q%va+ -+ Q" tve, 1

of any vector w € K,(Q,v) are unique. For each w the degree d
of the polynomial such that w = p(Q)v is well-defined.

Trivial but useful facts

» If w has degree d, then w € Ky11(Q,v) \ Ky4(Q, V).
» If w has degree d, then Qw has degree d + 1.



Krylov spaces — characterization

Observation K,(Q,v) is the set of vectors that | can obtain,
starting from S = {v}, with these operations:
> Multiply by Q: add to the set Qw, where w is any element of
S;
» Linear combinations: add to the set wiaq + - - - + Wy,
where the w; belong to S;
and the first operation is performed fewer than n times.
This matches well our “oracle” idea: the allowed operations are

linear combinations and invoking the oracle; K,(Q,v) is the set of
vectors that | can obtain by calling the oracle fewer than n times.



Krylov spaces and optimization

Observation The iterates of gradient descent lie in Krylov spaces.

Suppose we are looking for

1
min f(x) = EXTQX —v'x + const, xo=0.

At each step we take a gradient g, := @xx — v and use it to
compute Xg41.

xg=0

x1 = X0 — (@xo — V)a1 = vau,

x2 =x1 — (Qx1 — v)ap = va; — (Qvag — v)ap € span(v, Qv)

x3 = x2 — (Qx2 — v)as € span(v, Qv, Q2v)

We have

g0, x1 € K1(Q,v), 0 products with Q required
g1,X2 € K2(Q,v) \ K1(Q,v), 1 product with Q required
g2,x3 € K3(Q,v) \ K2(Q,v), 2 products with Q required



Search space = Krylov space

Theorem
Assume that v, Qv, ..., Q" !v are linearly independent. Then,
after each step n of CG (starting from xo = 0),

> X1,X2,...,Xp

> ro,ri,...,rh—1

> d07d17 OXRD 7dn—1-
are bases of K,(Q,v).

Proof

1. Using the formulas that define the method, show inductively
that x;,rj_1,d;_1 have degree j — 1.

2. Observe that if we have a polynomial py(t) of degree 0, one
p1(t) of degree 1, ..., one p,_1(t) of degree n — 1, then we
can write any polynomial of degree < n—1 as a linear
combination of them.



Orthogonality in CG

Theorem
At each step r,-TrJ- = d,Tde =0 for all i <.

The r; are orthogonal (not -normal), and the d; are Q-orthogonal.
Proof (sketch) Assume it holds for j — 1 (induction!). We show
only that r,-Trj = 0 for all i < j; the other part is similar.

From r; = r;_; — aQd;_; it follows that

T, _ T +TOd.
rivi=riri_1—ajr; Qdj_1.

» For i <j —1, r]rj_1 is zero by induction, since
r; € span(do,dy,...,d;) is Q-orthogonal to d;_;.
» For i =j — 1, the RHS is zero if we can prove that
aj = g
j—1¥5i—1
denominator is not djtlej_l. However
d;_1 =rj_1+ Bj_1d;_2, so the two denominators differ by
ﬁj_ldjzszj_l = 0 (by induction).

. This is almost the formula for «;, but the



The other half of the proof

(Not shown, just here for completeness.)
It remains to prove the second half of the induction step, i.e.,

0=d/ Qd; =d/ Q(r; + 8;d;_1).

For i < j — 1, this follows by induction and the fact that
Qd; € Kj_1(Q,v) is orthogonal to r; by the first half of the proof.
For i = j — 1, this holds if we can prove that

djT_ler B I’J-T(—Oédefl) B ro(rj —rj-1)

d/,Qdj1  d/,(aQd;1)  d (h1—1)

Bj = —

This quantity is equal to the formula for 3; because
di_1,rj_1 € K;j(Q,v) are orthogonal to r;, and
dliria = (-1 + Bjadi2) T =l yry.



Lucky breakdown

Breakdown = solution: Suppose that for a certain n the vectors
v, Qv,...Q"v are linearly dependent, i.e., Q"v can be written as a
linear combination of the previous ones, i.e.,

Kn(Qa V) = anl(Q,V)-
In particular, since r, € K,(Q, v), we have
rp = Cofo + Cif1 + -+ + Cp—1¥p—1.

But we can still use the steps of our proof to show that r,,Trj =0
for j < n.
Then, we must have ||r,||> = r]r, = 0, by orthogonality.



Convergence of CG

Geometric idea: the level curves are ellipsoids in the x-space but
circles in the y-space.

Convergence is guaranteed in at most m iterations, x,,, = X4, but it
can be much faster. For instance, when Q = | we converge in 1
step.

Optimality = ||xx — x«||@ and f(xx) decrease monotonically.
However, ||xx — x.|| or |[rk|| do not, in general.

Optimality = ||xx — X«||@ and f(xx) decrease faster than any
other method that produces x, € K(Q,v). E.g., gradient method,
heavy ball variants, ...



Convergence speed of CG

The convergence speed depends on the effectiveness of polynomial
approximation of the eigenvalues of Q.

Theorem
X, — X
Ixo = x.llo < min max |[r(\)],
||X0 - X*HQ r(t) i=1,2,....m
where A1,..., Ay are the eigenvalues of @, and the minimum is

over all polynomials r of degree < n, normalized such that
r(0) = 1.

Proof
Xn € Kn(Q,v) < x, = p(Q)v for a polynomial p of degree < n.

X, — X = min X — X = min||x, — X
o —x.lla = _min Ix ~x.llg = min|lx. ~ p(Q)@x. g

= min r(Q)x«||o-
omin (@l
of degree < n



Convergence speed of CG (cont.)

We can use the formulas from our slideset on orthogonality to give
better expressions in terms of an eigenvalue decomposition

Q = UDUT, with U orthogonal and D diagonal containing the
eigenvalues:

r(A1)
HQ)=U ) ) uT,
r(Am)

Moreover, if x, = Uc, then ||x.||3 = >_; \ic?, and

r(A1) ?

remlp=|v| o =S nrnpe

r(Am) Q



Convergence speed of CG (cont.)
From these two expressions it follows that
%0 — %[5 Ir(Q)x]13

%o — %)% [I-x11%
B )\1r(/\1)2c12 + o Amr(Am)3c2,

Mel + -+ Anc3

< max r(\)%
/\lr--a))(\m ( ’)



CG finds the best polynomial

CG converges as well as the best possible polynomial r(t); and we
don’t even need to compute it explicitly!

T T T I
—n=1

— ] —

— ] —




Repeated eigenvalues

If @ € R™*™ has only n < m distinct eigenvalues, then we can
find r(t) such that r(\;) =0, r(0) = 1, by interpolation —
Ixn — X«||@ = 0. CG finds the exact solution in n steps!




Clustered eigenvalues

Similar case: if the eigenvalues of Q are clustered around n values
W1, - -, Mn, then the interpolation polynomial r on the pu; is likely
to have small |r(A;)| for all i = small residual after n steps.




Linear convergence

Theorem (linear convergence)

Let Amax, Amin be the maximum /minimum eigenvalue of Q; then,
CG converges with rate

Hxn_x*HQ< <\/ max — V mm)n
HXO_X*HQ V Amax + vV Amin

(Proof: find a polynomial such that maxye[x i Ama[F(A)| = RHS.)

We can rewrite that constant in terms of x(Q) = 4=, the
condition number of @ (this definition is valid onIy for Q > 0.
This quantity measures how “imbalanced” the eigenvalues of Q

Vi — i W(o) 1
\/)\max + \/>\min \/K, ‘

This is a faster rate than that of the gradlent method

! n+1'



Matlab examples

>> rng(0);

>> A = randn(5); Q = A’*A;
>> v = randn(5, 1);

>> x = pcg(Q, v);

pcg converged at iteration 5 to a solution
with relative residual 4e-13.
>> norm(Q*x-v) / norm(v)
ans =
4.0223e-13
> [x, 7, 7, 7, resvec] = pcg(Q, v); semilogy(resvec)
% sudden convergence at the last iteration
% this is normal for small-scale matrices

% CG really shines with large, sparse matrices



>> rng(0); n = 1000;
>> A = sprandsym(n, 5/n); % 5 nonzeros/row on avg
>> min(eig(A)) % A is symmetric but not posdef
>> Q = 10*speye(n) + A; % to get a posdef matrix
>> spy(Q)
>> min(eig(Q)), max(eig(Q))
ans =
3.9943
ans =
16.0227
>> v = randn(n, 1);
>> pcg(Q, v, 1le-18, 200);
Warning: Input tol may not be achievable by PCG
Try to use a bigger tolerance
> In pcg (line 90)
pcg converged at iteration 33 to a solution
with relative residual 2e-16.



>> Q = 6.0058*speye(n) + A; % more ill-conditioned
>> min(eig(Q)), max(eig(Q))
ans =

1.0563e-04
ans =

12.0285
>> >> pcg(Q, v, le-18, 200); % slower convergence
Warning: Input tol may not be achievable by PCG

Try to use a bigger tolerance

> In pcg (line 90)
pcg stopped at iteration 86 without converging to
the desired tolerance 2.2e-16
because the method stagnated.
The iterate returned (number 82) has relative
residual 7.6e-14.



>> A = bucky(); spy(A) % 60x60 test matrix, repeated eigs
>> Q = 2.6181 * speye(size(A)) + A;

>> v = randn(size(A,1), 1);

> [x, 7, 7, 7, resvec] = pcg(Q, v); % exact convergence
>> semilogy(resvec);



